ORACLE"

Oracle Database 10g:
The Complete Reference

Kevin Loney

McGraw-Hill/Osborne

New York Chicago San Francisco
Lisbon London Madrid Mexico City Milan
New Delhi San Juan Seoul Singapore Sydney Toronto

The McGraw:-Hill companies

McGraw-Hill/Osborne

2100 Powell Street, 10th Floor
Emeryville, California 94608
U.S.A.

To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers, please contact
McGraw-Hill/Osborne at the above address. For information on translations or book distributors outside the
U.S.A., please see the International Contact Information page immediately following the index of this book.

Oracle Database 10g: The Complete Reference

Copyright © 2004 by The McGraw-Hill Companies, Inc. (Publisher). All rights reserved. Printed in the
United States of America. Except as permitted under the Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system,
without the prior written permission of Publisher.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission
of Oracle Corporation and/or its affiliates.

Excerpts of copyrighted Oracle user documentation have been reproduced herein with the permission of
Oracle Corporation and/or its affiliates.

1234567890 CUS CUS 01987654
Book p/n 0-07-225352-5 and CD p/n 0-07-225353-3

parts of
ISBN 0-07-225351-7

Publisher Copy Editors
Brandon A. Nordin Bart Reed, Margaret Berson, William F. McManus
Vice President & Associate Publisher Proofreader
Scott Rogers Carol Henry
Acquisitions Editor Indexer
Lisa McClain Jack Lewis
Project Editors Computer Designer
Patty Mon, Janet Walden Apollo Publishing Services
Acquisitions Coordinator Cover Series Design
Athena Honore Damore Johann Design, Inc.

Technical Editor
Pete Sharman

This book was composed with Corel VENTURA™ Publisher.

Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or mechanical
error by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness of any information included
in this work and is not responsible for any errors or omissions or the results obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any information
contained in this Work, and is not responsible for any errors or omissions.

To my parents, and to Sue, Emily, Rachel, and Jane.

About the Author

Kevin Loney is a senior technical management consultant with
TUSC (http://www.tusc.com), an Oracle-focused consultancy
headquartered in Chicago. He was selected as ORACLE Magazine's
Consultant of the Year in 2002. He is an expert in the design,
development, administration, tuning, security, and recovery of
Oracle-based applications. An Oracle DBA and developer since
1987, he is the primary author of 15 books for Oracle DBAs and
developers. He is a frequent and highly-rated presenter at local
and international Oracle user groups.

About the Technical Reviewers

Pete Sharman has 16 years’ IT experience designing, implementing,
and managing the performance of Oracle solutions. As a solo
consultant and team leader, Pete has provided administrative and
technical leadership to leading Internet-based businesses as well
as several Fortune 100 and Fortune 500 companies. He has also
completed world-class benchmarks and implementation reviews
of the Oracle RDBMS, and performed high-impact performance
tuning. A proven technical leader, Pete has acquired expert-level
skills in Oracle Parallel Server and Real Application Clusters database
design, administration, backup and recovery, operations planning
and management, performance management, system management,
and security and management of complex data centers.

Currently, Pete is performing the role of Oracle9i and Oracle 10g
Database Global Consulting Lead, acting as an interface between
Oracle Development and North America Sales and Consulting.
Pete has also passed all the Oracle DBA Certifications (Oracle?,
Oracle8, Oracle8i, and Oracle9i) and was one of the first 20 people
in the world to qualify as an Oracle9i Certified Master.

Bob Bryla is an Oracle 8, 8i, 9/, and 10g Certified Professional with
more than 15 years of experience in database design, database
application development, training, and database administration,
and he is the tech editor and author of several Oracle Press and
Sybex Oracle DBA books. He is an Internet database analyst and
Oracle DBA at Lands’ End, Inc., in Dodgeville, Wisconsin.

ACKNOWLEDGEMENTS. . . XV

INTRODUCTION .. e Xvii
PART I
Critical Database Concepts
Oracle Database 10g Architecture Options coviiiiiion... 3
Databases and INStanNCesttt 5
Inside the Database 5
Choosing Architectures and Options 9
Installing Oracle Database 10g and Creating a Database 11
Overview of Licensing and Installation Options 13
Upgrading to Oracle Database 10gcciiiiiiiiiiiiiiinnennnn. 27
Choosing an Upgrade Method 29
Before Upgrading 30
Using the Database Upgrade Assistantt . 30
Performing a Manual Direct Upgrade 31
Using Export and Import 34
Using the Data-Copying Method 35
After Upgrading 36
Planning Oracle Applications—Approaches, Risks, and Standards 37
The Cooperative Approach 39
Everyone Has “Data” 40
The Familiar Language of Oracle 41
Some Common, Everyday Examples 45
What Are the Risks? 47
The Importance of the New Vision i 48
How to Reduce the Confusion i, 50
Capitalizationin Namesand Data it 57
Normalizing Names 58
Good Design Has a Human Touch 58
Understanding the Datat 62
Toward Object Name Normalization 65

vi Oracle Database 10g: The Complete Reference

10

Intelligent Keys and Column Values 68
The Commandmentst 68
PART 1l
SQL and SQL*Plus
The Basic Parts of Speechin SQL i, 73
Sty 75
Creating the NEWSPAPER Table 76
Using SQL to Select Data from Tables 76
select, from, where, and orderby 80
Logicand Value 82
Another Use for where: Subqueries 91
Combining Tables 95
Creating @ VieW 97
Basic SQL*Plus Reportsand Commandscoiiiiiiiiiiinan.. 101
Building a Simple Report 104
Other Features e 114
Checking the SQL*Plus Environment, 120
Building Blocks 122
Getting Text Information and Changing It o i, 123
Datatypes ... 124
What Is @ String? . ..o 124
NOtatioN . . e 126
Concatenation (1) ... 127
How to Cut and Paste Stringst e 128
Using order by and where with String Functions 145
REVIEW . 148
Searching for Regular EXpressionsc.ciiiniiiiiiiininnenennennn. 149
Search Strings 150
REGEXP_SUBSTR .. e e e e e e e e e e e e e e e e e e 154
Playing the Numbers i iiiiiiiiiiiiiiiiiiiiiiiiiinnnn, 163
The Three Classes of Number Functions 164
Notation . ..o 164
Single-Value Functions 168
Aggregate FUNCLIONS 175
List FUNCHONS . . . e e e e e e e e e e e e e e e e e e e 182
Finding Rows with MAX or MIN i 183
Precedence and Parentheses 185
ReVieW 186
Dates: Then, Now, and the Difference ittt 189
Date Arithmetic 190

ROUND and TRUNC in Date Calculations 199

11

12

13

14

15

16

17

Contents
TO_DATE and TO_CHAR Formatting it 200
Dates in where Clauses i 211
Dealing with Multiple Centuries i 212
Using the EXTRACT FUNCLION oo e e e 213
Using the TIMESTAMP Datatypesttt 214
Conversion and Transformation Functions 0itiieenn.. 217
Elementary Conversion Functions 220
Specialized Conversion Functions i, 225
Transformation FUNCLIONS 226
REVIEW 228
Grouping Things Together i, 229
The Use of group by and having 230
Views Of GIrOUPS . . oottt e e 234
The Power of Views of Groupsttt e e 236
More Grouping Possibilities 241
When One Query Depends upon Anothercoiiiiiiiian... 243
Advanced Subqueries 244
OUter JOINS o e 249
Natural and Inner JOINs 255
UNION, INTERSECT, and MINUS e 256
Some Complex Possibilitiesottt 261
Complex GroUupingsttt e 262
Using Temporary Tables 263
Using ROLLUP, GROUPING, and CUBE 264
Family Trees and connectby 268
Changing Data: insert, update, merge, and delete 279
0TS G 280
rollback, commit, and autocommit 283
Multitable Inserts 285
delete ... 289
UPate . o 291
Using the merge Command e 293
DECODE and CASE: if, then, and else inSQL itiiiieenn... 297
if, then, else 298
Replacing Values via DECODE e 301
DECODE Within DECODE e 302
Greater Than and Less Than in DECODE, 305
Using CASE . . . 307
Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 311
Creatinga Table 312
Dropping Tables 320

Altering Tables 321

\%

18

19

20

21

22

23

Oracle Database 10g: The Complete Reference

Creating a TablefromaTable 326
Creating an Index-Organized Table 327
Using Partitioned Tables 328
Creating a VieW 333
INAEXES . ot 336
ClUSEEIS o 342
SEQUENCES . . ottt et 344
Basic Oracle Securityt 345
Users, Roles, and Privileges 346
What Users Can Grantttt e e 353
Granting Limited ResOUICEs it 367
PART Il
Beyond the Basics
Advanced Security—Virtual Private Databasescccoiuiiiiininnnn. 371
Initial Configuration 372
Create an Application Contextt 373
Create a Logon Trigger 375
Create a Security Policy 376
Apply the Security Policy to Tables 377
Test VP . 378
How to Implement Column-Level VPD 379
How to Disable VPD 380
How to Use Policy Groupsttt e e e e e 381
Working with Tablespaces il 383
Tablespaces and the Structure of the Database 384
Planning Your Tablespace Usage i, 389
Using SQL*Loaderto Load Datacoiiiiniiiiniiniiienennennnns 391
The Control File 392
Starting the Load 394
Control File Syntax Notes 398
Managing Data Loads 400
Tuning Data Loads 402
Additional Features 404
Using Data Pump Exportand Import oo iiiiiiiiiiiiiinnn.. 405
Creating a Directory 406
Data Pump Export Options 406
Starting a Data Pump ExportJob 409
Data Pump Import Options 413
Starting a Data Pump ImportJob 416
Accessing Remote Datac.iiiiiiiiiiiiiiiiiiiiiieieienenenenns 423
Database Links 424

Using Synonyms for Location Transparencyouuueiueennn .. 431

24

25

26

27

28

29

Contents
Using the User Pseudo-Column in Views 432
Dynamic Links: Using the SQL*Plus copy Command 434
Connecting to a Remote Database 435
Using Materialized Views ittt 437
Functionality 438
Required System Privileges 438
Required Table Privileges 439
Read-Only vs. Updatable 439
create materialized view Syntax 440
Using Materialized Views to Alter Query Execution Paths 445
Using DBMS_ADVISOR .. 447
Refreshing Materialized Views i 449
create materialized view log Syntax 455
Altering Materialized Views and Logs i 456
Dropping Materialized Views and Logs 457
Using Oracle Text for Text Searchesciiiiiiiiiiiiiiiiinnnn. 459
Adding Textto the Databaset 460
Text Queries and Text Indexes 461
INdeX Sets . .. 474
Using External Tableso ittt 477
Accessing the External Data it 478
Creating an External Table 479
Altering External Tables 489
Limitations, Benefits, and Potential Uses of External Tables 490
Using Flashback Queriesottt 493
Time-Based Flashback Example 494
Savingthe Data 496
SCN-Based Flashback Example 497
What If the Flashback Query Fails? 499
What SCN Is Associated with Each Row? 499
Flashback Version Queries 500
Planning for Flashbacks 502
Flashback—Tables and Databasesot 503
The flashback table Command 504
The flashback database Command 507

PART IV
PL/SQL

An Introduction to PL/SQLottt ittt ittt i 513
PL/SQL OVEIVIEW . oottt e e e e e 514
Declarations SECtionot 514
Executable Commands Section 518

Exception Handling Section 531

IX

X Oracle Database 10g: The Complete Reference

30

31

32

33

34

35

1 £ 535
Required System Privileges 536
Required Table Privileges 536
Types Of THgEEIS . o oo e e e 537
Trigger SyNtaX 538
Enabling and Disabling Triggers 548
Replacing Triggers i e 549
Dropping Triggers e e e e e e e e e 550
Procedures, Functions, and Packages o i, 555
Required System Privileges 556
Required Table Privileges 558
Procedures vs. FUNCLIONSo o 558
Procedures vs. Packages 558
create procedure SYNtax 559
create function SYNtax i 561
create package Syntax 568
Viewing Source Code for Procedural Objects 572
Compiling Procedures, Functions, and Packages 572
Replacing Procedures, Functions, and Packages 573
Dropping Procedures, Functions, and Packages 573
Using Native Dynamic SQLand DBMS_SQL coiiiiiiiiiinnan.. 575
Using EXECUTE IMMEDIATE . . . e 576
Using Bind Variables 578
Using DBMS_SQL . oot 579
PART V
Object-Relational Databases
Implementing Types, Object Views, and Methods 587
Working with Abstract Datatypes it 588
Implementing Object Views 593
Methods 599
Collectors (Nested Tables and Varying Arrays)ccoviiiiiininnen.n. 603
Varying AIrays . ..o ottt 604
Nested Tables 610
Additional Functions for Nested Tables and Varying Arrays 615
Management Issues for Nested Tables and Varying Arrays 615
Using Large Objectsttt ittt ittt ittt iiiinenenenns 619
Available Datatypes 620
Specifying Storage for LOB Datattt 621

Manipulating and Selecting LOB Values 623

Contents Xi

36 Advanced Object-Oriented Conceptsccoviiiiiiiiiiiiiinienenenns 647
Row Objects vs. Column Objects 648
Object Tables and OIDs 648
Object Views with REFs o e 656
ObJECt PL/SQL - v e e e e e e e e 661
Objects in the Database 662

PART VI
Java in Oracle

37 AnINtroduction t0 Java ... v v ittt ittt i i i i e e e e e e e 667
Java vs. PL/SQL: AN OVEIVIEW . ..o e 668
Getting Started 669
Declarationso 669
Executable Commands 670
ClaSSES ottt 679

38 JDBCProgrammingcouiiniiniiininininrenenerenenenenenenenanns 685
Getting Started 686
Using the JDBC Classesttt e e e e 688

39 Java Stored Proceduresvviiii ittt i e e e e e e 697
Loading the Class into the Database i .. 700
How to Access the Class e 702

PART VII
Clustered Oracle—The Grid

40 Oracle Real Application Clusterso iiiiiiiiiiiiiiiiiiinnnnnnn. 709
Preinstallation Steps i 710
Installing RAC . . . oo 710
Starting and Stopping RAC Instances 714
Transparent Application Failover 716
Adding Nodes and Instances to the Cluster 717
Managing the Cluster Registry and Services 718

41 Grid Architecture and Management0 ittt 719
Hardware and Operating System Configuration Issues 720
Adding Servers to the Grid 723
Sharing Data Across the Grid 724
Managing the Grid 724

Launching OEM . .. 726

X

42

43

44

45

Oracle Database 10g: The Complete Reference

PART VI
Hitchhiker’s Guides

The Hitchhiker’s Guide to the Oracle10g Data Dictionary
A Note About Nomenclature i
New Views Introduced in Oracle Database 10g
New Columns Introduced in Oracle Database 10g
The Road Maps: DICTIONARY (DICT) and DICT_COLUMNS
Things You Select From: Tables (and Columns), Views, Synonyms, and Sequences

Recycle Bin—USER_RECYCLEBIN and DBA_RECYCLEBIN
Constraints and COmMmMENLSottt
Abstract Datatypes, ORDBMS-Related Structures, and LOBs
Database Links and Materialized Views
Triggers, Procedures, Functions, and Packages
DiMeENSIONS . . .
Space Allocation and Usage, Including Partitions and Subpartitions
Users and Privileges
ROIES o
AUItiNg o
Miscellaneous
Monitoring: The V$ Dynamic Performance Tables
The Hitchhiker’s Guide to Tuning Applicationsand SQL
New Tuning Features in Oracle Database 10g,
Tuning—Best Practices
Generating and Reading Explain Plans
Major Operations Within Explain Plans
Implementing Stored Outlines
ReVieW
Case Studies in TUNING . ..ottt ittt ittt ieieenennnnn
Case Study 1: Waits, Waits, and More Waits,
Case Study 2: Application-Killing Queries,
Case Study 3: Long-Running Batch Jobs
The Hitchhiker’s Guide to Oracle Application Server 10g
What Is Oracle Application Server 1082 i
Communication SErVICESo
Content Management SErviCest
Business LOZIC ServiCes e e
Presentation SErvices
Business Intelligence Services
Portal Services
WED SEIVICES . . ottt
Developer Toolkits
Persistence Layer SErviCes
Caching Services
SYStEM SEIVICES . o ottt

Development TOOIs o

46

47

Contents
The Hitchhiker’s Guide to Database Administration 885
Creating a Database 886
Starting and Stopping the Database 887
Sizing and Managing Memory Areasit it 888
Allocating and Managing Space for the Objects 891
Monitoring an Undo Tablespace 900
Automating Storage Management 901
Segment Space Management 902
Transporting Tablespaces 903
Performing Backups 904
Where to Go from Here 919
The Hitchhiker’s Guide to XMLinOracleo i, 921
Document Type Definitions, Elements, and Attributes 922
XML Schema 926
Using XSU to Select, Insert, Update, and Delete XML Values 928
Using XMLTYpE . .o e e e e 934
Other Features e 936

Alphabetical Referenceo iiiiiiiiiiiiiiiiiiiiiiinnennnnns 937

X

Acknowledgments

This book is dedicated to my family. Thank you for your patience, support, and love.
This book is the product of many hands, and countless hours from many people. My thanks go
out to all those who helped, whether through their comments, feedback, edits, or suggestions.
For additional information about the book, see the publisher’s site (http:/www.osborne.com)
and my site (http://www.kevinloney.com). Additional articles and presentations can be found
on the company site at http://www.tusc.com.

m To the contributors and reviewers at TUSC, including Chris Ostrowski, Brad Brown,
and Shaun O’Brien.

m To the management, including Rich Niemiec, Joe Trezzo, Brad Brown, and others for
their dedication to the Oracle user community and their commitment to establishing
and following best practices.

m To my peers at TUSC, including Bill Callahan, Patrick Callahan, Tony Catalano, Holly
Clawson, Judy Corley, Mike Killough, Randy Swanson, Bob Taylor, Bob Yingst, and
many others for their insights and contributions.

Thanks to my colleagues and friends, including Eyal Aronoff, Steve Bobrowski, Rachel
Carmichael, Steven Feuerstein, Mike McDonnell, Vinny Smith, Susan St. Claire, and Marlene
Theriault. This book has benefited from the knowledge they have shared, and | have benefited
from their friendship and guidance.

Thanks to the folks at McGraw-Hill/Osborne who guided this product through its stages: Scott
Rogers, Athena Honore, Lisa McClain, Patty Mon, Bart Reed, Margaret Berson, Bill McManus, and
the others at Osborne with whom I never directly worked. Thanks to the reviewers, including
Pete Sharman and Bob Bryla (who also contributed material). Thanks also to the Oracle component
of Oracle Press. This book would not have been possible without the earlier excellent work of
George Koch and Robert Muller.

Thanks to the writers and friends along the way: Jerry Gross, Jan Riess, Robert Meissner, Marie
Paretti, Br. Declan Kane, CFX, Br. William Griffin, CFX, Chris O’Neill, Cheryl Bittner, Bill Fleming,
and the FSOUG board.

Special thanks to Sue, Emily, Rachel, Jane, and the rest of the home team. As always, this has
been a joint effort.

—Kevin Loney

XV

Introduction

Oracle documentation is thoroughgoing and voluminous, currently spanning multiple CDs.
Oracle Database 10g: The Complete Reference is the first entity that has gathered all the major Oracle
definitions, commands, functions, features, and products together in a single, massive core reference—
one volume that every Oracle user and developer can keep handy on his or her desk.

The audience for this book will usually fall into one of three categories:

An Oracle end user Oracle can easily be used for simple operations such as entering
data and running standard reports. But such an approach would ignore its great power;
it would be like buying a high-performance racing car and then pulling it around with a
horse. With the introduction provided in the first two sections of this book, even an end
user with little or no data processing background can become a proficient Oracle user—
generating ad hoc, English-language reports, guiding developers in the creation of new
features and functions, and improving the speed and accuracy of the real work done in
a business. The language of the book is simple, clear English without data processing
jargon, and with few assumptions about previous knowledge of computers or databases.
It will help beginners to become experts with an easy-to-follow format and numerous
real examples.

A developer who is new to Oracle With as many volumes of documentation as Oracle
provides, finding a key command or concept can be a time-consuming effort. This book
attempts to provide a more organized and efficient manner of learning the essentials of
the product. The format coaches a developer new to Oracle quickly through the basic
concepts, covers areas of common difficulty, examines misunderstandings of the product
and relational development, and sets clear guidelines for effective application building.

An experienced Oracle developer As with any product of great breadth and sophistication,
there are important issues about which little, if anything, has been published. Knowledge
comes through long experience, but is often not transferred to others. This book delves
deeply into many such subject areas (including new features such as the flashback options,
Data Pump, and many others). The text also reveals many common misconceptions and
suggests rigorous guidelines for application development and designing for performance
issues.

XVIII Oracle Database 10g: The Complete Reference

In Chapter 1, you will see a roadmap to the organization of this book. Briefly, the first part
of the book focuses on installing Oracle, upgrading from prior versions of Oracle, and reviewing
new features introduced with the latest version. The following sections provide guidance on the
technologies you use to exploit Oracle’s capabilities—SQL, PL/SQL, dynamic SQL, object-relational
features, Java, and more. The chapters progress from basic information on SQL to detailed examples
of complex programs.

The final two parts of the book contain the “hitchhiker’s guides”—guided tours of the data
dictionary, optimizer, tuning case studies, the application server, database administration, and
XML—and the Alphabetical Reference. The Alphabetical Reference contains the syntax and
description of all functions and commands supported by Oracle Database 10g. The reference
is intended for use by both developers and users of Oracle but assumes some familiarity with
the products.

PART
[

Critical Database
Concepts

CHAPTER
1

Oracle Database 10g
Architecture Options

4 Partl: Critical Architecture Concepts

| racle Database 10g is a significant upgrade from prior releases of Oracle. New
features give developers, database administrators, and end users greater control
over the storage, processing, and retrieval of their data. In this chapter, you will
. see highlights of the Oracle Database 10g architecture. You will see detailed
discussions of new features such as regular expression support, flashback
version queries, and Data Pump in later chapters. The goal of this chapter is to present a high-
level overview of the capabilities you can feature in your Oracle applications and provide an
introduction to the chapters that describe them.

This book is divided into nine major sections.

In Part I, “Critical Database Concepts,” you will see an overview of Oracle Database 10g’s
options, how to install the Oracle software, how to create or upgrade a database, and advice on
planning your application implementation. These chapters establish the common vocabulary that
both end users and developers can use to coherently and intelligently share concepts and ensure the
success of any development effort. This introductory chapter and Chapter 4 are intended for both
developers and end users of Oracle; Chapters 2 and 3 are intended for database administrators.

Part I, “SQL and SQL*Plus,” teaches the theory and techniques of relational database systems
and applications, including SQL (Structured Query Language) and SQL*Plus. The section begins
with relatively few assumptions about data-processing knowledge on the part of the reader and
then advances, step by step, through some very deep issues and complex techniques. The method
very consciously uses clear, conversational English, with unique and interesting examples, and
strictly avoids the use of undefined terms or jargon. This section is aimed primarily at developers
and end users who are new to Oracle or need a quick review of certain Oracle features. It moves
step by step through the basic capabilities of SQL and Oracle’s interactive query facility, SQL*Plus.
When you’ve completed this section, you should have a thorough understanding of all SQL
keywords, functions, and operators. Within an Oracle database, you should be able to produce
complex queries, create tables, and insert, update, and delete data.

Part 11l, “Beyond the Basics,” covers advanced options, including virtual private databases,
Data Pump, replication, text indexing, external tables, and the use of the flashback options for
developers and database administrators. Most of the features described in this section will not
be directly used by end users, but the applications they use can be based on these features.

Part IV, “PL/SQL,” provides coverage of PL/SQL. The topics include a review of PL/SQL structures,
plus triggers, stored procedures, and packages. Both standard and native dynamic PL/SQL is covered.

Part V, “Object-Relational Databases,” provides extensive coverage of object-oriented features
such as abstract datatypes, methods, object views, object tables, nested tables, varying arrays, and
large objects.

Part VI, “Java in Oracle,” provides coverage of the Java features in the Oracle database. This
section includes an overview of Java syntax as well as chapters on JDBC and Java stored procedures.

Part VII, “Clustered Oracle—The Grid,” provides an overview of the Real Application Cluster
and grid architecture available in Oracle Database 10g.

Part VIII contains several “hitchhiker’s” guides—to the data dictionary, the database optimizer,
Oracle Application Server, database administration, and Oracle’s XML implementation. These
guides provide an overview of areas that developers may need to use in their application
development and administration.

Part IX, the “Alphabetical Reference,” is a reference for the Oracle server—a book unto itself.
Reading the introductory pages to this reference will make its use much more effective and
understandable. This section contains references for most major Oracle commands, keywords,
products, features, and functions, with extensive cross-referencing of topics. The reference is

Chapter 1: Oracle Database 10g Architecture Options

intended for use by both developers and users of Oracle but assumes some familiarity with the
products. To make the most productive use of any of the entries, it's worthwhile to read the
introductory pages of the reference. These pages explain in greater detail what is and is not
included and how to read the entries.

The CD that accompanies this book contains a special electronic edition of Oracle Database 10g:
The Complete Reference. Now, with this electronic version, you can easily store all the valuable
information contained in the book on your PC while the print version of the book remains in your
office or home. The CD also contains the table-creation statements and row insertions for all the
tables used in this book. For anyone learning Oracle, having these tables available on your own
Oracle ID, or on a practice ID, will make trying or expanding on the examples very easy.

Databases and Instances

An Oracle database is a collection of data in one or more files. The database contains physical
and logical structures. In the course of developing an application, you create structures such as
tables and indexes to store rows and speed their retrieval. You can create synonyms for the object
names, view objects in different databases (across database links), and you can restrict access to
the objects. You can even use external tables to access files outside the database as if the rows

in the files were rows in tables. In this book, you will see how to create these objects and develop
applications based on them.

An Oracle instance comprises a memory area called the System Global Area (SGA) and the
background processes that interact between the SGA and the database files on disk. In an Oracle
Real Application Cluster (RAC), more than one instance will use the same database (see Chapter 40).
The instances generally are on separate servers connected by a high-speed interconnect.

Inside the Database

Within the Oracle database, the basic structure is a table. Oracle Database 10g supports many types
of tables, including the following:

m Relational tables Using the Oracle-supplied datatypes (see “Datatypes” in the
Alphabetical Reference), you can create tables to store the rows inserted and manipulated
by your applications. Tables have column definitions, and you can add or drop columns
as the application requirements change. Tables are created via the create table command.

m Object-relational tables To take advantage of features such as type inheritance, you
can use Oracle’s object-relational capabilities. You can define your own datatypes and
then use them as the basis for column definitions, object tables, nested tables, varying
arrays, and more. See Part V of this book.

B Index-organized tables You can create a table that stores its data within an index
structure, allowing the data to be sorted within the table. See Chapter 17.

m External tables Data stored in flat files may be treated as a table that users can query
directly and join to other tables in queries. You can use external tables to access large
volumes of data without ever loading them into your database. See Chapter 26. Note
that Oracle also supports BFILE datatypes, a pointer to an external binary file. Before
creating a BFILE or an external table, you must create a directory alias within Oracle

6 Partl:

Critical Architecture Concepts

(via the create directory command) pointing to the physical location of the file. See
Chapter 35 for details on BFILEs and other large object datatypes.

Partitioned tables You can divide a table into multiple partitions, which allows you

to separately manage each part of the table. You can add new partitions to a table, split
existing partitions, and administer a partition apart from the other partitions of the table.
Partitioning may simplify or improve the performance of maintenance activities and user
queries. You can partition tables on ranges of values, on lists of values, on hashes of
column values, or on combinations of those options. See Chapter 17.

Materialized views A materialized view is a replica of data retrieved by a query. User
queries may be redirected to the materialized views to avoid large tables during execution—
the optimizer will rewrite the queries automatically. You can establish and manage refresh
schedules to keep the data in the materialized views fresh enough for the business needs.
See Chapter 24.

Temporary tables You can use the create global temporary table command to create
a table in which multiple users can insert rows. Each user sees only his or her rows in
the table. See Chapter 14.

Clustered tables If two tables are commonly queried together, you can physically store
them together via a structure called a cluster. See Chapter 17.

Dropped tables As of Oracle Database 10g, you can quickly recover dropped tables
via the flashback table to before drop command. You can flash back multiple tables at
once or flash back the entire database to a prior point in time. Oracle supports flashback
queries, which return earlier versions of rows from an existing table.

To support access to tables, you can use views that perform joins and aggregations, limit the
rows returned, or alter the columns displayed. Views may be read-only or updatable, and they
can reference local or remote tables. Remote tables can be accessed via database links. You can
use synonyms to mask the physical location of the tables. See Chapter 23 for details on database
links, and Chapter 17 for details on views and synonyms.

To tune the accesses to these tables, Oracle supports many types of indexes, including the
following:

B*-tree indexes A B*-tree index is the standard type of index available in Oracle, and
it’s very useful for selecting rows that meet an equivalence criteria or a range criteria.
Indexes are created via the create index command.

Bitmap indexes For columns that have few unique values, a bitmap index may be able
to improve query performance. Bitmap indexes should only be used when the data is
batch loaded (as in many data warehousing or reporting applications).

Reverse key indexes If there are I/O contention issues during the inserts of sequential
values, Oracle can dynamically reverse the indexed values prior to storing them.

Function-based indexes Instead of indexing a column, such as Name, you can index
a function-based column, such as UPPER(Name). The function-based index gives the
Oracle optimizer additional options when selecting an execution path.

Chapter 1: Oracle Database 10g Architecture Options

m Partitioned indexes You can partition indexes to support partitioned tables or to simplify
the index management. Index partitions can be local to table partitions or may globally
apply to all rows in the table.

B Text indexes You can index text values to support enhanced searching capabilities,
such as expanding word stems or searching for phrases. Text indexes are sets of tables
and indexes maintained by Oracle to support complex text-searching requirements.
Oracle Database 10g offers enhancements to text indexes that simplify their administration
and maintenance.

See Chapters 17 and 43 for further details on the index types listed here (excluding text indexes).
For text indexes, see Chapter 25.

Storing the Data

All of these logical structures in the database must be stored somewhere in the database. Oracle
maintains a data dictionary (see Chapter 42) that records metadata about each object—the object
owner, a definition, related privileges, and so on. For objects that require physical storage space
of their own, Oracle will allocate space within a tablespace.

Tablespaces

A tablespace consists of one or more datafiles; a datafile can be a part of one and only one tablespace.
Oracle Database 10g creates at least two tablespaces for each database—SYSTEM and SYSAUX—to
support its internal management needs. You can use Oracle managed files (OMF) to simplify the
creation and maintenance of datafiles.

As of Oracle Database 10g, you can create a special kind of tablespace, called a bigfile
tablespace, that can be many thousands of terabytes in size. Along with OMF, the management of
bigfiles makes tablespace management completely transparent to the DBA; the DBA can manage
the tablespace as a unit without worrying about the size and structure of the underlying datafiles.

If a tablespace is designated as a temporary tablespace, the tablespace itself is permanent;
only the segments saved in the tablespace are temporary. Oracle uses temporary tablespaces
to support sorting operations such as index creations and join processing. Temporary segments
should not be stored in the same tablespaces as permanent objects.

Tablespaces can be either dictionary managed or locally managed. In a dictionary-managed
tablespace, space management is recorded in the data dictionary. In a locally managed tablespace
(the default in Oracle Database 10g), Oracle maintains a bitmap in each datafile of the tablespace to
track space availability. Only quotas are managed in the data dictionary, dramatically reducing
the contention for data dictionary tables.

Automated Storage Management

Automatic storage management (ASM), available as of Oracle Database 10g, automates the layout
of datafiles and other operating system-level files used by the database, by distributing them
across all available disks. When new disks are added to the ASM instance, the database files are
automatically redistributed across all disks in the defined disk group for optimal performance.
The multiplexing features of an ASM instance minimize the possibility of data loss and are
generally more effective than a manual scheme that places critical files and backups on different
physical drives. See Chapter 46.

7

8 Partl: Critical Architecture Concepts

Automatic Undo Management

To support your transactions, Oracle can dynamically create and manage undo segments, which
help maintain prior images of the changed blocks and rows. Users who have previously queried
the rows you are changing will still see the rows as they existed when their queries began. Automatic
Undo Management (AUM) allows Oracle to manage the undo segments directly with no database
administrator intervention required. The use of AUM also simplifies the use of flashback queries.
As of Oracle Database 10g, you can execute flashback version queries to see the different versions
of a row as it changed during a specified time interval. See Chapter 27 for further details on the
use of undo segments, flashback queries, and flashback version queries.

Dropped Data

The recycle bin concept introduced with Oracle Database 10g impacts the space requirements
for your tablespaces and datafiles. In Oracle Database 10g, the default behavior for the drop of a
table is for the table to retain its space allocation; you can see its space usage via the RECYCLEBIN
data dictionary view. If you create and drop a table twice, there will be two copies of the table
in the recycle bin. Although this architecture greatly simplifies recoveries of accidentally dropped
tables, it may considerably increase the space used in your database. Use the purge command
to remove old entries from your recycle bin. See the Alphabetical Reference for the syntax of the
purge command.

Guarding the Data

You can fully control the access to your data. You can grant other users privileges to perform
specific functions (such as select, insert, and so on) on your objects. You can pass along the right to
execute further grants. You can grant privileges to roles, which are then granted to users, grouping
privileges into manageable sets.

Oracle supports a very detailed level of privileges; you can control which rows are accessible
and, during auditing, which rows trigger audit events to be recorded. When you use the Virtual
Private Database (VPD) option, users’ queries of tables are always limited regardless of the method
by which they access the tables. As of Oracle Database 10g, VPD has been further enhanced to
include column masking for columns containing sensitive data. See Chapter 19 for details on the
implementation of VPD.

In addition to securing access to the data, you can audit activities in the database. Auditable
events include privileged actions (such as creating users), changes to data structures, and access
of specific rows and tables.

Programmatic Structures

Oracle supports a wide array of programmatic access methods. The SQL language, described in
detail throughout this book, is key to any application development effort. Other access methods
include the following:

m PL/SQL As described in Part IV of this book, PL/SQL is a critical component of most
application implementations. You can use PL/SQL to create stored procedures and
functions, and you can call your functions within queries. Procedures and functions
can be collected into packages. You can also create triggers, telling the database what
steps to take when different events occur within the database. Triggers may occur during
database events (such as database startup), changes to structures (such as attempts to drop

Chapter 1: Oracle Database 10g Architecture Options

tables), or changes to rows. In each case, you will use PL/SQL to control the behavior of
the database or application when the triggering event occurs.

B Dynamic SQL You can generate SQL at run time and pass it to procedures that execute
it via dynamic SQL. See Chapter 32.

m SQL*Plus As shown throughout this book, SQL*Plus provides a simple interface to the
Oracle database. SQL*Plus can support rudimentary reporting requirements, but it is
better known for its support of scripting. It provides a consistent interface for retrieving
data from the data dictionary and creating database objects.

® Java and JDBC As shown in Part VI of this book, Oracle’s support for Java and JDBC
allow you to use Java in place of PL/SQL for many operations. You can even write Java-
based stored procedures. Oracle’s Java offerings have been expanded and enhanced
with each new release.

B XML Asdescribed in Chapter 47, you can use Oracle’s XML interfaces and XML types
to support inserting and retrieving data via XML.

m Object-oriented SQL and PL/SQL You can use Oracle to create and access object-
oriented structures, including user-defined datatypes, methods, large objects (LOBs),
object tables, and nested tables. See Part V.

B Data Pump Data Pump Import and Data Pump Export, both introduced in Oracle
Database 10g, greatly enhance the manageability and performance of the earlier Import
and Export utilities. You can use Data Pump to quickly extract data and move it to
different databases while altering the schema and changing the rows. See Chapter 22
for details on the use of Data Pump.

m SQL*Loader You can use SQL*Loader to quickly load flat files into Oracle tables.
A single flat file can be loaded into multiple tables during the same load, and loads
can be parallelized. See Chapter 21.

®m External programs and procedures You can embed SQL within external programs,
or you can create procedural libraries that are later linked to Oracle. See Chapter 31.

m UTL_MAIL A package introduced in Oracle Database 10g, UTL_MAIL allows a PL/SQL
application developer to send e-mails without having to know how to use the underlying
SMTP protocol stack.

Choosing Architectures and Options

Oracle provides a full array of tools for developing applications based on Oracle Database 10g.
Although this book does not cover each of the possible tools and their uses, see Chapter 45 for
a detailed overview of the Oracle Application Server and its capabilities. You can use Oracle
Application Server as the middle tier for three-tier applications that access Oracle Database 10g.
Many of the features introduced with Oracle Database 10g will be available to you regardless
of the application architecture you select. These features include database administration features
such as automatic storage management, automatic tuning, and automatic resizing of the memory
areas in the SGA. See Chapter 46 for descriptions of the primary tasks performed by database
administrators.

10 Partl: Critical Architecture Concepts

If you have previously implemented applications in earlier versions of Oracle, you should review
your database to identify areas where new features will benefit your application. For example,
if you have previously implemented materialized views, you may be able to take advantage of new
features that expand the possibilities for incremental (“fast”) refreshes of the materialized views.
Oracle provides a set of procedures that help you manage your materialized view refresh schedule.
For example, you can execute a procedure that will generate a description of your refresh possibilities
and the configuration issues (if any) that prevent you from using the fastest options possible. You
can use another Oracle-provided procedure to generate recommendations for tuning materialized
view structures based on a provided set of sample queries.

Some of the new features may contain small changes that can have dramatic impact on your
application or your coding approach. For example, regular expression searches are available as
of Oracle Database 10g. If you are not performing complex string searches, you may decide not
to change an existing application to use the new search functions. However, the regular expression
search functionality includes the ability to perform case-insensitive searches—potentially eliminating
the need for other function calls or function-based indexes. You should evaluate your previous
architecture decisions in light of the new features available.

In the next several chapters, you will see how to install Oracle Database 10g and how to
upgrade to Oracle Database 10g from prior releases. Following those chapters, you will see an
overview of application planning, followed by many chapters on the use of SQL, PL/SQL, Java,
object-oriented features, and XML to get the most out of your Oracle database. Your application
architecture may change over time as the business process changes. During those changes you
should be sure to review the latest features to determine how your application can best exploit
them for functionality and performance.

CHAPTER
2

Installing Oracle
Database 10g and
Creating a Database

12 Partl: Critical Architecture Concepts

.~ tempting to open the box of CDs and start the installation right away. Although
4,""' this is fine if you're going to experiment with some new database features, a lot

L more planning is required to perform a successful installation without rework or

. even reinstallation a month from now. Although the complete details of an
Oracle Database 10g installation are beyond the scope of this book, you will see the basics of
an Oracle install using the Oracle Universal Installer (OUI), along with a basic template for doing
a manual install of the database using the create database command. In any case, a thorough review
of the installation guide for your specific platform is another key to a successful Oracle database
deployment.

NOTE

Although this chapter is intended for beginning database administrators,
the planning process should include end users, application developers,
and system administrators, so the workload and space requirements
will be as accurate as possible.

The following issues should be addressed or resolved before you start the installation:

B Decide on the local database name, and which domain will contain this database. These
names are set in the initialization parameters DB_NAME and DB_DOMAIN.

m For the first project to use the database, estimate the number of tables and indexes as
well as their size, to plan for disk space estimates beyond what is required for the Oracle
SYSTEM tablespace and the associated Oracle software and tools.

m Plan the locations of the physical datafiles on the server’s disk to maximize performance
and recoverability. In general, the more physical disks, the better. If a RAID or Network
Attached Storage area will be used for the datafiles, consider Oracle Managed Files to
manage the placement of the datafiles. As of Oracle Database 10g, you can use automatic
storage management (ASM) to simplify your storage management. See Chapter 46 for
details on ASM.

m Review and understand the basic initialization parameters.

Select the database character set, along with an alternate character set. Although it's easy
to let the character sets default on install, you may need to consider where the users of
the database are located and their language requirements. Character sets can be changed
after installation only if the new character set is a superset of the existing character set.

m Decide on the best default database block size. The default block size defined by DB_
BLOCK_SIZE cannot be changed later without reinstalling the database. Note that Oracle
can support multiple block sizes within a single database.

B Plan to store non-SYSTEM user objects in non-SYSTEM tablespaces. Make sure that all
nonadministrative users are assigned a non-SYSTEM tablespace as their default tablespace.

® Plan to implement Automatic Undo Management to ease administration of transaction
undo information.

® Plan a backup and recovery strategy. Decide how the database needs to be backed up,
and how often. Plan to use more than one method to back up the database.

Chapter 2: Installing Oracle Database 10g and Creating a Database

Familiarity with a couple of key Web sites is a must. Oracle Technology Network (OTN), at
http://otn.oracle.com, has a wealth of information, including white papers, free tools, sample code,
and the online version of Oracle Magazine. There is no charge for using OTN, other than registering
on the site.

Purchasing a license for Oracle database software is a good start, but an Oracle support contract
with Web support may be the key to a successful installation and deployment. Using Oracle’s
Metalink (http://metalink.oracle.com) means you might never have to leave the friendly confines
of your Web browser to keep your database up and running. Through Metalink, you can submit
a support request, search through other support requests, download patches, download white
papers, and search the bug database.

Overview of Licensing and Installation Options

A successful initial software installation is the first step. Regardless of the software and hardware
platform on which you're installing Oracle, the types of installations you can perform are the same.
Although these may change with product releases, they generally include the following:

® Enterprise Edition This is the most feature rich and extensible version of the Oracle
database. It includes features such as Flashback Database and allows you to add additional
pieces of licensed functionality, such as Oracle Spatial, Oracle OLAP, Oracle Label
Security, and Oracle Data Mining.

m Standard Edition This edition provides a good subset of the features of the Enterprise
Edition, generally including the features that a small business will need.

m Personal Edition This edition allows for development of applications that will run on
either the Standard or Enterprise Edition. This edition cannot be used in a production
environment.

As of Oracle Database 10g, licensing for the Oracle database is only by named user or CPU,
and there is no longer a concurrent user licensing option. Therefore, the DBA should use the
initialization parameter LICENSE_MAX_USERS to specify the maximum number of users that
can be created in the database. As a result, LICENSE_MAX_SESSIONS and LICENSE_SESSIONS_
WARNING are deprecated in Oracle Database 10g.

In addition, the Oracle Management Server (the back end for an Oracle Enterprise Manager, or
OEM, client) can be installed during a server- or client-side installation. However, it is recommended
that this installation be performed after a basic database installation has been completed.

Using OUI to Install the Oracle Software

Use the Oracle Universal Installer (OUI) to install and manage all Oracle components for both
the server-side and client-side components. You can also deinstall any Oracle products from the
initial OUI screens.

During the server installation, you will choose the version of Oracle Database 10g from the list
in the previous section: Enterprise Edition, Standard Edition, or one of the other options available
for your platform.

It is strongly recommended that you create a starter database when prompted during the install.
Creating the starter database is a good way to make sure the server environment is set up correctly,
as well as to review any new features of Oracle Database 10g. The starter database may also be
a good candidate as a repository for either OEM or Recovery Manager.

The exact flow of the installation process may change depending on your operating environment
and Oracle version.

13

14 Partl: Critical Architecture Concepts

1 NOTE
¥ For UNIX environments, you will need to set a proper value for the
DISPLAY environment variable and enable xhost prior to starting OUI
via the runinstaller script.

-

For the major steps related to database creation, figures of screen contents will be shown in
the next section of this chapter.

. NOTE
s 5 The following steps are based on a custom installation. Standard
installations may not prompt you for all the steps described here.

In general, the steps will be as follows:

1. An opening screen, choose to install products or deinstall previously installed products.

2. Specify source file locations for the products you want to install and the home directory
into which the Oracle software will be installed. The installer should present you with
default values. In general, the default values for the software source files should be correct,
whereas the others may have to be changed.

3. Select a product to install. Your options here will include the database and the client. If
you received a client or companion CD with the installation media, you should install
that as well because it will include important files and software libraries. If you select the
“database” option, OUI will install a preconfigured starter database, product options,
management tools, networking services, and basic client software for the Oracle database
server. If you select the “client” option, OUI will install enterprise management tools,
networking services, utilities, development tools, precompilers, and basic client software.
For your first installation, you should use the “database” option to create the starter database.

4. Choose installation type—Enterprise Edition, Personal Edition, or Custom.

5. If you chose the “database” option in step 3, you will now be prompted to confirm the
creation of the starter database.

6. You will be prompted to choose among standard database configurations (general purpose,
transaction processing, or data warehouse).

7. For the starter database, choose the database configuration options. These options include
the global database name, the instance name, the character set, and whether or not to
include sample schemas.

8. Specify a single password to use for all preloaded schemas in the starter database, or specify
separate passwords for all accounts.

9. Specify the database storage option to use. If you are using file system files, specify the
directories to use. Other options include automatic storage management and raw devices.

Chapter 2: Installing Oracle Database 10g and Creating a Database 15

10. You will be prompted to finalize the selection of management and services options prior
to accepting the configuration and beginning the installation.

During the software installation, the Database Configuration Assistant (DBCA) takes over and
prompts you for the parameters necessary to size and configure your database (starting at step 6
in this list). The installation steps in the next session assume that you have already completed the
software installation and created a starter database; we will create and configure a second database
on the same server with DBCA.

1 NOTE
s ¥ Asof Oracle 10g, DBCA can configure nodes in a Real Application
Clusters environment.

Using DBCA to Create a Database
In UNIX, you can start DBCA by executing the dbca file located in the $§ORACLE_HOME/bin
directory. You must configure your DISPLAY environment variable and xhost settings prior to
starting DBCA.

In Windows, DBCA is located under the Configuration and Migration Tools submenu under
the Oracle programs menu.

In the subsections that follow, you will receive tips and guidance for most of the screens during
the creation of the database.

DBCA Options

After an initial welcome screen, you are presented with a choice of four options:

B Create a Database This one is fairly straightforward; you are creating a new database
from scratch, using a template as a starting point.

®m Configure Database Options in a Database Some of the system parameters for an
existing database installation can be changed, such as changing from a dedicated server
mode to shared server.

B Delete a Database This one is also straightforward—and very dangerous! It will shut
down the database and delete all the datafiles and control files associated with the database.
You will need the SYS or SYSTEM password to proceed with this option.

® Manage Templates This option allows you to add, modify, or delete templates. During
a DBCA session, once all database parameters have been gathered, you have the option
to save your settings as a template. In many cases, the predefined templates that Oracle
provides are not quite perfect for your environment, and it is a time-saver to be able to
save your database options for selection as a template in a future DBCA session.

Selecting a Database Template
In Figure 2-1, you are presented with the list of templates available. If you have created your own
templates in previous DBCA sessions, they will appear on this screen also.

16 Partl:

Critical Architecture Concepts

olates MI=E

Select a ternplate from the following list to create a database:

Select Template Mame
r Custom Database
r Data Warehouse

r Transaction Processing

Show Details...

el | o sac

- -

FIGURE 2-1. Database template selection screen

The template choices are as follows:

Custom Database Use this option if you have performed many installations and know
ahead of time the values for all the options you need in the database. This option is good
if you are creating a new template from scratch or have very specific requirements for the
configuration of your database.

Data Warehouse This template is for database environments where users are performing
numerous, complex queries that join many large tables for reporting, forecasting, and
analytics.

General Purpose If you are not sure of the intended use of your database yet, or if you
need to host users with both analytical and transaction-processing requirements, choose
this template.

Transaction Processing In 24x7 environments where the number of users is high, the
transactions are heavy but short, and the bulk of the activity is creating and updating,
use this template.

In this installation, we are choosing the General Purpose template. It combines the features
of both a data warehouse and an OLTP environment into a single database; use this option if you

Chapter 2: Installing Oracle Database 10g and Creating a Database 17

must use this database for both environments. Ideally, however, any database you create should
be configured and tuned for the types of users and transactions on the database.

Database Identification
In the next step of DBCA, you will identify the name of the instance along with the global
database name.

- NOTE
‘ 1 ¥ Ifthe global database name needs to be changed in the future, you
; ~must use the alter database command to change it, in addition to

changing it in the initialization parameter file. The global database
name is stored in the data dictionary when the database is created.

Unless you have an existing domain, use the default domain name .world. Check with your
system administrator to see if a specific global database name should be used.

Database Credentials

Figure 2-2 shows the setting of the initial passwords for the SYS and SYSTEM user accounts. After
the installation, be sure to create at least one account with DBA privileges to use instead of SYS
or SYSTEM for day-to-day administrative tasks.

™ hatabase Configuration Assistant, Step 4 of 10 : Database Credentials BIEE

Faor security reasons, wou must specify a password for the 53¥5 and
SVSTEM accounts in the new database.

Y5 password: F————
Confirm 5Y5 passward: S —
SYSTEM password: U
Confirm SYSTEM passward:

Specify the fallowing information to configure the database with
Enterprise Manager. DBSMMP account is used by EM agent to
monitor the database. SYSMAR is the EM repositary schema user.

[Manitar this database using Enterprise Manager
DESHMP password:

Confirm DESNMP password:

[Configure Enterprise Manager Repository in this database
SYSMAN password:

Confirm S¥SMAN password:

Cancel Help Back Einish
L]

L

FIGURE 2-2. Database Credentials screen

18 Partl: Critical Architecture Concepts

On this screen, you can also set up this instance to be included as a managed node in an existing
OEM environment, or you can specify this instance as the OEM Repository. If you specify this node
as the OEM Repository, it is strongly recommended that this node be used only for that purpose.

Storage Options

The database can use a number of different methods for storing datafiles, control files, and redo log
files. If you have the resources to dedicate another database instance for managing disk space,
choose ASM. If you are in a Real Application Clusters environment and you don’t have a cluster
file system available (such as OCFS), choose Raw Devices. Figure 2-3 shows these options on the
Storage Options screen.

File Locations
The next screen, shown in Figure 2-4, is where you select the locations for datafiles, control files,
and redo log files, as well as the archiving and backup and recovery locations.

New to Oracle Database 10g is the concept of a Flash Recovery Area. This is a dedicated
location on disk, separate from the location of the database’s operational files, containing the

Step 5 of 10 : Storage Options |- B(%

Select the storage mechanism wou would like to use for database
Creation.

® Fila Syetarm
Use the File System for Database storage.

T Automatic Storage Managermnent [ASM)
Agtomatic Storage Management simplifies database storage
administration and optimizes database layout for IO
perfaormance. To use this aptian vou must either provide a set of
disks to create an Ash Disk Sroup or specify an existing A
Disk Group.

" Raw Devices
Faw partitions or wolumes can provide the required shared
storage for Feal Application Clusters (FAC) databases if wou do
not use Automatic Storage Management and a Cluster File
Systerm is not available. You need to have created one raw
device for each data file, contral file, and log file wou are
planning 1o create inthe database.

-

Cancel Help Einish

. a

FIGURE 2-3. Storage Options screen

Chapter 2: Installing Oracle Database 10g and Creating a Database 19

v[.-._.._.:,_...._ Configuration Assistant, Step 6 of 10 : File Locations BEE

Cancel

L

p

Help

Specify Database and Eecovery file locations.

[" Use Database Area for all database files

-

[Use Flash Recovery Area for all backup and recovery files
Qracle recommends that the database files and recovery files be
located on physically different disks for data protection and

performance.

Flash Recovery Area: {ORACLE_BASE}S Browse. ..
Flash Recovery Area Size; (2048 M Bytes
-

[Enatile Archive Log Maode

File Location %ariables...

Back Finish

]

FIGURE 2-4. File Locations screen

backup files from RMAN (Recovery Manager). It is highly recommended that you use a Flash
Recovery Area so that RMAN can more easily manage backup and recovery operations. Be sure
that the Flash Recovery Area is large enough to hold at least two copies of all datafiles, incremental
backups, control files, SPFILEs, and archived redo log files that are still on disk.

You can also enable ARCHIVELOG mode, as well as specify the location or locations for the
archived redo log files. It is recommended that you leave archiving off until the database is installed,
because enabling it will increase the database creation time. The parameters for ARCHIVELOG mode
can easily be changed in init.ora or the SPFILE immediately after the database is up and running.

Database Components
In the next step of the DBCA session, you are asked about installing sample schemas. In non-
production databases, it is highly recommended that you install the sample schemas; many tutorials
and study guides rely on the sample schemas being in the database. They are also useful in that the
samples demonstrate nearly all datatypes and constructs available in the database, ranging from
bitmapped indexes to clustered tables and object types.

20 Partl: Critical Architecture Concepts

Initialization Parameters
The screen shown in Figure 2-5 allows the DBA to adjust the key initialization parameters for the
database. Figure 2-5 shows the Memory tab of the Initialization Parameters screen. If you select
Typical, or if you select Custom with Shared Memory Management Auto, Oracle will make
assumptions about the memory it can use for the SGA and background processes. Even by defaulting
many of the parameters in a Typical configuration, you can still specify how much of the server’s
physical memory should be used for Oracle, depending on how much memory is used by the
operating system and whether any other applications are going to be running on this server along
with Oracle. The value for Java Pool must be at least the size of one granule in the database,
either 4MB or 16MB, but at least 20MB is recommended.

Later screens in this section of the DBCA allow you to specify the default block size of the
database, the total number of processes that will be simultaneously connecting, the connection
mode to use, and the character set for the database.

vl.l"-'f-"u-'-"- Configuration Assistant, Step & of 10: Initialization Parameters |- ax

DE Sizing Character Sets Database Connection Options
" Typical

Fercentage of physical memaory (SO0 ME) for Oracle:

& Custom

Shared Memory Management. « ajtomatic @ Manual

Shared Poaol: 80 M Butes
Buffer Cache: 24 M Butes
Java Poal: 45 M Bytes
Large Pool: a8 M Bytes
PC4 Size: 24 M Bytes
Total Memory for Oracle; 224 M Bytes

I.-"'_J Total memory includes 40MEB of Oracle Process Size and the defz
for the empty parameters , it amy

Initialization Parameters List...

Cancel Help Back Finish
L)

FIGURE 2-5. Initialization Parameters screen’s Memory tab

Chapter 2: Installing Oracle Database 10g and Creating a Database

Database Storage
On the DBCA Database Storage screen, you can review and revise the locations of the control files,

datafiles, and redo log files, as well as multiplex the control files and create redo log file groups.
The names and locations of the control files on this screen determine the value of CONTROL_FILES

in the initialization parameter file.

Creation Options
In Figure 2-6, we are ready to create the database. In addition, we can use the information we

provided in the previous screens and save it to a template. If in doubt, save it as a template;
the storage required to save only a template is minimal, and it can easily be deleted later by
rerunning DBCA.

Before the database is created, an HTML summary of your template is presented, and you have
the option to save this report as an HTML file for documentation purposes.

Selact the database creation options:
[Create Database

[" Sawe as a Database Template

Marme: cialol

Cescription:

Cancel)I Help Jl .. Back [ext

-

p

FIGURE 2-6. Database and template creation options

21

22 Partl: Critical Architecture Concepts

Completing the Installation
After you click OK on the Summary screen, DBCA performs the tasks needed to create the database
and start the instance. A standard set of scripts is run when the database first starts; this includes
the scripts that create the sample schemas, plus any custom scripts you may have specified earlier.
The standard set of scripts will vary depending on the options you've selected via the DBCA.
Once the initialization and creation scripts have completed, a summary screen is presented,
giving the location of the log file for this installation. It is recommended that you review this log file
to ensure that there were no unexpected errors during the install. You should also save this log
file with the other documentation for this database; it can also be useful for future installations as
a baseline.
The Oracle database you just created is up and running. You have the option to unlock other
accounts created during this install and to assign passwords to them.

Manually Creating a Database

The DBCA can support complex installation requirements. For example, if you need to create the
same database on different servers, you can use the DBCA to create and execute templates.

You can manually create a database instead of using DBCA. Oracle provides a sample database-
creation script that can be customized for a manual install.

Here are the basic steps needed to create a database manually. Some of these steps are operating
system or platform dependent, and the differences will be noted. Be sure to review the Installation
Guide for your specific platform before attempting a manual installation. For example, under
Windows, you will need to run the utility oradim to create the Oracle background process and
to set the relevant registry values.

1. Decide on a directory structure for the database; it is recommended that you comply with
Oracle’s Optimal Flexible Architecture standards when placing your files on disk. See your
operating system’s Installation Guide for Oracle for more information on OFA.

2. Select an Oracle SID (instance identifier) to distinguish this instance from any other ones
that are running on this server. Frequently, this is the same as the database name specified
in the DB_NAME initialization parameter. In a Windows command prompt, you will
type this:

set ORACLE_SI D=rj bdb

Under UNIX, you will use either
export ORACLE_SI D=rj bdb

or

setenv ORACLE_SI D=rj bdb

depending on your default command shell.

3. Establish an authentication method for connecting privileged users to the database. Use the
orapwd command-line utility to create a password file if you want Oracle to authenticate the
privileged users; you will set the initialization parameter REMOTE_LOGIN_PASSWORDFILE
to EXCLUSIVE. If you are using operating system authentication, there is no need for a
password file; therefore, set REMOTE_LOGIN_PASSWORDFILE to NONE.

Chapter 2: Installing Oracle Database 10g and Creating a Database 23

4. Create an initialization parameter file and place it in the default location for your platform,
at least initially for the install. Under UNIX, the default location is $§ORACLE_HOME/dbs;
under Windows, it is §ORACLE_HOME\database. Here is a sample initialization file:

Cache and |/ 0O
DB _BLOCK_SI ZE=4096
DB _CACHE_SI ZE=20971520

Cursors and Library Cache
CURSOR_SHARI NG=SI M LAR
OPEN_CURSORS=300

Diagnostics and Statistics

BACKGROUND_DUMP_DEST=/ u01/ or acl e10g/ adm n/ rj bdb/ bdunp
CORE_DUMP_DEST=/ u01/ or acl e10g/ admi n/ rj bdb/ cdunp

TI MED_STATI STI CS=TRUE

USER_DUMP_DEST=/ u01/ or acl e10g/ adni n/ rj bdb/ udunp

Control File Configuration

CONTROL_FI LES=("/u01/ or acl e10g/ prod/rj bdb/ control 01.ctl",
"/ u02/ oracl e10g/ prod/rjbdb/control 02. ctl",
"/ u03/ oracl e10g/ prod/rjbdb/control 03.ctl")

Archive

LOG _ARCHI VE_DEST_1="' LOCATI ON=/ u06/ or acl e10g/ or adat a/ rj bdb/ ar chi ve'
New | og archive format. I|f conpatibility 10.0 and up,

this is enforced.

LOG_ARCHI VE_FORVAT=% _%_% . dbf

The follow ng paraneter is deprecated in 10i Rl

LOG_ARCHI VE_START=TRUE

Shared Server
Starts shared server if set > 0.
SHARED_SERVERS=2
Unconment and use first DI SPATCHERS par anet er
bel ow when your |istener is
configured for SSL
(listener.ora and sql net.ora)
DI SPATCHERS = " (PROTOCOL=TCPS) (SER=MODCSE) ",
" (PROTOCOL=TCPS) (PRE=or acl e. aur or a. server. SG opServer)"
DI SPATCHERS=" (PROTOCOL=TCP) (SER=MODCSE) ",
" (PROTOCOL=TCP) (PRE=0r acl e. aur or a. server. SG opServer)",
(PROTOCOL=TCP)

H o H H H

M scel | aneous
COVPATI BLE=10.0.0
DB_NAME=rj bdb

24 Partl:

Critical Architecture Concepts

Distributed, Replication and Snapshot
DB_DOMAI N=r j bdba. com
REMOTE_LOG N_PASSWORDFI LE=EXCLUSI VE

Network Registration
I NSTANCE_NAME=r j bdb

Pool s

JAVA POOL_SI ZE=31457280
LARGE_POOL_SI ZE=1048576
SHARED POOL_SI ZE=52428800

Processes and Sessions
PROCESSES=150

Redo Log and Recovery
FAST_START_MITR_TARGET=300

Resource Manager
RESOURCE_MANAGER_PLAN=SYSTEM PLAN

Sort, Hash Joins, Bitnmap |ndexes
SORT_AREA_SI ZE=524288

Automatic Undo Managenent
UNDO_MANAGEMENT=AUTO
UNDO_TABLESPACE=undot bs

. Connect to the instance using SQL*Plus:

sql pl us /nol og
connect SYS/ password as sysdba

Note that although the instance itself exists, there is not much we can do with it because
we have not created the database yet.

Create a server parameter file (SPFILE). If the initialization file is in the default location,
the following command will create the SPFILE:

create spfile frompfile;
Start the instance using the following command:
startup nonount

Note that because we do not have a database created yet, this is the only option we can
use with the startup command.

Issue the create database command. Here is an example (note that we are specifying
passwords for the SYS and SYSTEM accounts):

CREATE DATABASE rj bdb
USER SYS | DENTI FI ED BY paris703

Chapter 2: Installing Oracle Database 10g and Creating a Database

USER SYSTEM | DENTI FI ED BY tyl er12
LOGFI LE GROUP 1 ('/u02/oracl el0g/ oradata/rjbdb/redo0l1.10g') SIZE 100M
GROUP 2 ('/u0O4/oracl el0g/ oradata/rj bdb/redo02.10g') SIZE 100M
GROUP 3 (' /u06/oracl el0g/ oradata/rj bdb/redo03.10g"') SIZE 100M
MAXLOGFI LES 6
MAXLOGVEMBERS 5
MAXLOGHI STORY 1
MAXDATAFI LES 100
MAXI NSTANCES 1
CHARACTER SET US7ASCI |
NATI ONAL CHARACTER SET AL16UTF16
DATAFI LE '/ u01/ or acl e10g/ or adat a/ rj bdb/ syst enD1. dbf' SI ZE 325M REUSE
EXTENT MANAGEMENT LOCAL
SYSAUX DATAFI LE '/ u01/ oracl e10g/ or adat a/ rj bdb/ sysaux01. dbf"
S| ZE 325M REUSE
DEFAULT TABLESPACE tbs_1
DEFAULT TEMPORARY TABLESPACE tenptsil
TEMPFI LE ' /u01/ or acl e10g/ or adat a/ rj bdb/ t enp01. dbf"’
S| ZE 20M REUSE
UNDO TABLESPACE undot bs
DATAFI LE '/ u02/ or acl e10g/ or adat a/ r j bdb/ undot bs01. dbf"
SI ZE 200M REUSE AUTOEXTEND ON NMAXSI ZE UNLI M TED;

Several things are worth noting in this example. We are explicitly setting the passwords
for SYS and SYSTEM; if we didn’t specify them here, they will default to “change_on_
install” and “manager,” respectively.

The redo log file groups have only one member each; once our database is in production,
we should multiplex them. Because we specified an undo tablespace with the UNDO_
TABLESPACE parameter in the initialization parameter file, we need to create that tablespace
here; otherwise, the instance will not start.

After the create database command completes successfully, the database is mounted and
opened for use.

9. Create additional tablespaces for users, indexes, and applications.

10. Build data dictionary views with the supplied scripts catalog.sql and catproc.sql. The
script catalog.sql creates views against the data dictionary tables, dynamic performance
views, and public synonyms for most of the views. The group PUBLIC is granted read-
only access to the views. The script catproc.sql sets up PL/SQL.

11. Back up the database using either a cold backup or Recovery Manager. In case of a database
failure in the early stages of deployment, you have a complete and running database to fall
back on, and most likely you will not have to re-create the database from scratch.

You have now installed the Oracle software, created the starter database, and optionally created
a second database. In the next chapter, you will see how to upgrade to Oracle Database 10g from
prior releases of Oracle.

CHAPTER
3

Upgrading to
Oracle Database 10g

28 Partl: Critical Architecture Concepts

. software version and your database size. In this chapter, you will see descriptions of
these methods along with guidelines for their use.

If you have not used a version of Oracle prior to Oracle Database 10g, you can skip this chapter
for now. However, you will likely need to refer to it when you upgrade from Oracle Database 10g
to a later version or when you migrate data from a different database into your database.

Prior to beginning the upgrade, you should read the Oracle Database 10g Installation Guide
for your operating system. A successful installation is dependent on a properly configured
environment—including operating system patch levels and system parameter settings. Plan to
get the installation and upgrade right the first time, rather than attempting to restart a partially
successful installation.

This chapter assumes that your installation of the Oracle Database 10g software (see Chapter 2)
completed successfully and that you have an Oracle database that uses an earlier version of the
Oracle software. To upgrade that database, you have four options:

B Use the Database Upgrade Assistant to guide and perform the upgrade in place. The old
database will become an Oracle 10g database during this process.

B Perform a manual upgrade of the database. The old database will become an Oracle 10g
database during this process.

B Use the Export and Import utilities to move data from an earlier version of Oracle to the
Oracle 10g database. Two separate databases will be used—the old database as the source
for the export, and the new database as the target for the import.

m Copy data from an earlier version of Oracle to an Oracle 10g database. Two separate
databases will be used—the old database as the source for the copy, and the new database
as the target for the copy.

Upgrading a database in place—uvia either the Database Upgrade Assistant or the manual
upgrade path—is called a direct upgrade. Because a direct upgrade does not involve creating a
second database for the one being upgraded, it may complete faster and require less disk space
than an indirect upgrade.

NOTE

Direct upgrade of the database to version 10 is only supported if your
present database is using one of these releases of Oracle: 8.0.6, 8.1.7,
9.0.1, or 9.2. If you are using any other release, you will have to first
upgrade the database to one of those releases, or you will need to use
a different upgrade option. Oracle 8.0.6 is only supported for some
versions (generally 64-bit), so be sure to check the online certification
matrixes at Oracle’s Metalink site.

Chapter 3: Upgrading to Oracle Database 10g

NOTE

Plan your upgrades carefully; you may need to allow time for multiple
incremental upgrades (such as from 8.1.6 to 8.1.7) prior to upgrading
to Oracle Database 10g.

Choosing an Upgrade Method

As described in the previous section, two direct upgrade paths and two indirect upgrade paths
are available. In this section, you will see a more detailed description of the options, followed
by usage descriptions.

In general, the direct upgrade paths will perform the upgrade the fastest because they upgrade
the database in place. The other methods involve copying data, either to an Export dump file on the
file system or across a database link. For very large databases, the time required to completely re-
create the database via the indirect methods may exclude them as viable options.

The first direct method relies on the Database Upgrade Assistant (DBUA). DBUA is an
interactive tool that guides you through the upgrade process. DBUA evaluates your present
database configuration and recommends modifications that can be implemented during the
upgrade process. These recommendations may include the sizing of files and the specifications
for the new SYSAUX tablespace. After you accept the recommendations, DBUA performs the
upgrade in the background while a progress panel is displayed. DBUA is very similar in approach
to Database Configuration Assistant (DBCA). As discussed in Chapter 2, DBCA is a graphical
interface to the steps and parameters required to make the upgrade a success.

The second direct method is called a manual upgrade. Whereas DBUA runs scripts in the
background, the manual upgrade path involves database administrators’ running the scripts
themselves. The manual upgrade approach gives you a great deal of control, but it also adds
to the level of risk in the upgrade because you must perform the steps in the proper order.

You can use Export and Import as an indirect method for upgrading a database. In this method,
you export the data from the old version of the database and then import it into a database that
uses the new version of the Oracle software. This process may require disk space for multiple
copies of the data—in the source database, in the Export dump file, and in the target database.
In exchange for these costs, this method gives you great flexibility in choosing which data will
be migrated. You can select specific tablespaces, schemas, tables, and rows to be exported.

In the Export/Import method, the original database is not upgraded; its data is extracted and
moved, and the database can then either be deleted or be run in parallel with the new database
until testing of the new database has been completed. In the process of performing the export/
import, you are selecting and reinserting each row of the database. If the database is very large,
the import process may take a long time, impacting your ability to provide the upgraded database
to your users in a timely fashion. See Chapters 22 and 46 for details on the Export and Import
utilities.

. NOTE
s Depending on the version of the source database, you will need to
~use a specific version of the Export and Import utilities. See “Export
and Import Versions to Use” later in this chapter.

29

30 Partl: Critical Architecture Concepts

In the data-copying method, you issue a series of create table as select or insert as select
commands that cross database links (see Chapter 23) to retrieve the source data. The tables are
created in the Oracle 10g database based on queries of data from a separate source database.
This method allows you to bring over data incrementally and to limit the rows and columns
migrated. However, you will need to be careful that the copied data maintains all the necessary
relationships among tables. As with the Export/Import method, this method may require a significant
amount of time for large databases.

Selecting the proper upgrade method requires you to evaluate the technical expertise of your
team, the data that is to be migrated, and the allowable downtime for the database during the
migration. In general, using DBUA will be the method of choice for very large databases, whereas
smaller databases may use an indirect method.

Before Upgrading

Prior to beginning the migration, you should back up the existing database and database software.
If the migration fails for some reason and you are unable to revert the database or software to its
earlier version, you will be able to restore your backup and re-create your database.

You should develop and test scripts that will allow you to evaluate the performance and
functionality of the database following the upgrade. This evaluation may include the performance
of specific database operations or the overall performance of the database under a significant
user load.

Prior to executing the upgrade process on a production database, you should attempt the
upgrade on a test database so that any missing components (such as operating system patches)
can be identified and the time required for the upgrade can be measured.

Prior to performing a direct upgrade, you should analyze the data dictionary tables. During
the upgrade process to Oracle Database 10g, the data dictionary will be analyzed if it has not been
analyzed already, so performing this step in advance will aid the performance of the upgrade.

Using the Database Upgrade Assistant

You can start the Database Upgrade Assistant (DBUA) via the

= dbua

command (in UNIX environments) or by selecting “Database Upgrade Assistant” from the Oracle
Configuration and Migration Tools menu option (in Windows environments).

When started, DBUA will display a Welcome screen. At the next screen, select the database
you want to upgrade from the list of available databases. You can upgrade only one database at
a time.

After you make your selection, the upgrade process begins. DBUA will perform preupgrade
checks (such as for obsolete initialization parameters or files that are too small). DBUA will then
create the SYSAUX tablespace, a standard tablespace in all Oracle 10g databases. You can override
Oracle’s defaults for the location and size parameters for the datafiles used by the SYSAUX tablespace.

DBUA will then prompt you to recompile invalid PL/SQL objects (see Part IV of this book)
following the upgrade. If you do not recompile these objects after the upgrade, the first user of
these objects will be forced to wait while Oracle performs a run-time recompilation.

Chapter 3: Upgrading to Oracle Database 10g 31

DBUA will then prompt you to back up the database as part of the upgrade process. If you have
already backed up the database prior to starting DBUA, you may elect to skip this step. If you choose
to have DBUA back up the database, it will shut down the database and perform an offline backup
of the datafiles to the directory location you specify. DBUA will also create a batch file in that
directory to automate the restoration of those files to their earlier locations.

The next step is to choose whether or not to enable Oracle Enterprise Manager (OEM) to
manage the database. If you enable the Oracle Management Agent, the upgraded database will
automatically be available via OEM.

You will then be asked to finalize the security configuration for the upgraded database. As with
the database-creation process, you can specify passwords for each privileged account or you can
set a single password to apply to all the OEM user accounts.

Finally, you will be prompted for details on the flash recovery area location (see Chapter 28),
the archive log setting (see Chapter 46), and the network configuration. A final summary screen
displays your choices for the upgrade, and the upgrade starts when you accept them. After the
upgrade has completed, DBUA will display the Checking Upgrade Results screen, showing the
steps performed, the related log files, and the status. The section of the screen titled Password
Management allows you to manage the passwords and the locked/unlocked status of accounts
in the upgraded database.

If you are not satisfied with the upgrade results, you can choose the Restore option. If you
used DBUA to perform the backup, the restoration will be performed automatically; otherwise,
you will need to perform the restoration manually.

When you exit DBUA after successfully upgrading the database, DBUA removes the old
database’s entry in the network listener configuration file, inserts an entry for the upgraded database,
and reloads the file.

Performing a Manual Direct Upgrade

In a manual upgrade, you must perform the steps that DBUA performs. The result will be a direct
upgrade of the database in which you are responsible for (and control) each step in the upgrade
process.

You should use the Pre-Upgrade Information Tool to analyze the database prior to its upgrade.
This tool is provided in a SQL script that is installed with the Oracle Database 10g software; you
will need to run it against the database to be upgraded. The file, named utlu101i.sql, is located
in the /rdbms/admin subdirectory under the Oracle Database 10g software home directory. You
should run that file in the database to be upgraded as a SYSDBA-privileged user, spooling the results
to a log file. The results will show potential problems that should be addressed prior to the upgrade.

If there are no issues to resolve prior to the upgrade, you should shut down the database and
perform an offline backup before continuing with the upgrade process.

Once you have a backup you can restore if needed, you are ready to proceed with the upgrade
process. The process is detailed and script-based, so you should consult with the Oracle installation
and upgrade documentation for your environment and version. The steps are as follows:

1. Copy configuration files (init.ora, spfile.ora, password file) from their old location to the
new Oracle software home directory. By default, the configuration files are found in
the /dbs subdirectory on UNIX platforms and in the /database directory on Windows
platforms.

32 Partl:

Critical Database Concepts

Remove obsolete and deprecated initialization parameters from the configuration files.
Update the COMPATIBLE parameter for Oracle 10. Make sure your SHARED_POOL_
SIZE parameter is set to at least 96MB for 32-bit platforms and at least 144MB for 64-bit
platforms. Set PGA_AGGREGATE_TARGET to at least 24MB, LARGE_POOL_SIZE to
at least 8MB, and JAVA_POOL_SIZE to at least 48MB. For Windows parameters, set
BACKGROUND_DUMP_DEST to \oradata\database_name under the Oracle base
software directory, and set USER_DUMP_DEST to \oradata\database_name\archive
under the Oracle base software directory. Use full pathnames in the parameter files.

If you are upgrading a cluster database, set the CLUSTER_DATABASE initialization
parameter to FALSE. After the upgrade, you must set this initialization parameter back
to TRUE.

Shut down the instance.

If you are using Windows, stop the service associated with the instance and delete the
Oracle service at the command prompt. For Oracle 8.0, use the command ORADIM80
—DELETE -SID instance_name. For Oracle8.1 and higher, use ORADIM —DELETE -SID
instance_name. Then create the new Oracle Database 10g service using ORADIM, as
shown here:

C:\> ORADIM -NEW -SID SID -1 NTPW\D PASSWORD - MNAXUSERS USERS
- STARTMODE AUTO - PFI LE ORACLE _HOVE\ DATABASE\ | NI TSI D. ORA

Here’s a list of the variables for this command:

Variable Description

SID The name of the SID (instance identifier) of the database you are
upgrading.

PASSWORD The password for the new release 10.1 database instance. This is

the password for the user connected with SYSDBA privileges. If you
do not specify INTPWD, operating system authentication is used
and no password is required.

USERS The maximum number of users who can be granted SYSDBA and
SYSOPER privileges.

ORACLE_HOME The release 10.1 Oracle home directory. Ensure that you specify the
full pathname with the -PFILE option, including the drive letter of
the Oracle home directory.

. If your operating system is UNIX, make sure that the following environment variables

point to the new release 10.1 directories: ORACLE_HOME, PATH, ORA_NLS33, and
LD_LIBRARY_PATH.

. Log into the system as the owner of the Oracle Database 10g software.

. Change your directory to the /rdbms/admin subdirectory under the Oracle software home

directory.

13.

14.

15.

16.
17.

18.
19.

Chapter 3: Upgrading to Oracle Database 10g 33

. Connect to SQL*Plus as a user with SYSDBA privileges.
10.
11.
12.

Issue the startup upgrade command.
Use the spool command to log the results of the following steps.

Create a SYSAUX tablespace via the create tablespace command. You should allocate
SYSAUX between 500MB and 5GB of disk space, depending on the number of user
objects. SYSAUX must be created with the following clauses: online, permanent, read
write, extent management local, and segment space management auto. Here’s an
example:

create tabl espace SYSAUX
datafile '/u0l1l/oradata/ dbl/ sysauxO1l. dbf'
size 500m reuse
extent nmanagenent | ocal
segnent space managenent auto
online;

Run the script for the old release. For example, if you are upgrading from Release 8.0.6, run
only the u0800060.sq! script and then move on to the next step in the upgrade process.

Upgrading From: Run Script:

8.0.6 u0800060.sql
8.1.7 u0801070.sql
9.0.1 u0900010.sql
9.2 u0902000.sql

Stop spooling (via spool off) and review the spool file for errors. Resolve any problems
identified there.

Run the utlu101s.sql file, with TEXT as the input parameter:
@it ul0ls TEXT

Oracle will then display the status of the upgrade. The upgrade elements should all be
listed with a status of “Normal successful completion.”

Shut down and restart the instance.

Run the utlrp.sql script to recompile invalid packages. You can then verify that all packages
and classes are valid:

sel ect distinct Object_Nanme from DBA_OBJECTS
where Status = 'INVALID ;

Exit SQL*Plus.

Shut down the database and perform an offline backup of the database; then restart the
database. The upgrade is complete.

34 Partl: Critical Architecture Concepts

. NOTE
s #~ After the upgrade, you should never start your Oracle 10g database
A with the software from an earlier release.

Using Export and Import

Export and Import provide you with an indirect method for the upgrade. You can create an
Oracle 10g database alongside your existing database and use Export and Import to move data
from the old database to the new database. When the movement of the data is complete, you
will need to point your applications to connect to the new database instead of the old database.
You will also need to update any configuration files, version-specific scripts, and the networking
configuration files (tnsnames.ora and listener.ora) to point to the new database.

Export and Import Versions to Use

When you create an Export dump file via the Export utility, that file can be imported into all later
releases of Oracle. Export dump files are not backward compatible, so if you ever need to revert
to an earlier version of Oracle, you will need to carefully select the version of Export and Import
used. The following table shows the versions of the Export and Import executables you should
use when going between versions of Oracle.

Export From: Import To: Use Export Utility For: Use Import Utility For:
Release 9.2 Release 10.1 Release 9.2 Release 10.1

Release 8.1.7 Release 10.1 Release 8.1.7 Release 10.1

Release 8.0.6 Release 10.1 Release 8.0.6 Release 10.1

Release 7.3.4 Release 10.1 Release 7.3.4 Release 10.1

Release 10.1 Release 8.0.6 Release 8.0.6 Release 8.0.6

Release 10.1 Release 8.1.7 Release 8.1.7 Release 8.1.7

Release 10.1 Release 9.0.1 Release 9.0.1 Release 9.0.1

Release 10.1 Release 9.2 Release 9.2 Release 9.2

Release 10.1 Release 10.1 Release 10.1 Release 10.1

Note that when you are exporting in order to downgrade your database release, you should
use the older version of the Export utility to minimize compatibility problems. You may still encounter
compatibility problems if the newer version of the database uses new features (such as new datatypes)
that the old version will not support.

Performing the Upgrade
Export the data from the source database using the version of the Export utility specified in the

prior section. Perform a consistent export, or perform the export when the database is not available
for updates during and after the export.

Chapter 3: Upgrading to Oracle Database 10g 35

NOTE

If you have little free space available, you may back up and delete the
existing database at this point and then install Oracle Database 10g
software and create a target database for the import. If at all possible,
maintain the source and target databases concurrently during the
upgrade. The only benefit of having only one database on the server
at a time is that they can share the same database name.

Install the Oracle Database 10g software and create the target database. In the target database,
precreate the users and tablespaces needed to store the source data. If the source and target
databases will coexist on the server, you need to be careful not to overwrite datafiles from
one database with datafiles from the other. The Import utility will attempt to execute the create
tablespace commands found in the Export dump file, and those commands will include the
datafile names from the source database. By default, those commands will fail if the files already
exist (although this can be overridden via Import’'s DESTROY parameter). Precreate the tablespaces
with the proper datafile names to avoid this problem.

NOTE
You can export specific tablespaces, users, tables, and rows.

Once the database has been prepared, use Import or Data Pump Import (see Chapter 22) to
load the data from the Export dump file into the target database. Review the log file for information
about objects that did not import successfully.

Using the Data-Copying Method

The data-copying method requires that the source database and target database coexist. This
method is most appropriate when the tables to be migrated are fairly small and few in number.
As with the Export/Import method, you must guard against transactions occurring in the source
database during and after the extraction of the data. In this method, the data is extracted via
queries across database links.

Create the target database using the Oracle Database 10g software and then precreate the
tablespaces, users, and tables to be populated with data from the source database. Create database
links (see Chapter 23) in the target database that access accounts in the source database. Use the
insert as select command to move data from the source database to the target.

The data-copying method allows you to bring over just the rows and columns you need; your
queries limit the data migrated. You will need to be careful with the relationships between the
tables in the source database so you can re-create them properly in the target database. If you
have a long application outage available for performing the upgrade and you need to modify the
data structures during the migration, the data-copying method may be appropriate for your needs.
Note that this method requires that the data be stored in multiple places at once, thus impacting
your storage needs.

36 Partl: Critical Architecture Concepts

To improve the performance of this method, you may consider the following options:

m Disable all indexes and constraints until all the data has been loaded.
® Run multiple data-copying jobs in parallel.
m Use the parallel query option to enhance the performance of individual queries and inserts.

B Use the APPEND hint to enhance the performance of inserts.

See Chapter 43 for additional advice on performance tuning.

After Upgrading
Following the upgrade, you should double-check the configuration and parameter files related to
the database, particularly if the instance name changed in the migration process. These files include

B The tnsnames.ora file

® The listener.ora file

B Programs that may have hard-coded instance names in them

NOTE
You will need to manually reload the modified listener.ora file if you

are not using DBUA to perform the upgrade.

You should review your database initialization parameters to make sure deprecated and obsolete
parameters have been removed; these should have been identified during the migration process. Be
sure to recompile any programs you have written that rely on the database software libraries.

Once the upgrade has completed, perform the functional and performance tests identified
before the upgrade began. If there are issues with the database functionality, attempt to identify
any parameter settings or missing objects that may be impacting the test results. If the problem
cannot be resolved, you may need to revert to the prior release.

CHAPTER
4

Planning Oracle
Applications—
Approaches, Risks,
and Standards

38 Partl: Critical Architecture Concepts

p=y or an Oracle application to be built and used rapidly and effectively, users and
E"' ;L developers must share a common language and a deep and common understanding
~ of both the business application and the Oracle tools. In the preceding chapters you
_ have seen the overall Oracle product descriptions and the installation/upgrade steps
involved. Now that the software is installed, you have the opportunity to build
applications that build on the shared business and data understanding among your technical and
business area staff members.

Historically, the systems analyst studied the business requirements and built an application to
meet those needs. The user was involved only in describing the business and, perhaps, in reviewing
the functionality of the application after it was completed.

With the new tools and approaches available, and especially with Oracle, applications can be
built that more closely match the needs and work habits of the business—but only if a common
understanding exists.

This book is aimed specifically at fostering this understanding, and at providing the means for
both user and developer to exploit Oracle’s full potential. The end user will know details about the
business that the developer will not comprehend. The developer will understand internal functions
and features of Oracle and the computer environment that will be too technically complex for the
end user. But these areas of exclusive expertise will be minor compared with what both end users
and developers can share in using Oracle. There is a remarkable opportunity here.

It is no secret that “business” people and “systems” people have been in conflict for decades.
Reasons for this include differences in knowledge, culture, professional interests, and goals, and
the alienation that simple physical separation between groups can often produce. To be fair, this
syndrome is not peculiar to data processing. The same thing occurs between people in accounting,
personnel, or senior management, as members of each group gather apart from other groups on a
separate floor or in a separate building or city. Relations between the individuals from one group
and another become formalized, strained, and abnormal. Artificial barriers and procedures that
stem from this isolationism become established, and these also contribute to the syndrome.

This is all very well, you say, and may be interesting to sociologists, but what does it have to
do with Oracle?

Because Oracle isn’t cloaked in arcane language that only systems professionals can
comprehend, it fundamentally changes the nature of the relationship between business and
systems people. Anybody can understand it. Anybody can use it. Information that previously was
trapped in computer systems until someone in systems created a new report and released it now
is accessible, instantly, to a business person, simply by typing an English query. This changes the
rules of the game.

Where Oracle is used, it has radically improved the understanding between the two camps,
has increased their knowledge of one another, and has even begun to normalize relations between
them. This has also produced superior applications and end results.

Since its first release, Oracle has been based on the easily understood relational model
(explained shortly), so nonprogrammers can readily understand what Oracle does and how it
does it. This makes it approachable and unimposing.

Some individuals neither accept nor understand this yet, nor do they realize just how vital it is
that the dated and artificial barriers between “users” and “systems” continue to fall. But the advent
of cooperative development will profoundly affect applications and their usefulness.

However, many application developers have fallen into an easy trap with Oracle: carrying
forward unhelpful methods from previous-generation system designs. There is a lot to unlearn.

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards

Many of the techniques (and limitations) that were indispensable to a previous generation of systems
are not only unnecessary in designing with Oracle, they are positively counterproductive. In the
process of explaining Oracle, the burden of these old habits and approaches must be lifted. Refreshing
new possibilities are available.

Throughout this book, the intent will be to explain Oracle in a way that is clear and simple, in
terms that both users and developers can understand and share. Outdated or inappropriate design
and management techniques will be exposed and replaced.

The Cooperative Approach

The Oracle database is an object-relational database management system. A relational database is
an extremely simple way of thinking about and managing the data used in a business. It is nothing
more than a collection of tables of data. We all encounter tables every day—weather reports, stock
charts, sports scores, and so on. These are all tables, with column headings and rows of information
simply presented. Even so, the relational approach can be sophisticated and powerful enough for
even the most complex of businesses. An object-relational database supports all the features of a
relational database while also supporting object-oriented concepts and features. You can use Oracle
as a relational database management system (RDBMS) or take advantage of its object-oriented
features.

Unfortunately, the very people who can benefit most from a relational database—the business
users—usually understand it the least. Application developers, who must build systems that these users
need to do their jobs, often find relational concepts difficult to explain in simple terms. A common
language is needed to make this cooperative approach work.

The first two parts of this book explain, in readily understandable terms, just what a relational
database is and how to use it effectively in business. It may seem that this discussion is for the
benefit of “users” only. An experienced relational application designer may be inclined to skip these
early chapters and simply use the book as a primary source Oracle reference. Although much of
this material may seem like elementary review, it is an opportunity for an application designer to
acquire a clear, consistent, and workable terminology with which to talk to users about their needs
and how these needs might be quickly met. If you are an application designer, this discussion may
also help you unlearn some unnecessary and probably unconscious design habits. Many of these
habits will be uncovered in the course of introducing the relational approach. It is important to
realize that even Oracle’s power can be diminished considerably by design methods appropriate
only to nonrelational development.

If you are an end user, understanding the basic ideas behind object-relational databases will
help you express your needs cogently to application developers and comprehend how those needs
can be met. An average person working in a business role can go from beginner to expert in short
order. With Oracle, you’ll have the power to get and use information, have hands-on control over
reports and data, and possess a clear-eyed understanding of what the application does and how
it does it. Oracle gives you, the user, the ability to control an application or query facility expertly
and know whether you are getting all the available flexibility and power.

You also will be able to unburden programmers of their least favorite task: writing new reports.
In large organizations, as much as 95 percent of all programming backlog is composed of new
report requests. Because you can write your own reports, in minutes instead of months, you will
be delighted to have the responsibility.

39

4(0 Partl: Critical Architecture Concepts

Everyone Has “Data”

A library keeps lists of members, books, and fines. The owner of a baseball-card collection
keeps track of players’ names, dates, averages, and card values. In any business, certain pieces
of information about customers, products, prices, financial status, and so on must be saved. These
pieces of information are called data.

Information philosophers like to say that data is just data until it is organized in a meaningful
way, at which point it becomes “information.” If this is true, then Oracle is also a means of easily
turning data into information. Oracle will sort through and manipulate data to reveal pieces of
knowledge hidden there—such as totals, buying trends, or other relationships—that are as yet
undiscovered. You will learn how to make these discoveries. The main point here is that you
have data, and you do three basic things with it: acquire it, store it, and retrieve it.

Once you've achieved the basics, you can make computations with data, move it from one
place to another, or modify it. This is called processing, and, fundamentally, it involves the same
three steps that affect how information is organized.

You could do all this with a cigar box, pencil, and paper, but as the volume of data increases,
your tools tend to change. You may use a file cabinet, calculators, pencils, and paper. Although
at some point it makes sense to make the leap to computers, your tasks remain the same.

A relational database management system (RDBMS) such as Oracle gives you a way of doing
these tasks in an understandable and reasonably uncomplicated way. Oracle basically does three
things:

m Lets you put data into it
m Keeps the data

B Lets you get the data out and work with it

Figure 4-1 shows how simple this process is.

. = Out

FIGURE 4-1. What Oracle does with data

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards

Oracle supports this in/keep/out approach and provides clever tools that allow you considerable
sophistication in how the data is captured, edited, modified, and put in; how you keep it securely;
and how you get it out to manipulate and report on it.

The Familiar Language of Oracle

The information stored in Oracle is kept in tables—much like the weather table from a daily
newspaper, shown in Figure 4-2.

This table has four columns: City, Temperature, Humidity, and Condition. It also has a row for
each city from Athens to Sydney. Last, it has a table name: WEATHER.

These are the three major characteristics of most tables you'll see in print: columns, rows, and a
name. The same is true in a relational database. Anyone can understand the words and the ideas
they represent, because the words used to describe the parts of a table in an Oracle database are
the same words used in everyday conversation. The words have no special, unusual, or esoteric
meanings. What you see is what you get.

Tables of Information

Oracle stores information in tables, an example of which is shown in Figure 4-3. Each of these
tables has one or more columns. The column headings—such as City, Temperature, Humidity, and
Condition in Figure 4-3—describe the kind of information kept in the column. The information is
stored row after row (city after city). Each unique set of data, such as the temperature, humidity,
and condition for the city of Manchester, gets its own row.

Oracle avoids specialized, academic terminology in order to make the product more
approachable. In research papers on relational theory, a column may be called an “attribute,”
a row may be called a “tuple” (rhymes with “couple”), and a table may be called an “entity.”
For an end user, however, these terms are confusing. More than anything, they are an unnecessary
renaming of things for which there are already commonly understood names in our shared everyday
language. Oracle takes advantage of this shared language, and developers can too. It is imperative
to recognize the wall of mistrust and misunderstanding that the use of unnecessary technical jargon
produces. Like Oracle, this book will stick with “tables,” “columns,” and “rows.”

WEATHER
Cty Tenperat ure Hum dity Condi tion
Athens....... 97 89 Sunny
Chi cago. 66 88 Rai n
Lima......... 45 79 Rai n
Manchester. .. 66 98 Fog
Paris........ 81 62 Cl oudy
Sparta....... 74 63 d oudy
Sydney....... 69 99 Sunny

FIGURE 4-2. A weather table from a newspaper

41

42 Partl: Critical Architecture Concepts

Table name
A column
WEATHER
Cty Tenperat ure Humi dity Condi tion
ATHENS 97 89 SUNNY
CHI CAGO 66 88 RAI'N
LI VA 45 79 RAIN 4——Arow
MANCHESTER 66 98 FOG
PARI S 81 62 CLOUDY
SPARTA 74 63 CLOUDY
SYDNEY 69 99 SUNNY

FIGURE 4-3. A WEATHER table from Oracle

Structured Query Language

Oracle was the first company to release a product that used the English-based Structured Query
Language, or SQL. This language allows end users to extract information themselves, without
using a systems group for every little report.

Oracle’s query language has structure, just as English or any other language has structure. It
has rules of grammar and syntax, but they are basically the normal rules of careful English speech
and can be readily understood.

SQL, pronounced either “sequel” or “S-Q-L,” is an astonishingly capable tool, as you will see.
Using it does not require any programming experience.

Here’s an example of how you might use SQL. If someone asked you to select from the preceding
WEATHER table the city where the humidity is 89, you would quickly respond “Athens.” If you were
asked to select cities where the temperature is 66, you would respond “Chicago and Manchester.”

Oracle is able to answer these same questions nearly as easily as you are, and in response
to simple queries very much like the ones you were just asked. The keywords used in a query to
Oracle are select, from, where, and order by. They are clues to Oracle to help it understand your
request and respond with the correct answer.

A Simple Oracle Query

If Oracle had the example WEATHER table in its database, your first query (with a semicolon to
tell Oracle to execute the command) would be simply this:

.~ select Gty from WEATHER where Hum dity = 89 ;

Oracle would respond as follows:

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 43

Your second query would be this:

"= select Cty from VWEATHER where Tenperature = 66 ;

For this query, Oracle would respond with the following:

MANCHESTER
CHI CAGO

As you can see, each of these queries uses the keywords select, from, and where. What about
order by? Suppose you wanted to see all the cities listed in order by temperature. You’d simply
type this:

= select Cty, Tenperature from WEATHER
order by Tenperature ;

and Oracle would instantly respond with this:

Gty Tenperature
LI MA 45
MANCHESTER 66
CHI CAGO 66
SYDNEY 69
SPARTA 74
PARI S 81
ATHENS 97

Oracle has quickly reordered your table by temperature. (This table lists lowest temperatures
first; in a later chapter, you’ll learn how to specify whether you want low numbers or high
numbers first.)

There are many other questions you can ask with Oracle’s query facility, but these examples
show how easy it is to obtain the information you need from an Oracle database in the form that
will be most useful to you. You can build complicated requests from simple pieces of information,
but the method used to do this will always be understandable. For instance, you can combine the
where and order by keywords, both simple by themselves, to tell Oracle to select those cities where
the temperature is greater than 80, and show them in order by increasing temperature. You would
type this:

.~ select Cty, Temperature from WEATHER
where Tenperature > 80
order by Tenperature ;

and Oracle would instantly respond with this:

Gty Tenperature

44 Partl: Critical Architecture Concepts

Or, to be even more specific, you could request cities where the temperature is greater than 80
and the humidity is less than 70:

'~ select Cty, Temperature, Humidity from WEATHER
where Tenperature > 80
and Humidity < 70
order by Tenperature ;

and Oracle would respond with this:

e City Tenperature Humidity

Why It Is Called “Relational”

Notice that the WEATHER table lists cities from several countries, and some countries have more
than one city listed. Suppose you need to know in which country a particular city is located. You
could create a separate LOCATION table of cities and their countries, as shown in Figure 4-4.

For any city in the WEATHER table, you can simply look at the LOCATION table, find the name
in the City column, look over to the Country column in the same row, and see the country’s
name.

These are two completely separate and independent tables. Each contains its own information
in columns and rows. The tables have one significant thing in common: the City column. For
each city name in the WEATHER table, there is an identical city name in the LOCATION table.

For instance, what are the current temperature, humidity, and condition in an Australian city?
Look at the two tables, figure it out, and then resume reading this.

LOCATI ON
Gty Country
WEATHER eeeeeeaaoe e oo oo
ATHENS GREECE
CHI CAGO UNI TED STATES
Gty Tenperature Hum dity Condi ti on CONAKRY GUI NEA
—————————————————————————————————————— LI VA PERU
ATHENS 97 89 SUNNY MADRAS | NDI A
CHI CAGO 66 88 RAI'N MADRI D SPAI'N
LI VA 45 79 RAI N MANCHESTER ENGLAND
MANCHESTER 66 98 FOG MOSCOW RUSSI A
PARI S 81 62 CLOUDY PARI S FRANCE
SPARTA 74 63 CLOUDY ROVE | TALY
SYDNEY 69 99 SUNNY SHENYANG CHI NA
SPARTA GREECE
SYDNEY AUSTRALI A
TOKYO JAPAN

FIGURE 4-4. WEATHER and LOCATION tables

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards

LOCATI ON
Cty Country
WEATHER ~ eeeeeeeae aeaooe
ATHENS GREECE
CHI CAGO UNI TED STATES
Gty Tenperature Humidity Condi ti on CONAKRY GUl NEA
-------------------------------------- LI MA PERU
ATHENS 97 89 SUNNY MADRAS I NDI A
CHI CAGO 66 88 RAI'N MADRI D SPAI'N
LI MA 45 79 RAI'N MANCHESTER ENGLAND
MANCHESTER 66 98 FOG MOSCOW RUSSI A
PARI S 81 62 CLOUDY PARI S FRANCE
SPARTA 74 63 CLOUDY ROVE I TALY
69 99 SUNNY SHENYANG CHI NA
SPARTA GREECE
AUSTRALI A
. . TOKYO JAPAN
Relationship

FIGURE 4-5. The relationship between the WEATHER and LOCATION tables

How did you solve it? You found just one AUSTRALIA entry, under the Country column, in
the LOCATION table. Next to it, in the City column of the same row, was the name of the city,
SYDNEY. You took this name, SYDNEY, and then looked for it in the City column of the WEATHER
table. When you found it, you moved across the row and found the Temperature, Humidity, and
Condition: 69, 99, and SUNNY.

Even though the tables are independent, you can easily see that they are related. The city name
in one table is related to the city name in the other (see Figure 4-5, above). This relationship is
the basis for the name relational database.

This is the basic idea of a relational database (sometimes called a relational model). Data is
stored in tables. Tables have columns, rows, and names. Tables can be related to each other if
each has a column with a common type of information.

That's it. It's as simple as it seems.

Some Common, Everyday Examples

Once you understand the basic idea of relational databases, you'll begin to see tables, rows, and
columns everywhere. Not that you didn’t see them before, but you probably didn’t think about
them in quite the same way. Many of the tables you are accustomed to seeing could be stored in
Oracle. They could be used to quickly answer questions that would take you quite some time to
answer using nearly any other method.

A typical stock market report in the paper might look like the one in Figure 4-6. This is a small
portion of a dense, alphabetical listing that fills several narrow columns on several pages in a
newspaper. Which stock traded the most shares? Which had the biggest percentage change in
its price, either positively or negatively? The answers to these questions can be obtained through
simple English queries in Oracle, which can find the answers much faster than you could by
searching the columns on the newspaper page.

45

46 Partl: Critical Architecture Concepts

Cl ose C ose Shar es
Conpany Yest er day Today Tr aded
Ad Specialty 31.75 31.75 18, 333, 876
Appl e Cannery 33.75 36. 50 25,787, 229
AT Space 46. 75 48. 00 11, 398, 323
August Enterprises 15. 00 15. 00 12,221, 711
Brandon Ellipsis 32.75 33.50 25,789, 769
General Entropy 64. 25 66. 00 7,598, 562
Geneva Rocketry 22.75 27.25 22,533,944
Hayward Antiseptic 104. 25 106. 00 3,358, 561
1 DK 95. 00 95. 25 9, 443,523
I ndi a Cosnetics 30.75 30. 75 8,134,878
| sai ah Janes Storage 13.25 13.75 22,112,171
KDK Airlines 80. 00 85. 25 7,481, 566
Kent gen Bi ophysi cs 18. 25 19. 50 6, 636, 863
LaVay Cosnetics 21.50 22.00 3,341,542
Local Devel opnent 26.75 27. 25 2,596, 934
Maxt i de 8. 25 8. 00 2, 836, 893
MBK Conmmuni cat i ons 43. 25 41. 00 10, 022, 980
Menory G aphics 15.50 14. 25 4,557,992
M cro Token 77.00 76. 50 25, 205, 667
Nancy Lee Features 13.50 14. 25 14, 222, 692
Nor t her n Bor eal 26. 75 28. 00 1, 348, 323
Cckham Syst ens 21.50 22.00 7,052,990
Cscar Coal Drayage 87.00 88. 50 25,798,992
Robert Janmes Apparel 23.25 24.00 19, 032, 481
Soup Sensati ons 16. 25 16. 75 22,574, 879
Wonder Labs 5.00 5.00 2,553,712

FIGURE 4-6. A stock market table

Figure 4-7 is an index to a newspaper. What's in section F? If you read the paper from front to
back, in what order would you read the articles? The answers to these questions are obtainable via
simple English queries in Oracle. You will learn how to do all these queries, and even build the
tables to store the information, in the course of using this reference.

Throughout this book, the examples use data and objects encountered frequently in business
and everyday life. Similar data to use for your exercises should be as easy to find as your nearest
bookshelf. You will learn how to enter and retrieve data in the pages ahead, using examples based
on these everyday data sources.

As with any new technology or new venture, it's sensible to think through not only the benefits
and opportunities that are presented, but also the costs and risks. Combine a relational database
with a series of powerful and easy-to-use tools, as Oracle does, and the possibility of being seduced
into disaster by its simplicity becomes real. Add in object-oriented and web capabilities, and the
dangers increase. The following sections discuss some of the dangers that both developers and
users need to consider.

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards

Feature Section
Births

Bri dge

Busi ness
Classified
Com cs
Doctor's In
Editorials
Modern Life
Movi es

Nat i onal News
oi tuari es
Sports

Tel evi si on
Weat her

o

QD
«Q

(0]

O®UTT>Omm>TOTMIT
=
N~NPRPORPARPNODNODEN-SN

FIGURE 4-7. A table based on sections of a newspaper

What Are the Risks?

The primary risk in developing relational database applications is that it is as easy as they say.
Understanding tables, columns, and rows isn’t difficult. The relationship between two tables is
conceptually simple. Even normalization, the process of analyzing the inherent or “normal”
relationships between the various elements of a company’s data, is fairly easy to learn.

Unfortunately, this often produces instant “experts,” full of confidence but with little experience
in building real, production-quality applications. For a tiny marketing database, or a home inventory
application, this doesn’t matter very much. The mistakes made will reveal themselves in time,
the lessons will be learned, and the errors will be avoided the next time around. In an important
application, however, this is a sure formula for disaster. This lack of experience is usually behind
the press’s stories of major project failures.

Older development methods are generally slower, primarily because the tasks of the older
methods—coding, submitting a job for compilation, linking, and testing—result in a slower pace.
The cycle, particularly on a mainframe, is often so tedious that programmers spend a good deal
of time “desk-checking” in order to avoid going through the delay of another full cycle because of
an error in the code.

Fourth-generation tools seduce developers into rushing into production. Changes can be made
and implemented so quickly that testing is given short shrift. The elimination of virtually all desk-
checking compounds the problem. When the negative incentive (the long cycle) that encouraged
desk-checking disappeared, desk-checking went with it. The attitude of many seems to be, “If the
application isn’t quite right, we can fix it quickly. If the data gets corrupted, we can patch it with
a quick update. If it's not fast enough, we can tune it on the fly. Let’s get it in ahead of schedule
and show the stuff we’re made of.”

47

48 Partl: Critical Architecture Concepts

The testing cycle in an important Oracle project should be longer and more thorough than in
a traditional project. This is true even if proper project controls are in place, and even if seasoned
project managers are guiding the project, because there will be less desk-checking and an inherent
overconfidence. This testing must check the correctness of data-entry screens and reports, of data
loads and updates, of data integrity and concurrence, and particularly of transaction and storage
volumes during peak loads.

Because it really is as easy as they say, application development with Oracle’s tools can be
breathtakingly rapid. But this automatically reduces the amount of testing done as a normal part
of development, and the planned testing and quality assurance must be consciously lengthened
to compensate. This is not usually foreseen by those new to either Oracle or fourth-generation
tools, but you must budget for it in your project plan.

The Importance of the New Vision

Many of us look forward to the day when we can simply type a “natural” language query in English,
and have the answer back, on our screen, in seconds.

We are closer to this goal than most of us realize. The limiting factor is no longer technology,
but rather the rigor of thought in our application designs. Oracle can straightforwardly build English-
based systems that are easily understood and exploited by unsophisticated users. The potential is
there, already available in Oracle’s database and tools, but only a few have understood and used it.

Clarity and understandability should be the hallmarks of any Oracle application. Applications
can operate in English, be understood readily by end users who have no programming background,
and provide information based on a simple English query.

How? First of all, a major goal of the design effort must be to make the application easy to
understand and simple to use. If you err, it must always be in this direction, even if it means
consuming more CPU or disk space. The limitation of this approach is that you could make an
application exceptionally easy to use by creating overly complex programs that are nearly impossible
to maintain or enhance. This would be an equally bad mistake. However, all things being equal,
an end-user orientation should never be sacrificed for clever coding.

Changing Environments

Consider that the cost to run a computer, expressed as the cost per million instructions per second

(MIPS), has historically declined at the rate of 20 percent per year. Labor costs, on the other hand,

have risen steadily. This means that any work that can be shifted from human laborers to machines
may represent a cost savings.

Have we factored this incredible shift into our application designs? The answer is “somewhat,”
but terribly unevenly. The real progress has been in environments, such as the visionary work first
done at Xerox Palo Alto Research Center (PARC), and then on the Macintosh, and now in web-
based browsers and other graphical icon-based systems. These environments are much easier to
learn and understand than the older, character-based environments, and people who use them
can produce in minutes what previously took days. The improvement in some cases has been so
huge that we’ve entirely lost sight of how hard some tasks used to be.

Unfortunately, this concept of an accommodating and friendly environment hasn’t been grasped
by many application developers. Even when they work in these environments, they continue old
habits that are just no longer appropriate.

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards

Codes, Abbreviations, and Naming Standards

The problem of old programming habits is most pronounced in codes, abbreviations, and naming
standards, which are almost completely ignored when the needs of end users are considered. When
these three issues are thought about at all, usually only the needs and conventions of the systems
groups are considered. This may seem like a dry and uninteresting problem to be forced to think
through, but it can make the difference between great success and grudging acceptance, between
an order-of-magnitude leap in productivity and a marginal gain, between interested, effective users
and bored, harried users who make continual demands on the developers.

Here’s what happened. Business records used to be kept in ledgers and journals. Each event
or transaction was written down, line by line, in English. As we developed applications, codes
were added to replace data values (such as “01” for “Accounts Receivable,” “02” for “Accounts
Payable,” and so on). Key-entry clerks would actually have to know or look up most of these
codes and type them in at the appropriately labeled fields on their screens. This is an extreme
example, but literally thousands of applications take exactly this approach and are every bit as
difficult to learn or understand.

This problem has been most pronounced in large, conventional mainframe systems development.
As relational databases are introduced into these groups, they are used simply as replacements
for older input/output methods such as Virtual Storage Access Method (VSAM) and Information
Management System (IMS). The power and features of the relational database are virtually wasted
when used in such a fashion.

Why Are Codes Used Instead of English?

Why use codes at all? Two primary justifications are usually offered:

B A category has so many items in it that all of them can’t reasonably be represented or
remembered in English.

B To save space in the computer.

The second point is an anachronism. Memory and permanent storage were once so expensive
and CPUs so slow (with less power than a modern hand-held calculator) that programmers had to
cram every piece of information into the smallest possible space. Numbers, character for character,
take half of the computer storage space of letters, and codes reduce the demands on the machine
even more.

Because machines were expensive, developers had to use codes for everything to make anything
work at all. It was a technical solution to an economic problem. For users, who had to learn all
sorts of meaningless codes, the demands were terrible. Machines were too slow and too expensive
to accommodate the humans, so the humans were trained to accommodate the machines. It was
a necessary evil.

This economic justification for codes vanished years ago. Computers are now fast enough and
cheap enough to accommodate the way people work, and use words that people understand. It’s
high time that they did so. Yet, without really thinking through the justifications, developers and
designers continue to use codes.

The first point—that of too many items per category—is more substantive, but much less so
than it first appears. One idea is that it takes less effort (and is therefore less expensive) for someone
to key in the numeric codes than actual text string values such as book titles. This justification is

49

50 Partl: Critical Architecture Concepts

untrue in Oracle. Not only is it more costly to train people to know the correct customer, product,
transaction, and other codes, and more expensive because of the cost of mistakes (which are high
with code-based systems), but using codes also means not using Oracle fully; Oracle is able to take
the first few characters of a title and fill in the rest of the name itself. It can do the same thing with
product names, transactions (a “b” will automatically fill in with “buy,” an “s” with “sell”), and so
on, throughout an application. It does this with very robust pattern-matching capabilities.

The Benefit of User Feedback

There is an immediate additional benefit: Key-entry errors drop almost to zero because the users
get immediate feedback, in English, of the business information they’re entering. Digits don’t get
transposed; codes don’t get remembered incorrectly; and, in financial applications, money rarely
is lost in accounts due to entry errors, with significant savings.

Applications also become much more comprehensible. Screens and reports are transformed
from arcane arrays of numbers and codes into a readable and understandable format. The change
of application design from code-oriented to English-oriented has a profound and invigorating effect
on a company and its employees. For users who have been burdened by code manuals, an English-
based application produces a tremendous psychological release.

How to Reduce the Confusion

Another version of the “too many items per category” justification is that the number of products,
customers, or transaction types is just too great to differentiate each by name, or there are too many
items in a category that are identical or very similar (customers named “John Smith,” for instance).
A category can contain too many entries to make the options easy to remember or differentiate, but
more often this is evidence of an incomplete job of categorizing information: Too many dissimilar
things are crammed into too broad a category. Developing an application with a strong English-
based (or French, German, Spanish, and so on) orientation, as opposed to code-based, requires
time spent with users and developers—taking apart the information about the business, understanding
its natural relationships and categories, and then carefully constructing a database and naming
scheme that simply and accurately reflect these discoveries.

There are three basic steps to doing this:

1. Normalize the data.
2. Choose English names for the tables and columns.

3. Choose English words for the data.

Each of these steps will be explained in order. The goal is to design an application in which
the data is sensibly organized, is stored in tables and columns whose names are familiar to the
user, and is described in familiar terms, not codes.

Normalization

Relations between countries, or between departments in a company, or between users and
developers, are usually the product of particular historical circumstances, which may define
current relations even though the circumstances have long since passed. The result of this can be
abnormal relations, or, in current parlance, dysfunctional relations. History and circumstance

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards

often have the same effect on data—on how it is collected, organized, and reported. And data,
too, can become abnormal and dysfunctional.

Normalization is the process of putting things right, making them normal. The origin of the term
is norma, the Latin word for a carpenter’s square that’s used for ensuring a right angle. In geometry,
when a line is at a right angle to another line, it is said to be “normal” to it. In a relational database,
the term also has a specific mathematical meaning having to do with separating elements of
data (such as names, addresses, or skills) into affinity groups, and defining the normal, or “right,”
relationships between them.

The basic concepts of normalization are being introduced here so that users can contribute
to the design of an application they will be using, or better understand one that has already been
built. It would be a mistake, however, to think that this process is really only applicable to designing
a database or a computer application. Normalization results in deep insights into the information
used in a business and how the various elements of that information are related to each other.
This will prove educational in areas apart from databases and computers.

The Logical Model

An early step in the analysis process is the building of a logical model, which is simply a normalized
diagram of the data used by the business. Knowing why and how the data gets broken apart and
segregated is essential to understanding the model, and the model is essential to building an
application that will support the business for a long time, without requiring extraordinary support.

Normalization is usually discussed in terms of form: First, Second, and Third Normal Form are
the most common, with Third representing the most highly normalized state. There are Fourth and
Fifth normalization levels defined as well, but they are beyond the scope of this discussion.

Consider a bookshelf: For each book, you can store information about it—the title, publisher,
authors, and multiple categories or descriptive terms for the book. Assume that this book-level data
became the table design in Oracle. The table might be called BOOKSHELF, and the columns might
be Title, Publisher, Author1, Author2, Author3, and Category1, Category2, Category3. The users
of this table already have a problem: In the BOOKSHELF table, users are limited to listing just three
authors or categories for a single book.

What happens when the list of acceptable categories changes? Someone has to go through
every row in the BOOKSHELF table and correct all the old values. And what if one of the authors
changes his or her name? Again, all the related records must be changed. What will you do when
a fourth author contributes to a book?

These are not really computer or technical issues, even though they became apparent because
you were designing a database. They are much more basic issues of how to sensibly and logically
organize the information of a business. They are the issues that normalization addresses. This is done
with a step-by-step reorganization of the elements of the data into affinity groups, by eliminating
dysfunctional relationships and by ensuring normal relationships.

Normalizing the Data
Step one of the reorganization is to put the data into First Normal Form. This is done by moving
data into separate tables, where the data in each table is of a similar type, and giving each table
a primary key—a unique label or identifier. This eliminates repeating groups of data, such as the
authors on the bookshelf.

Instead of having only three authors allowed per book, each author’s data is placed in a separate
table, with a row per name and description. This eliminates the need for a variable number of
authors in the BOOKSHELF table and is a better design than limiting the BOOKSHELF table to
just three authors.

51

52 Partl: Critical Architecture Concepts

Next, you define the primary key to each table: What will uniquely identify and allow you
to extract one row of information? For simplicity’s sake, assume the titles and authors’ names are
unique, so AuthorName is the primary key to the AUTHOR table.

You now have split BOOKSHELF into two tables: AUTHOR, with columns AuthorName
(the primary key) and Comments, and BOOKSHELF, with a primary key of Title, and with columns
Publisher, Category1, Category2, Category3, Rating, and RatingDescription. A third table,
BOOKSHELF_AUTHOR, provides the associations: Multiple authors can be listed for a single book
and an author can write multiple books—known as a many-to-many relationship. Figure 4-8 shows
these relationships and primary keys.

The next step in the normalization process, Second Normal Form, entails taking out data that’s
only dependent on a part of the key. If there are attributes that do not depend on the entire key, those
attributes should be moved to a new table. In this case, RatingDescription is not really dependent
on Title—it’s based on the Rating column value, so it should be moved to a separate table.

The final step, Third Normal Form, means getting rid of anything in the tables that doesn’t
depend solely on the primary key. In this example, the categories are interrelated; you would not
list a title as both Fiction and Nonfiction, and you would have different subcategories under the
Adult category than you would have under the Children category. Category information is therefore
moved to a separate table. Figure 4-9 shows the tables in Third Normal Form.

Anytime the data is in Third Normal Form, it is already automatically in Second and First
Normal Form. The whole process can therefore actually be accomplished less tediously than by
going from form to form. Simply arrange the data so that the columns in each table, other than
the primary key, are dependent only on the whole primary key. Third Normal Form is sometimes
described as “the key, the whole key, and nothing but the key.”

Navigating Through the Data

The bookshelf database is now in Third Normal Form. Figure 4-10 shows a sample of what these
tables might contain. It's easy to see how these tables are related. You navigate from one to the other
to pull out information on a particular author, based on the keys to each table. The primary key in
each table is able to uniquely identify a single row. Choose Stephen Jay Gould, for instance, and
you can readily discover his record in the AUTHOR table, because AuthorName is the primary key.

BOOKSHELF BOOKSHELF_AUTHOR AUTHOR

Title € =% Title | | < AuthorName
Publisher wn\lame Comments
Category 1 4
Category 2
Category 3

Rating
RatingDescription

Primary Key

FIGURE 4-8. The BOOKSHELF, AUTHOR, and BOOKSHELF_AUTHOR tables

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 53

BOOKSHELF BOOKSHELF AUTHOR AUTHOR

—Tlc || AuthorName—

Publisher AuthorName Comments

CategoryName

Rating

RATING CATEGORY
RatingDescription ParentCategory

SubCategory

FIGURE 4-9. BOOKSHELF and related tables

AUTHOR
Aut hor Nane Comment s

DI ETRI CH BONHOEFFER ~ GERVAN THEOLOG AN, KILLED I N A WAR CAMP

ROBERT BRETALL KI ERKEGAARD ANTHOLOG ST

ALEXANDRA DAY AUTHOR OF PI CTURE BOOKS FOR CHI LDREN
STEPHEN JAY GOULD SCl ENCE COLUMNI ST, HARVARD PROFESSOR

SOREN Kl ERKEGAARD DANI SH PHI LOSOPHER AND THEOLOG AN

HARPER LEE AVMERI CAN NOVELI ST, PUBLI SHED ONLY ONE NOVEL
LUCY MAUD MONTGOMERY CANADI AN NOVELI ST

JOHN ALLEN PAULGCS MATHEMATI CS PROFESSOR

J. RODALE ORGANI C GARDENI NG EXPERT

RATI NG

Rati ng Rat i ngDescri ption

1 ENTERTAI NVENT

2 BACKGROUND | NFORVATI ON
3 RECOMVENDED

4 STRONGLY RECOMVENDED

5 REQUI RED READI NG

FIGURE 4-10. Sample data from the BOOKSHELF tables

54 Partl: Critical Architecture Concepts

CATEGORY
Cat egor yNane Par ent Cat egory

ADULTREF ADULT
ADULTFI C ADULT
ADULTNF ADULT

CHI LDRENPI C CHI LDREN
CHI LDRENFI C CHI LDREN
CHI LDRENNF CHI LDREN

BOOKSHELF_AUTHOR

Title

TO KILL A MOCKI NGBI RD
WONDERFUL LI FE

I NNUMERACY

KI ERKEGAARD ANTHOLOGY

KI ERKEGAARD ANTHOLOGY

ANNE OF CGREEN GABLES

GOOD DOG CARL

LETTERS AND PAPERS FROM PRI SON

BOOKSHELF

Title

TO KILL A MOCKI NGBI RD
WONDERFUL LI FE

I NNUMERACY

KI ERKEGAARD ANTHOLOGY

ANNE OF CGREEN GABLES

GOOD DOG CARL

LETTERS AND PAPERS FROM PRI SON

SubCat egory
REFERENCE

FI CTI ON
NONFI CTI ON
Pl CTURE BOOK
FI CTI ON
NONFI CTI ON

Aut hor Nanme

HARPER LEE

STEPHEN JAY GOULD
JOHN ALLEN PAULGCS
ROBERT BRETALL

SOREN Kl ERKEGAARD
LUCY MAUD MONTGOVERY
ALEXANDRA DAY

DI ETRI CH BONHOEFFER

Publ i sher
HARPERCOLLI NS

W W NORTON & CO.
VI NTAGE BOOKS

PRI NCETON UNI'V PR
GRAMVERCY

LI TTLE SI MON

SCRI BNER

Cat egor yNane

CHI LDRENFI C
CHI LDRENPI C

FIGURE 4-10. Sample data from the BOOKSHELF tables (continued)

Look up Harper Lee in the AuthorName column of the BOOKSHELF_AUTHOR table and you’ll
see that she has published one novel, whose title is To Kill A Mockingbird. You can then check the
publisher, category, and rating for that book in the BOOKSHELF table. You can check the RATING

table for a description of the rating.

When you looked up To Kill A Mockingbird in the BOOKSHELF table, you were searching
by the primary key for the table. To find the author of that book, you could reverse your earlier
search path, looking through BOOKSHELF_AUTHOR for the records that have that value in the
Title column—the column Title is a foreign key in the BOOKSHELF_AUTHOR table. When the
primary key for BOOKSHELF appears in another table, as it does in the BOOKSHELF_AUTHOR

table, it is called a foreign key to that table.

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards

These tables also show real-world characteristics: There are ratings and categories that are not
yet used by books on the bookshelf. Because the data is organized logically, you can keep a record
of potential categories, ratings, and authors even if none of the current books use those values.

This is a sensible and logical way to organize information, even if the “tables” are written in a
ledger book or on scraps of paper kept in cigar boxes. Of course, there is still some work to do to
turn this into a real database. For instance, AuthorName probably ought to be broken into FirstName
and LastName, and you might want to find a way to show which author is the primary author, or
if one is an editor rather than an author.

This whole process is called normalization. It really isn't any trickier than this. Although some
other issues are involved in a good design, the basics of analyzing the “normal” relationships among
the various elements of data are just as simple and straightforward as they’ve just been explained.
It makes sense regardless of whether or not a relational database or a computer is involved at all.

One caution needs to be raised, however. Normalization is a part of the process of analysis.
It is not design. Design of a database application includes many other considerations, and it is a
fundamental mistake to believe that the normalized tables of the logical model are the “design”
for the actual database. This fundamental confusion of analysis and design contributes to the
stories in the press about the failure of major relational applications. These issues are addressed
for developers more fully later in this chapter.

English Names for Tables and Columns

Once the relationships between the various elements of the data in an application are understood
and the data elements are segregated appropriately, considerable thought must be devoted to
choosing names for the tables and columns into which the data will be placed. This is an area
given too little attention, even by those who should know better. Table and column names are
often developed without consulting end users and without rigorous review. Both of these failings
have serious consequences when it comes to actually using an application.

For example, consider the tables shown in Figure 4-10. The table and column names are
virtually all self-explanatory. An end user, even one new to relational ideas and SQL, would
have little difficulty understanding or even replicating a query such as this:

' select Title, Publisher
fr om BOOKSHELF
order by Publisher;

Users understand this because the words are all familiar. There are no obscure or ill-defined
terms. When tables with many more columns in them must be defined, naming the columns can
be more difficult, but a few consistently enforced rules will help immensely. Consider some of
the difficulties commonly caused by a lack of naming conventions. What if you had chosen these
names instead?

= | BOOKSHELF B_A AUTHS CATECORI ES
title title anam cat
pub anam coms p_cat
cat s_cat

rat

56 Partl: Critical Architecture Concepts

The naming techniques in this table, as bizarre as they look, are unfortunately very common.
They represent tables and columns named by following the conventions (and lack of conventions)
used by several well-known vendors and developers.

Here are a few of the more obvious difficulties in the list of names:

B Abbreviations are used without good reason. This makes remembering the “spelling” of
a table or column name virtually impossible. The names may as well be codes, because
the users will have to look them up.

® Abbreviations are inconsistent.

B The purpose or meaning of a column or table is not apparent from the name. In addition
to abbreviations making the spelling of names difficult to remember, they obscure the
nature of the data that the column or table contains. What is P_cat? Comms?

m Undescores are used inconsistently. Sometimes they are used to separate words in a name,
but other times they are not. How will anyone remember which name does or doesn’t
have an underscore?

B Use of plurals is inconsistent. Is it CATEGORY or CATEGORIES? Comm or Comms?

®m Rules apparently used have immediate limitations. If the first letter of the table name is
to be used for a name column, as in Anam for a table whose table name starts with A,
what happens when a second table beginning with the letter A becomes necessary? Does
the name column in that table also get called Anam? If so, why isn’t the column in both
simply called Name?

These are only a few of the most obvious difficulties. Users subjected to poor naming of tables
and columns will not be able to simply type English queries. The queries won’t have the intuitive
and familiar “feel” that the BOOKSHELF table query has, and this will harm the acceptance and
usefulness of the application significantly.

Programmers used to be required to create names that were a maximum of six to eight characters
in length. As a result, names unavoidably were confused mixes of letters, numbers, and cryptic
abbreviations. Like so many other restrictions forced on users by older technology, this one is just
no longer applicable. Oracle allows table and column names up to 30 characters long. This gives
designers plenty of room to create full, unambiguous, and descriptive names.

The difficulties outlined here imply solutions, such as avoiding abbreviations and plurals, and
either eliminating underscores or using them consistently. These quick rules of thumb will go a long
way in solving the naming confusion so prevalent today. At the same time, naming conventions
need to be simple, easily understood, and easily remembered. In a sense, what is called for is a
normalization of names. In much the same way that data is analyzed logically, segregated by
purpose, and thereby normalized, the same sort of logical attention needs to be given to naming
standards. The job of building an application is improperly done without it.

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 57

English Words for the Data

Having raised the important issue of naming conventions for tables and columns, the next step is
to look at the data itself. After all, when the data from the tables is printed on a report, how self-
evident the data is will determine how understandable the report is. In the BOOKSHELF example,
Rating is a code value, and Category is a concatenation of multiple values. Is this an improvement?
If you asked another person about a book, would you want to hear that it was rated a 4 in AdultNF?
Why should a machine be permitted to be less clear?

Additionally, keeping the information in English makes writing and understanding queries
much simpler. The query should be as English-like as possible:

. select Title, AuthorNanme
fr om BOOKSHELF_AUTHOR;

Capitalization in Names and Data

Oracle makes it slightly easier to remember table and column names by ignoring whether you type
in capital letters, small letters, or a mixture of the two. It stores table and column names in its
internal data dictionary in uppercase. When you type a query, it instantly converts the table and
column names to uppercase, and then checks for them in the dictionary. Some other relational
systems are case sensitive. If users type a column name as “Ability,” but the database thinks it is
“ability” or “ABILITY” (depending on what it was told when the table was created), it will not
understand the query.

NOTE

You can force Oracle to create tables and columns with mixed-case
names, but doing so will make querying and working with the data
difficult. Use the default uppercase behavior.

The ability to create case-sensitive table names is promoted as a benefit because it allows
programmers to create many tables with, for instance, similar names. They can make a worker
table, a Worker table, a wORker table, and so on. These will all be separate tables. How is anyone,
including the programmer, supposed to remember the differences? This is a drawback, not a benefit,
and Oracle was wise not to fall into this trap.

A similar case can be made for data stored in a database. There are ways to find information
from the database regardless of whether the data is in uppercase or lowercase, but these methods
impose an unnecessary burden. With few exceptions, such as legal text or form-letter paragraphs,
it is much easier to store data in the database in uppercase. It makes queries easier and provides
a more consistent appearance on reports. When and if some of this data needs to be put into
lowercase, or mixed uppercase and lowercase (such as the name and address on a letter), then the
Oracle functions that perform the conversion can be invoked. It will be less trouble overall, and
less confusing, to store and report data in uppercase. You can interact with Oracle in ways that

58 Partl: Critical Architecture Concepts

make queries case insensitive, but it is generally simpler to develop applications with consistent
case choices for your data.

Looking back over this chapter, you’ll see that this practice was not followed. Rather, it was
delayed until the subject could be introduced and put in its proper context. From here on, with
the exception of one or two tables and a few isolated instances, data in the database will be in
uppercase.

Normalizing Names

Several query tools have come on the market whose purpose is to let you make queries using
common English words instead of odd conglomerations. These products work by building a logical
map between the common English words and the hard-to-remember, non-English column names,
table names, and codes. The mapping takes careful thought, but once completed, it makes the user’s
interaction with the application easy. But why not put the care in at the beginning? Why create a
need for yet another layer, another product, and more work, when much of the confusion can be
avoided simply by naming things better the first time around?

For performance reasons, it may be that some of an application’s data must still be stored in
a coded fashion within the computer’s database. These codes should not be exposed to users, during
either data entry or retrieval, and Oracle allows them to be easily hidden.

The instant that data entry requires codes, key-entry errors increase. When reports contain codes
instead of English, errors of interpretation begin. And when users need to create new or ad hoc
reports, their ability to do so quickly and accurately is severely impaired both by codes and by
not being able to remember strange column and table names.

Oracle gives users the power to see and work with English throughout the entire application.
It is a waste of Oracle’s power to ignore this opportunity, and it will without question produce a
less understandable and less productive application. Developers should seize the opportunity.
Users should demand it. Both will benefit immeasurably.

Good Design Has a Human Touch

At this point, if you are new to Oracle you may want to go right into working with Oracle and
the SQL language. That is covered in the next chapter; the remainder of this chapter focuses on
performance, naming, and design considerations. You can refer back to this section later when you
are ready to design and implement an application.

This section looks at a method of approaching a development project that takes into account
the real business tasks your end users have to accomplish. This distinguishes this method from
the more common data orientation of many developers and development methodologies. Data
normalization and CASE (Computer Aided Software Engineering) technologies have become so
much the center of attention with relational application development that a focus on the data and
the issues of referential integrity, keys, normalization, and table diagrams has become almost an
obsession. These issues are so often confused with design—and even believed to be design—that
the reminder that they are analysis is often met with surprise.

Normalization is analysis, not design. And it is only a part of the analysis necessary to understand
a business and build a useful application. The goal of application development, after all, is to help
the business run more successfully by improving the speed and efficiency with which business
tasks are done and by making the environment in which people work as meaningful and supportive
as possible. Give people control over their information, and intuitive, straightforward access to it,

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards

and they will respond gratefully and productively. Assign the control to a remote group, cloud the
information in codes and user-hostile interfaces, and they will be unhappy and unproductive.

The methods outlined in this section are not intended to be a rigorous elucidation of the process,
and the tools you use and are familiar with for data structures or flows are probably sufficient
for the task. The purpose here is to disclose an approach that is effective in creating responsive,
appropriate, and accommodating applications.

Understanding the Application Tasks

One of the often-neglected steps in building software is understanding the end user’s job—the tasks
that computer automation is intended to support. Occasionally, this is because the application

itself is quite specialized; more often, it is because the approach to design tends to be data oriented.
Frequently, these are the major questions asked in the analysis:

® What data should be captured?
B How should the data be processed?

® How should the data be reported?

These questions expand into a series of subquestions, and they include issues such as input
forms, codes, screen layouts, computations, postings, corrections, audit trails, retention, storage
volumes, processing cycles, report formatting, distribution, and maintenance. These are all vitally
important areas. One difficulty, however, is that they all focus solely on data.

People use data, but they do tasks. One might argue that although this may be true of professional
workers, key-entry clerks really only transfer data from an input form to a keyboard; their tasks are
very data oriented. This is a fair portrayal of these jobs today. But is this a consequence of the real
job that needs to get done, or is it a symptom of the design of the computer application? Using
humans as input devices, particularly for data that is voluminous, consistent in format (as on forms),
and in a limited range of variability, is an expensive and antiquated, not to mention dehumanizing,
method of capturing data. Like the use of codes to accommodate machine limitations, it's an idea
whose time has passed.

This may sound like so much philosophy, but it has practical import in the way application
design is done. People use data, but they do tasks. And they don’t do tasks through to completion
one at a time. They do several tasks that are subsets of or in intersection with each other, and they
do them all at once, in parallel.

When designers allow this idea to direct the analysis and creation of an application, rather
than focusing on the data orientation that has been historically dominant, the very nature of the
effort changes significantly. Why have windowing environments been so successful? Because
they allow a user to jump quickly among small tasks, keeping them all active without having to
shut down and exit one in order to begin another. The windowing environment comes closer to
mapping the way people really think and work than the old “one thing at a time” approach ever
did. This lesson should not be lost. It should be built upon.

Understanding the application tasks means going far beyond identifying the data elements,
normalizing them, and creating screens, processing programs, and reports. It means really
understanding what the users do and what their tasks are, and designing the application to be
responsive to those tasks, not just to capture the data associated with them. In fact, when the
orientation is toward the data, the resulting design will inevitably distort the users’ tasks rather
than support them.

59

60 Partl: Critical Architecture Concepts

How do you design an application that is responsive to tasks rather than data? The biggest
hurdle is simply understanding that focusing on tasks is necessary. This allows you to approach
the analysis of the business from a fresh perspective.

The first step in the analysis process is to understand the tasks. For which tasks do the members
of this group really need to use computers? What is the real service or product produced? This seems
like a fundamental and even simplistic first question, but you’ll find that a surprising number of
business people are quite unclear about the answer. An amazing number of businesses, from
healthcare to banking, from shipping to manufacturing, used to think they were in the data processing
business. After all, they input data, process it, and report it, don’t they? This delusion is yet another
symptom of the data orientation our systems designs have had that has led dozens of companies
to attempt to market their imagined “real” product, data processing, with disastrous consequences
for most of them.

Hence the importance of learning about a business application: You have to keep an open
mind, and may often have to challenge pet notions about what the business is in order to learn
what it really is. This is a healthy, if sometimes difficult, process.

And, just as it is essential that business people become literate users of SQL and understand
the basics of the relational model, so it is important that application designers really understand the
service or product being delivered, and the tasks necessary to make that happen. A project team
that includes end users who have been introduced to the essentials of SQL and the relational
approach, such as by reading this book, and designers who are sensitive to end users’ needs and
understand the value of a task-oriented, readable application environment, will turn out extraordinarily
good systems. The members of such a project team check, support, and enhance each other’s efforts.

One approach to this process is to develop two converging documents: a task document and
a data document. It is in the process of preparing the task document that the deep understanding
of the application comes about. The data document will help implement the vision and ensure
that the details and rules are all accounted for, but the task document defines the vision of what
the business is.

Outline of Tasks

The task document is a joint effort of the business users and the application designers. It lists the tasks
associated with the business from the top down. It begins with a basic description of the business.
This should be a simple declarative sentence of three to ten words, in the active voice, without
commas and with a minimum of adjectives:

We sell insurance.
It should not be:

Amalgamated Diversified is a leading international supplier of financial resources, training,
information processing, transaction capture and distribution, communications, customer support,
and industry direction in the field of shared risk funding for health care maintenance, property
preservation, and automobile liability.

There is a tremendous temptation to cram every little detail about a business and its dreams
about itself into this first sentence. Don’t do it. The effort of trimming the descriptive excesses down
to a simple sentence focuses the mind wonderfully. If you can’t get the business down to ten words,
you haven’t understood it yet.

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards

But, as an application designer, creating this sentence isn’t your task alone; it is a joint effort
with the business user, and it initiates the task documentation process. It provides you with the
opportunity to begin serious questioning about what the business does and how it does it. This is
a valuable process for the business itself, quite independent of the fact that an application is being
built. You will encounter numerous tasks and subtasks, procedures, and rules that will prove to be
meaningless or of marginal use. Typically, these are artifacts of either a previous problem, long
since solved, or of information or reporting requests from managers long since departed.

Some wags have suggested that the way to deal with too many reports being created, whether
manually or by computer, is to simply stop producing them and see if anyone notices. This is a
humorous notion, but the seed of truth it contains needs to be a part of the task documentation
process. In fact, it proved quite useful in Y2K remediation efforts—many programs and reports
didn’t have to be fixed, simply because they were no longer used!

Your approach to the joint effort of documenting tasks allows you to ask skeptical questions and
look at (and reevaluate the usefulness of) what may be mere artifacts. Be aware, however, that you
need to proceed with the frank acknowledgment that you, as a designer, cannot understand the
business as thoroughly as the user does. There is an important line between seizing the opportunity
of an application development project to rationalize what tasks are done and why, and possibly
offending the users by presuming to understand the “real” business better than they do.

Ask the user to describe a task in detail and explain to you the reason for each step. If the
reason is a weak one, such as “We've always done it this way,” or “I think they use this upstairs for
something,” red flags should go up. Say that you don’t understand, and ask again for an explanation.
If the response is still unsatisfactory, put the task and your question on a separate list for resolution.
Some of these will be answered simply by someone who knows the subject better, others will
require talking to senior management, and many tasks will end up eliminated because they are no
longer needed. One of the evidences of a good analysis process is the improvement of existing
procedures, independent of, and generally long before, the implementation of a new computer
application.

General Format of the Task Document
This is the general format for the task document:

B Summary sentence describing the business (three to ten words)

® Summary sentences describing and numbering the major tasks of the business (short
sentences, short words)

m Additional levels of task detail, as needed, within each of the major tasks

By all means, follow the summary sentence for every level with a short, descriptive paragraph,
if you want, but don’t use this as an excuse to avoid the effort of making the summary sentence
clear and crisp. Major tasks are typically numbered 1.0, 2.0, 3.0, and so on, and are sometimes
referred to as zero-level tasks. The levels below each of these are numbered using additional dots,
as in 3.1 and 3.1.14. Each major task is taken down to the level where it is a collection of atomic
tasks—tasks for which no subtask is meaningful in itself and that, once started, is either taken to
completion or dropped entirely. Atomic tasks are never left half-finished.

Writing a check is an atomic task; filling in the dollar amount is not. Answering the telephone
as a customer service representative is not an atomic task; answering the phone and fulfilling the
customer’s request is atomic. Atomic tasks must be meaningful and must complete an action.

61

62 Partl: Critical Architecture Concepts

The level at which a task is atomic will vary by task. The task represented by 3.1.14 may be
atomic yet still have several additional sublevels. The task 3.2 may be atomic, or 3.1.16.4 may
be. What is important is not the numbering scheme (which is nothing more than a method for
outlining a hierarchy of tasks) but the decomposition to the atomic level. The atomic tasks are
the fundamental building blocks of the business. Two tasks can still be atomic if one occasionally
depends upon the other, but only if each can and does get completed independently. If two tasks
always depend upon each other, they are not atomic. The real atomic task includes them both.

In most businesses, you will quickly discover that many tasks do not fit neatly into just one of
the major (zero-level) tasks, but seem to span two or more, and work in a network or “dotted line”
fashion. This is nearly always evidence of improper definition of the major tasks or incomplete
atomization of the lower tasks. The goal is to turn each task into a conceptual “object,” with a well-
defined idea of what it does (its goal in life) and what resources (data, computation, thinking, paper,
pencil, and so on) it uses to accomplish its goal.

Insights Resulting from the Task Document

Several insights come out of the task document. First, because the task document is task oriented
rather than data oriented, it is likely to substantially change the way user screens are designed. It
will affect what data is captured, how it is presented, how help is implemented, and how users
switch from one task to another. The task orientation will help ensure that the most common kinds
of jumping between tasks will not require inordinate effort from the user.

Second, the categorization of major tasks will change as conflicts are discovered; this will affect
how both the designers and the business users understand the business.

Third, even the summary sentence itself will probably change. Rationalizing a business into
atomic task “objects” forces a clearing out of artifacts, misconceptions, and unneeded dependencies
that have long weighed down the business unnecessarily.

This is not a painless process, but the benefits in terms of the business’s self-understanding,
the cleanup of procedures, and the automation of the tasks will usually far exceed the emotional
costs and time spent. It helps immensely if there is general understanding going into the project
that uncomfortable questions will be asked, incorrect assumptions will be corrected, and step-by-
step adjustments will be made to the task document until it is completed.

Understanding the Data

In conjunction with the decomposition and description of the tasks, the resources required at each
step are described in the task document, especially in terms of the data required. This is done on
a task-by-task basis, and the data requirements are then included in the data document. This is a
conceptually different approach from the classical view of the data. You will not simply take the
forms and screens currently used by each task and record the elements they contain. The flaw in
this “piece of paper in a cigar box” approach lies in our tendency (even though we don’t like to
admit it) to accept anything printed on paper as necessary or true.

In looking at each task, you should determine what data is necessary to do the task, rather than
what data elements are on the form you use to do the task. By requiring that the definition of the
data needed come from the task rather than from any existing forms or screens, you force an
examination of the true purpose of the task and the real data requirements. If the person doing the
task doesn’t know the use to which data is put, the element goes on the list for resolution. An
amazing amount of garbage is eliminated by this process.

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards

Once the current data elements have been identified, they must be carefully scrutinized. Numeric
and letter codes are always suspect. They disguise real information behind counterintuitive,
meaningless symbols. There are times and tasks for which codes are handy, easily remembered, or
made necessary by sheer volume. But, in your final design, these cases should be rare and obvious.
If they are not, you've lost your way.

In the scrutiny of existing data elements, codes should be set aside for special attention. In each
case, ask yourself whether the element should be a code. Its continued use as a code should be
viewed suspiciously. There must be good arguments and compelling reasons for perpetuating the
disguise. The process for converting codes back into English is fairly simple, but it’s a joint effort.
The codes are first listed by data element, along with their meanings. These are then examined by
users and designers, and short English versions of the meanings are proposed, discussed, and
tentatively approved.

In this same discussion, designers and end users should decide on names for the data elements.
These will become column names in the database, and will be regularly used in English queries, so
the names should be descriptive (avoiding abbreviations, other than those common to the business)
and singular. Because of the intimate relationship between the column name and the data it contains,
the two should be specified simultaneously. A thoughtful choice of a column name will vastly
simplify determining its new English contents.

Data elements that are not codes also must be rigorously examined. By this point, you have
good reason to believe that all the data elements you’ve identified are necessary to the business
tasks, but they are not necessarily well organized. What appears to be one data element in the
existing task may in fact be several elements mixed together that require separation. Names,
addresses, and phone numbers are very common examples of this, but every application has a
wealth of others.

First and last names were mixed together, for example, in the AUTHOR table. The AuthorName
column held both first and last names, even though the tables were in Third Normal Form. This
would be an extremely burdensome way to actually implement an application, in spite of the fact
that the normalization rules were technically met. To make the application practical and prepare it
for English queries, the AuthorName column needs to be decomposed into at least two new columns,
LastName and FirstName. This same categorization process is regularly needed in rationalizing
other data elements, and it’s often quite independent of normalization.

The degree of decomposition depends on how the particular data elements are likely to be
used. It is possible to go much too far and decompose categories that, though made up of separable
pieces, provide no additional value in their new state. Decomposition is application dependent
on an element-by-element basis. Once decomposition has been done, these new elements, which
will become columns, need to be thoughtfully named, and the data they will contain needs to be
scrutinized. Text data that will fall into a definable number of values should be reviewed for naming.
These column names and values, like those of the codes, are tentative.

The Atomic Data Models

Now the process of normalization begins, and with it the drawing of the atomic data models. There
are many good texts on the subject and a wide variety of analysis and design tools that can speed
the process, so this book doesn’t suggest any particular method, because recommending one method
may hinder rather than help.

Each atomic transaction should be modeled, and it should be labeled with the task number
to which it applies. Included in the model are table names, primary and foreign keys, and major

63

64 Partl: Critical Architecture Concepts

columns. Each normalized relationship should have a descriptive name, and estimated row counts
and transaction rates should appear with each table. Accompanying each model is an additional
sheet with all the columns and datatypes, their ranges of value, and the tentative names for the
tables, columns, and named values in the columns.

The Atomic Business Model

This data document is now combined with the task document. The combined document is a
business model. It’s reviewed jointly by the application designers and end users for accuracy
and completeness.

The Business Model

At this point, both the application designers and the end users should possess a clear vision of the
business, its tasks, and its data. Once the business model is corrected and approved, the process
of synthesizing the tasks and data models into an overall business model begins. This part of the
process sorts common data elements between tasks, completes final, large-scale normalization,
and resolves consistent, definitive names for all the parts.

This can be quite a large drawing for major applications, with supporting documentation that
includes the tasks, the data models (with corrected element names, based on the full model), and
a list of all the full-scale tables and their column names, datatypes, and contents. A final check of
the effort is made by tracing the data access paths of each transaction in the full business model to
determine that all the data the transaction requires is available for selection or insertion, and that
no tasks insert data with elements missing that are essential to the model’s referential integrity.

With the exception of the effort spent to properly name the various tables, columns, and common
values, virtually everything to this point has been analysis, not design. The aim has been to promote
understanding of the business and its components.

Data Entry

Screen design does not proceed from the business model. It is not focused on tables, but rather on
tasks, so screens are created that support the task orientation and the need to jump between subtasks
when necessary. In practical terms, this will often map readily to a primary table used by the task,
and to other tables that can be queried for values or updated as the primary table is accessed.

But there will also be occasions when there simply is no main table, but instead a variety of
related tables, all of which will supply or receive data to support the task. These screens will look
and act quite differently from the typical table-oriented screens developed in many applications,
but they will significantly amplify the effectiveness of their users and their contribution to the
business. And that’s the whole purpose of this approach.

The interaction between the user and the machine is critical; the input and query screens should
consistently be task oriented and descriptive, in English. The use of icons and graphical interfaces
plays an important role as well. Screens must reflect the way work is actually done and be built
to respond in the language in which business is conducted.

Query and Reporting

If anything sets apart the relational approach, and SQL, from more traditional application
environments, it is the ability for end users to easily learn and execute ad hoc queries. These are
those reports and one-time queries that are outside of the basic set usually developed and delivered
along with the application code.

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards

With Oracle’s SQL*Plus utility, a command line utility for creating and querying database
objects, end users are given unprecedented control over their own data. Both the users and
developers benefit from this ability: the users because they can build reports, analyze information,
modify their queries, and reexecute them, all in a matter of minutes, and the developers because
they are relieved of the undesirable requirement of creating new reports.

Users are granted the power to look into their data, analyze it, and respond with a speed and
thoroughness unimaginable just a few years ago. This leap in productivity is greatly extended if the
tables, columns, and data values are carefully crafted in English; it is greatly foreshortened if bad
naming conventions and meaningless codes and abbreviations are permitted to infect the design.
The time spent in the design process to name the objects consistently and descriptively will pay
off quickly for the users, and therefore for the business.

Some people, typically those who have not built major relational applications, fear that turning
query facilities over to end users will cripple the machine on which the facilities are used. The
fear is that users will write inefficient queries that will consume overwhelming numbers of CPU
cycles, slowing the machine and every other user. Experience shows that this generally is not true.
Users quickly learn which kinds of queries run fast, and which do not. Further, most business
intelligence and reporting tools available today can estimate the amount of time a query will take,
and restrict access—by user, time of day, or both—to queries that would consume a disproportionate
amount of resources. In practice, the demands users make on a machine only occasionally get
out of hand, but the benefits they derive far exceed the cost of the processing. Virtually any time
you can move effort from a person to a machine, you save money.

The real goal of design is to clarify and satisfy the needs of the business and business users.
If there is a bias, it must always be toward making the application easier to understand and use,
particularly at the expense of CPU or disk, but less so if the cost is an internal complexity so great
that maintenance and change become difficult and slow.

Toward Object Name Normalization

The basic approach to naming is to choose meaningful, memorable, and descriptive readable
names, avoiding abbreviations and codes, and using underscores either consistently or not at all.
In a large application, table, column, and data names will often be multiword, as in the case of
ReversedSuspenseAccount or Last_GL_Close_Date. The goal of thoughtful naming methods is ease
of use: The names must be easily remembered and must follow rules that are easily explained and
applied. In the pages ahead, a somewhat more rigorous approach to naming is presented, with the
ultimate goal of developing a formal process of object name normalization.

Level-Name Integrity

In a relational database system, the hierarchy of objects ranges from the database, to the table
owners, to the tables, to the columns, to the data values. In very large systems, there may even
be multiple databases, and these may be distributed within locations. For the sake of brevity, the
higher levels will be ignored for now, but what is said will apply to them as well.

Each level in this hierarchy is defined within the level above it, and each level should be given
names appropriate to its own level and should not incorporate names from outside its own level.
For example, a table cannot have two columns called Name, and the account named George
cannot own two tables named AUTHOR.

There is no requirement that each of George’s tables have a name that is unique throughout
the entire database. Other owners may have AUTHOR tables as well. Even if George is granted

65

66 Partl: Critical Architecture Concepts

access to them, there is no confusion, because he can identify each table uniquely by prefixing
its owner’s name to the table name, as in Dietrich. AUTHOR. It would not be logically consistent
to incorporate George’s owner name into the name of each of his tables, as in GEOAUTHOR,
GEOBOOKSHELF, and so on. This confuses and complicates the table name by placing part of
its parent’s name in its own, in effect a violation of level-name integrity.

Brevity should never be favored over clarity. Including pieces of table names in column names
is a bad technique, because it violates the logical idea of levels and the level-name integrity that
this requires. It is also confusing, requiring users to look up column names virtually every time
they want to write a query. Object names must be unique within their parent, but no incorporation
of names from outside an object’s own level should be permitted.

The support for abstract datatypes in Oracle strengthens your ability to create consistent names
for attributes. If you create a datatype called ADDRESS_TY, it will have the same attributes each
time it is used. Each of the attributes will have a consistent name, datatype, and length, making
their implementation more consistent across the enterprise. However, using abstract datatypes in
this manner requires that you do both of the following:

m Properly define the datatypes at the start so that you can avoid the need to modify the
datatype later.

®m Support the syntax requirements of abstract datatypes.

Foreign Keys
The one area of difficulty with using brief column names is the occasional appearance of a foreign
key in a table in which another column has the same name that the foreign key column has in its
home table. One possible long-term solution is to allow the use of the full foreign key name, including
the table name of its home table, as a column name in the local table (such as BOOKSHELF.Title
as a column name).

The practical need to solve the same-name column problem requires one of the following
actions:

B [nvent a name that incorporates the source table of the foreign key in its name without
using the dot (using an underscore, for instance).

® [nvent a name that incorporates an abbreviation of the source table of the foreign key
in its name.

B [nvent a name different from its name in its source table.
B Change the name of the conflicting column.

None of these is particularly attractive, but if you come across the same-name dilemma, you’ll
need to take one of these actions.

Singular Names

One area of great inconsistency and confusion is the question of whether objects should have
singular or plural names. Should it be the AUTHOR table or the AUTHORS table? Should it be
the Name column or the Names column?

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards

There are two helpful ways to think about this issue. First, consider some columns common
to nearly every database: Name, Address, City, State, and Zip. Other than the first column, does it
ever occur to anyone to make these names plural? It is nearly self-evident when considering these
names that they describe the contents of a single row, a record. Even though relational databases
are “set oriented,” clearly the fundamental unit of a set is a row, and it is the content of that row
that is well-described by singular column names. When designing a data-entry screen to capture
a person’s name and address, should it look like this?

" = Nanes:

Addr esses:

Cities: States __ Zips -

Or will you make these column names singular on the screen because you’re capturing
one name and address at a time, but tell the users that when they write queries they must all be
converted to plural? It is simply more intuitive and straightforward to restrict column names to
singular.

If all objects are named consistently, neither you nor a user has to try to remember the rules
for what is plural and what isn’t. The benefit of this should be obvious. Suppose we decide that
all objects will henceforth be plural. We now have “s” or “es” on the end of virtually every object,
perhaps even on the end of each word in a long multiword object name. Of what possible benefit
is it to key all these extra letters all the time? Is it easier to use? Is it easier to understand? Is it easier
to remember? Obviously, it is none of these.

Therefore, the best solution is this: All object names are always singular. The sole exception
to this rule is any widely accepted term already commonly used in the business, such as “sales.”

Brevity

As mentioned earlier, clarity should never be sacrificed for brevity, but given two equally meaningful,
memorable, and descriptive names, always choose the shorter. During application development,
propose alternative column and table names such as these to a group of users and developers and
get their input on choosing the clearest name. How do you build lists of alternatives? Use a thesaurus
and a dictionary. On a project team dedicated to developing superior, productive applications,
every team member should be given a thesaurus and a dictionary as basic equipment, and then
should be reminded over and over again of the importance of careful object naming.

Object Name Thesaurus

Ultimately, relational databases should include an object name thesaurus, just as they include
a data dictionary. This thesaurus should enforce the company’s naming standards and ensure
consistency of name choice and abbreviation (where used).

Such standards may require the use of underscores in object naming to make the parsing of
the name into component parts a straightforward task. This also helps enforce the consistent use
of underscores, rather than the scattered, inconsistent usage within an application that underscores
frequently receive now.

If you work directly with a government agency or large firm, that organization may already
have object-naming standards. The object-naming standards of large organizations have over the

68 Partl: Critical Architecture Concepts

years radiated into the rest of the commercial marketplace, and they may form the basis for the
naming standards used at your company. For example, those standards may provide the direction
to choose between “Corporation” and “Firm.” If they do not, you should develop your naming
standards to be consistent, both with those base standards and with the guidelines put forth in
this chapter.

Intelligent Keys and Column Values

Intelligent keys are so named because they contain nontrivial combinations of information. The
term is misleading in the extreme because it implies something positive or worthwhile. A more
meaningful term might be overloaded keys. General ledger and product codes often fall into this
category and contain all the difficulties associated with other codes, and more. Further, the
difficulties found in overloaded keys also apply to non-key columns that are packed with more
than one piece of meaningful data.

Typical of an overloaded key or column value is this description: “The first character is the
region code. The next four characters are the catalog number. The final digit is the cost center code,
unless this is an imported part, in which case an I is tagged onto the end of the number, or unless
it is a high-volume item, such as screws, in which case only three digits are used for catalog number,
and the region code is HD.”

Eliminating overloaded key and column values is essential in good relational design. The
dependencies built on pieces of these keys (usually foreign keys into other tables) are all at risk if
the structure is maintained. Unfortunately, many application areas have overloaded keys that have
been used for years and are deeply embedded in the company’s tasks. Some of them were created
during earlier efforts at automation, using databases that could not support multiple key columns
for composite keys. Others came about through historical accretion, by forcing a short code, usually
numeric, to mean more and to cover more cases than it was ever intended to at the beginning.
Eliminating the existing overloaded keys may have practical ramifications that make it impossible
to do immediately. This makes building a new, relational application more difficult.

The solution to this problem is to create a new set of keys, both primary and foreign, that
properly normalizes the data; then, make sure that people can access tables only through these
new keys. The overloaded key is then kept as an additional, and unique, table column. Access to
it is still possible using historical methods (matching the overloaded key in a query, for instance),
but the newly structured keys are promoted as the preferred method of access. Over time, with
proper training, users will gravitate to the new keys. Eventually, the overloaded keys (and other
overloaded column values) can simply be NULLed out or dropped from the table.

Failing to eliminate overloaded keys and values makes extracting information from the database,
validating the values, ensuring data integrity, and modifying the structure all extremely difficult
and costly.

The Commandments

All the major issues in designing for productivity have now been discussed. It probably is worthwhile
to sum these up in a single place—thus “The Commandments” (or perhaps “The Suggestions”).
Their presentation does not assume that you need to be told what to do, but rather that you are
capable of making rational judgments and can benefit from the experience of others facing the
same challenges. The purpose here is not to describe the development cycle, which you probably

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 69

understand better than you want to, but rather to bias that development with an orientation that
will radically change how the application will look, feel, and be used. Careful attention to these
ideas can dramatically improve the productivity and happiness of an application’s users.

The ten commandments of humane design:

1. Include users. Put them on the project team and teach them the relational model and SQL.

2. Name tables, columns, keys, and data jointly with the users. Develop an application
thesaurus to ensure name consistency.

3. Use English words that are meaningful, memorable, descriptive, short, and singular.
Use underscores consistently or not at all.

Don’t mix levels in naming.
Avoid codes and abbreviations.
Use meaningful keys where possible.

Decompose overloaded keys.

® N S ok

Analyze and design from the tasks, not just the data. Remember that normalization is not
design.

9. Move tasks from users to the machine. It is profitable to spend cycles and storage to gain
ease of use.

10. Don’t be seduced by development speed. Take time and care in analyses, design, testing,
and tuning.

There’s a reason why this chapter precedes the ones on the commands and functions—if
you have a poor design, your application will suffer no matter what commands you use. Plan
for functionality, plan for performance, plan for recoverability, plan for security, and plan for
availability. Plan for success.

PART
[

SQL and SQL*Plus

CHAPTER
>

The Basic Parts of
Speech in SQL

74 Partll: SQL and SQL*Plus

ith the Structured Query Language (SQL), you tell Oracle which information
you want it to select, insert, update, or delete. In fact, these four verbs are
the primary words you will use to give Oracle instructions. As of Oracle9i,
you can use an additional command, merge, to perform inserts and updates
. with a single command. As of Oracle Database 10g, the merge command
capabilities have been extended to include greater control over the inserts, updates, and even
deletes performed within a single statement. Also as of Oracle Database 10g, these basic commands
are further enhanced to support flashback version queries and other features.

In Part I, you saw what is meant by “relational,” how tables are organized into columns and
rows, and how to instruct Oracle to select certain columns from a table and show you the information
in them, row by row. In this and the following chapters, you will learn how to do this more
completely for the different datatypes supported by Oracle. In this part, you will learn how to
interact with SQL*Plus, a powerful Oracle product that can take your instructions for Oracle, check
them for correctness, submit them to Oracle, and then modify or reformat the response Oracle
gives, based on orders or directions you've set in place.

It may be a little confusing at first to understand the difference between what SQL*Plus is
doing and what Oracle is doing, especially because the error messages that Oracle produces are
simply passed on to you by SQL*Plus, but you will see as you work through this book where the
differences lie. As you get started, just think of SQL*Plus as a coworker—an assistant who follows
your instructions and helps you do your work more quickly. You interact with this coworker by
typing on your keyboard.

You may follow the examples in this and subsequent chapters by typing the commands shown.
Your Oracle and SQL*Plus programs should respond just as they do in these examples. However,
you do need to make certain that the tables used in this book have been loaded into your copy of
Oracle.

You can understand what is described in this book without actually typing it in yourself; for
example, you can use the commands shown with your own tables. It will probably be clearer and
easier, though, if you have the same tables loaded into Oracle as the ones used here and practice
using the same queries.

The CD contains instructions on loading the tables. Assuming that you have loaded the demo
tables into an Oracle database, you can connect to SQL*Plus and begin working by typing this:

= sqlplus

(If you want to run SQL*Plus from your desktop client machine, select the SQL Plus program
option from the Application Development menu option under the Oracle software menu option.)
This starts SQL*Plus. (Note that you don’t type the * that is in the middle of the official product
name, and the asterisk doesn’t appear in the program name, either. Because Oracle is careful to
guard who can access the data it stores, it requires that you enter an ID and password to connect
to it. Oracle will display a copyright message and then ask for your username and password. Log
into your database using the account and password you created to hold the sample tables (such
as practice/practice). If you provide a valid username and password, SQL*Plus will announce that
you're connected to Oracle and then will display this prompt:

R SQL>

Chapter 5: The Basic Parts of Speech in SQL

You are now in SQL*Plus, and it awaits your instructions. If the command fails, there are
several potential reasons: Oracle is not in your path, you are not authorized to use SQL*Plus,
or Oracle hasn’t been installed properly on your computer. If you get the message

"= ERROR ORA-1017: invalid usernane/ password; |ogon denied

either you’ve entered the username or password incorrectly or your username has not yet been set
up properly on your copy of Oracle. After three unsuccessful attempts to enter a username and
password that Oracle recognizes, SQL*Plus will terminate the attempt to log on, showing this
message:

"= Junable to CONNECT to ORACLE after 3 attenpts, exiting SQ*Plus

If you get this message, contact your company’s database administrator. Assuming everything
is in order, and the SQL> prompt has appeared, you may now begin working with SQL*Plus.
When you want to quit working and leave SQL*Plus, type this:

o oquit

Style

First, some comments on style. SQL*Plus doesn’t care whether the SQL commands you type are
in uppercase or lowercase. For example, the command

" | SeLeCt feaTURE, section, PAGE FROM newsPaPeR;
will produce exactly the same result as this one:
"= 'select Feature, Section, Page from NEWSPAPER;

Case matters only when SQL*Plus or Oracle is checking an alphanumeric value for equality.
If you tell Oracle to find a row where Section = ‘f’, and Section is really equal to ‘F’, Oracle won't
find it (because fand F are not identical). Aside from this usage, case is completely irrelevant.
(Incidentally, ‘F’, as used here, is called a literal, meaning that you want Section to be tested literally
against the letter F, not a column named F. The single quote marks enclosing the letter tell Oracle
that this is a literal and not a column name.)

As a matter of style, this book follows certain conventions about case to make the text easier
to read:

m select, from, where, order by, having, and group by will always be lowercase and
boldface in the body of the text.

® SQL*Plus commands also will be lowercase and boldface (for example, column, set,
save, ttitle, and so on).

m IN, BETWEEN, UPPER, and other SQL operators and functions will be uppercase and
boldface.

75

76 Partll: SQL and SQL*Plus

B Column names will be mixed uppercase and lowercase without boldface (for example,
Feature, EastWest, Longitude, and so on).

B Table names will be uppercase without boldface (for example, NEWSPAPER, WEATHER,
LOCATION, and so on).

You may want to follow similar conventions in creating your own queries, or your company
already may have standards it would like you to use. You may even choose to invent your own.
Regardless, the goal of any such standards should always be to make your work simple to read
and understand.

Creating the NEWSPAPER Table

The examples in this book are based on the tables created by the scripts located on the CD. Each
table is created via the create table command, which specifies the names of the columns in the
table, as well as the characteristics of those columns. Here is the create table command for the
NEWSPAPER table, which is used in many of the examples in this chapter:

"= create tabl e NEWSPAPER (

Feat ure VARCHAR2(15) not nul I,
Section CHAR(1),
Page NUMVBER

)

In later chapters in this book, you’ll see how to interpret all the clauses of this command. For
now, you can read it as, “Create a table called NEWSPAPER. It will have three columns, named
Feature (a variable-length character column), Section (a fixed-length character column), and Page
(a numeric column). The values in the Feature column can be up to 15 characters long, and every
row must have a value for Feature. Section values will all be one character long.”

In later chapters, you'll see how to extend this simple command to add constraints, indexes,
and storage clauses. For now, the NEWSPAPER table will be kept simple so that the examples can
focus on SQL.

Using SQL to Select Data from Tables

Figure 5-1 shows a table of features from a local newspaper. If this were an Oracle table, rather
than just paper and ink on the front of the local paper, SQL*Plus would display it for you if you
typed this:

"= 'select Feature, Section, Page from NEWSPAPER;

FEATURE S PAGE
Nat i onal News A 1
Sports D 1
Editorials A 12
Busi ness E 1
Weat her C 2

Chapter 5: The Basic Parts of Speech in SQL 77

Tel evi si on B
Births F
Classified F
Modern Life B
Com cs C
Movi es B
Bri dge B
oi tuari es F
Doctor Is In F

DO NISDMPEOOONN

14 rows sel ected.

NOTE
Mt Depending on your configuration, the listing may have a page break
___init Ifthat happens, use the set pagesize command to increase the
size of each displayed page of results. See the Alphabetical Reference
for details on this command.

What's different between the table you created and the one shown in the output in Figure 5-12
Both tables have the same information, but the format differs and the order of rows may be different.

Feature Section Page
Births F 7
Bridge B 2
Business E 1
Classified F 8
Comics C 4
Doctor Is In F 6
Editorials A 12
Modern Life B 1
Movies B 4
National News A 1
Obituaries F 6
Sports D 1
Television B 7
Weather C 2

FIGURE 5-1. A NEWSPAPER table

78 Partll: SQL and SQL*Plus

For example, the column headings differ slightly. In fact, they even differ slightly from the columns
you just asked for in the select statement.

Notice that the column named Section shows up as just the letter S. Also, although you used
uppercase and lowercase letters to type the column headings in the command

"= select Feature, Section, Page from NEWSPAPER;

the column headings came back with all the letters in uppercase.

These changes are the result of the assumptions SQL*Plus makes about how information should
be presented. You can change these assumptions, and you probably will, but until you give SQL*Plus
different orders, this is how it changes what you input:

m [t changes all the column headings to uppercase.
B It allows columns to be only as wide as a column is defined to be in Oracle.
B [t squeezes out any spaces if the column heading is a function. (This will be demonstrated

in Chapter 7.)

The first point is obvious. The column names you used were shifted to uppercase. The second
point is not obvious. How are the columns defined? To find out, ask Oracle. Simply tell SQL*Plus
to describe the table, as shown here:

" = descri be NEWSPAPER

Name Nul | ? Type
FEATURE NOT NULL VARCHAR2(15)
SECTI ON CHAR(1)
PAGE NUMBER

This display is a descriptive table that lists the columns and their definitions for the NEWSPAPER
table; the describe command works for any table. Note that the details in this description match
the create table command given earlier in this chapter.

The first column tells the names of the columns in the table being described.

The second column (Null?) is really a rule about the column named to its left. When the
NEWSPAPER table was created, the NOT NULL rule instructed Oracle not to allow any user to
add a new row to the table if he or she left the Feature column empty (NULL means empty). Of
course, in a table such as NEWSPAPER, it probably would have been worthwhile to use the same
rule for all three columns. What good is it to know the title of a feature without also knowing what
section it’s in and what page it’s on? But, for the sake of this example, only Feature was created
with the rule that it could not be NULL.

Because Section and Page have nothing in the Null? column, they are allowed to be empty
in any row of the NEWSPAPER table.

The third column (Type) tells the basic nature of the individual columns. Feature is a VARCHAR2
(variable-length character) column that can be up to 15 characters (letters, numbers, symbols, or
spaces) long.

Section is a character column as well, but it is only one character long. The creator of the table
knew that newspaper sections in the local paper are only a single letter, so the column was defined

Chapter 5: The Basic Parts of Speech in SQL

to be only as wide as it needed to be. It was defined using the CHAR datatype, which is used for
fixed-length character strings. When SQL*Plus went to display the results of your query

"= 'select Feature, Section, Page from NEWSPAPER;

it knew from Oracle that Section was a maximum of only one character. It assumed that you did
not want to use up more space than this, so it displayed a column just one character wide and used
as much of the column name as it could—in this case, just the letter S.

The third column in the NEWSPAPER table is Page, which is simply a number. Notice that the
Page column shows up as ten spaces wide, even though no pages use more than two digits—
numbers usually are not defined as having a maximum width, so SQL*Plus assumes a maximum
just to get started.

You also may have noticed that the heading for the only column composed solely of numbers,
Page, was right-justified—that is, it sits over on the right side of the column, whereas the headings
for columns that contain characters sit over on the left. This is standard alignment for column
headings in SQL*Plus. As with other column features, you’ll see in Chapter 6 how to change
alignment as needed.

Finally, SQL*Plus tells you how many rows it found in Oracle’s NEWSPAPER table. (Notice the
“14 rows selected” notation at the bottom of the display.) This is called feedback. You can make
SQL*Plus stop giving feedback by setting the feedback option, as shown here:

= set feedback off

Alternatively, you can set a minimum number of rows for feedback to work:

. set feedback 25

This last example tells Oracle that you don’t want to know how many rows have been displayed until
there have been at least 25. Unless you tell SQL*Plus differently, feedback is set to 6.

The set command is a SQL*Plus command, which means that it is an instruction telling SQL*Plus
how to act. There are many SQL*Plus options, such as feedback, that you can set. Several of these
will be shown and used in this chapter and in the chapters to follow. For a complete list, look up
set in the Alphabetical Reference section of this book.

The set command has a counterpart named show that allows you to see what instructions
you’ve given to SQL*Plus. For instance, you can check the setting of feedback by typing

. show feedback
SQL*Plus will respond with the following:

" . FEEDBACK ON for 25 or nore rows

The width used to display numbers also is changed by the set command. You check it by
typing

= I show numwi dt h
SQL*Plus will reply as shown here:

. numnidth 9

79

80 Partll: SQL and SQL*Plus

Because 9 is a wide width for displaying page numbers that never contain more than two digits,
shrink the display by typing

. set numvdth 5

However, this means that all number columns will be five digits wide. If you anticipate having
numbers with more than five digits, you must use a number higher than 5. Individual columns in
the display also can be set independently. This will be covered in Chapter 6.

select, from, where, and order by

You will use four primary keywords in SQL when selecting information from an Oracle table:
select, from, where, and order by. You will use select and from in every Oracle query you do.

The select keyword tells Oracle which columns you want, and from tells Oracle the name(s)
of the table(s) those columns are in. The NEWSPAPER table example showed how these keywords
are used. In the first line that you entered, a comma follows each column name except the last.
You'll notice that a correctly typed SQL query reads pretty much like an English sentence. A query
in SQL*Plus usually ends with a semicolon (sometimes called the SQL terminator). The where
keyword tells Oracle what qualifiers you'd like to put on the information it is selecting. For example,
if you input

= select Feature, Section, Page from NEWSPAPER
where Section = 'F';

FEATURE S PAGE
Births F 7
Classified F 8
oi tuari es F 6
Doctor Is In F 6

Oracle checks each row in the NEWSPAPER table before sending the row back to you. It skips
over those without the single letter F in their Section column. It returns those where the Section
entry is ‘F’, and SQL*Plus displays them to you.

To tell Oracle that you want the information it returns sorted in the order you specify, use
order by. You can be as elaborate as you like about the order you request. Consider these examples:

"= 'select Feature, Section, Page from NEWSPAPER
where Section = 'F
order by Feature;

FEATURE S PAGE
Births F 7
Classified F 8
Doctor Is In F 6
hi tuaries F 6

Chapter 5: The Basic Parts of Speech in SQL 81

They are nearly reversed when ordered by page, as shown here:

"= select Feature, Section, Page from NEWSPAPER
where Section = 'F'
order by Page,;

FEATURE S PAGE
oi tuari es F 6
Doctor Is In F 6
Births F 7
Classified F 8

In the next example, Oracle first puts the features in order by page (see the previous listing
to observe the order they are in when they are ordered only by page). It then puts them in further
order by feature, listing Doctor Is In ahead of Obituaries.

"= 'select Feature, Section, Page from NEWSPAPER
where Section = 'F
order by Page, Feature,;

Doctor Is In
bi tuaries
Births
Classified

Using order by also can reverse the normal order, like this:
"= select Feature, Section, Page from NEWSPAPER

where Section = 'F
order by Page desc, Feature;

FEATURE S PAGE
Classified F 8
Births F 7
Doctor Is In F 6
hi tuaries F 6

The desc keyword stands for descending. Because it followed the word Page in the order by
line, it put the page numbers in descending order. It would have the same effect on the Feature
column if it followed the word Feature in the order by line.

Notice that each of these keywords—select, from, where, and order by—has its own way of
structuring the words that follow it. The groups of words including these keywords are often called
clauses, as shown in Figure 5-2.

82 Partll: SQL and SQL*Plus

Select Feature, Section, Page <--select clause
from NEWSPAPER <--from clause
where Section = ‘F’ <--where clause

FIGURE 5-2. Clauses

Logic and Value

Just as the order by clause can have several parts, so can the where clause, but with a significantly
greater degree of sophistication. You control the extent to which you use where through the careful
use of logical instructions to Oracle on what you expect it to return to you. These instructions are
expressed using mathematical symbols called logical operators. These are explained shortly, and
they also are listed in the Alphabetical Reference section of this book.

The following is a simple example in which the values in the Page column are tested to see if
any equals 6. Every row where this is true is returned to you. Any row in which Page is not equal
to 6 is skipped (in other words, those rows for which Page = 6 is false).

. | select Feature, Section, Page
from NEWSPAPER
where Page = 6;

FEATURE S PAGE
bi tuaries F 6
Doctor Is In F 6

The equal sign is called a logical operator, because it operates by making a logical test that
compares the values on either side of it—in this case, the value of Page and the value 6—to see
if they are equal.

In this example, no quotes are placed around the value being checked because the column the
value is compared to (the Page column) is defined as a NUMBER datatype. Number values do not
require quotes around them during comparisons.

Single-Value Tests

You can use one of several logical operators to test against a single value, as shown in the upcoming
sidebar “Logical Tests Against a Single Value.” Take a few examples from any of the expressions
listed in this sidebar. They all work similarly and can be combined at will, although they must
follow certain rules about how they’ll act together.

Chapter 5: The Basic Parts of Speech in SQL

Logical Tests Against a Single Value
All these operators work with letters or numbers, and with columns or literals.

Equal, Greater Than, Less Than, Not Equal

Page= 6 Page is equal to 6.

Page> 6 Page is greater than 6.

Page>= 6 Page is greater than or equal to 6.
Page< 6 Page is less than 6.

Page<= 6 Page is less than or equal to 6.
Page!= 6 Page is not equal to 6.

PageNr= 6 Page is not equal to 6.

Page<> 6 Page is not equal to 6.

Because some keyboards lack an exclamation mark (!) or a caret (*), Oracle allows three
ways of typing the not equal operator. The final alternative, <>, qualifies as a not equal operator
because it permits only numbers less than 6 (in this example) or greater than 6, but not 6 itself.

LIKE

Feature LIKE ‘Mo%’ Feature begins with the letters Mo.
Feature LIKE “_ 1%’ Feature has an [in the third position.
Feature LIKE ‘%0%0%’ Feature has two 0's in it.

LIKE performs pattern matching. An underline character (_) represents exactly one
character. A percent sign (%) represents any number of characters, including zero characters.

IS NULL, IS NOT NULL

Precipitation IS NULL Precipitation is unknown.
Precipitation IS NOT NULL Precipitation is known.
NULL tests to see if data exists in a column for a row. If the column is completely empty,

it is said to be “null.” The word IS must be used with NULL and NOT NULL; equal, greater-
than, and less-than signs do not work with NULL and NOT NULL.

83

84 Partll: SQL and SQL*Plus

Equal, Greater Than, Less Than, Not Equal
Logical tests can compare values, both for equality and for relative value. Here, a simple test
is made for all sections equal to ‘B’:

"= select Feature, Section, Page
f r om NEWSPAPER
where Section = 'B';

FEATURE S PAGE
Tel evi si on B 7
Modern Life B 1
Movi es B 4
Bri dge B 2

The following is the test for all pages greater than 4:

" |select Feature, Section, Page
f r om NEWSPAPER
where Page > 4;

Editorials A
Tel evi si on B
Births F
Classified F
oi tuari es F
Doctor Is In F

The following is the test for sections greater than ‘B’ (this means later in the alphabet than
the letter B):

"= select Feature, Section, Page
f r om NEWSPAPER
where Section > 'B';

Sports D
Busi ness E
Weat her C
Births F
Classified F
Com cs C
oi tuari es F
Doctor Is In F

OO~ ONNEREBRE

Just as a test can be made for greater than, so can a test be made for less than, as shown here
(all page numbers less than 8):

Chapter 5: The Basic Parts of Speech in SQL 85

. select Feature, Section, Page
from NEWSPAPER
where Page < 8;

g
c
7
wn
:

Nat i onal News
Sports

Busi ness
Weat her

Tel evi si on
Births
Modern Life
Com cs

Movi es

Bri dge

oi tuari es
Doctor Is In

MTTWWWOWTWO MO >
ODONBMARNNNR PR

The opposite of the test for equality is the not equal test, as given here:

" |select Feature, Section, Page
f r om NEWSPAPER
where Page <> 1;

FEATURE S PAGE

Editorials
Weat her

Tel evi si on
Births
Classified
Com cs

Movi es

Bri dge

oi tuari es
Doctor Is In

MTMWwOTTTwWO >
COONDMDDMONNNN

NOTE

Be careful when using the greater-than and less-than operators against
numbers that are stored in character datatype columns. All values in
VARCHAR2 and CHAR columns will be treated as characters during
comparisons. Therefore, numbers that are stored in those types of
columns will be compared as if they were character strings, not numbers.
If the column’s datatype is NUMBER, then 12 is greater than 9. If it is
a character column, then 9 is greater than 12, because the character
‘9" is greater than the character ‘1"

86 Partll: SQL and SQL*Plus

LIKE

One of the most powerful features of SQL is a marvelous pattern-matching operator called LIKE,
which is able to search through the rows of a database column for values that look like a pattern
you describe. It uses two special characters to denote which kind of matching to do: a percent
sign, called a wildcard, and an underline, called a position marker. To look for all the features
that begin with the letters Mo, use the following:

' = select Feature, Section, Page from NEWSPAPER
where Feature LIKE ' M% ;

FEATURE S PAGE
Modern Life B 1
Movi es B 4

The percent sign (%) means anything is acceptable here: one character, a hundred characters,
or no characters. If the first letters are Mo, LIKE will find the feature. If the query had used ‘MO%’
as its search condition instead, then no rows would have been returned, due to Oracle’s case-
sensitivity in data values.

If you want to find those features that have the letter i in the third position of their titles, and
you don’t care which two characters precede the i or what set of characters follows, using two
underlines (_ _) specifies that any character in those two positions is acceptable. Position three must
have a lowercase i, and the percent sign after that says anything is okay.

. | select Feature, Section, Page from NEWSPAPER

where Feature LIKE ' __i%,;

FEATURE S PAGE
Editorials A 12
Bri dge B 2
Qoi tuaries F 6

Multiple percent signs also can be used. To find those words with two lowercase o's anywhere
in the Feature title, three percent signs are used, as shown here:

"= select Feature, Section, Page from NEWSPAPER
where Feature LIKE ' %%0% ;

Doctor Is In F 6

For the sake of comparison, the following is the same query, but it is looking for two i's:

Chapter 5: The Basic Parts of Speech in SQL 87

. select Feature, Section, Page from NEWSPAPER
where Feature LIKE ' % % % ;

FEATURE S PAGE
Editorials A 12
Tel evi si on B 7
Classified F 8
oi tuari es F 6

This pattern-matching feature can play an important role in making an application friendlier
by simplifying searches for names, products, addresses, and other partially remembered items. In
Chapter 8, you will see how to use advanced regular expression searches available as of Oracle
Database 10g.

NULL and NOT NULL

The NEWSPAPER table has no columns in it that are NULL, even though the describe you did on
it showed that they are allowed. The following query on the COMFORT table contains, among
other data, the precipitation for San Francisco, California, and Keene, New Hampshire, for four
sample dates during 2003:

"= select Cty, SanpleDate, Precipitation
f rom COVFORT;

aTy SAMPLEDAT PRECI PI TATI ON
SAN FRANCI SCO 21- MAR- 03 5
SAN FRANCI SCO 22- JUN- 03 1
SAN FRANCI SCO 23- SEP- 03 .1
SAN FRANCI SCO 22- DEC- 03 2.3
KEENE 21- MAR- 03 4
KEENE 22-JUN- 03 1.3
KEENE 23- SEP-03

KEENE 22- DEC- 03 3.

>

©

You can find out the city and dates on which precipitation was not measured with this query:

"= 'select Cty, SanpleDate, Precipitation
f rom COVFORT
where Precipitation |I'S NULL;

aTy SAMPLEDAT PRECI PI TATI ON

KEENE 23- SEP- 03

IS NULL essentially instructs Oracle to identify columns in which the data is missing. You don’t
know for that day whether the value should be 0, 1, or 5 inches. Because it is unknown, the value

88 Partll: SQL and SQL*Plus

in the column is not set to 0; it stays empty. By using NOT, you also can find those cities and dates
for which data exists, with this query:

"= |select City, SanplebDate, Precipitation
f r om COVFORT
where Precipitation |'S NOT NULL;

aTy SAMPLEDAT PRECI PI TATI ON
SAN FRANCI SCO 21- MAR- 03
SAN FRANCI SCO 22- JUN- 03
SAN FRANCI SCO 23- SEP- 03
SAN FRANCI SCO 22- DEC- 03
KEENE 21- MAR- 03
KEENE 22-JUN- 03
KEENE 22- DEC- 03

e

Oracle lets you use the relational operators (=, !=, and so on) with NULL, but this kind of
comparison will not return meaningful results. Use IS or IS NOT for comparing values to NULL.

Simple Tests Against a List of Values

If there are logical operators that test against a single value, are there others that will test against
many values, such as a list? The sidebar “Logical Tests Against a List of Values” shows just such
a group of operators.

Logical Tests Against a List of Values

Logical tests with numbers:

Page IN (1,2,3) Page is in the list (1,2,3)

Page NOT IN (1,2,3) Page is not in the list (1,2,3)

Page BETWEEN 6 AND 10 Page is equal to 6, 10, or anything
in between

Page NOT BETWEEN 6 AND 10 Page is below 6 or above 10

With letters (or characters):

Section IN (‘A’,'C’,’F’) Section is in the list (‘A’,’C’,’F’)

Section NOT IN (‘A’,'C’,F') Section is not in the list (‘A’,’C’,’F’)

Section BETWEEN ‘B’ AND ‘D’ Section is equal to ‘B’, ‘D’, or anything
in between (alphabetically)

Section NOT BETWEEN ‘B” AND ‘D’ Section is below ‘B’ or above ‘D’

(alphabetically)

Chapter 5: The Basic Parts of Speech in SQL 89

Here are a few examples of how these logical operators are used:

[0 = select Feature, Section, Page
f r om NEWSPAPER
where Section IN ('"A,"B,'F);

FEATURE S PAGE
Nat i onal News A 1
Editorials A 12
Tel evi si on B 7
Births F 7
Classified F 8
Modern Life B 1
Movi es B 4
Bri dge B 2
oi tuari es F 6
Doctor Is In F 6

sel ect Feature, Section, Page
f r om NEWBPAPER
where Section NOT IN ("A,'"B,'F);

FEATURE S PAGE
Sports D 1
Busi ness E 1
Weat her C 2
Com cs C 4

sel ect Feature, Section, Page
f r om NEWSPAPER
wher e Page BETWEEN 7 and 10;

FEATURE S PAGE
Tel evi si on B 7
Births F 7
Classified F 8

These logical tests also can be combined, as in this case:

. select Feature, Section, Page
fr om NEWSPAPER
where Section = 'F
AND Page > 7,

Classified F 8

90 Partll: SQL and SQL*Plus

The AND command has been used to combine two logical expressions and requires any row
Oracle examines to pass both tests; both Section = ‘F" and Page > 7 must be true for a row to be
returned to you. Alternatively, OR can be used, which will return rows to you if either logical
expression turns out to be true:

. select Feature, Section, Page
f r om NEWSPAPER

where Section = 'F
OR Page > 7;

FEATURE S PAGE
Editorials A 12
Births F 7
Classified F 8
oi tuaries F 6
Doctor Is In F 6

There are some sections here that qualify even though they are not equal to ‘F’ because their
page is greater than 7, and there are others whose page is less than or equal to 7 but whose section
is equal to ‘F’.

Finally, choose those features in Section F between pages 7 and 10 with this query:

' = select Feature, Section, Page
f r om NEWSPAPER
where Section = 'F'
and Page BETWEEN 7 AND 10;

FEATURE S PAGE
Births F 7
Classified F 8

There are a few additional many-value operators whose use is more complex; they will be
covered in Chapter 9. They also can be found, along with those just discussed, in the Alphabetical
Reference section of this book.

Combining Logic
Both AND and OR follow the commonsense meanings of the words. They can be combined in a
virtually unlimited number of ways, but you must use care, because ANDs and ORs get convoluted
very easily.

Suppose you want to find the features in the paper that the editors tend to bury, those that are
placed somewhere past page 2 of section A or B. You might try this:

' = select Feature, Section, Page
f r om NEWSPAPER
where Section = "'A
or Section ='B
and Page > 2;

Chapter 5: The Basic Parts of Speech in SQL

FEATURE S PAGE
Nat i onal News A 1
Editorials A 12
Tel evi si on B 7
Movi es B 4

Note that the result you got back from Oracle is not what you wanted. Somehow, page 1 of
section A was included. Why is this happening? Is there a way to get Oracle to answer the question
correctly? Although both AND and OR are logical connectors, AND is stronger. It binds the logical
expressions on either side of it more strongly than OR does (technically, AND is said to have higher
precedence), which means the where clause

CA
‘B

" = where Section
or Section
and Page > 2;

is interpreted to read, “where Section = ‘A’, or where Section = ‘B’ and Page > 2.” If you look at
the failed example just given, you'll see how this interpretation affected the result. The AND is
always acted on first.

You can break this bonding by using parentheses that enclose those expressions you want to be
interpreted together. Parentheses override the normal precedence:

. select Feature, Section, Page
f r om NEWSPAPER
where Page > 2
and (Section = '"A or Section ="'B');

FEATURE S PAGE
Editorials A 12
Tel evi si on B 7
Movi es B 4

The result is exactly what you wanted in the first place. Note that although you can type this
with the sections listed first, the result is identical because the parentheses tell Oracle what to
interpret together. Compare this to the different results caused by changing the order in the first
example, where parentheses were not used.

Another Use for where: Subqueries

What if the logical operators in the previous sidebars, “Logical Tests Against a Single Value” and
“Logical Tests Against a List of Values,” could be used not just with a single literal value (such as ‘F’)
or a typed list of values (such as 4,2,7 or ‘A’,’C’,’F’), but with values brought back by an Oracle
query? In fact, this is a powerful feature of SQL.

Imagine that you are the author of the “Doctor Is In” feature, and each newspaper that publishes
your column sends along a copy of the table of contents that includes your piece. Of course, each
editor rates your importance a little differently, and places you in a section he or she deems suited
to your feature. Without knowing ahead of time where your feature is, or with what other features

92 Partll: SQL and SQL*Plus

you are placed, how could you write a query to find out where a particular local paper places you?
You might do this:

= select Section from NEWSPAPER
where Feature = 'Doctor Is In';

S

F

The result is ‘F’. Knowing this, you could do this query:

= select FEATURE from NEWSPAPER
where Section = 'F';

Births
Classified
oi tuari es
Doctor Is In

You’re in there with births, deaths, and classified ads. Could the two separate queries have
been combined into one? Yes, as shown here:

"= sel ect FEATURE from NEWSPAPER
where Section = (select Section from NEWSPAPER
where Feature = 'Doctor Is In');

Births
Classified
Qoi tuari es
Doctor Is In

Single Values from a Subquery

In effect, the select in parentheses (called a subquery) brought back a single value, F. The main
query then treated this value as if it were a literal ‘F’, as was used in the previous query. Remember
that the equal sign is a single-value test. It can’t work with lists, so if your subquery returned more
than one row, you’d get an error message like this:

= select * from NEWSPAPER
where Section = (select Section from NEWSPAPER
where Page = 1);
where Section = (select Section from NEWSPAPER
*

ERROR at |ine 2:
ORA-01427: single-row subquery returns nore than one row

Chapter 5: The Basic Parts of Speech in SQL

All the logical operators that test single values can work with subqueries, as long as the subquery
returns a single row. For instance, you can ask for all the features in the paper where the section
is less than (that is, earlier in the alphabet) the section that carries your column. The asterisk in this
select shows a shorthand way to request all the columns in a table without listing them individually.
They will be displayed in the order in which they were created in the table.

= select * from NEWSPAPER
where Section < (select Section from NEWSPAPER
where Feature = 'Doctor Is In');

Nat i onal News
Sports
Editorials
Busi ness

Weat her

Tel evi si on
Modern Life
Com cs

Movi es

Bri dge

WWOWwWOMmM>O >
NABRRPNNREPDNRPR

10 rows sel ect ed.

Ten other features rank ahead of your medical advice in this local paper.

Lists of Values from a Subquery

Just as the single-value logical operators can be used on a subquery, so can the many-value
operators. If a subquery returns one or more rows, the value in the column for each row will be
stacked up in a list. For example, suppose you want to know the cities and countries where it is
cloudy. You could have a table of complete weather information for all cities, and a LOCATION
table for all cities and their countries, as shown here:

= select Cty, Country from LOCATI ON,

aTy COUNTRY
ATHENS GREECE
CH CAGO UNI TED STATES
CONAKRY GUl NEA
LI MA PERU
MADRAS I NDI A
MANCHESTER ENGLAND
MOSCOW RUSSI A
PARI S FRANCE
SHENYANG CHI NA
ROVE | TALY

TOKYO JAPAN

94 Partll: SQL and SQL*Plus

SYDNEY AUSTRALI A
SPARTA GREECE
MADRI D SPAI'N

select City, Condition from WEATHER,

aTy CONDI TI ON
LI MA RAI'N

PARI S CLOUDY
MANCHESTER FOG
ATHENS SUNNY

CH CAGO RAI'N
SYDNEY SUNNY
SPARTA CLOUDY

First, you'd discover which cities were cloudy:

. select Gty from WEATHER
where Condition = ' CLOUDY ;

Then, you would build a list including those cities and use it to query the LOCATION table:

= select Cty, Country from LOCATI ON
where City IN (' PARIS, 'SPARTA');

aTy COUNTRY
PARI S FRANCE
SPARTA GREECE

The same task can be accomplished by a subquery, where the select in parentheses builds
a list of cities that are tested by the IN operator, as shown here:

"= select City, Country from LOCATI ON
where City IN (select Gty from WEATHER
where Condition = 'CLOUDY');

aTy COUNTRY
PARI S FRANCE
SPARTA GREECE

The other many-value operators work similarly. The fundamental task is to build a subquery
that produces a list that can be logically tested. The following are some relevant points:

Chapter 5: The Basic Parts of Speech in SQL 95

® The subquery must either have only one column or compare its selected columns to
multiple columns in parentheses in the main query (covered in Chapter 13).

® The subquery must be enclosed in parentheses.

® Subqueries that produce only one row can be used with either single- or many-value
operators.

®m Subqueries that produce more than one row can be used only with many-value operators.

Combining Tables

If you’ve normalized your data, you’ll probably need to combine two or more tables to get all the
information you want.

Suppose you are the oracle at Delphi. The Athenians come to ask about the forces of nature
that might affect the expected attack by the Spartans, as well as the direction from which they are
likely to appear:

"= select Cty, Condition, Tenperature from WEATHER;

aTy CONDI TION TEMPERATURE
LI MA RAI'N 45
PARI S CLOUDY 81
MANCHESTER FOG 66
ATHENS SUNNY 97
CH CAGO RAI'N 66
SYDNEY SUNNY 69
SPARTA CLOUDY 74

You realize your geography is rusty, so you query the LOCATION table:

.~ select Cty, Longitude, EastWest, Latitude, NorthSouth
from LOCATI ON,;

aTy LONG TUDE E LATI TUDE N
ATHENS 23.43 E 37.58 N
CH CAGO 87.38 W 41.53 N
CONAKRY 13.43 W 9.31 N
LI VA 77.03 W 12.03 S
MADRAS 80.17 E 13.05 N
MANCHESTER 2.15 W 53.3 N
MOSCOW 37.35 E 55.45 N
PARI S 2.2 E 48.52 N
SHENYANG 123.27 E 41.48 N
ROVE 12.29 E 41.54 N
TOKYO 139.46 E 35.42 N
SYDNEY 151. 13 E 33.52 S
SPARTA 22.27 E 37.05 N
MADRI D 3.41 W 40.24 N

96 Partll: SQL and SQL*Plus

This is much more than you need, and it doesn’t have any weather information. Yet these two
tables, WEATHER and LOCATION, have a column in common: City. You can therefore put the
information from the two tables together by joining them. You merely use the where clause to tell
Oracle what the two tables have in common:

"= select WEATHER City, Condition, Tenperature, Latitude,
Nort hSout h, Longi tude, EastWest
from WEATHER, LOCATI ON
where WEATHER. City = LOCATION. City;

aTy CONDI TION TEMPERATURE LATI TUDE N LONG TUDE E
ATHENS SUNNY 97 37.58 N 23.43 E
CH CAGO RAI'N 66 41.53 N 87.38 W
LI MA RAI'N 45 12.03 S 77.03 W
MANCHESTER FOG 66 53.3 N 2.15 W
PARI S CLOUDY 81 48.52 N 2.2 E
SYDNEY SUNNY 69 33.52 S 151.13 E
SPARTA CLOUDY 74 37.05 N 22.27 E

Notice that the only rows in this combined table are those where the same city is in
both tables. The where clause is still executing your logic, as it did earlier in the case of the
NEWSPAPER table. The logic you gave described the relationship between the two tables. It says,
“Select those rows in the WEATHER table and the LOCATION table where the cities are equal.”
If a city is only in one table, it would have nothing to be equal to in the other table. The notation
used in the select statement is TABLE.ColumnName—in this case, WEATHER.City.

The select clause has chosen those columns from the two tables that you’d like to see
displayed; any columns in either table that you did not ask for are simply ignored. If the first
line had simply said

"= 'select Cty, Condition, Tenperature, Latitude

then Oracle would not have known to which city you were referring. Oracle would tell you that the
column name City was ambiguous. The correct wording in the select clause is WEATHER.City or
LOCATION.City. In this example, it won’t make a bit of difference which of these alternatives is
used, but you will encounter cases where the choice of identically named columns from two or
more tables will contain very different data.

The where clause also requires the names of the tables to accompany the identical column
name by which the tables are combined: “where weather dot city equals location dot city” (that is,
where the City column in the WEATHER table equals the City column in the LOCATION table).

Consider that the combination of the two tables looks like a single table with seven columns
and seven rows. Everything that you excluded is gone. There is no Humidity column here, even
though it is a part of the WEATHER table. There is no Country column here, even though it is a
part of the LOCATION table. And of the 14 cities in the LOCATION table, only those that are in
the WEATHER table are included in this table. Your where clause didn’t allow the others to be
selected.

A table that is built from columns in one or more tables is sometimes called a projection
table, or a result table.

Chapter 5: The Basic Parts of Speech in SQL

Creating a View

There is even more here than meets the eye. Not only does this look like a new table, but you can
give it a name and treat it like one. This is called “creating a view.” A view provides a way of hiding
the logic that created the joined table just displayed. It works this way:

= create view | NVASI ON AS
sel ect WEATHER. City, Condition, Tenperature, Latitude,
Nort hSout h, Longi tude, EastWest
from WEATHER, LOCATI ON
where WEATHER City = LOCATION. City;

Vi ew cr eat ed.

Now you can act as if INVASION were a real table with its own rows and columns. You can
even ask Oracle to describe it to you:

" = |describe | NVASI ON

Nane Nul | ? Type

aTy VARCHAR2(11)
CONDI TI ON VARCHAR2(9)
TEMPERATURE NUMBER

LATI TUDE NUMBER
NORTHSOUTH CHAR(1)

LONG TUDE NUMBER
EASTVEST CHAR(1)

You can query it, too (note that you will not have to specify which table the City columns were
from, because that logic is hidden inside the view):

.~ select Cty, Condition, Tenperature, Latitude, NorthSouth,
Longi t ude, EastWest
from | NVAS| ON,;

aTy CONDI TION TEMPERATURE LATI TUDE N LONG TUDE E
ATHENS SUNNY 97 37.58 N 23.43 E
CH CAGO RAI'N 66 41.53 N 87.38 W
LI VA RAI'N 45 12.03 S 77.03 W
MANCHESTER FOG 66 53.3 N 2.15 W
PARI S CLOUDY 81 48.52 N 2.2 E
SYDNEY SUNNY 69 33.52 S 151.13 E
SPARTA CLOUDY 74 37.05 N 22.27 E

There will be some Oracle functions you won’t be able to use on a view that you can use on
a plain table, but they are few and mostly involve modifying rows and indexing tables, which will
be discussed in later chapters. For the most part, a view behaves and can be manipulated just like
any other table.

97

98 Partll: SQL and SQL*Plus

NOTE
¥~ Views do not contain any data. Tables contain data. Although you
~ can create “materialized views” that contain data, they are truly
tables, not views.

Suppose now you realize that you don't really need information about Chicago or other cities
outside of Greece, so you change the query. Will the following work?

.~ select Cty, Condition, Tenperature, Latitude, NorthSouth,
Longi t ude, EastWest
from | NVASI ON
where Country = ' GREECE';

SQL*Plus passes back this message from Oracle:

"= where Country = ' GREECE'
*

ERROR at line 4:
ORA-00904: "COUNTRY": invalid identifier

Why? Because even though Country is a real column in one of the tables behind the view
called INVASION, it was not in the select clause when the view was created. It is as if it does not
exist. So, you must go back to the create view statement and include only the country of Greece
there:

"= create or replace view | NVASI ON as
sel ect WEATHER. City, Condition, Tenperature, Latitude,
Nort hSout h, Longitude, EastWest
from WEATHER, LOCATI ON
where WEATHER. City = LOCATION. City
and Country = ' GREECE' ;

Vi ew cr eat ed.

Using the create or replace view command allows you to create a new version of a view
without first dropping the old one. This command will make it easier to administer users’
privileges to access the view, as will be described in Chapter 18.

The logic of the where clause has now been expanded to include both joining two tables,
and a single-value test on a column in one of those tables. Now, query Oracle. You’ll get this
response:

= select Cty, Condition, Tenperature, Latitude, NorthSouth,
Longi t ude, EastWest
from | NVASI O\,

aTy CONDI TION TEMPERATURE LATI TUDE N LONG TUDE E

ATHENS SUNNY 97 37.58 N 23.43 E
SPARTA CLOUDY 74 37.05 N 22.27 E

Chapter 5: The Basic Parts of Speech in SQL

This allows you to warn the Athenians that the Spartans are likely to appear from the southwest
but will be overheated and tired from their march. With a little trigonometry, you could even make
Oracle calculate how far they will have marched.

Expanding the View

The power of views to hide or even modify data can be used for a variety of useful purposes. Very
complex reports can be built up by the creation of a series of simple views, and specific individuals
or groups can be restricted to seeing only certain pieces of the whole table.

In fact, any qualifications you can put into a query can become part of a view. You could,
for instance, let supervisors looking at a payroll table see only their own salaries and those of the
people working for them, or you could restrict operating divisions in a company to seeing only
their own financial results, even though the table actually contains results for all divisions. Most
importantly, views are not snapshots of the data at a certain point in the past. They are dynamic
and always reflect the data in the underlying tables. The instant data in a table is changed, any
views created with that table change as well.

For example, you may create a view that restricts values based on column values. As shown
here, a query that restricts the LOCATION table on the Country column could be used to limit
the rows that are visible via the view:

"= create or replace view PERU LOCATI ONS as
sel ect * from LOCATI ON
where Country = 'PERU ;

A user querying PERU_LOCATIONS would not be able to see any rows from any country other
than Peru.

The queries used to define views may also reference pseudo-columns. A pseudo-column is a
“column” that returns a value when it is selected, but is not an actual column in a table. The User
pseudo-column, when selected, will always return the Oracle username that executed the query.
So, if a column in the table contains usernames, those values can be compared against the User
pseudo-column to restrict its rows, as shown in the following listing. In this example, the NAME
table is queried. If the value of its Name column is the same as the name of the user entering the
query, then rows will be returned.

. create or replace view RESTRI CTED _NAMES as
sel ect * from NAME
where Nane = User;

This type of view is very useful when users require access to selected rows in a table. It prevents
them from seeing any rows that do not match their Oracle username.

Views are powerful tools. There will be more to come on the subject of views in Chapter 17.

The where clause can be used to join two tables based on a common column. The resulting
set of data can be turned into a view (with its own name), which can be treated as if it were a
regular table itself. The power of a view is in its ability to limit or change the way data is seen by
a user, even though the underlying tables themselves are not affected.

CHAPTER
0

Basic SQL*Plus
Reports and
Commands

102 Partll: SQL and SQL*Plus

4,*‘I to get information from the Oracle database, and it lets you create reports by giving
. you easy control over titles, column headings, subtotals and totals, reformatting of

4 numbers and text, and much more. It also can be used to change the database through
the insert, update, merge, and delete commands in SQL. SQL*Plus can even be used as a code
generator, where a series of commands in SQL*Plus can dynamically build a program and then
execute it.

In most production applications, more-advanced report writers are used—such as Web-based
parameter-driven reports. SQL*Plus is most commonly used for simple queries and printed reports.
Getting SQL*Plus to format information in reports according to your tastes and needs requires only
a handful of commands—keywords that instruct SQL*Plus how to behave. These are listed in
Table 6-1. Detailed explanations, examples, and additional features of each of these commands
are given in the Alphabetical Reference section of this book.

In this chapter, you will see a basic report that was written using SQL*Plus, along with an
explanation of the features used to create it. If building a report seems a bit daunting at first, don’t
worry. Once you try the steps, you'll find them simple to understand, and they will soon become
familiar.

You can write SQL*Plus reports while working interactively with SQL*Plus—that is, you can
type commands about page headings, column titles, formatting, breaks, totals, and so on, and
then execute a SQL query, and SQL*Plus will immediately produce the report formatted to your
specifications. For quick answers to simple questions that aren't likely to recur, this is a fine approach.
More common, however, are complex reports that need to be produced periodically and that
you'll want to print rather than just view on the screen. Unfortunately, when you quit SQL*Plus, it
promptly forgets every instruction you’ve given it. If you were restricted to using SQL*Plus only in
this interactive way, then running the same report at a later time would require typing everything
all over again.

The alternative is very straightforward. You simply type the commands, line by line, into a file.
SQL*Plus can then read this file as if it were a script, and execute your commands just as if you
were typing them. In effect, you create a report program, but you do it without a programmer or
a compiler. You create this file using any of the popular editor programs available, or even (given
certain restrictions) a word processor.

The editor is not a part of Oracle. Editors come in hundreds of varieties, and every company or
person seems to have a favorite. Oracle realized this and decided to let you choose which editor
program to use, rather than packaging a program with Oracle and forcing you to use it. When you’re
ready to use your editor program, you suspend SQL*Plus, jump over to the editor program, create
or change your SQL*Plus report program (also called a start file), and then jump back to SQL*Plus,
right at the spot you left, and run the report (see Figure 6-1).

SQL*Plus also has a built-in editor of its own, sometimes called the command line editor,
that allows you to quickly modify a SQL query without leaving SQL*Plus. The editor’s use will
be covered later in this chapter.

Chapter 6: Basic SQL*Plus Reports and Commands

Command

remark
set headsep

ttitle
btitle

column
break on

compute sum
set linesize
set pagesize
set newpage

spool

/**/

set pause
save

host

start or @
edit

define _editor

exit or quit

Definition

Tells SQL*Plus that the words to follow are to be treated as comments,
not instructions.

The heading separator identifies the single character that tells SQL*Plus
to split a title into two or more lines.

Sets the top title for each page of a report.
Sets the bottom title for each page of a report.

Gives SQL*Plus a variety of instructions on the heading, format, and
treatment of a column.

Tells SQL*Plus where to put spaces between sections of a report, or
where to break for subtotals and totals.

Makes SQL*Plus calculate subtotals.

Sets the maximum number of characters allowed on any line of the report.
Sets the maximum number of lines per page.

Sets the number of blank lines between pages.

Moves a report you would normally see displayed on the screen into
a file, so you can print it.

Marks the beginning and ending of a comment within a SQL entry.
Similar to remark.

Marks the beginning of an inline comment within a SQL entry. Treats
everything from the mark to the end of the line as a comment. Similar
to remark.

Makes the screen display stop between pages of display.

Saves the SQL query you're creating into the file of your choice.

Sends any command to the host operating system.

Tells SQL*Plus to follow (execute) the instructions you’ve saved in a file.
Pops you out of SQL*Plus and into an editor of your choice.

Tells SQL*Plus the name of the editor of your choice.

Terminates SQL*Plus.

TABLE 6-1.

Basic SQL*Plus Commands

103

104 Partll: SQL and SQL*Plus

myeditor

/ which can create
and edit a report
“start file”

Lets you use .. \
your favorite act1v1ty.sq.l \
editor see Flg)ure 6-3
START
FILE
SQL*Plus (Report
Program)
SQL>edit activity.sql
.. which SQL*Plus
SQL>start activity.sql can then run
-~
T\
to produce a
finished report
\ activity.1st

see Figure 6-2

REPORT

FIGURE 6-1. Report-creation process

Building a Simple Report
Figure 6-2 provides a quick-and-easy report showing the dates books were checked out and
returned during a three-month time period.

1 remark

The first line of Figure 6-3, at Circle 1, is documentation about the start file itself. Documentation
lines begin with

= = rem

which stands for remark. SQL*Plus ignores anything on a line that begins with rem, thus allowing
you to add comments, documentation, and explanations to any start file you create. It is always a
good idea to place remarks at the top of a start file, giving the filename, its creator and date of
creation, the name of anyone who has modified it, the date of modification, what was modified,
and an explanation of the purpose of the file. This will prove invaluable later on, as you develop
more complex reports or when dozens of reports begin to accumulate.

Chapter 6:

Basic SQL*Plus Reports and Commands

Thu Apr 04 page 1
Checkout Log for 1/1/02-3/31/02
Days
NAVE TI TLE CHECKOUTD RETURNEDD Qut
DORAH TALBOT El THER/ OR 02- JAN- 02 10- JAN-02 8. 00
POLAR EXPRESS 01- FEB- 02 15- FEB-02 14. 00
GOOD DOG, CARL 01- FEB- 02 15-FEB-02 14.00
My LEDGER 15- FEB- 02 03- MAR- 02 16. 00
kkkkkkkkkhkkkkkhkkkkkx e
avg 13. 00
EM LY TALBOT ANNE OF GREEN GABLES 02- JAN-02 20-JAN-02 18.00
M DNI GHT MAG C 20- JAN-02 03-FEB-02 14.00
HARRY POTTER AND THE 03- FEB-02 14-FEB-02 11.00
GOBLET OF FIRE
kkhkkkkhkkkkkkhkkhkhkkkkkkkkx oo
avg 14. 33
FRED FULLER JOHN ADAMS 01- FEB- 02 01- MAR-02 28.00
TRUVAN 01- MAR- 02 20- MAR- 02 19. 00
kkkkkkkkkhkkkkkkkkkkx e .
avg 23.50
GERHARDT KENTGEN WONDERFUL LI FE 02- JAN- 02 02- FEB-02 31.00
M DNI GHT MAG C 05- FEB- 02 10- FEB-02 5. 00
THE M SMEASURE OF 13- FEB- 02 05- MVAR-02 20.00
MAN
kkhkkkkhkkkkkhkkhkkhkhkkkkkkkx oo
avg 18. 67
JED HOPKI NS I NNUMERACY 01-JAN-02 22- JAN-02 21.00
TO KILL A 15- FEB- 02 01- MAR- 02 14.00
MOCKI NGBI RD
kkkkkkkkkhkkhkkhkhkkhkkkkkkx oo
avg 17.50
PAT LAVAY THE SHI PPI NG NEWS 02- JAN-02 12- JAN-02 10. 00
THE M SMEASURE OF 12- JAN-02 12- FEB- 02 31.00
MAN
kkkkkkkhkkhkkhkkhkhkkkkkkkx oo
avg 20.50
RCLAND BRANDT THE SHI PPI NG NEWS 12-JAN-02 12- MAR- 02 59. 00
THE DI SCOVERERS 12- JAN-02 01- MAR- 02 48. 00
WEST WTH THE NI GAT 12- JAN-02 01- VAR-02 48. 00
kkkkkhkkkkkhkkhkkhkkkkkkkx oo
avg 51. 67
avg 22.58
from the Bookshel f
FIGURE 6-2. Bookshelf checkout report output

106 Partll: SQL and SQL*Plus

rem Bookshel f activity report 4—@

set headsep ! 4—@
ttitle ' Checkout Log for 1/1/02-3/31/ 02" 4—@

btitle 'fromthe Bookshel f'

colum Nane format a20 4—@

colum Title format a20 word_w apped 4—@

col um DaysQut format 999.99 « @
col um DaysQut headi ng ' Days! Qut'

break on Name skip 1 on report
©

conpute avg of DaysCQut on Nane <%
conpute avg of DaysQut on report

set linesize 80

set pagesize 60
set newpage O
set feedback off

spool activity.|st 4—@

sel ect Nane, Title, CheckoutDate, ReturnedDate,

Ret ur nedDat e- Checkout Dat e as DaysQut /*Count Days*/ 4—@
f r om BOOKSHELF_CHECKOUT

order by Nane, Checkout Dat e;

spool of f

FIGURE 6-3. The activity.sql file

SQL*Plus and SQL

The select statement toward the bottom of Figure 6-3, beginning with the word “select” and
ending with the semicolon (;), is Structured Query Language—the language you use to talk
to the Oracle database. Every other command on the page is a SQL*Plus command, used to
format the results of a SQL query into a report.

The SQL*Plus start command causes SQL*Plus to read the file activity.sql and execute
the instructions you’ve placed in it. Reviewing this start file will show you the basic SQL*Plus
instructions you can use to produce reports or change the way SQL*Plus interacts with you.
Depending on your experience, this may seem formidable or elementary. It is made up of
a series of simple instructions to SQL*Plus.

Figure 6-3 shows the SQL*Plus start file that produced this report (in this case, named
activity.sqgl). To run this report program in SQL*Plus, type the following:

start activity.sql

Chapter 6: Basic SQL*Plus Reports and Commands 107

2 set headsep

The punctuation that follows set headsep (for heading separator) at Circle 2 in Figure 6-3 tells
SQL*Plus how you will indicate where you want to break a page title or a column heading that
runs longer than one line. When you first activate SQL*Plus, the default headsep character is the
vertical bar (|), but if you want to use vertical bars in your titles, you may find it simpler to use
a different headsep character.

"= set headsep !

CAUTION
Choosing a character that may otherwise appear in a title or column
heading will cause unexpected splitting.

3 ttitle and btitle

The line
= ttitle 'Checkout Log for 1/1/02-3/31/02'

at Circle 3 in Figure 6-3 instructs SQL*Plus to put this “top title” at the top of each page of the
report. The title you choose must be enclosed in single quotation marks. The line

. btitle 'fromthe Bookshel f'

works similarly to ttitle, except that it goes at the bottom of each page (as the b indicates), and it
also must be in single quotation marks. Because single quotes are used to enclose the entire title,
an apostrophe (the same character on your keyboard) would trick SQL*Plus into believing the

title had ended.

NOTE

Put two single quotation marks right next to each other when you
want to print an apostrophe or a single quotation mark. Because both
SQL and SQL*Plus rely on single quotation marks to enclose strings of
characters, this technique is used throughout SQL and SQL*Plus
whenever an apostrophe needs to be printed or displayed.

When using ttitle this way, SQL*Plus will always center the title you choose based on the
linesize you set (linesize will be discussed later in the chapter), and it will always place the weekday,
month, and the day of the month on which the report was run in the upper-left corner and the
page number in the upper-right corner.

You can use the repheader and repfooter commands to create headers and footers for reports.
See the Alphabetical Reference section of this book for descriptions of repheader and repfooter.

108 Partll: SQL and SQL*Plus

column

column allows you to change the heading and format of any column in a select statement. Look
at the report shown earlier in Figure 6-2. The fifth column, Days Out, is not a column in the
database, and it’s called DaysOut in the query shown in Figure 6-3. The line

"= colum DaysQut headi ng 'Days!Qut'

relabels the column and gives it a new heading. This heading breaks into two lines because it has
the headsep character (!) embedded in it. The line

= colum Nane format a20

4 at Circle 4 sets the width for the Name column’s display at 20. The a tells SQL*Plus that this is an
alphabetic column, as opposed to a numeric column. The width can be set to virtually any value,
irrespective of how the column is defined in the database.

5 The Name column is defined as 25 characters wide, so it's possible that some names will
have more than 20 characters. If you did nothing else in defining this column on the report, any
name more than 20 characters long would wrap onto the next line. Looking at Figure 6-2 again,
you can see that four of the titles have wrapped; the Title column is defined as VARCHAR2(100)
but is formatted as a20 (see Circle 5).

Instead of using the word_wrapped format, you could choose truncated, eliminating the display
of any characters that exceed the specified format length for the column.

6 Circle 6 in Figure 6-3 shows an example of formatting a number:

= colum DaysQut format 999.99

This defines a column with room for five digits and a decimal point. If you count the spaces in
the report for the DaysOut column, you'll see seven spaces. Just looking at the column command
might lead you to believe the column would be six spaces wide, but this would leave no room for a
minus sign if the number were negative, so an extra space on the left is always provided for numbers.

7 Circle 7 in Figure 6-3 refers to a column that didn’t appear in the table when we had SQL*Plus
describe it:

= colum DaysQut headi ng 'Days!Qut'

What is DaysOut? Look at the select statement at the bottom of Figure 6-3. DaysOut appears
in the following line:

=~ ReturnedDat e- Checkout Dat e as DaysQut /*Count Days*/

This tells SQL to perform date arithmetic—count the number of days between two dates—and give
the computation a simpler column name. As a consequence, SQL*Plus sees a column named
DaysOut, and all its formatting and other commands will act as if it were a real column in the
table. The column command for DaysOut is an example. “DaysOut” is referred to as a column
alias—another name to use when referring to a column.

Chapter 6: Basic SQL*Plus Reports and Commands 109

8 break on

Look at Circle 8 in Figure 6-3. Note on the report in Figure 6-2 how the checkout records for each
name are grouped together. This effect was produced by the line

"= break on Nanme skip 1 on report
as well as by the line
"= order by Nanme, Checkout Date;

in the select statement near the end of the start file.

SQL*Plus looks at each row as it is brought back from Oracle and keeps track of the value
in Name. For the first four rows, this value is DORAH TALBOT, so SQL*Plus displays the rows it
has gotten. On the fifth row, Name changes to EMILY TALBOT. SQL*Plus remembers your break
instructions, which tell it that when Name changes, it should break away from the normal display
of row after row, and skip one line. You'll notice one line between the Name sections on the report.
Unless the names were collected together because of the order by clause, it wouldn’t make sense
for break on to skip one line every time Name changed. This is why the break on command and
the order by clause must be coordinated.

You also may notice that the name DORAH TALBOT is only printed on the first line of its section,
as are the rest of the names. This is done to eliminate the duplicate printing of each of these names
for every row in each section, which is visually unattractive. If you want, you can force SQL*Plus
to duplicate the name on each row of its section by altering the break on command to read

"= break on Nane duplicate skip 1

The report output in Figure 6-2 shows an average for DaysOut for the entire report. To be able
to get a grand total for a report, add an additional break using the break on report command. Be
careful when adding breaks because they all need to be created by a single command; entering
two consecutive break on commands will cause the first command’s instructions to be replaced
by the second command. See Circle 8 for the break on command used for the report:

'~ break on Name skip 1 on report

9 compute avg
The averages calculated for each section on the report were produced by the compute avg command
at Circle 9. This command always works in conjunction with the break on command, and the totals
computed will always be for the section specified by break on. It is probably wise to consider
these two related commands as a single unit:

"= break on Name skip 1 on report
conpute avg of DaysQut on Nane
conpute avg of DaysCQut on report

In other words, this tells SQL*Plus to compute the average of the DaysOut for each Name.
SQL*Plus will do this first for DORAH TALBOT, then for each successive name. Every time SQL*Plus
sees a new name, it calculates and prints an average for the previous DaysOut values. compute avg

110 Partll: SQL and SQL*Plus

also puts a row of asterisks below the column that break on is using, and it prints “avg” underneath.
For reports with many columns that need to be added, a separate compute avg (or compute sum
if you're calculating sums) statement is used for each calculation. It also is possible to have several
different kinds of breaks on a large report (for Name, Title, and dates, for example), along with
coordinated compute avg commands.

You can use a break on command without a compute sum command, such as for organizing
your report into sections where no totals are needed (addresses with a break on City would be an
example), but the reverse is not true.

NOTE
F Every compute avg command must have a break on command to
~guide it, and the on portion of both commands must match (such as
on Name in the preceding example: break on Name skip 1 on report
and compute avg of DaysOut on Name).

The following are the basic rules:

®m Every break on must have a related order by.

B Every compute avg must have a related break on.

This makes sense, of course, but it’s easy to forget one of the pieces. In addition to compute
avg, you can also use compute sum, compute count, compute max, or any other of Oracle’s
grouping functions on the set of records.

10 set linesize
The four commands at Circle 10 in Figure 6-3 control the gross dimensions of your report. The
command set linesize governs the maximum number of characters that will appear on a single
line. For letter-size paper, this number is usually around 70 or 80, unless your printer uses a very
compressed (narrow) character font.

If you put more columns of information in your SQL query than will fit into the linesize you’ve
allotted, SQL*Plus will wrap the additional columns down onto the next line and stack columns
under each other. You actually can use this to very good effect when a lot of data needs to be
presented.

SQL*Plus also uses linesize to determine where to center the ttitle, and where to place the
date and page number. Both the date and page number appear on the top line, and the distance
between the first letter of the date and the last digit of the page number will always equal the
linesize you set.

set pagesize
The set pagesize command sets the total number of lines SQL*Plus will place on each page,
including the ttitle, btitle, column headings, and any blank lines it prints. On letter- and computer-
size paper, this is usually 66 (six lines per inch times 11 inches [U.S.]). set pagesize is coordinated
with set newpage.

As of Oracle Database 10g, the default pagesize is 14; in prior versions, it is 24.

Chapter 6: Basic SQL*Plus Reports and Commands 111

set newpage

A better name for set newpage might have been “set blank lines,” because what it really does is
print blank lines before the top line (date, page number) of each page in your report. This is useful
both for adjusting the position of reports coming out on single pages on a laser printer and for
skipping over the perforations between the pages of continuous-form computer paper.

NOTE

set pagesize does not set the size of the body of the report (the
number of printed lines from the date down to the btitle); instead,
it sets the total length of the page, measured in lines.

Therefore, if you type

" |set pagesize 66
set newpage 9

SQL*Plus produces a report starting with nine blank lines, followed by 57 lines of information
(counting from the date down to the btitle). If you increase the size of newpage, SQL*Plus puts
fewer rows of information on each page, but produces more pages altogether.

That's understandable, you say, but what has been done at Circle 10 on Figure 6-3?

. | set pagesize 60
set newpage 0

This is a strange size for a report page. Is SQL*Plus to put zero blank lines between pages? No.
Instead, the O after newpage switches on a special property: set newpage 0 produces a top-of-
form character (usually a hex 13) just before the date on each page. Most modern printers respond

to this by moving immediately to the top of the next page, where the printing of the report will
begin. The combination of set pagesize 60 and set newpage 0 produces a report whose body of

information is exactly 60 lines long and which has a top-of-form character at the beginning of each
page. This is a cleaner and simpler way to control page printing than jockeying around with blank

lines and lines per page. You can also use the set newpage none command, which will result in

no blank lines and no form feeds between report pages.

11 spool
In the early days of computers, most file storage was done on spools of either magnetic wire or
tape. Writing information into a file and spooling a file were virtually synonymous. The term has
survived, and spooling now generally refers to any process of moving information from one place
to another. In SQL*Plus,

' spool activity.Ist

tells SQL to take all the output from SQL*Plus and write it to the file named activity.lst. Once
you've told SQL*Plus to spool, it continues to do so until you tell it to stop, which you do by
inputting the following:

"= spool off

112 Partll: SQL and SQL*Plus

This means, for instance, that you could type
= spool work.fil
and then type a SQL query, such as

"= 'select Feature, Section, Page from NEWSPAPER
where Section ="'F';

FEATURE S PAGE
Births F 7
Cl assified F 8
oi tuari es F 6
Doctor Is In F 6

or a series of SQL*Plus commands, such as

" = set pagesize 60
col um Section heading 'My Favorites'

or anything else. Whatever prompts SQL*Plus produces, whatever error messages you get, whatever
appears on the computer screen while spooling—it all ends up in the file work.fil. Spooling doesn’t
discriminate. It records everything that happens from the instant you use the spool command until
you use spool off, which brings us back to the report at Circle 11 of Figure 6-3:

"= spool activity.Ist

This phrase is carefully placed as the command just before the select statement, and spool off
immediately follows. Had spool activity.Ist appeared any earlier, the SQL*Plus commands you
were issuing would have ended up on the first page of your report file. Instead, they go into the
file activity.Ist, which is what you see in Figure 6-2: the results of the SQL query, formatted
according to your instructions, and nothing more. You are now free to print the file, confident
that a clean report will show up on your printer.

This set of commands will print the SQL query on the first page of the output, followed by the
data starting on the second page. To not show the SQL query with the output, you can also change
the order of commands: Type in the SQL query but without the concluding semicolon. Press ENTER
twice, and the command will still be in SQL*Plus’s buffer, unexecuted. You can then start spooling
and execute the command:

4R (SQL command typed here)

spool activity.|st
/
spool of f

As of Oracle Database 10g, you can append data to existing spool files. The default is (as in
prior versions) to create a new output file. You can now use the append or replace option of the

Chapter 6: Basic SQL*Plus Reports and Commands 113

spool command to either append data to an existing file that matches the name you give, or replace
that existing file with your new output, respectively.

12 /* */
Circle 12 of Figure 6-3 shows how a comment can be embedded in a SQL statement. This is different
in method and use from the remark statement discussed earlier. remark (or rem) must appear at
the beginning of a line, and it works only for the single line on which it appears. Furthermore, a
multiple-line SQL statement is not permitted to have a remark within it. For example, the following
is wrong:

= select Feature, Section, Page
remthis is just a coment
f r om NEWSPAPER
where Section ="'F';
This will not work, and you’ll get an error message. However, you can embed remarks in SQL
following the method shown at Circle 12, or like this:

. | select Feature, Section, Page
/[* this is just a comment */
f r om NEWSPAPER
where Section = 'F';

1

The secret lies in knowing that /* tells SQL*Plus a comment has begun. Everything it sees from
that point forward, even if it continues for many words and lines, is regarded as a comment, until
SQL*Plus sees */, which tells it that the comment has ended. You can also use the characters — — to
begin a comment. The end of the line ends the comment. This kind of comment works just like a
single-line version of /* */, except that you use — — (two dashes) instead.

Some Clarification on Column Headings

It's possible that the difference between the renaming that occurs in
[& | ReturnedDat e- Checkout Dat e as DaysQut

and the new heading given the column Item in
("0 = colum DaysQut heading ' Days! Qut'

is not quite clear, particularly if you look at this command:
[|compute avg of DaysQut on Nane

SQL*Plus commands are aware only of columns that actually appear in the select statement.
Every column command refers to a column in the select statement. Both break on and compute refer
only to columns in the select statement. The only reason a column command or a compute command
is aware of the column DaysOut is that it got its name in the select statement itself. The renaming
of “ReturnedDate-CheckoutDate” to “DaysOut” is something done by SQL, not by SQL*Plus.

114 Partll: SQL and SQL*Plus

Other Features

It's not terribly difficult to look at a start file and the report it produces and see how all the formatting
and computation was accomplished. It's possible to begin by creating the start file, typing into it
each of the commands you expect to need, and then running it in SQL*Plus to see if it is correct. But
when you’re creating reports for the first time, it is often much simpler to experiment interactively
with SQL*Plus, adjusting column formats, the SQL query, the titles, and the totals, until what you
really want begins to take shape.

Command Line Editor

When you type a SQL statement, SQL*Plus remembers each line as you enter it, storing it in what
is called the SQL buffer (a fancy name for a computer scratchpad where your SQL statements are
kept). Suppose you've entered this query:

"= select Featuer, Section, Page
f rom NEWBPAPER
where Section ="'F';

SQL*Plus responds with the following:

. select Featuer, Section, Page
*

ERROR at line 1:
ORA-00904: "FEATUER': invalid identifier

You now realize you’ve misspelled “Feature.” You do not have to retype the entire query. The
command line editor is already present and waiting for instructions. First, ask it to list your query:

e | i st
SQL*Plus immediately responds with this:

B 1 select Featuer, Section, Page
2 from NEWSPAPER
3* where Section = 'F

Notice that SQL*Plus shows all three lines and numbers them. It also places an asterisk next to
line 3, which means it is the line your editing commands are able to affect. But you want to change
line 1, so you type, and SQL*Plus lists, the following:

st 1
1* sel ect Featuer, Section, Page

Line 1 is displayed and is now the current line. You can change it by typing this:
" = change / Featuer/Feature

1* sel ect Feature, Section, Page

Chapter 6: Basic SQL*Plus Reports and Commands

You can check the whole query again with this:
R i st

1 select Feature, Section, Page
2 f r om NEWSPAPER
3* where Section ="'F

If you believe this is correct, enter a single slash after the prompt. This slash has nothing to do
with the change command or the editor. Instead, it tells SQL*Plus to execute the SQL in the buffer:

FEATURE S PAGE
Births F
Classified F
oi tuari es F
Doctor Is In F

o o 0~

The change command requires that you mark the start and end of the text to be changed with
a slash (/) or some other character. The line

. = change $Featuer $Feature

would have worked just as well. SQL*Plus looks at the first character after the word “change” and
assumes that is the character you’ve chosen to use to mark the start and end of the incorrect text
(these markers are usually called delimiters). You can also delete the current line, as shown here:

| i st

1 select Feature, Section, Page
2 f r om NEWSPAPER
3* where Section = 'F

del
list

1 select Feature, Section, Page
2 f r om NEWSPAPER

del will delete just what is on the current line. You can pass the del command a range of line
numbers, to delete multiple lines at once, by specifying the first and last line numbers for the range
of lines to delete. To delete lines 3 through 7, use del 3 7. Note this has a space before the number
of the first line to delete (3) and another space before the number of the last line to delete (7). If you
leave out the space between the 3 and the 7, SQL*Plus will try to delete line 37. To delete from
line 2 to the end of the buffer, use del 2 LAST. You can use the same kind of syntax with the list
command; for example, list 3 7 will list the lines 3 through 7. See the entries for the del and list
commands in the Alphabetical Reference for the full syntax options.

115

116 Partll: SQL and SQL*Plus

The word “delete” (spelled out) will erase all the lines and put the word “delete” as line 1.
This will only cause problems, so avoid typing the whole word “delete.” If your goal is to clear
out the select statement completely, type this:

. clear buffer

If you’d like to append something to the current line, you can use the append command:
e | ist 1
1* sel ect Feature, Section, Page
append "Wereltls"
1* sel ect Feature, Section, Page "Wereltls"

append places its text right up against the end of the current line, with no spaces in between.
To put a space in, as was done here, type two spaces between the word append and the text.
You may also input a whole new line after the current line, as shown here:

| i st

1 select Feature, Section, Page "Wereltls"
2% f r om NEWSPAPER

i nput where Section = 'A

list
1 select Feature, Section, Page "Wereltls"
2 f r om NEWSPAPER
3* where Section = 'A

Then you can set the column heading for the Whereltls column:

"= colum Whereltls heading "Were It Is"

And then you can run the query:

R /
FEATURE S Were It Is
Nat i onal News A 1
Editorials A 12

To review, the command line editor can list the SQL statement you've typed, change or delete
the current line (marked by the asterisk), append something onto the end of the current line, or
input an entire line after the current line. Once your corrections are made, the SQL statement will
execute if you type a slash at the SQL> prompt. Each of these commands can be abbreviated to
its own first letter, except del, which must be exactly the three letters del.

Chapter 6: Basic SQL*Plus Reports and Commands

The command line editor can edit only your SQL statement. It cannot edit SQL*Plus commands.
If you've typed column Name format a18, for instance, and want to change it to column Name
format a20, you must retype the whole thing (this is in the SQL*Plus interactive mode—if you've
got the commands in a file, you obviously can change them with your own editor). Also note that
in interactive mode, once you’ve started to type a SQL statement, you must complete it before you
can enter any additional SQL*Plus commands, such as column formats or ttitle. As soon as SQL*Plus
sees the word select, it assumes everything to follow is part of the select statement until it sees
either a semicolon (;) at the end of the last SQL statement line or a slash (/) at the beginning of the
line after the last SQL statement line.

Either of these is correct:

= select * from LEDGER,

sel ect * from LEDGER
/

This, however, is not:

= select * from LEDGER/

set pause

During the development of a new report or when using SQL*Plus for quick queries of the database,
it’s usually helpful to set the linesize at 79 or 80, the pagesize at 24 (the default in Oracle Database 10g
is 14), and newpage at 1. You accompany this with two related commands, as shown here:

. set pause 'More.
set pause on

The effect of this combination is to produce exactly one full screen of information for each page
of the report that is produced, and to pause at each page for viewing (“More. . .” will appear in the
lower-left corner) until you press ENTER. After the various column headings and titles are worked
out, the pagesize can be readjusted for a page of paper, and the pause eliminated with this:

" . set pause off

save

If the changes you want to make to your SQL statement are extensive, or if you simply want to
work in your own editor, save the SQL you’ve created so far, in interactive mode, by writing the
SQL to afile, like this:

"= save fred.sql
SQL*Plus responds with

. Created file fred. sql

Your SQL (but not any column, ttitle, or other SQL*Plus commands) is now in a file named
fred.sql (or a name of your choice), which you can edit using your own editor.

117

118 Partll: SQL and SQL*Plus

If the file already exists, you must use the replace option (abbreviated rep) of the save command
to save the new query in a file with that name. For this example, the syntax would be

"= save fred.sqgl rep

Alternatively, you could append to the fred.sql file with the command save fred.sql app.

store

You can use the store command to save your current SQL*Plus environment settings to a file.
The following will create a file called my_settings.sql and will store the settings in that file:

= store set ny_settings.sql create

If the my_settings.sql file already exists, you can use the replace option instead of create,
replacing the old file with the new settings. You could also use the append option to append the
new settings to an existing file.

Editing

Everyone has a favorite editor. Word processing programs can be used with SQL*Plus, but only if
you save the files created in them in ASCII format (see your word processor manual for details on
how to do this). Editors are just programs themselves. They are normally invoked simply by typing
their name at the operating system prompt. On UNIX, it usually looks something like this:

> vi fred.sql

In this example, vi is your editor’s name, and fred.sql represents the file you want to edit (the
start file described previously was used here only as an example—you would enter the real name
of whatever file you want to edit). Other kinds of computers won’t necessarily have the > prompt,
but they will have something equivalent. If you can invoke an editor this way on your computer,
it is nearly certain you can do the same from within SQL*Plus, except that you don’t type the name
of your editor, but rather the word edit:

0 SQ> edit fred.sql

You should first tell SQL*Plus your editor’s name. You do this while in SQL*Plus by defining
the editor, like this:

= define _editor = "vi"

(That’s an underscore before the e in editor.) SQL*Plus will then remember the name of your
editor (until you quit SQL*Plus) and allow you to use it anytime you want. See the sidebar “Using
login.sgl to Define the Editor” for directions on making this happen automatically.

Chapter 6: Basic SQL*Plus Reports and Commands 119

host

In the unlikely event that none of the editing commands described in the preceding section work,
but you do have an editor you'd like to use, you can invoke it by typing this:

. host vi fred.sql

host tells SQL*Plus that this is a command to simply hand back to the operating system for execution.
It's the equivalent of typing vi fred.sql at the operating system prompt. Incidentally, this same host
command can be used to execute almost any operating system command from within SQL*Plus,
including dir, copy, move, erase, cls, and others.

Using login.sql to Define the Editor

If you'd like SQL*Plus to define your editor automatically, put the define _editor command
in a file named login.sql. This is a special filename that SQL*Plus always looks for whenever
it starts up. If it finds login.sql, it executes any commands in the file as if you had entered
them by hand. It looks first at the directory you are in when you type SQLPLUS. If it doesn’t
find login.sql there, it then looks in the home directory for Oracle. If it doesn’t find login.sql
there, it stops looking.

You can put virtually any command in login.sql that you can use in SQL*Plus, including
both SQL*Plus commands and SQL statements; all of them will be executed before SQL*Plus
gives you the SQL prompt. This can be a convenient way to set up your own individual
SQL*Plus environment, with all the basic layouts the way you prefer them. Here’s an example
of a typical login.sql file:

pronpt Logi n.sgl | oaded.

set feedback off

set sql pronpt 'What now, boss? '
set sql nunber off

set numwi dth 5

set pagesize 24

set |linesize 79

define _editor="vi"

As of Oracle Database 10g, Oracle provides three new predefined environment
variables: _DATE, _PRIVILEGE (‘AS SYSDBA’, ‘AS SYSOPER’, or blank), and _USER (same
value as show user returns).

Another file, named glogin.sql, is used to establish default SQL*Plus settings for all users
of a database. This file, usually stored in the administrative directory for SQL*Plus, is useful
in enforcing column and environment settings for multiple users.

The meaning of each of these commands can be found in the Alphabetical Reference
section of this book.

120 Partll: SQL and SQL*Plus

Adding SQL*Plus Commands

Once you’ve saved a SQL statement into a file, such as fred.sql, you can add to the file any
SQL*Plus commands you want. Essentially, you can build this file in a similar fashion to activity.sql
in Figure 6-3. When you’ve finished working on it, you can exit your editor and be returned to
SQL*Plus.

start

Once you are back in SQL*Plus, test your editing work by executing the file you’ve just edited:

= start fred.sql

All the SQL*Plus and SQL commands in that file will execute, line by line, just as if you'd
entered each one of them by hand. If you've included a spool and a spool off command in the
file, you can use your editor to view the results of your work. This is just what was shown in
Figure 6-2—the product of starting activity.sql and spooling its results into activity.lst.

To develop a report, use steps like these, in cycles:

1. Use SQL*Plus to build a SQL query interactively. When it appears close to being satisfactory,
save it under a name such as test.sql. (The extension .sql is usually reserved for start files,
scripts that will execute to produce a report.)

2. Edit the file test.sql using a favorite editor. Add column, break, compute, set, and spool
commands to the file. You usually spool to a file with the extension .Ist, such as test.lst.
Exit the editor.

3. Back in SQL*Plus, the file test.sql is started. Its results fly past on the screen, but also
go into the file test.Ist. The editor examines this file.

4. Incorporate any necessary changes into test.sql and run it again.

5. Continue this process until the report is correct and polished.

Checking the SQL*Plus Environment

You saw earlier that the command line editor can’t change SQL*Plus commands, because it can
affect only SQL statements—those lines stored in the SQL buffer. You also saw that you can save
SQL statements and store environment settings into files, where they can be modified using your
own editor.

If you’d like to check how a particular column is defined, type

"= colum DaysQut

without anything following the column name. SQL*Plus will then list all the instructions you’ve
given about that column, as shown here:

. COLUW DaysCQut ON
HEADI NG ' Days! Qut' headsep '!’
FORMAT ~ 999. 99

Chapter 6: Basic SQL*Plus Reports and Commands 121

If you type just the word column, without any column name following it, then all the columns
will be listed. You will see all the columns Oracle sets up by default, plus the ones that you’ve

defined:

= | COLUWN Title ON
FORMAT a20
wor d_wr ap

COLUW DaysQut ON
HEADI NG ' Days! Qut' headsep '!'
FORVAT ~ 999. 99

COLUWN Nanme ON
FORVMAT a20

ttitle, btitle, break, and compute are displayed simply by typing their names, with nothing
following. SQL*Plus answers back immediately with the current definitions. The first line in each
of the next examples is what you type; the following lines show SQL*Plus’s replies:

o ttitle
ttitle ONand is the follow ng 31 characters:

Checkout Log for 1/1/02-3/31/02

btitle
btitle ON and is the follow ng 18 characters:
fromthe Bookshel f

br eak
break on report nodup
on Name skip 1 nodup

comput e
COWPUTE avg LABEL 'avg' OF DaysQut ON Name
COWUTE avg LABEL 'avg' OF DaysQut ON report

Looking at those settings (also called parameters) that follow the set command requires the use
of the word show:

"= |show headsep
headsep "!" (hex 21)

show | i nesi ze
linesize 80

show pagesi ze
pagesi ze 60

show newpage
newpage 0O

122 Partll: SQL and SQL*Plus

See the Alphabetical Reference section of this book under set and show for a complete list of
parameters.

The ttitle and btitle settings can be disabled by using the btitle off and ttitle off commands. The
following listing shows these commands (note that SQL*Plus does not reply to the commands):

L ttitle off

btitle off

The settings for columns, breaks, and computes can be disabled via the clear columns, clear
breaks, and clear computes commands. The first line in each example in the following listing is
what you type; the lines that follow show how SQL*Plus replies:

= clear colums
col ums cl eared

cl ear breaks
breaks cl eared

cl ear conputes
conput es cl eared

Building Blocks

This has been a fairly dense chapter, particularly if SQL*Plus is new to you; yet on reflection, you'll
probably agree that what was introduced here is not really difficult. If Figure 6-3 looked daunting
when you began the chapter, look at it again now. Is there any line on it that you don’t understand,
or don’t have a sense for what is being done and why? You could, if you wanted, simply copy this
file (activity.sql) into another file with a different name and then begin to modify it to suit your own
tastes and to query against your own tables. The structure of any reports you produce will, after all,
be very similar.

There is a lot going on in activity.sql, but it is made up of simple building blocks. This will be
the approach used throughout the book. Oracle provides building blocks, and lots of them, but
each separate block is understandable and useful.

In the previous chapters, you learned how to select data out of the database, choosing certain
columns and ignoring others, choosing certain rows based on logical restrictions you set up, and
combining two tables to give you information not available from either one on its own.

In this chapter, you learned how to give orders that SQL*Plus can follow in formatting and
producing the pages and headings of polished reports.

In the next several chapters, you'll change and format your data, row by row. Your expertise
and confidence should grow chapter by chapter. By the end of Part Il of this book, you should
be able to produce very sophisticated reports in short order, to the considerable benefit of your
company and yourself.

CHAPTER
/

Getting Text
Information and
Changing It

124 Partll: SQL and SQL*Plus

his chapter introduces string functions, which are software tools that allow you to
manipulate a string of letters or other characters. To quickly reference individual
a,"" functions, look them up by name in the Alphabetical Reference section of this
~ book. This chapter focuses on the manipulation of text strings; to perform word

o searches (including word stem expansions and fuzzy matches), you should use
Oracle Text, as described in Chapter 25.

Functions in Oracle work in one of two ways. Some functions create new objects from old
ones; they produce a result that is a modification of the original information, such as turning
lowercase characters into uppercase. Other functions produce a result that tells you something
about the information, such as how many characters are in a word or sentence.

NOTE
If you are using PL/SQL, you can create your own functions with the
create function statement. See Part |V for details.

Datatypes

Just as people can be classified into different types based on certain characteristics (shy, outgoing,
smart, silly, and so forth), different kinds of data can be classified into datatypes based on certain
characteristics.

Datatypes in Oracle include NUMBER, CHAR (short for CHARACTER), DATE, VARCHAR?2,
LONG, RAW, LONG RAW, BLOB, CLOB, and BFILE. The first several are probably obvious.
The rest are special datatypes that you’ll encounter later. A full explanation of each of these can
be found by name or under “Datatypes” in the Alphabetical Reference section of this book. Each
datatype is covered in detail in the chapters ahead. As with people, some of the “types” overlap,
and some are fairly rare.

If the information is of the character VARCHAR2 or CHAR) type—a mixture of letters,
punctuation marks, numbers, and spaces (also called alphanumeric)—you’ll need string
functions to modify or inform you about it. Oracle’s SQL provides quite a few such tools.

What Is a String?

A string is a simple concept: a bunch of things in a line, such as houses, popcorn, pearls, numbers,
or characters in a sentence.

Strings are frequently encountered in managing information. Names are strings of characters,
as in Juan L'Heureaux. Phone numbers are strings of numbers, dashes, and sometimes parentheses, as
in (415) 555-2676. Even a pure number, such as 5443702, can be considered as either a number
or a string of characters.

NOTE

Datatypes that are restricted to pure numbers (plus a decimal point
and minus sign, if needed) are called NUMBER, and they are not
usually referred to as strings. A number can be used in certain ways
that a string cannot, and vice versa.

Chapter 7: Getting Text Information and Changing It

Strings that can include any mixture of letters, numbers, spaces, and other symbols (such as
punctuation marks and special characters) are called character strings, or just character for short.

There are two string datatypes in Oracle. CHAR strings are always a fixed length. If you set a
value to a string with a length less than that of a CHAR column, Oracle automatically pads the
string with blanks. When you compare CHAR strings, Oracle compares the strings by padding
them out to equal lengths with blanks. This means that if you compare “character” with “character”
in CHAR columns, Oracle considers the strings to be the same. The VARCHAR?2 datatype is a
variable-length string. The VARCHAR datatype is synonymous with VARCHAR?2, but this may
change in future versions of Oracle, so you should avoid using VARCHAR. Use CHAR for fixed-
length character string fields and VARCHAR?2 for all other character string fields.

The simple Oracle string functions, explained in this chapter, are shown in Table 7-1.

Function Name

ASCII

CHR

CONCAT
INITCAP
INSTR
LENGTH
LOWER
LPAD

LTRIM

NLS_INITCAP
NLS_LOWER
NLS_UPPER
NLSSORT

REGEXP_INSTR,
REGEXP_REPLACE,
and REGEXP_
SUBSTR

Use

Glues or concatenates two strings together. The | symbol is called a
vertical bar or pipe.

Returns the decimal representation in the database character set of the first
character of the string.

Returns the character having the binary equivalent to the string in either
the database character set or the national character set.

Concatenates two strings together (same as | 1).

Initial capital. Capitalizes the first letter of a word or series of words.
Finds the location of a character in a string.

Tells the length of a string.

Converts every letter in a string to lowercase.

Left pad. Makes a string a certain length by adding a certain set of
characters to the left.

Left trim. Trims all the occurrences of any one of a set of characters off the
left side of a string.

Initcap based on the National Language Support (NLS) value.
Lower based on the NLS value.

Upper based on the NLS value.

Sort based on the national language selected.

INSTR, REPLACE, and SUBSTR for regular expressions.

TABLE 7-1. Oracle String Functions

125

126 Partll: SQL and SQL*Plus

Function Name Use

RPAD Right pad. Makes a string a certain length by adding a certain set of
characters to the right.

RTRIM Right trim. Trims all the occurrences of any one of a set of characters off
the right side of a string.

SOUNDEX Finds words that sound like the example specified.

SUBSTR Substring. Clips out a piece of a string.

TREAT Changes the declared type of an expression.

TRIM Trims all occurrences of any one of a set of characters off either or both

sides of a string.

UPPER Converts every letter in a string into uppercase.

TABLE 7-1. Oracle String Functions (continued)

Notation

Functions are shown with this kind of notation throughout the book:

"= FUNCTIO\(string [, option])

The function itself will be in uppercase. The thing it affects (usually a string) will be shown in
lowercase italics. Any time the word string appears, it represents either a literal string of characters
or the name of a character column in a table. When you actually use a string function, any literal
must be in single quotes; any column name must appear without single quotes.

Every function has only one pair of parentheses. The value that function works on, as well as
additional information you can pass to the function, goes between the parentheses.

Some functions have options, parts that are not always required that you can use to make the
function work as you want. Options are always shown in square brackets: []. See the discussion
on LPAD and RPAD in the following section for an example of how options are used.

A simple example of how the LOWER function is printed follows:

= LOWER(string)

The word “LOWER” with the two parentheses is the function itself, so it is shown here in
uppercase; string stands for the actual string of characters to be converted to lowercase, and it’s
shown in lowercase italics. Therefore,

= LOVNER(' CAVMP DOUGLAS')
would produce

. canp dougl as

Chapter 7: Getting Text Information and Changing It 127

The string ‘'CAMP DOUGLAS' is a literal, meaning that it is literally the string of characters
that the function LOWER is to work on. Oracle uses single quotation marks to denote the beginning
and end of any literal string. The string in LOWER also could have been the name of a column
from a table, in which case the function would have operated on the contents of the column for
every row brought back by a select statement. For example,

o oselect Gity, LOER(City), LONER('City') from WEATHER,

would produce this result:

TooaTy LOAER(CI TY) LOVE
LI MA lima city
PARI S paris city
MANCHESTER nmanchester city
ATHENS at hens city
CHI CAGO chi cago city
SYDNEY sydney city
SPARTA sparta city

At the top of the second column, in the LOWER function, CITY is not inside single quotation
marks. This tells Oracle that it is a column name, not a literal.

In the third column’s LOWER function, ‘CITY” is inside single quotation marks. This means
you literally want the function LOWER to work on the word “CITY” (that is, the string of letters
C-I-T-Y), not the column by the same name.

Concatenation (| |)

The following notation tells Oracle to concatenate, or stick together, two strings:

. string || string

The strings, of course, can be either column names or literals. Here’s an example:
= select Cty||Country from LOCATI ON,

CITY || COUNTRY
ATHENSGREECE

CHI CAGOUNI TED STATES
CONAKRYGUI NEA

LI MAPERU

MADRASI NDI A
MANCHESTERENGLAND
MOSCOVRUSSI A

PARI SFRANCE
SHENYANGCHI NA
ROVEI TALY
TOKYQJAPAN

128 Partll: SQL and SQL*Plus

SYDNEYAUSTRALI A
SPARTAGREECE
MADRI DSPAI N

Here, the cities vary in width from 4 to 12 characters. The countries push right up against
them. This is just how the concatenate function is supposed to work: It glues columns or strings
together with no spaces in between.

This isn’t very easy to read, of course. To make this a little more readable, you could list cities
and countries with a comma and a space between them. You’d simply concatenate the City and
Country columns with a literal string of a comma and a space, like this:

= select Gty ||", "||Country from LOCATI ON,

CITY ||'," || COUNTRY

ATHENS, GREECE

CH CAGO, UNI TED STATES
CONAKRY, GUI NEA

LI MA, PERU

MADRAS, | NDI A
MANCHESTER, ENGLAND
MOSCOW RUSSI A
PARI'S, FRANCE
SHENYANG, CHI NA
ROMVE, | TALY

TOKYO, JAPAN

SYDNEY, AUSTRALI A
SPARTA, CGREECE

MADRI D, SPAIN

Notice the column title. See Chapter 6 for a review of column titles.
You could also use the CONCAT function to concatenate strings. For example, the query

"= select CONCAT(Cty, Country) from LOCATI ON,
is equivalent to

= select City||Country from LOCATI ON,

How to Cut and Paste Strings

In this section, you learn about a series of functions that often confuse users: LPAD, RPAD, LTRIM,
RTRIM, TRIM, LENGTH, SUBSTR, and INSTR. These all serve a common purpose: they allow you
to cut and paste.

Each of these functions does some part of cutting and pasting. For example, LENGTH tells
you how many characters are in a string. SUBSTR lets you clip out and use a substring—a portion
of a string—starting at one position in the string and continuing for a given length. INSTR lets you
find the location of a group of characters within another string. LPAD and RPAD allow you to easily
concatenate spaces or other characters on the left or right side of a string. LTRIM and RTRIM clip

Chapter 7: Getting Text Information and Changing It 129

characters off the ends of strings, and TRIM can clip characters from both ends at once. Most
interesting is that all of these functions can be used in combination with each other, as you’ll
soon see.

RPAD and LPAD

RPAD and LPAD are very similar functions. RPAD allows you to “pad” the right side of a column
with any set of characters. The character set can be almost anything: spaces, periods, commas,
letters or numbers, caret signs (2), or even exclamation marks (!). LPAD does the same thing as
RPAD, but to the left side.

Here are the formats for RPAD and LPAD:

= IRPAD(string, length [,'set'])
LPAD(string, length [,'set'])

Here, string is the name of a CHAR or VARCHAR2 column from the database (or a literal string),
length is the total number of characters long that the result should be (in other words, its width),
and set is the set of characters that do the padding. The set must be enclosed in single quotation
marks. The square brackets mean that the set (and the comma that precedes it) is optional. If you
leave this off, the function will automatically pad with spaces. This is sometimes called the default;
that is, if you don’t tell the function which set of characters to use, it will use spaces by default.
Many users produce tables with dots to help guide the eye from one side of the page to the

other. Here’s how RPAD does this. In this example, the values are padded to a length of 35:

"= select RPAD(City,35,'."'), Tenperature from WEATHER,

RPAD(CI TY, 35,'.") TEMPERATURE
LIMA 45
PARIS. 81
MANCHESTER. 66
ATHENS. 97
CHCAGO ... 66
SYDNEY. . ..o 69
SPARTA. 74

Notice what happened here. RPAD took each city, from Lima through Sparta, and concatenated
dots on the right of it, adding just enough for each city so that the result (City plus dots) is exactly
35 characters long. The concatenate function (I1) could not have done this. It would have added
the same number of dots to every city, leaving a ragged edge on the right.

LPAD does the same sort of thing, but on the left. Suppose you want to reformat cities and
temperatures so that the cities are right-justified (that is, they all align at the right). For this example,
the padded length is 11:

"= select LPAD(City,11), Tenperature from WEATHER,

LPAD(CI TY, 1 TEMPERATURE

130 Partll: SQL and SQL*Plus

PARI S 81
MANCHESTER 66
ATHENS 97

CH CAGO 66
SYDNEY 69
SPARTA 74

LTRIM, RTRIM, and TRIM

LTRIM and RTRIM are like hedge trimmers. They trim off unwanted characters from the left and
right ends of strings. For example, suppose you have a MAGAZINE table with a column in it that
contains the titles of magazine articles, but the titles were entered by different people. Some people
always put the titles in quotes, whereas others simply entered the words; some used periods, others
didn’t; some started titles with “The,” whereas others did not. How do you trim these?

= select Title from MAGAZI NE;

THE BARBERS WHO SHAVE THEMSELVES.
"HUNTI NG THOREAU | N NEW HAMPSHI RE"
THE ETHNI C NEI GHBORHOOD

RELATI ONAL DESI GN AND ENTHALPY

" | NTERCONTI NENTAL RELATI ONS. "

Here are the formats for RTRIM and LTRIM:

U RTRIMstring [,'set'])
LTRIM string [,"' set'])

Here, string is the name of the column from the database (or a literal string), and set is the collection

of characters you want to trim off. If no set of characters is specified, the functions trim off spaces.
You can trim off more than one character at a time; to do so, simply make a list (a string) of the

characters you want removed. First, let’s get rid of the quotes and periods on the right, as shown here:

select RTRRMTitle,'."") from MAGAZI NE
——

Set of characters
being trimmed

The preceding produces this:

WO RTRIMTITLE,'."")

THE BARBERS WHO SHAVE THEMSELVES
"HUNTI NG THOREAU | N NEW HAMPSHI RE

Chapter 7: Getting Text Information and Changing It

THE ETHNI C NEI GHBORHOOD
RELATI ONAL DESI GN AND ENTHALPY
"1 NTERCONTI NENTAL RELATI ONS

RTRIM removed both the double quotation marks and the periods from the right side of each
of these titles. The set of characters you want to remove can be as long as you want. Oracle will
check and recheck the right side of each title until every character in your string has been removed—
that is, until it runs into the first character in the string that is not in your set.

Combining Two Functions

Now what? You can use the LTRIM function to get rid of the quotes on the left. The Title column
is buried in the middle of the RTRIM function. In this section, you learn how to combine functions.
You know that when you ran the select statement

= select Title from MAGAZI NE;

the result you got back was the content of the Title column, as shown next:
' = THE BARBERS VWHO SHAVE THEMSELVES.

"HUNTI NG THOREAU | N NEW HAMPSHI RE"

THE ETHNI C NEI GHBORHOOD

RELATI ONAL DESI GN AND ENTHALPY

"| NTERCONTI NENTAL RELATI ONS. "

Remember that the purpose of

WU RTRIMTitle,'."")

is to take each of these strings and remove the quotes on the right side, effectively producing a
result that is a new column whose contents are shown here:

| THE BARBERS WHO SHAVE THEMSELVES
"HUNTI NG THOREAU | N NEW HAMPSHI RE
THE ETHNI C NEI GHBORHOOD

RELATI ONAL DESI GN AND ENTHALPY
"1 NTERCONTI NENTAL RELATI ONS

Therefore, if you pretend that RTRIM(Title,'."") is simply a column name itself, you can substitute
it for string in the following:

. LTRIMstring, ' set')
So you simply type your select statement to look like this:

ww oselect LTRRIMRTRIM Title,'.""), ") from MAGAZI NE;

131

132 Partll: SQL and SQL*Plus

Taking this apart for clarity, you see the following:

Column you’re trimming (the string)

T

A\

select LTRIMRTRIMTitle,'."), ") from MAGAZI NE
N— N——
[J

l—’ LTRIM function

Is this how you want it? And what is the result of this combined function?

THE BARBERS WHO SHAVE THEMSELVES
HUNTI NG THOREAU | N NEW HAMPSHI RE
THE ETHNI C NEI GHBORHOOD

RELATI ONAL DESI GN AND ENTHALPY

| NTERCONTI NENTAL RELATI ONS

Your titles are now cleaned up.

Looking at a combination of functions the first (or the thousandth) time can be confusing,
even for an experienced query user. It’s difficult to assess which commas and parentheses go with
which functions, particularly when a query you've written isn’t working correctly; discovering
where a comma is missing, or which parenthesis isn’t properly matched with another, can be a
real adventure.

One simple solution to this is to break functions onto separate lines, at least until they’re all
working the way you want. SQLPLUS doesn’t care at all where you break a SQL statement, as
long as it’s not in the middle of a word or a literal string. To better visualize how this RTRIM and
LTRIM combination works, you could type it like this:

" |select LTRM
RTRRMTitle,'."")

)
from MAGAZI NE;

This makes what you are trying to do obvious, and it will work even if it is typed on four separate lines
with lots of spaces. SQLPLUS simply ignores extra spaces.

Suppose now you decide to trim off THE from the front of two of the titles, as well as the space
that follows it (and, of course, the double quote you removed before). You might do this:

= select LTRRMRTRIMTitle,'.""), ' "THE ')
from MAGAZI NE;

which produces the following:
(0t LTRRMRTREM TITLE, " .""),"' "THE")

BARBERS WHO SHAVE THEMSELVES

Chapter 7: Getting Text Information and Changing It 133

UNTI NG THOREAU | N NEW HAMPSHI RE
NI C NEI GHBORHOOD

RELATI ONAL DESI GN AND ENTHALPY
| NTERCONTI NENTAL RELATI ONS

What happened? The second and third row got trimmed more than expected. Why? Because
LTRIM was busy looking for and trimming off anything that was a double quote, a T, an H, an E,
or a space. It was not looking for the word THE. It was looking for the letters in it, and LTRIM
didn’t quit the first time it saw any of the letters it was looking for. It quit when it saw a character
that wasn’t in its set.

What it trimmed: What is left behind:

THE BARBERS WHO SHAVE THEMSELVES
"H UNTI NG THOREAU | N NEW HAMPSHI RE
THE ETH NI C NEI GHBORHHOCD

RELATI ONAL DESI GN AND ENTHALPY
| NTERCONTI NENTAL RELATI ONS

A Y4
I—> NOT in the set "THE'

In the set ""THE'

In other words, all of the following and many other combinations of the letters will have the
same effect when used as the set of an LTRIM or RTRIM:

R ' " THE'
"HET"!
"E'TH
'H'TE
"ET"H

The order of the letters of the set has no effect on how the function works. Note, however, that
the case of the letters is important. Oracle will check the case of both the letters in the set and
in the string. It will remove only those with an exact match.

LTRIM and RTRIM are designed to remove any characters in a set from the left or right of a
string. They’re not intended to remove words. To do that requires clever use of INSTR, SUBSTR,
and even DECODE, which you will learn about in Chapter 16.

The previous example makes one point clear: It's better to make certain that data gets cleaned
up or edited before it is stored in the database. It would have been a lot less trouble if the individuals
typing these magazine article titles had simply avoided the use of quotes, periods, and the word THE.

Using the TRIM Function

The preceding example showed how to combine two functions—a useful skill when dealing with
string manipulation. If you are trimming the exact same data from both the beginning and the end
of the string, you can use the TRIM function in place of an LTRIM/RTRIM combination.

134 Partll: SQL and SQL*Plus

TRIM uses a unique syntax. The following example shows the use of the TRIM function with its
associated from clause within the function. In this example, the double quotes are removed from
the beginning and the end of the magazine article titles. Because the double quote is a character
string, it is placed inside two single quotes:

. select TRRM'"'" fromTitle) from MAGAZI NE;

TRIM """ FROMII TLE)

THE BARBERS WHO SHAVE THEMSELVES.
HUNTI NG THOREAU | N NEW HAMPSHI RE
THE ETHNI C NEI GHBORHOOD

RELATI ONAL DESI GN AND ENTHALPY

| NTERCONTI NENTAL RELATI ONS.

The quotes have been removed from the beginning and ending of the strings. If you just want to
trim one end of the strings, you could use the leading or trailing clause, as shown in the following

listing:
"= select TRRMleading '"' fromTitle) from MAGAZI NE;
select TRIMtrailing """ fromTitle) from MAGAZI NE;

Using leading makes TRIM act like LTRIM; trailing makes it act like RTRIM. The most powerful
use of TRIM is its ability to act on both ends of the string at once, thus simplifying the code you
have to write—provided the same characters are being removed from both ends of the string.

Adding One More Function

Suppose that you decide to RPAD your trimmed-up titles with dashes and carets, perhaps also
asking for a magazine name and page number. Your query would look like this:

= select Nane, RPAD(LTRIMRTRIMTitle,"'""),".""),47,'-""), Page
from MAGAZI NE;

NAVE RPAD(LTRIM RTRIM TITLE, ' "'),".""),47,'-~") PAGE

BERTRAND MONTHLY THE BARBERS WHO SHAVE THEMSELVES- /- A/-A-A-n 70
LI VE FREE OR DI E HUNTI NG THOREAU | N NEW HAMPSHI RE- A- /- A= Ao N 320

PSYCHOLOG CA THE ETHNI C NEI GHBORHOOD- A-A-A-AALALALALAL 246
FADED | SSUES RELATI ONAL DESI GN AND ENTHALPY-A-A-A-A_A A 279
ENTROPY W T | NTERCONTI NENTAL RELATI ONS-A-A-A-AALALALA 20

Each function has parentheses that enclose the column it is going to affect, so the real trick in
understanding combined functions in select statements is to read from the outside to the inside
on both the left and right, watching (and even counting) the pairs of parentheses.

LOWER, UPPER, and INITCAP

These three related and very simple functions often are used together. LOWER takes any string or
column and converts any letters in it to lowercase. UPPER does the opposite, converting any letters

Chapter 7: Getting Text Information and Changing It 135

to uppercase. INITCAP takes the initial letter of every word in a string or column and converts just
those letters to uppercase.
Here are the formats for these functions:

= LOVWER(string)
UPPER(st ri ng)
I NI TCAP(st ri ng)

Returning to the WEATHER table, recall that each city is stored in uppercase letters, like this:

o LIMA
PARI S
ATHENS
CHI CAGO
MANCHESTER
SYDNEY
SPARTA

Therefore,

= select Cty, UPPER(City), LONER(City), |N TCAP(LONER(City))
f r om WEATHER;

produces this:

oo Gty UPPER(CI TY) LOWER(CITY) | NI TCAP(LOW
LI MA LI MA lima Li na
PARI S PARI S paris Paris
MANCHESTER MANCHESTER manchester Manchester
ATHENS ATHENS at hens At hens
CHI CAGO CHI CAGO chi cago Chi cago
SYDNEY SYDNEY sydney Sydney
SPARTA SPARTA sparta Sparta

Look carefully at what is produced in each column, and at the functions that produced it in
the SQL statement. The fourth column shows how you can apply INITCAP to LOWER(City) and
have it appear with normal capitalization, even though it is stored as uppercase.

Another example is the Name column as stored in a MAGAZINE table:

BERTRAND MONTHLY
LI VE FREE OR DI E
PSYCHOLOG CA
FADED | SSUES
ENTROPY W T

136 Partll: SQL and SQL*Plus

This is then retrieved with the combined INITCAP and LOWER functions, as shown here:
"= select | NI TCAP(LONER(Nane)) from MAGAZI NE;

I NI TCAP(LONER(NA
Bertrand Monthly
Live Free O Die
Psychol ogi ca
Faded | ssues
Entropy Wt

And here it’s applied to the Name, cleaned-up Title, and Page columns (note that you'll also
rename the columns):

"= select | NI TCAP(LONER(Nane)) AS Nane,
I Nl TCAP(LONER(RTRIM LTRIM Title,"""),".""))) AS Title,
Page
from Magazi ne;

NAMVE TI TLE PACE
Bertrand Monthly The Barbers Wio Shave Thensel ves 70
Live Free O Die Hunting Thoreau In New Hanpshire 320
Psychol ogi ca The Et hni c Nei ghbor hood 246
Faded | ssues Rel ati onal Design And Ent hal py 279
Entropy Wt Intercontinental Relations 20
LENGTH

This one is easy. LENGTH tells you how long a string is—how many characters it has in it, including
letters, spaces, and anything else. Here is the format for LENGTH:

= LENGTH(string)
And here’s an example:

. select Nanme, LENGTH(Name) from MAGAZI NE;

NAVE LENGTH(NAME)
BERTRAND MONTHLY 16
LI VE FREE OR DI E 16
PSYCHOLOG CA 12
FADED | SSUES 12
ENTROPY W T 11

This isn’t normally useful by itself, but it can be used as part of another function, for calculating
how much space you'll need on a report, or as part of a where or an order by clause.

Chapter 7: Getting Text Information and Changing It 137

NOTE
You cannot perform functions such as LENGTH on a column that uses
a LONG datatype.

SUBSTR

You can use the SUBSTR function to clip out a piece of a string. Here is the format for SUBSTR:

. . SUBSTR(string,start [,count])

This tells SQL to clip out a subsection of string, beginning at position start and continuing for
count characters. If you don’t specify count, SUBSTR will clip beginning at start and continuing
to the end of the string. For example,

"= select SUBSTR(Nane, 6,4) from MAGAZI NE;
gives you this:

. SuBs

AND
FREE
OLOG
I SS
PY W

You can see how the function works. It clipped out the piece of the magazine name starting
in position 6 (counting from the left) and including a total of four characters.

A more practical use might be in separating out phone numbers from a personal address
book. For example, assume that you have an ADDRESS table that contains, among other things,
last names, first names, and phone numbers, as shown here:

. select LastNane, FirstNane, Phone from ADDRESS;

LASTNAME FI RSTNAVE PHONE

BAI LEY W LLI AM 213-555-0223
ADANMS JACK 415-555- 7530
SEP FELICI A 214-555- 8383
DE MEDI CI LEFTY 312-555-1166
DEM URGE FRANK 707-555- 8900
CASEY WLLIS 312-555-1414
ZACK JACK 415- 555- 6842
YARROW MARY 415-555-2178
WERSCHKY ARNY 415- 555- 7387
BRANT GLEN 415-555-7512
EDGAR THEODORE 415- 555- 6252
HARDI N HUGGY 617-555-0125

H LD PHI L 603- 555-2242

138 Partll: SQL and SQL*Plus

LOEBEL FRANK 202-555-1414
MOORE MARY 718-555-1638
SZEP FELI Cl A 214-555-8383
ZI MVERVAN FRED 503- 555-7491

Suppose you want just those phone numbers in the 415 area code. One solution would be
to have a separate column called AreaCode. Thoughtful planning about tables and columns will
eliminate a good deal of fooling around later with reformatting. However, in this instance, area
codes and phone numbers are combined in a single column, so a way must be found to separate
out the numbers in the 415 area code.

" = select LastNane, FirstNane, Phone from ADDRESS
where Phone |ike '415-% ;

LASTNAME FI RSTNAME PHONE

ADANS JACK 415- 555- 7530
ZACK JACK 415- 555- 6842
YARROW MARY 415- 555- 2178
WERSCHKY ARNY 415- 555- 7387
BRANT GLEN 415- 555- 7512
EDGAR THEODORE 415- 555- 6252

Next, because you do not want to dial your own area code when calling friends in the 415
area code, you can eliminate this from the result by using another SUBSTR:

" = select LastNane, FirstNanme, SUBSTR(Phone,5) from ADDRESS
where Phone |ike '415-%;

LASTNAME FI RSTNAVE SUBSTR(P
ADANMS JACK 555- 7530
ZACK JACK 555- 6842
YARROW MARY 555-2178
WERSCHKY ARNY 555- 7387
BRANT GLEN 555- 7512
EDGAR THEODORE 555- 6252

Notice that the default version of SUBSTR was used here. SUBSTR(Phone,5) tells SQL to clip
out the substring of the phone number, starting at position 5 and going to the end of the string.
Doing this eliminates the area code.

Of course,

7 SUBSTR(Phone, 5)
has exactly the same effect as the following:

%= SUBSTR(Phone, 5, 8)

Chapter 7: Getting Text Information and Changing It 139

You can combine this with the concatenation and column-renaming techniques discussed in
Chapter 6 to produce a quick listing of local friends’ phone numbers, as shown here:

. select LastNane ||', '|]|FirstNane AS Nane,
SUBSTR(Phone, 5) AS Phone
f rom ADDRESS
where Phone like '415-% ;

NAVE PHONE

ADAMS, JACK 555- 7530
ZACK, JACK 555- 6842
YARROW NMARY 555-2178
WERSCHKY, ARNY 555- 7387
BRANT, GLEN 555-7512
EDGAR, THEODORE 555- 6252

To produce a dotted line following the name, add the RPAD function:

"= select RPAD(LastNane ||', '||FirstNange, 25,'.") AS Nane,
SUBSTR(Phone, 5) AS Phone
f r om ADDRESS
where Phone |ike '415-%;

NANVE PHONE

ADAMS, JACK. 555- 7530
ZACK, JACK 555- 6842
YARROW MARY............. 555-2178
VERSCHKY, ARNY........... 555- 7387
BRANT, GLEN.............. 555-7512
EDGAR, THECDORE.......... 555- 6252

The use of negative numbers in the SUBSTR function also works. Normally, the position value
you specify for the starting position is relative to the start of the string. When you use a negative
number for the position value, it is relative to the end of the string. For example,

" = SUBSTR(Phone, -4)

would use the fourth position from the end of the Phone column’s value as its starting point. Because
no length parameter is specified in this example, the remainder of the string will be returned.

NOTE

Use this feature only for VARCHAR?2 datatype columns. Do not use it
with columns that use the CHAR datatype. CHAR columns are fixed-
length columns, so their values are padded with spaces to extend them
to the full length of the column. Using a negative number for the
SUBSTR position value in a CHAR column will determine the starting
position relative to the end of the column, not the end of the string.

140 Partll: SQL and SQL*Plus

The following example shows the result of a negative number in the SUBSTR function when it is
used on a VARCHAR2 column:

" = sel ect SUBSTR(Phone, -4)
f r om ADDRESS
where Phone like '415-5% ;

SUBS

7530
6842
2178
7387
7512
6252

The count value of the SUBSTR function must always be positive or unspecified. Using a negative
count will return a NULL result.

INSTR

The INSTR function allows for simple or sophisticated searching through a string for a set of
characters, not unlike LTRIM and RTRIM, except that INSTR doesn’t clip anything off. It simply
tells you where in the string it found what you were searching for. This is similar to the LIKE
logical operator described in Chapter 5, except that LIKE can only be used in a where or having
clause, and INSTR can be used anywhere except in the from clause. Of course, LIKE can be used
for complex pattern searches that would be quite difficult, if even possible, using INSTR. Here is
the format for INSTR:

=~ INSTR(string,set [,start [,occurrence] 1)

INSTR searches in the string for a certain set of characters. It has two options, one within the
other. The first option is the default: It will look for the set starting at position 1. If you specify the
location to start, it will skip over all the characters up to that point and begin its search there.

The second option is occurrence. A set of characters may occur more than once in a string,
and you may really be interested only in whether something occurs more than once. By default,
INSTR will look for the first occurrence of the set. By adding the option occurrence and making it
equal to 3, for example, you can force INSTR to skip over the first two occurrences of the set and
give the location of the third.

Some examples will make all this simpler to grasp. Recall the table of magazine articles. Here
is a list of their authors:

= select Author from MAGAZI NE;

BONHOEFFER, DI ETRI CH
CHESTERTON, G K.
RUTH, GEORGE HERVAN
VWHI TEHEAD, ALFRED
CROOKES, W LLI AM

Chapter 7: Getting Text Information and Changing It 141

To find the location of the first occurrence of the letter O, INSTR is used without its options and
with set as ‘O’ (note the single quotation marks, since this is a literal), as shown in the following
listing:

"= select Author, INSTR(Author,'O) from MAGAZI NE;

AUTHOR I NSTR(AUTHOR, ' O)
BONHOEFFER, DI ETRI CH 2
CHESTERTON, G K. 9
RUTH, GEORGE HERMVAN 9
0
3

VHI TEHEAD, ALFRED
CROOKES, W LLI AM

This is, of course, the same as the following:
[0 = select Author, INSTR(Author,'O,1,1) from MAGAZI NE;
If INSTR had looked for the second occurrence of the letter O, it would have found
[= select Author, INSTR(Author,'O,1,2) from MAGAZI NE;
AUTHOR I NSTR(AUTHOR, ' O , 1, 2)

BONHCEFFER, DI ETRI CH 5
CHESTERTON, G K. 0
RUTH, GEORGE HERVAN 0
0
4

WH TEHEAD, ALFRED
CROOKES, W LLI AM

INSTR found the second O in Bonhoeffer's name, at position 5, and in Crookes’ name,
at position 4. Chesterton has only one O, so for him, Ruth, and Whitehead, the result is zero,
meaning no success—no second O was found.

To tell INSTR to look for the second occurrence, you also must tell it where to start looking
(in this case, position 1). The default value of startis 1, which means that’s what it uses if you
don’t specify anything, but the occurrence option requires a start, so you have to specify both.

If set is not just one character but several, INSTR gives the location of the first letter of the
set, as shown here:

. select Author, INSTR(Author,' WLLIAM) from MAGAZI NE;

AUTHOR | NSTR(AUTHOR, " W LLI AM)

BONHOEFFER, DI ETRI CH 0
CHESTERTON, G K. 0
RUTH, GEORCGE HERVAN 0
VWHI TEHEAD, ALFRED 0
CROOKES, W LLIAM 10

142 Partll: SQL and SQL*Plus

This has many useful applications, such as in the MAGAZINE table, for instance:

"= select Author, INSTR(Author,',"') from MAGAZI NE;

AUTHOR | NSTR(AUTHOR, ' , ")
BONHOEFFER, DI ETRI CH 11
CHESTERTON, G K. 11
RUTH, GEORGE HERVAN 5
WHI TEHEAD, ALFRED 10
CROOKES, W LLI AM 8

Here, INSTR searched the strings of author names for a comma and then reported back the position
in each string where it found one.

Suppose you want to reformat the names of the authors from the formal “last name/comma/
first name” approach, and present them as they are normally spoken, as shown here:

BONHOEFFER, DI ETRI CH

DI ETRI CH BONHOEFFER

To do this using INSTR and SUBSTR, find the location of the comma, and use this location
to tell SUBSTR where to clip. Taking this step by step, you must first find the comma as we did
in the preceding listing.

Two SUBSTRs will be needed—one that clips out the author’s last name up to the position
before the comma, and one that clips out the author’s first name from two positions after the comma
through to the end.

First, look at the one that clips from position 1 to just before the comma:

"= select Author, SUBSTR(Author, 1, | NSTR(Author,',"')-1)
from MAGAZI NE;

AUTHOR SUBSTR(AUTHOR, 1, | NSTR(AUT
BONHOEFFER, DI ETRI CH BONHOEFFER

CHESTERTON, G K. CHESTERTON

RUTH, GEORGE HERVAN RUTH

VWHI TEHEAD, ALFRED V\HI TEHEAD

CROOKES, W LLI AM CROOKES

Next, look at the one that clips from two positions past the comma to the end of the string:

. select Author, SUBSTR(Author,|NSTR(Author,",")+2) from MAGAZI NE;

Chapter 7: Getting Text Information and Changing It 143

AUTHOR SUBSTR(AUTHOR, | NSTR(AUTHO
BONHOEFFER, DI ETRI CH Dl ETRI CH

CHESTERTON, G K. G K.

RUTH, GEORGE HERVAN GEORCGE HERVAN

VWHI TEHEAD, ALFRED ALFRED

CROOKES, W LLI AM W LLI AM

Look at the combination of these two, with the concatenate function putting a space between
them, and a quick renaming of the column to ByFirstName:

"= colum ByFirstNanme heading "By First Nanme"

sel ect Aut hor, SUBSTR(Author, | NSTR(Aut hor,',"')+2)
["
SUBSTR(Aut hor, 1, | NSTR(Aut hor, ' ,")-1)
AS ByFi r st Nane
from MAGAZI NE;

AUTHOR By First Nane
BONHCEFFER, DI ETRI CH DI ETRI CH BONHCEFFER
CHESTERTON, G K. G K. CHESTERTON
RUTH, GEORGE HERVAN GEORGE HERMAN RUTH
VWHI TEHEAD, ALFRED ALFRED WHI TEHEAD
CROCKES, W LLI AM W LLI AM CROOKES

It is daunting to look at a SQL statement like this one, but it was built using simple logic, and

it can be broken down the same way. Bonhoeffer can provide the example. The first part looks
like this:

" = | SUBSTR(Aut hor, I NSTR(Aut hor, ', ") +2)

This tells SQL to get the SUBSTR of Author starting two positions to the right of the comma and
going to the end. This will clip out DIETRICH—the author’s first name.
The beginning of the author’s first name is found by locating the comma at the end of his last
name (INSTR does this) and then sliding over two steps to the right (where his first name begins).
The following illustration shows how the INSTR function (plus 2) serves as the start for the

SUBSTR function:
SUBSTR(Aut hor, I NSTR(Aut hor, ', ") +2)
\ /7
Find the <4 Add 2 to il:to
location of move tQ the
the comma beginning of the

author’s first name

BONHOEFFER, DI ETRI CH

144 Partll: SQL and SQL*Plus

Here is the second part of the combined statement:
Emm=]

This, of course, simply tells SQL to concatenate a space in the middle.
Here is the third part of the combined statement:

" = | SUBSTR(Aut hor, 1, I NSTR(Aut hor,"',")-1)

This tells SQL to clip out the portion of the author’s name starting at position 1 and ending one
position before the comma, which results in the author’s last name:

SUBSTR(Aut hor, 1, I NSTR(Aut hor, ', ") -1)
N 7

j N7

<4 Subtract 1 from it to
move to the end of
the author’s last name

BONHOEFFER! DI ETRI CH

The fourth part simply assigns a column alias:
@ 0 AS ByFi r st Nane

It was only possible to accomplish this transposition because each Author record in the
MAGAZINE table followed the same formatting conventions. In each record, the last name was
always the first word in the string and was immediately followed by a comma. This allowed you
to use the INSTR function to search for the comma. Once the comma’s position was known, you
could determine which part of the string was the last name, and the rest of the string was treated
as the first name.

This is not often the case. Names are difficult to force into standard formats. Last names may
include prefixes (such as von in von Hagel) or suffixes (such as Jr., Sr., and Ill). Using the previous
example’s SQL, the name Richards, Jr., Bob would have been transformed into Jr., Bob Richards.

Because of the lack of a standard formatting for names, many applications store the first and
last names separately. Titles (such as MD) are usually stored in yet another column. A second
option when storing such data is to force it into a single format and use SUBSTR and INSTR to
manipulate that data when needed.

ASCII and CHR

The ASCII and CHR functions are seldom used during ad hoc queries. CHR converts numeric
values to their ASCII character string equivalents:

= select CHR(70)||CHR(83)|| CHR(79)|| CHR(85) || CHR(71)
as ChrVal ues
from DUAL;

Chapter 7: Getting Text Information and Changing It 145

Oracle translated CHR(70) to an F, CHR(83) to an S, and so on, based on the database’s
character set.

The ASCII function performs the reverse operation—but if you pass it a string, only the first
character of the string will be acted upon:

"= select ASCII('FSQUG) from DUAL;
ASCl | (" FSQUG)

To see each ASCII value, you will need to evaluate each of the letters via separate executions of
the ASCII function.

Using order by and where with String Functions
String functions can be used in a where clause, as shown here:

= select Cty
from WEATHER
where LENGTH(City) < 7;

They can also be used in an order by clause, as shown here:

.~ select Cty
from WEATHER
order by LENGTH(Gity);

MANCHESTER

146 Partll: SQL and SQL*Plus

These are simple examples; much more complex clauses could be used. For example, you could
find all the authors with more than one O in their names by using INSTR in the where clause:

= select Author from MAGAZI NE
where | NSTR(Author,' O ,1,2) > 0;

BONHOEFFER, DI ETRI CH
CROOKES, W LLIAM

This works by finding a second occurrence of the letter O in the author names. The > 0 is a
logical technique: Recall that functions generally produce two different kinds of results—one that
creates new objects, and the other that tells you something about existing objects.

The INSTR function tells something about a string, specifically the position of the set it has
been asked to find. Here, it is asked to locate the second O in the Author string. Its result will be
a number that's greater than zero for those names with at least two O’s, and zero for those with
one or less (when INSTR doesn’t find something, its result is a zero). So, a simple test for a result
greater than zero checks for the success of the INSTR search for a second O.

The where clause using INSTR produces the same result as this:

" = where Author LIKE " %%%

Remember that the percent sign (%) is a wildcard, meaning it takes the place of anything,
so the like clause here tells SQL to look for two O’s with anything before, between, or after them.
This is probably easier to understand than the previous example of INSTR.

There are often several ways to produce the same result in Oracle. Some will be easier to
understand, some will work more quickly, some will be more appropriate in certain situations,
and some simply will be a matter of personal style.

SOUNDEX

One string function is used almost exclusively in a where clause: SOUNDEX. It has the unusual
ability to find words that sound like other words, virtually regardless of how either is spelled. This
is especially useful when you're not certain how a word or name is really spelled. Here is the format
for SOUNDEX:

| SOUNDEX(string)
And here are a few of examples of its use:

"= select Cty, Tenperature, Condition from WEATHER
where SOUNDEX(City) = SOUNDEX('menncestr');

aTy TEMPERATURE CONDI TI ON

MANCHESTER 66 FOG

Chapter 7: Getting Text Information and Changing It

sel ect Author from MAGAZI NE
wher e SOUNDEX(Aut hor) = SOUNDEX(' Banheffer');

BONHOEFFER, DI ETRI CH

SOUNDEX compares the sound of the entry in the selected column with the sound of the word
in single quotation marks, and it looks for a close match. SOUNDEX makes certain assumptions
about how letters and combinations of letters are usually pronounced in English, and the two words
being compared must begin with the same letter. SOUNDEX will not always find the word you're

searching for or have misspelled, but it can help.

It is not necessary that one of the two SOUNDEXs in the where clause have a literal in it.
SOUNDEX could be used to compare the data in two columns to find those that sound alike.

One useful purpose for this function is cleaning up mailing lists. Many lists have duplicate
entries with slight differences in the spelling or format of the customers’ names. By using SOUNDEX
to list all the names that sound alike, many of these duplicates can be discovered and eliminated.

Let’s apply this to the ADDRESS table:

= select LastNane, FirstNane, Phone
f r om ADDRESS;

LASTNAMVE FI RSTNAMVE
BAI LEY W LLI AM
ADANMS JACK

SEP FELI Cl A
DE MEDI Cl LEFTY
DEM URGE FRANK
CASEY WLLIS
ZACK JACK
YARROW MARY
WERSCHKY ARNY
BRANT GLEN
EDGAR THECDORE
HARDI N HUGGY

HI LD PHI L
LOEBEL FRANK
MOORE MARY
SZEP FELI CI A
ZI MVERVAN FRED

To find duplicates, you must force Oracle to compare each last name in the table to all the

others in the same table.

Join the ADDRESS table to itself by creating an alias for the table, calling it first a and then b.

213-555-0223
415- 555- 7530
214-555- 8383
312-555-1166
707-555- 8900
312-555-1414
415- 555- 6842
415- 555-2178
415- 555- 7387
415- 555- 7512
415- 555- 6252
617-555-0125
603- 555- 2242
202-555- 1414
718-555-1638
214-555- 8383
503- 555- 7491

Now it is as if there are two tables, a and b, with the common column LastName.

147

148 Partll: SQL and SQL*Plus

In the where clause, eliminate any row in which the last name in the result set from table a
matches the last name in the result set from table b. This prevents a last name from matching to
itself.

Those that sound alike are then selected:

"= select a.lLastNane, a.FirstNane, a.Phone
from ADDRESS a, ADDRESS b
where a. Last Nane != b. Last Nane
and SOUNDEX(a. Last Nane) = SOUNDEX(b. Last Nane) ;

LASTNAMVE FI RSTNAMVE PHONE
SZEP FELI CI A 214-555- 8383
SEP FELI CI A 214-555- 8383

You can also perform SOUNDEX searches on individual words within a text entry. For examples
of this and other complex text searches, see Chapter 25.

National Language SUppOI‘t

Oracle doesn’t have to use English characters; it can represent data in any language through its
implementation of National Language Support. By using characters made up of longer pieces of
information than ordinary characters, Oracle can represent Japanese and other such strings. See
NLSSORT, NLS_INITCAP, NLS_LOWER, and NLS_UPPER in the Alphabetical Reference section
of this book. In addition to the SUBSTR function, Oracle supports SUBSTRB (using bytes instead of
characters), SUBSTRC (using Unicode complete characters), SUBSTR2 (using UCS2 codepoints),
and SUBSTR4 (using UCS4 codepoints).

Regular Expression Support

As of Oracle Database 10g, the string functions INSTR, REPLACE, and SUBSTR have been extended
to support regular expressions. Chapter 8 is devoted to the coverage of these advanced text-search
features.

Review

Data comes in several types, primarily DATE, NUMBER, and character. Character data is basically
a string of letters, numbers, or other symbols, and is often called a character string, or just a string.
These strings can be changed or described by string functions. Oracle features two types of
character datatypes: variable-length strings (the VARCHAR?2 datatype) and fixed-length strings
(the CHAR datatype). Values in CHAR columns are padded with spaces to the full column length
if they are shorter than the defined length of the column.

Functions such as RPAD, LPAD, LTRIM, RTRIM, TRIM, LOWER, UPPER, INITCAP, and SUBSTR
actually change the contents of a string before displaying it to you.

Functions such as LENGTH, INSTR, and SOUNDEX describe the characteristics of a string,
such as how long it is, where in it a certain character is located, or what it sounds like.

All these functions can be used alone or in combination to select and present information from
an Oracle database. This is a straightforward process, built up from simple logical steps that can
be combined to accomplish very sophisticated tasks.

CHAPTER
3

Searching for
Regular Expressions

150 Partll: SQL and SQL*Plus

v i expressions support a wide array of standardized controls and checks—for example
= matching values a specific number of times, searches for punctuation characters,
or searches for digits. You can use these new functions to perform advanced searches
agamst strings. The new functions are named REGEXP_SUBSTR, REGEXP_INSTR, REGEXP_LIKE,
and REGEXP_REPLACE.
Users who have previously used the UNIX grep command to search for regular expressions
in text files may already be familiar with the concepts and search techniques involved.

Search Strings

Let’s start with an example. Phone numbers in the ADDRESS table are in the format 123-456-7890.
To select all the exchanges (the middle set of numbers), you can select for any string within the phone
number that starts and ends with a hyphen (-) character.

Within the REGEXP_SUBSTR function, we need to tell Oracle where to start the string. In this
case, we are looking for '-'. The regular expression to search for begins thus:

= select REGEXP_SUBSTR(' 123-456-7890', '-

We now need to tell Oracle to continue until it finds another '-' character in the string. To do
this, use the '[*' operator, a bracket expression that says that the acceptable values match any
character except for the expressions represented in the list. The command now looks like this:

"= select REGEXP_SUBSTR(' 123-456-7890', '-["-1+")
" REGEXP_SUBSTR"
from DUAL;
REGE
- 456

This command tells Oracle to look for '-!, followed by one or more characters that are not '-',

followed by '-'. Note that if you add an extra '-' at the end of the regular expression, you get the
trailing '-' as part of the returned string:
ww sel ect REGEXP_SUBSTR(' 123-456- 7890, '-[A-]+"')
" REGEXP_SUBSTR"'
from DUAL;
REGEX

Chapter 8: Searching for Regular Expressions 1571

Most users (and developers) are not going to be comfortable typing in strings such as
e [A-] +

without training and practice. But as you use the REGEXP_ functions, you can quickly see
how much more functionality they give you. Consider that to generate the same result as the
preceding using only SUBSTR and INSTR, and assuming that the length of the string between
the '-' characters is not known, you would need to execute this query:

= select SUBSTR('123-456-7890',

| NSTR(' 123- 456-7890", '-',1,1),
I NSTR(' 123-456-7890", '-',1,2)-
| NSTR(' 123- 456-7890", '-',1,1))

from DUAL;

By comparison, the REGEXP_SUBSTR function is much more concise. As you will see in the
examples later in this chapter, the regular expression searches enable you to encode complex
search patterns within a single function call.

Table 8-1 shows the regular expression operators and their descriptions. Understanding the
operators involved is critical for effective use of the regular expression search capabilities.

Let’s apply some of these operators and character classes, starting with a simple search. First,
select all the strings in the sample string that contain a colon:

sel ect REGEXP_SUBSTR
(' MY LEDGER: Debits, Credits, and Invoices 1940',
) " REGEXP_SUBSTR"
from DUAL;

Now, replace that search with a search for a punctuation character, using the [:punct:]
character class:

sel ect REGEXP_SUBSTR
(" MY LEDCER: Debits, Credits, and |nvoices 1940',
"[:punct:]") " REGEXP_SUBSTR'
from DUAL;

152 Partll: SQL and SQL*Plus

Operator Description

\ ¢ The backslash character can have four different meanings, depending on the context.
It can stand for itself, quote the next character, introduce an operator, or do nothing.

* Matches zero or more occurrences.

+ Matches one or more occurrences.

? Matches zero or one occurrence.

| Alternation operator for specifying alternative matches.

AP Matches the beginning-of-line character.

$° Matches the end-of-line character.

Matches any character in the supported character set except NULL.

[1° Bracket expression for specifying a matching list that should match any one of the
expressions represented in the list. A nonmatching list expression begins with a
caret () and specifies a list that matches any character except for the expressions
represented in the list.

() Grouping expression, treated as a single subexpression.

{m} Matches exactly m times.

{m,} Matches at least m times.

{m,n} Matches at least m times but no more than n times.

\n ¢ The backreference expression (n is a digit between 1 and 9) matches the nth

subexpression enclosed between parentheses and preceding \n.

L' Specifies one collation element and can be a multicharacter element (for example,
[.ch.] in Spanish).

[::°® Specifies character classes (for example, [:alpha:]). It matches any character within
the character class.

[== Specifies equivalence classes. For example, [=a=] matches all characters having
base letter 'a'.

Notes on the POSIX operators and Oracle enhancements:

a. The backslash operator can be used to make the character following it normal if it is an operator. For example, '*' is
interpreted as the asterisk string literal.

b. The characters 'A" and '$' are the POSIX anchoring operators. By default, they match only the beginning or end of an entire
string. Oracle lets you specify 'A' and '$' to match the start or end of any line anywhere within the source string. This, in turn,
lets you treat the source string as multiple lines.

c. In the POSIX standard, the “match any character” operator (.) is defined to match any English character except NULL and
the newline character. In the Oracle implementation, the '." operator can match any character in the database character set,
including the newline character.

TABLE 8-1. Regular Expression Operators

Chapter 8: Searching for Regular Expressions

d. In the POSIX standard, a range in a regular expression includes all collation elements between the start and end points of the
range in the linguistic definition of the current locale. Therefore, ranges in regular expressions are linguistic ranges rather than byte
values ranges, and the semantics of the range expression are independent of character set. Oracle implements this independence
by interpreting range expressions according to the linguistic definition determined by the NLS_SORT initialization parameter.

e. The backreference expression '\n' matches the same string of characters as was matched by the nth subexpression. The
character n must be a digit from 1 to 9, designating the nth subexpression, numbered from left to right. The expression is invalid
if the source string contains fewer than n subexpressions preceding the \n. For example, the regular expression A(.*)\1$ matches
a line consisting of two adjacent appearances of the same string. Oracle supports the backreference expression in the regular
expression pattern and the replacement string of the REGEXP_REPLACE function.

f. A collating element is a unit of collation and is equal to one character in most cases, but may comprise two or more
characters in some languages. Historically, regular expression syntax does not support ranges containing multicharacter
collation elements, such as the range 'a' through 'ch'. The POSIX standard introduces the collation element delimiter '[..]",
which lets you delimit multicharacter collection elements such as '[a-[.ch.]]". The collation elements supported by Oracle are
determined by the setting of the NLS_SORT initialization parameter. The collation element is valid only inside the bracketed
expression.

g. In English regular expressions, range expressions often indicate a character class. For example, '[a-z]' indicates any lowercase
character. This convention is not useful in multilingual environments where the first and last character of a given character class

may not be the same in all languages. The POSIX standard introduces the portable character class syntax '[::]".

In addition to the operators, Oracle supports the following character classes based on character class definitions in NLS
classification data:

Character Class Syntax Meaning

[:alnum:] All alphanumeric characters
[:alpha:] All alphabetic characters

[:blank:] All blank space characters

[:entrl:] All control characters (nonprinting)
[:digit:] All numeric digits

[:graph:] All [:punct:], [:upper:], [:lower:], and [:digit:] characters
[:lower:] All lowercase alphabetic characters
[:print:] All printable characters

[:punct:] All punctuation characters

[:space:] All space characters (nonprinting)
[:upper:] All uppercase alphabetic characters
[:xdigit:] All valid hexadecimal characters

This character class syntax lets you make better use of NLS character definitions to write flexible regular expressions.
These character classes are valid only inside the bracketed expression.

h. Oracle supports the equivalence classes through the POSIX '[==]" syntax. A base letter and all of its accented versions
constitute an equivalence class. For example, the equivalence class '[=a=]' matches & and 4. The equivalence classes are
valid only inside the bracketed expression.

Note this restriction on equivalence classes: Composed and decomposed versions of the same equivalence class do not
match. For example, 'd"' does not match 'a' followed by umlaut.

TABLE 8-1. Regular Expression Operators (continued)

153

154 Partll: SQL and SQL*Plus

Beginning from that point in the string, search from there to the next comma encountered:

sel ect REGEXP_SUBSTR
(' MY LEDGER: Debits, Credits, and Invoices 1940',
"[:punct:][~,]+ ') "REGEXP_SUBSTR'
from DUAL;

You can use the [:digit:] character class to find the numbers in the string:

sel ect REGEXP_SUBSTR
(' MYy LEDGER: Debits, Credits, and Invoices 1940',
"[[:digit:]]+) "REGEXP_SUBSTR'
from DUAL;

REGE

1940

As shown in this example, you can use the character classes to consolidate searches for
multiple values. When you’re working with search strings—particularly if you do not have prior
experience with regular expressions—begin with the simplest version possible and then increase
in complexity.

REGEXP_SUBSTR

The REGEXP_SUBSTR function, as shown in the preceding examples, uses regular expressions to
specify the beginning and ending points of the returned string. The syntax for REGEXP_SUBSTR is
shown in the following listing. REGEXP_SUBSTR returns the string as VARCHAR2 or CLOB data
in the same character set as the source_string.

REGEXP_SUBSTR(source_string, pattern
[, position
[, occurrence
[, match_paraneter |
]
]
)

The examples thus far in this chapter have focused on the pattern variable—the regular
expression. The regular expression can contain up to 512 bytes. As shown in the syntax, you can
also specify parameters related to the position, occurrence, and match_parameter conditions.

The position variable tells REGEXP_SUBSTR where to start searching within the source_string.
The default position value is 1 (the first character). The occurrence variable is an integer indicating
which occurrence of pattern in source_string Oracle should search for. The default occurrence
value is 1. The position and occurrence variables are not available in the standard SUBSTR function—

Chapter 8: Searching for Regular Expressions

they allow you to combine the capabilities of SUBSTR with INSTR while also supporting regular
expression searches. These represent significant extensions to the standard SUBSTR functionality.

You can use the match_parameter variable to further customize the search. match_parameter
is a text literal that lets you change the default matching behavior of the function. Its possible values
are as follows:

m 'i' Used for case-insensitive matching.

B 'c' Used for case-sensitive matching.

m 'n' Allows the period (.), which is a wildcard (see Table 8-1), to match the newline
character. If you omit this parameter, the period does not match the newline character.

B 'm' Treats the source string as multiple lines. Oracle interprets ~ and $ as the start and
end, respectively, of any line anywhere in the source string, rather than only at the start
or end of the entire source string. If you omit this parameter, Oracle treats the source
string as a single line.

If you specify multiple contradictory values for match_parameter, Oracle uses the last value.
For example, if you specify 'ic', Oracle will use case-sensitive matching. If you specify a character
other than those shown here, Oracle will return an error.

If you omit match_parameter, the following happen:

B The default case sensitivity is determined by the value of the NLS_SORT parameter.

m A period (.) does not match the newline character.

m The source string is treated as a single line.

Here is the REGEXP_SUBSTR search performed with case-insensitive matching:

sel ect REGEXP_SUBSTR
(" MY LEDCER: Debits, Credits, and |nvoices 1940',

my' 1,1, tiY) " REGEXP_SUBSTR'
from DUAL;
RE
MY

Now, change that to perform a case-sensitive search:

sel ect RECGEXP_SUBSTR
(' MY LEDGER: Debits, Credits, and Invoices 1940',
‘ny' ,1,1,'c') " REGEXP_SUBSTR'
from DUAL;

RE

Nothing is returned due to the case mismatch. By default, searches are case sensitive.

155

156 Partll: SQL and SQL*Plus

You can use the pattern and occurrence parameters the same as you use them in INSTR.
In the following example, the second digit is returned:

sel ect REGEXP_SUBSTR
(' MY LEDGER: Debits, Credits, and Invoices 1940',
"[[:digit:]]" ,1,2) " REGEXP_SUBSTR'
from DUAL;

Writing the same query using SUBSTR and INSTR (and assuming the two digits may not be
consecutive) would be much more complex.

REGEXP_INSTR

The REGEXP_INSTR function uses regular expressions to return the beginning or ending point
of the search pattern. The syntax for REGEXP_INSTR is shown in the following listing. REGEXP_
INSTR returns an integer indicating the position of the beginning or ending of the search pattern,
or a 0 if no match is found.

REGEXP_I NSTR (source_string, pattern
[, position
[, occurrence
[, return_option
[, nmatch_paraneter]

]

]
)

The REGEXP_SUBSTR function, shown in the preceding section, performs some of the capabilities
normally associated with INSTR. REGEXP_INSTR adds a unique feature that makes it an important
addition to your SQL toolset. Like REGEXP_SUBSTR, it has the variables pattern, position (starting
position), occurrence, and match_parameter; see the prior section for a description of those variables.
The new capability introduced here, return_option, allows you to tell Oracle what to return in relation
to the occurrence of the pattern:

m [f return_option is 0, Oracle returns the position of the first character of the occurrence.
This is the default, and it’s the same as the behavior of INSTR.

m If return_option is 1, Oracle returns the position of the character following the
occurrence.

For example, the following query returns the location of the first digit found in the string:

sel ect REGEXP_I NSTR
(' MYy LEDGER: Debits, Credits, and Invoices 1940',

Chapter 8: Searching for Regular Expressions

"[l:digit:]]1") " REGEXP_I NSTR'
from DUAL;

REGEXP_I NSTR

What is the next position after that string?

sel ect REGEXP_I NSTR
(" My LEDGER Debits, Credits, and Invoices 1940',
"[[:digit:]]",1,1,1) "REGEXP_I NSTR'
from DUAL;

REGEXP_| NSTR

Even for searches that do not have complex patterns, you may decide to use REGEXP_INSTR
in place of INSTR in order to simplify the math and logic involved in your queries that combine
INSTR and SUBSTR capabilities. Be sure to carefully consider the case-sensitivity settings you
specify via the match_parameter setting.

REGEXP_LIKE

In addition to the regular expression functions shown in previous listings, you can use the
REGEXP_LIKE function. REGEXP_LIKE supports the use of regular expressions within where
clauses. For example, which phone numbers start with '415'2

sel ect Last Nane
f r om ADDRESS
where REGEXP_LI KE (Phone, ' 415+');

YARROW
WERSCHKY
BRANT
EDGAR

The format for REGEXP_LIKE is

REGEXP_LI KE(source_string, pattern
[mat ch_par aneter]

)

157

158 Partll: SQL and SQL*Plus

Within the pattern, you can use all the search features shown earlier in this chapter—including
the character class definitions—as part of a REGEXP_LIKE search. This capability makes it simple to
perform very complex searches.

For example, how can you tell if a column value contains a numeric digit?

sel ect Last Name
f r om ADDRESS
where REGEXP_LIKE (Phone, '[[:digit:]]");

If a TO_NUMBER function fails because a punctuation mark is found in the value, you can
display the rows that caused it to fail:

sel ect Last Name
f r om ADDRESS
where REGEXP_LI KE (Phone, '[[:punct:]]");

REPLACE and REGEXP_REPLACE

The REPLACE function replaces one value in a string with another. For example, you can replace
each occurrence of a letter with a matching number. The format for REPLACE is

REPLACE (char, search_string [, replace_string])

If you do not specify a value for the replace_string variable, the search_string value, when found,
is removed. The input can be any of the character datatypes—CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. Here’s an example:

EGOREG
OoR

REPLACE(' GEORGE', 'GE', 'EG)
REPLACE(' GEORGE', 'GE', NULL)

If the length of the search string is nonzero, you can tell how many times a string was found
in the search string. First, you calculate the original string length:

LENGTH(' GEORGE')
Then you calculate the length of the string after the search string values are removed:
LENGTH(REPLACE(' GEORGE' , ' GE', NULL))

Then you divide the difference by the length of the search string to find out how many
occurrences of the search string were replaced:

sel ect LENGTH(' GEORGE')
- LENGTH(REPLACE(' GEORGE', 'GE', NULL))
/
LENGTH(' GE') AS Counter

from DUAL;

Chapter 8: Searching for Regular Expressions 159

The REGEXP_REPLACE function extends the capabilities of the REPLACE function in several
ways. It supports the use of regular expressions in the search pattern, and it also supports the
variables described earlier in this chapter—position, occurrence, and match_parameter. You can
thus choose to replace only certain matched values, or make the matching case insensitive. The
syntax for the REGEXP_REPLACE function is shown in the following listing:

REGEXP_REPLACE(source_string, pattern
[, replace_string
[, position
[, occurrence
[, match_paraneter |

]

]
)

With the exception of replace_string, all these variables have been described in the earlier
parts of this chapter. The replace_string variable tells Oracle what to use to replace the part of
the source_string that matched the pattern. The occurrence variable is a nonnegative integer that
specifies the occurrence of the operation: If it is 0, all occurrences of the match are replaced; if
you specify a positive integer, Oracle replaces the nth occurrence.

Let’s consider the Phone column of the ADDRESS table. First, we will look for numbers that
are in the format ###-###-####. In that format, there are three digits followed by another set of
three digits and then a set of four digits, separated by '-' characters. We can find the rows that
match that criteria by looking for those sets of digits within a REGEXP_SUBSTR function call:

sel ect REGEXP_SUBSTR (Phone,
C([lrdigit:]1{3})-([[:digit:]]{3})-([[:digit:]]{4})"
) " REGEXP_SUBSTR"
f r om ADDRESS;

REGEXP_SUBST
213- 555- 0223
415- 555- 7530
214- 555- 8383
312- 555- 1166
707- 555- 8900
312- 555- 1414
415- 555- 6842
415-555- 2178
415- 555- 7387
415- 555- 7512
415- 555- 6252

160 Partll: SQL and SQL*Plus

617-555-0125
603- 555-2242
202-555-1414
718-555-1638
214-555- 8383
503- 555- 7491

Now, use REGEXP_REPLACE to put parentheses around the first three digits while leaving out
the first '-' character found. To do this, we will refer to that first set of data as \1, the second as \2,
and the third as \3.

sel ect REGEXP_REPLACE (Phone,
C(LLrdigit:]1{3})-([[:digit:]1{3})-([[:digit:]]{4})"
, (V1) \2-\ 3
) " REGEXP_REPLACE"
f r om ADDRESS;

REGEXP_REPLACE
(213) 555-0223
(415) 555- 7530
(214) 555-8383
(312) 555-1166
(707) 555- 8900
(312) 555-1414
(415) 555- 6842
(415) 555-2178
(415) 555-7387
(415) 555-7512
(415) 555- 6252
(617) 555-0125
(603) 555-2242
(202) 555-1414
(718) 555-1638
(214) 555-8383
(503) 555- 7491

The output shows the result of the REGEXP_REPLACE function call—the area codes are enclosed
within parentheses and the first '-' has been eliminated.

To show how the occurrence variable works, the following REGEXP_REPLACE function call
replaces with a period the second '5' found in a phone number:

sel ect REGEXP_REPLACE (Phone,
1, 2
) " REGEXP_REPLACE"
f rom ADDRESS,;

Chapter 8: Searching for Regular Expressions 161

REGEXP_REPLACE
213-5.5-0223
415-.55-7530
214-5.5-8383
312-5.5-1166
707-5.5-8900
312-5.5-1414
415-. 55-6842
415-.55-2178
415-.55-7387
415-.55-7512
415-. 55- 6252
617-5.5-0125
603-5.5-2242
202-5.5-1414
718-5.5-1638
214-5.5-8383
503-.55-7491

You can modify that query further to exclude the first three digits as possible matches (set the
starting position to 4) and replace the fourth occurrence instead:

sel ect REGEXP_REPLACE (Phone,
4, 4
) " REGEXP_REPLACE"
f r om ADDRESS;

REGEXP_REPLACE
213-555-0223
415-555-7. 30
214-555- 8383
312-555-1166
707-555- 8900
312-555- 1414
415- 555- 6842
415- 555- 2178
415- 555- 7387
415-555-7.12
415-555-62. 2
617-555-012.
603- 555- 2242
202-555-1414
718-555-1638
214-555- 8383
503- 555-7491

162 Partll: SQL and SQL*Plus

You can limit the rows returned by using REGEXP_INSTR in a where clause. In this case, only
those rows that have at least four instances of '5' in them (beginning at the fourth character) will
be displayed. Because this search pattern is not complex, you could use INSTR here instead:

sel ect REGEXP_REPLACE (Phone,
4, 4
) " REGEXP_REPLACE"
f r om ADDRESS
wher e REGEXP_|I NSTR(Phone, '5',4,4) > 0;

REGEXP_REPLACE
415-555-7. 30
415-555-7.12
415-555-62. 2
617-555-012.

You can use the ability to search for alternate values to combine multiple search criteria in
a single query. The following replaces either a 5 or a 2; occurrences of both '5' and '2' count
toward the occurrence count:

sel ect REGEXP_REPLACE (Phone,
(512,
4, 4
) " REGEXP_REPLACE"
f r om ADDRESS
wher e REGEXP_I NSTR(Phone, '(5]2)',4,4) > 0;

REGEXP_REPLACE
213-555-0. 23
415-555-7. 30
415- 555- 684.
415-555-.178
415-555-7.12
415-555-6. 52
617-555-01.5
603- 555-. 242

The 'l' character shown in this example is an alternation operator, so matches of either of the
values specified will return a row. See Table 8-1 for additional operators supported within your
regular expressions.

Your use of the REGEXP_SUBSTR, REGEXP_INSTR, REGEXP_LIKE, and REGEXP_REPLACE
functions is limited only by your ability to develop regular expressions that reflect your needs.

As shown in the examples in this chapter, you can use these functions to modify the display of
existing data, to find complex patterns, and to return strings within patterns.

CHAPTER

9

Playing the Numbers

164 Partll: SQL and SQL*Plus

a,"‘l and the illusion of control they often give us, it will facilitate capable and thorough
~ analysis of the information in a database. Good mathematical analysis of familiar
numbers will often show trends and facts that were initially not apparent.

The Three Classes of Number Functions

Oracle functions deal with three classes of numbers: single values, groups of values, and lists of
values. As with string functions (discussed in Chapters 7 and 8), some of these functions change
the values they are applied to, whereas others merely report information about the values. The
classes are distinguished as detailed in the following paragraphs.

A single value is one number, such as these:

® A literal number, such as 544.3702
® A variable in SQL*Plus or PL/SQL

B One number from one column and one row of the database

Oracle single-value functions usually change these values through a calculation.

A group of values is all the numbers in one column from a series of rows, such as the closing
stock price for all the rows of stocks in the stock market table from Chapter 4. Oracle group-value
functions tell you something about the whole group, such as average stock price, but not about
the individual members of the group.

A list of values is a series of numbers that can include the following:

® Literal numbers, such as 1, 7.3, 22, and 86
B Variables in SQL*Plus or PL/SQL

m Columns, such as OpeningPrice, ClosingPrice, Bid, and Ask

Oracle list functions choose one member of a list of values.

Table 9-1 shows these functions by class. Some functions fit into more than one class. Other
functions fall somewhere between string and number functions, or are used to convert data from
one to the other. These are covered in Chapter 11.

Notation

Functions will be shown with this kind of notation:
=~ FUNCTI O\(val ue [, option])

The function itself will be uppercase. Values and options will be shown in lowercase italics.
Whenever the word value appears this way, it represents one of the following: a literal number,
the name of a number column in a table, the result of a calculation, or a variable. Because
Oracle does not allow numbers to be used as column names, a literal number should not appear
in single quotation marks (as a literal string would be in a string function). Column names also
must not have single quotation marks.

Chapter 9: Playing the Numbers

Function

Single-Value Functions
valuel + value2
valuel — value2

valuel * value2

valuel / value2
ABS(value)
ACOS(value)
ASIN(value)
ATAN(value)

ATAN2 (valuel, value2)

BITAND (valuel, value2)
CElL(value)

COS(value)
COSH(value)
EXP(value)
FLOOR(value)
LN(value)

LOG(value)
MOD(value, divisor)
NANVL(valuel,value?)

NVL(value, substitute)

NVL2(exprl , expr2 , expr3)

POWER (value, exponent)
REMAINDER(valuel,value2)
ROUND(value, precision)
SIGN(value)

Definition

Addition.

Subtraction.

Multiplication.

Division.

Absolute value.

Arc cosine of value, in radians.
Arc sine of value, in radians.
Arc tangent of value, in radians.

ATAN2 returns the arc tangent of two values. Input values are
unbounded; outputs are expressed in radians.

Bitwise AND of valuel and value2, both of which must resolve
to nonnegative integers. Returns an integer.

Numeric ceiling (the smallest integer larger than or equal to
value).

Cosine of value.

Hyperbolic cosine of value.

e raised to value exponent.

Largest integer smaller than or equal to value.

Natural logarithm of value.

Base 10 logarithm of value.

Modulus. The remainder left after dividing a value by a divisor.

For BINARY_FLOAT and BINARY_DOUBLE numbers, this
function returns valueZ if valuel is not a number.

Substitute for value if value is NULL.

If exprT is not NULL, then expr2 is returned; otherwise, expr3
is returned.

value raised to an exponent power.
Remainder of valuel divided by value2.
Rounding of value to precision.

1 if value is positive; -1 if value is negative; O if value is zero.

TABLE 9-1.

Number Functions

165

166 Partll:

SQL and SQL*Plus

SIN(value)

SINH(value)
SQRT(value)

TAN(value)
TANH(value)
TRUNC((value, precision)
VSIZE(value)

Aggregate Functions
AVG(value)
CORR(valuel, value2)

COUNT(value)

COVAR_POP(valuel, value2)
COVAR_SAMP(valuel, value2)

CUME_DIST(value)
DENSE_RANK(value)
FIRST(value)
GROUP_ID(value)

GROUPING(expression)

GROUPING_ID

LAST(value)

MAX(value)

MEDIAN (expr)
MIN(value)
PERCENTILE_CONT(value)

PERCENTILE_DISC(value)

PERCENT_RANK(value)

Sine of value.

Hyperbolic sine of value.
Square root of value.
Tangent of value.
Hyperbolic tangent of value.
value truncated to precision.

Storage size of value in Oracle.

Average of value for a group of rows.

Coefficient of correlation of a set of number pairs. CORR_K
and CORR_S support nonparametric or rank correlation.

Count of rows for a table, or of non-NULL values for a column.
Population covariance of a set of number pairs.

Sample covariance of a set of number pairs.

Cumulative distribution of a value in a group of values.

Rank of a row in an ordered group of rows.

Analytic function performed on the row ranking first in a set.

Distinguishes duplicate groups resulting from a GROUP BY
specification.

Used in conjunction with the ROLLUP and CUBE functions to
detect NULLs.

Returns a number corresponding to the GROUPING bit vector
associated with a row.

Analytic function performed on the row ranking last in a set.
Maximum of all values for group of rows.

Returns the median value for a group of rows, ignoring NULLs.
Minimum of all values for group of rows.

Calculates the percentile ranking of a value in a set, assuming
a continuous linear model.

Calculates the percentile ranking of a value in a set, assuming
a discrete distribution model.

Calculates the percentile ranking of a value in a set.

TABLE 9-1.

Number Functions (continued)

Chapter 9: Playing the Numbers

RANK(value)
REGR functions

STATS_BINOMIAL_TEST

STATS_CROSSTAB
STATS_F_TEST
STATS_KS_TEST
STATS_MODE

STATS_MW_TEST
STATS_ONE_WAY_ANOVA
STATS_T_TEST_* functions

STATS_WSR_TEST

STDDEV(value)
STDDEV_POP(value)
STDDEV_SAMP(value)
SUM(value)
VAR_POP(value)
VAR_SAMP(value)
VARIANCE(value)

WIDTH_
BUCKET(expr,min,max,num)

List Functions

COALESCE(valuel, value2, ...)

GREATEST (valuel, value2, ...)
LEAST (valuel, value2, ...)

Calculates the rank of a value in a group of values.

These functions perform linear regression analysis on a group
of values.

Tests the difference between a sample proportion and a given
proportion.

Analyzes two nominal values.
Tests whether two variables are significantly different.
Tests whether two variables are from the same population.

Returns the value that occurs with the greatest frequency in a
group.
Tests two independent samples against a null hypothesis.

A one-way analysis of variance.

These functions measure the significance of a difference of
means.

Determines whether the differences between samples are
significantly different from zero.

Standard deviation of all values for a group of rows.
Population standard deviation.

Sample standard deviation.

Sum of all values for a group of rows.

Population variance.

Sample variance.

Variance of all values for a group of rows.

Constructs equal-width histograms.

Returns the first non-NULL value in the expression list.
Greatest value of a list.

Least value of a list.

TABLE 9-1.

Number Functions (continued)

Every function has only one pair of parentheses. The value that function works on, as well as
additional information you can pass to the function, goes between the parentheses.

167

168 Partll: SQL and SQL*Plus

Some functions have options—parts that are not required to make the function work but that
can give you more control if you choose to use them. Options are always shown in square brackets:
[1. The necessary parts of a function always come before the optional parts.

Single-Value Functions

Most single-value functions are pretty straightforward. This section gives short examples of the
major functions, and it shows both the results of the functions and how they correspond to columns,
rows, and lists. After the examples, you’ll see how to combine these functions. The syntax for all
the functions is found in the Alphabetical Reference of this book.

A table named MATH was created to show the calculation effects of the many math functions.
It has only four rows and four columns, as shown here:

"= select Nane, Above, Below, Enpty from MATH,

NAME ABOVE BELOW EMPTY
VWHCLE NUMBER 11 -22
LOW DECI MAL 33.33 -44.44
M D DECI VAL 55.5 -55.5

H GH DECI MAL 66. 666 -77.777

This table is useful because it has values with a variety of characteristics, which are spelled out by
the names of the rows. WHOLE NUMBER contains no decimal parts. LOW DECIMAL has decimals
that are less than .5, MID DECIMAL has decimals equal to .5, and HIGH DECIMAL has decimals
greater than .5. This range is particularly important when using the ROUND and TRUNC (truncate)
functions, and in understanding how they affect the value of a number.

To the right of the Name column are three other columns: Above, which contains only numbers
above zero (positive numbers); Below, which contains only numbers below zero; and Empty, which
is NULL.

NOTE
¥ In Oracle, a number column may have no value in it at all. When it is
~ NULL, itis not zero; it is simply empty. This has important implications

in making computations, as you will see.

Not all the rows in this MATH table are needed to demonstrate how most math functions
work, so the examples primarily use the last row, HIGH DECIMAL. In addition, the SQL*Plus
column command has been used to explicitly show the precision of the calculation so that the
results of functions that affect a number’s precision can be clearly seen. To review the SQL and
SQL*Plus commands that produced the results that follow, see the script that accompanies the
create table commands for the sample tables.

Addition (+), Subtraction (-),
Multiplication (*), and Division (/)

The following query shows each of the four basic arithmetic functions, using Above and Below:

Chapter 9: Playing the Numbers 169

. select Nane, Above, Below, Enmpty,
Above + Below AS Pl us,
Above - Below AS Subtr,
Above * Below AS Tines,
Above / Below AS Divided
from MATH
where Nane = ' H GH DECI MAL' ;

NANVE ABOVE BELOW EMPTY PLUS SUBTR TI MES DI VI DED

HI GH DECI MAL 66.666 -77.777 -11.111 144.443 -5185.0815 -. 85714286

NULL

In the following example, the same four arithmetic operations are now done again, except instead
of using Above and Below, Above and Empty are used. Note that any arithmetic operation that
includes a NULL value has NULL as a result. The calculated columns (columns whose values are
the result of a calculation) Plus, Subtr, Times, and Divided are all empty.

"= select Nane, Above, Bel ow, Enpty,
Above + Enpty AS Plus,
Above - Enpty AS Subtr,
Above * Enpty AS Tines,
Above / Enpty AS Divided
from VATH
where Nanme = 'H GH DECI MAL' ;

NAVE ABOVE BELOW EMPTY PLUS SUBTR TIMES DI VIDED

H GH DECI MAL 66.666 -77.777

What you see here is evidence that a NULL value cannot be used in a calculation. NULL isn’t
the same as zero; think of NULL as a value that is unknown. For example, suppose you have a
table with the names of your friends and their ages, but the Age column for PAT SMITH is empty,
because you don’t know it. What's the difference in your ages? It's clearly not your age minus
zero. Your age minus an unknown age is also unknown, or NULL. You can’t fill in an answer
because you don’t have an answer. Because you can’t make the computation, the answer is NULL.

This is also the reason you cannot use NULL with an equal sign in a where clause (see
Chapter 5). It makes no sense to say x is unknown and y is unknown, therefore x and y are equal.
If Mrs. Wilkins’s and Mr. Adams’s ages are unknown, it doesn’t mean they’re the same age.

There also will be instances where NULL means a value is irrelevant, such as an apartment
number for a house. In some cases, the apartment number might be NULL because it is unknown
(even though it really exists), while in other cases it is NULL because there simply isn’t one. NULLs
will be explored in more detail later in this chapter, under “NULLs in Group-Value Functions.”

NVL: NULL-Value Substitution

The preceding section states the general case about NULLs—that NULL represents an unknown
or irrelevant value. In particular cases, however, although a value is unknown, you may be able

170 Partll: SQL and SQL*Plus

to make a reasonable guess. If you're a package carrier, for instance, and 30 percent of the
shippers who call you for pickups can’t tell you the weight or volume of their packages, will you
declare it completely impossible to estimate how many cargo planes you’'ll need tonight? Of course
not. You know from experience the average weight and volume of your packages, so you'd plug
in these numbers for those customers who didn’t supply you with the information. Here’s the
information as supplied by your clients:

. select dient, Wight from SH PPl NG

CLI ENT V\EI GHT
JOHNSON TOOL 59
DAGG SOFTWARE 27

TULLY ANDOVER
This is what the NULL-value substitution (NVL) function does:

= select dient, NVL(Weight,43) from SH PPI NG

CLI ENT NVL(VEI GHT, 43)
JOHNSON TOOL 59
DAGG SOFTWARE 27
TULLY ANDOVER 43

Here, you know that the average package weight is 43 pounds, so you use the NVL function
to plug in 43 anytime a client’s package has an unknown weight—that is, where the value in the
column is NULL. In this case, TULLY ANDOVER didn’t know the weight of their package when
they called it in, but you can still total these package weights and have a fair estimate.

Here is the format for NVL:

= = NVL(val ue, substitute)

If value is NULL, this function is equal to substitute. If value is not NULL, this function is equal
to value. Note that substitute can be a literal number, another column, or a computation. If you
really were a package carrier with this problem, you could even have a table join in your select
statement where substitute was from a view that actually averaged the weight of all non-NULL
packages.

NVL is not restricted to numbers. It can be used with CHAR, VARCHAR2, DATE, and other
datatypes as well, but value and substitute must be the same datatype. Also, NVL is really useful
only in cases where the data is unknown, not where it’s irrelevant.

A companion function, NVL2, is slightly more complex. Its format is

0 U NVL2 (exprl , expr2 , expr3)

In NVL2, expr1 can never be returned; either expr2 or expr3 will be returned. If expr1 is not
NULL, NVL2 returns expr2. If expr1 is NULL, NVL2 returns expr3. The argument expr1 can have

Chapter 9: Playing the Numbers 171

any datatype. The arguments expr2 and expr3 can have any datatypes except LONG. As of Oracle
Database 10g, you can use the NANVL function for the BINARY_FLOAT and BINARY_DOUBLE
datatypes. NANVL takes two variables, and returns the second if the first is not a number.

ABS: Absolute Value

Absolute value is the measure of the magnitude of something. For instance, in a temperature
change or a stock index change, the magnitude of the change has meaning in itself, regardless
of the direction of the change (which is important in its own right). Absolute value is always a
positive number.

Here is the format for ABS:

"= ABS(val ue)
Note these examples:

146
30

W ABS(146)
ABS(- 30)

CEIL

CEIL (for ceiling) simply produces the smallest integer (or whole number) that is greater than
or equal to a specific value. Pay special attention to its effect on negative numbers.
The following shows the format for CEIL and some examples:

| CElL(val ue)

CEl L(2) = 2
CEIL(1.3) = 2
CEIL(-2) =-2
CEIL(-2.3) = -2

FLOOR

FLOOR is the intuitive opposite of CEIL. Here is the format for FLOOR and some examples:

= FLOOR(val ue)

FLOOR(2) = 2
FLOOR(1.3) = 1
FLOOR(-2) = -2
FLOOR(-2.3) = -3

MOD

MOD (modulus) is an odd little function primarily used in data processing for esoteric tasks such
as “check digits,” which help ensure the accurate transmission of a string of numbers. MOD divides
a value by a divisor and tells you the remainder. For example, MOD(23,6) = 5 means divide 23
by 6. The answer is 3 with 5 left over, so 5 is the result of the modulus.

172 Partll: SQL and SQL*Plus

Here is the format for MOD:

MO val ue, di visor)

Both value and divisor can be any real number. The value of MOD is zero if divisor is zero or
negative. Note the following examples:

W MOD(100, 10) = 0
MOD(22, 23) = 22
MOD(10, 3) = 1
MOD(- 30.23,7) = -2.23
MOD(4. 1, . 3) = .2

The second example shows what MOD does whenever the divisor is larger than the dividend
(the number being divided). It produces the dividend as a result. Also note this important case
where value is an integer:

. MO val ue, 1) =0

The preceding is a good test to see if a number is an integer.
You can use the REMAINDER function in the same way:

" REMAI NDER(-30.23,7) = -2.23

POWER

POWER simply provides the ability to raise a value to a given positive exponent, as shown here:

= POVWER(val ue, exponent)

POVER(3, 2) = 9

POVER(3, 3) = 27
PONER(- 77.777,2) = 6049. 26173
POAER(3,1.086) = 3.29726371
POVER(64, . 5) = 8

The exponent can be any real number.

SQRT: Square Root

Oracle has a separate square root function that gives results equivalent to POWER(value,.5):

. SQRT(val ue)
SQRT(64) =8
SQRT(66. 666) = 8.16492498
SQRT(4) =2

The square root of a negative number is an imaginary number. Oracle doesn’t support imaginary
numbers, so it returns an error if you attempt to find the square root of a negative number.

Chapter 9: Playing the Numbers 173

EXP, LN, and LOG

The EXP, LN, and LOG functions are rarely used in business calculations but are quite common
in scientific and technical work. EXP is e (2.71828183...) raised to the specified power; LN is the
“natural,” or base e, logarithm of a value. The first two functions are reciprocals of one another;
LN(EXP(i)) = value. The LOG function takes a base and a positive value. LN(value) is the same
as LOG(2.71828183,value).

 EXP(val ue)

EXP(3) = 20.0855369
EXP(5) = 148. 413159
LN(val ue)

LN(3) = 1.09861229
LN(20. 0855369) = 3

LOF val ue)

LOG EXP(1),3) = 1.09861229
LOGE 10, 100) =2

ROUND and TRUNC

ROUND and TRUNC are two related single-value functions. TRUNC truncates, or chops off, digits
of precision from a number; ROUND rounds numbers to a given number of digits of precision.
Here are the formats for ROUND and TRUNC:

" ROUND(val ue, preci sion)
TRUNC(val ue, preci si on)

There are some properties worth paying close attention to here. First, look at this simple example
of a select from the MATH table. Two digits of precision are called for (counting toward the right from
the decimal point).

' = select Nane, Above, Bel ow,
ROUND(Above, 2),
ROUND(Bel ow, 2),
TRUNC(Above, 2),
TRUNC(Bel ow, 2)

from MATH,
ROUND ROUND TRUNC TRUNC
NANVE ABOVE BELOW (ABOVE, 2) (BELOW 2) (ABOVE, 2) (BELOW 2)
VWHOLE NUMBER 11 -22 11 -22 11 -22
LOW DECI VAL 33.33 -44.44 33.33 -44. 44 33.33 -44. 44
M D DECI VAL 55.5 -55.5 55.5 -55.5 55.5 -55.5

H GH DECI MAL 66.666 -77.777 66. 67 -77.78 66. 66 -77.77

174 Partll: SQL and SQL*Plus

Only the bottom row is affected, because only it has three digits beyond the decimal point.
Both the positive and negative numbers in the bottom row were rounded or truncated: 66.666
was rounded to a higher number (66.67), but —77.777 was rounded to a lower (more negative)
number (-77.78). When rounding is done to zero digits, this is the result:

. select Nane, Above, Bel ow,
ROUND(Above, 0),
ROUND(Bel ow, 0) ,
TRUNC(Above, 0),
TRUNC(Bel ow, 0)

from MATH,
ROUND ROUND TRUNC TRUNC
NAVE ABOVE BELOW (ABOVE, 0) (BELOW 0) (ABOVE, 0) (BELOW 0)
VWHOLE NUMBER 11 -22 11 -22 11 -22
LOW DECI MAL 33.33 -44.44 33 -44 33 -44
M D DECI VAL 55.5 -55.5 56 -56 55 -55
Hl GH DECI MAL 66. 666 -77.777 67 -78 66 -77

Note that the decimal value of .5 was rounded up when 55.5 went to 56. This follows the
most common American rounding convention (some rounding conventions round up only if a
number is larger than .5). Compare these results with CEIL and FLOOR. They have significant
differences:

W ROUND(55.5) = 56 ROUND(-55.5) = -56
TRUNC(55.5) = 55 TRUNC(-55.5) = -55
CEIL(55.5) =56 CEIL(-55.5) = -55
FLOOR(55.5) = 55 FLOOR(-55.5) = -56

Finally, note that both ROUND and TRUNC can work with negative precision, moving to
the left of the decimal point:

' = select Nane, Above, Bel ow,
ROUND(Above, - 1),
ROUND(Bel ow, - 1),
TRUNC(Above, - 1),
TRUNC(Bel ow, - 1)

from MATH,
ROUND ROUND TRUNC TRUNC
NANVE ABOVE BELOW (ABOVE, - 1) (BELOW - 1) (ABOVE, - 1) (BELOW -1)
WHOLE NUMBER 11 -22 10 -20 10 -20
LOW DECI VAL 33.33 -44.44 30 -40 30 -40
M D DECI MAL 55.5 -55.5 60 -60 50 -50
H GH DECI MAL 66. 666 -77.777 70 - 80 60 -70

Rounding with a negative number can be useful when producing such things as economic
reports, where populations or dollar sums need to be rounded up to the millions, billions, or trillions.

Chapter 9: Playing the Numbers 175

SIGN

SIGN is the flip side of absolute value. Whereas ABS tells you the magnitude of a value but not
its sign, SIGN tells you the sign of a value but not its magnitude.
Here is the format for SIGN:

Sl G\(val ue)

146
30

Exanpl es: SI GN\(146)
Sl G\(- 30)

1 Conpare to: ABS(146)
-1 ABS(- 30)

The SIGN of 0 is 0:

2w SIGN(0) =0

The SIGN function is often used in conjunction with the DECODE function. DECODE will
be described in Chapter 16.

SIN, SINH, COS, COSH, TAN,
TANH, ACOS, ATAN, ATAN2, and ASIN

The trigonometric functions sine, cosine, and tangent are scientific and technical functions not
used much in business. SIN, COS, and TAN give you the standard trigonometric function values
for an angle expressed in radians (degrees multiplied by pi divided by 180). SINH, COSH, and
TANH give you the hyperbolic functions for an angle.

[= |SIN(val ue)
SI N(30*3. 141592655/ 180) = .5
COSH(val ue)
COSH(0) =1

The ASIN, ACOS, and ATAN functions return the arc sine, arc cosine, and arc tangent values
(in radians) of the values provided. ATAN2 returns the arc tangent of two values. Input values are
unbounded; outputs are expressed in radians.

Aggregate Functions

Aggregate or “group-value” functions are those statistical functions such as SUM, AVG, COUNT,
and the like that tell you something about a group of values taken as a whole: the average age
of all the friends in the table, for instance, or the oldest member of the group, or the youngest, or
the number of members in the group, and more. Even when one of these functions is supplying
information about a single row—such as the oldest person—it is still information that is defined
by the row’s relation to the group.
You can use a wide array of advanced statistical functions against your data—including

regression testing and sampling. In the following discussions, you will see descriptions of the

176 Partll: SQL and SQL*Plus

most commonly used group-value functions; for the others (all are listed in Table 9-1), see the
Alphabetical Reference.

NULLs in Group-Value Functions
Group-value functions treat NULL values differently than single-value functions do. Group functions
ignore NULL values and calculate a result in spite of them.

Take AVG as an example. Suppose you have a list of 100 friends and their ages. If you picked
20 of them at random and averaged their ages, how different would the result be than if you picked
a different list of 20, also at random, and averaged it, or if you averaged all 100? In fact, the
averages of these three groups would be very close. What this means is that AVG is somewhat
insensitive to missing records, even when the missing data represents a high percentage of the
total number of records available.

. NOTE
)" AVG is not immune to missing data, and there can be cases where it
— will be significantly off (such as when missing data is not randomly

distributed), but these cases will be less common.

The relative insensitivity of AVG to missing data needs to be contrasted with, for instance,
SUM. How close to correct is the SUM of the ages of only 20 friends to the SUM of all 100
friends? Not close at all. So if you had a table of friends, but only 20 out of 100 supplied their
age, and 80 out of 100 had NULL for their age, which one would be a more reliable statistic
about the whole group and less sensitive to the absence of data—the AVG age of those 20
friends, or the SUM of them? Note that this is an entirely different issue than whether it is
possible to estimate the sum of all 100 based on only 20 (in fact, it is precisely the AVG of the
20, times 100). The point is, if you don’t know how many rows are NULL, you can use the
following to provide a fairly reasonable result:

. select AVE Age) from Bl RTHDAY;
You cannot get a reasonable result from this, however:
= select SUM Age) from Bl RTHDAY;

This same test of whether or not results are reasonable defines how the other group functions
respond to NULLs. STDDEV and VARIANCE are measures of central tendency; they, too, are
relatively insensitive to missing data. (These will be shown in “STDDEV and VARIANCE,” later in
this chapter.)

MAX and MIN measure the extremes of your data. They can fluctuate wildly while AVG stays
relatively constant: If you add a 100-year-old man to a group of 99 people who are 50 years old,
the average age only goes up to 50.5—but the maximum age has doubled. Add a newborn baby,
and the average goes back to 50, but the minimum age is now 0. It's clear that missing or unknown
NULL values can profoundly affect MAX, MIN, and SUM, so be cautious when using them,
particularly if a significant percentage of the data is NULL.

Is it possible to create functions that also take into account how sparse the data is and how
many values are NULL, compared to how many have real values, and make good guesses about

Chapter 9: Playing the Numbers 177

MAX, MIN, and SUM? Yes, but such functions would be statistical projections, which must make
explicit their assumptions about a particular set of data. This is not an appropriate task for a general-
purpose group function. Some statisticians would argue that these functions should return NULL if
they encounter any NULLs because returning any value can be misleading. Oracle returns something
rather than nothing, but leaves it up to you to decide whether the result is reasonable.

COUNT is a special case. It can go either way with NULL values, but it always returns a
number; it will never evaluate to NULL. The format and usage for COUNT will be shown shortly,
but to simply contrast it with the other group functions, it will count all the non-NULL rows of
a column, or it will count all the rows. In other words, if asked to count the ages of 100 friends,
COUNT will return a value of 20 (because only 20 of the 100 gave their age). If asked to count
the rows in the table of friends without specifying a column, it will return 100. An example of
these differences is given in “DISTINCT in Group Functions,” later in this chapter.

Examples of Single- and Group-Value Functions

Neither the group-value functions nor the single-value functions are particularly difficult to
understand, but a practical overview of how each function works is helpful in fleshing out some
of the options and consequences of their use.

The COMFORT table in these examples contains basic temperature data, by city, at noon
and midnight on each of four sample days in one year: the equinoxes (about March 21 and
September 23) and the solstices (about June 22 and December 22). You ought to be able to
characterize cities based on their temperatures on these days in one year.

For the sake of these examples, this table has only eight rows: the data from the four dates in
2003 for San Francisco, California and Keene, New Hampshire. You can use Oracle’s number
functions to analyze these cities, their average temperature, the volatility of the temperature, and
so on, for 2003. With more years and data on more cities, an analysis of temperature patterns
and variability throughout the century could be made.

The table looks like this:

" = describe COVORT

Nane Nul | ? Type

aTy NOT NULL VARCHAR2(13)
SAVPLEDATE NOT NULL DATE

NOON NUMBER(3, 1)
M DNI GHT NUMBER(3, 1)
PRECI PI TATI ON NUMBER

It contains this temperature data:

"= |select City, SanpleDate, Noon, M dnight from COVORT;

aTy SAMPLEDAT NOON M DNI GHT
SAN FRANCI SCO 21- MAR-03 62.5 42.3
SAN FRANCI SCO 22- JUN-03 51.1 71.9
SAN FRANCI SCO 23- SEP- 03 61.5

SAN FRANCI SCO 22- DEC- 03 52. 6 39.8

178 Partll: SQL and SQL*Plus

KEENE 21-MAR-03 39.9 -1.2
KEENE 22-JUN-03 85.1 66.7
KEENE 23- SEP-03 99.8 82.6
KEENE 22-DEGC-03 -7.2 -1.2

AVG, COUNT, MAX, MIN, and SUM

Due to a power failure, the noon temperature in San Francisco on September 23 did not get
recorded. The consequences of this can be seen in the following query:

"= select AVGE Noon), COUNT(Noon), MAX(Noon), M N(Noon), SUM Noon)
from COVFORT
where City = ' SAN FRANCI SCO ;

AVG({ NOON) COUNT(NOON) MAX(NOON) M N(NOON) SUM_ NOON)

AVG(Noon) is the average of the three temperatures that are known. COUNT(Noon) is the
count of how many rows there are in the Noon column that are not NULL. MAX and MIN are
self-evident. SUM(Noon) is the sum of only three dates because of the NULL for September 23.
Note that

is by no coincidence exactly three times AVG(Noon).

Combining Group-Value and Single-Value Functions

Suppose you would like to know how much the temperature changes in the course of a day.
This is a measure of volatility. Your first attempt to answer the question might be to subtract
the temperature at midnight from the temperature at noon:

=~ select Cty, SanpleDate, Noon-M dni ght
from COVFORT
where City = ' KEENE ;

aTy SAVPLEDAT NOON- M DNI GHT
KEENE 21- MAR- 03 41.1
KEENE 22-JUN- 03 18. 4
KEENE 23- SEP-03 17.2
KEENE 22- DEC- 03 -6

With only four rows to consider in this table, you can quickly convert (or ignore) the pesky
minus sign. Volatility in temperature is really a magnitude—which means it asks by how much
the temperature changed. It doesn’t include a sign, so —6 isn’t really correct. If this goes uncorrected

Chapter 9: Playing the Numbers

and is included in a further calculation, such as the average change in a year, the answer you get
will be absolutely wrong, as shown here:

.~ select AVGE Noon-M dni ght)
from COVFORT
where City = ' KEENE' ;

AVG(NOON- M DNI GHT)

The correct answer requires an absolute value, as shown next.

"= select AVG ABS(Noon-M dni ght))
f rom COVFORT
where City = ' KEENE ;

AVG(ABS(NOON- M DNI GHT))

Combining functions this way follows the same technique given in Chapter 7 in the section
on string functions. An entire function such as

" = ABS(Noon- M dni ght)

is simply plugged into another function as its value, like this:

o Avg val ue)

which produces
W AVG(ABS(Noon- M dni ght))

This shows both single-value and group-value functions at work. You see that you can place
single-value functions inside group-value functions. The single-value functions will calculate a
result for every row, and the group-value functions will view that result as if it were the actual
value for the row. Single-value functions can be combined (nested inside each other) almost
without limit. Group-value functions can contain single-value functions in place of their value.
They can, in fact, contain many single-value functions in place of their value.

What about combining group functions? First of all, it doesn’t make any sense to nest them
this way:

= select SUM AVG@ Noon)) from COVFORT,
The preceding will produce this error:

= ERROR at line 1:
ORA-00978: nested group function w thout GROUP BY

179

180 Partll: SQL and SQL*Plus

Besides, if it actually worked, it would produce exactly the same result as

= AVE Noon)

because the result of AVG(Noon) is just a single value. The SUM of a single value is just the
single value, so it is not meaningful to nest group functions. The exception to this rule is in the
use of group by in the select statement, the absence of which is why Oracle produced the error
message here. This is covered in Chapter 12.

It can be meaningful to add, subtract, multiply, or divide the results of two or more group
functions. For example,

= select MAX(Noon) - M N(Noon)
from COVFORT
where City = ' SAN FRANCI SCO ;

MAX(NOON) - M N(NCON)

gives the range of the temperatures in a year. In fact, a quick comparison of San Francisco and
Keene could be done with just a bit more effort:

= select Cty, AVE Noon), MAX(Noon), M N(Noon),
MAX(Noon) - M N(Noon) AS Swi ng
from COVFORT
group by Cty;

aTy AVG{NOON) MAX(NOON) M N(NOON) SW NG
KEENE 54. 4 99. 8 -7.2 107
SAN FRANCI SCO 55. 4 62.5 51.1 11.4

This query is a good example of discovering information in your data: The average temperatures
in the two cities are nearly identical, but the huge temperature swing in Keene, compared to San
Francisco, says a lot about the yearly temperature volatility of the two cities, and the relative effort
required to dress (or to heat and cool a home) in one city compared to the other. The group by clause
will be explained in detail in Chapter 12. Briefly, in this example it forced the group functions to work
not on the total table, but on the subgroups of temperatures by city.

STDDEV and VARIANCE

Standard deviation and variance have their common statistical meanings, and they use the same
format as all group functions:

= select MAX(Noon), AVGE Noon), M N(Noon), STDDEV(Noon),
VARl ANCE(Noon)
from COVFORT
where City = ' KEENE';

Chapter 9: Playing the Numbers 181

MAX(NOON) AVG(NOON) M N(NOON) STDDEV(NOON) VAR ANCE(NOON)

99.8 54. 4 -7.2 48.3337701 2336. 15333

See the Alphabetical Reference for the syntax for the statistical functions listed in Table 9-1.

DISTINCT in Group Functions

All group-value functions have a DISTINCT versus ALL option. COUNT provides a good example
of how this works.
Here is the format for COUNT (note that | means “or”):

% COUNT([DI STINCT | ALL] val ue)
Here is an example:

= select COUNT(DISTINCT City), COUNT(City), COUNT(*)
f r om COVFORT;

COUNT(DI STINCTCI TY) COUNT(CI TY) COUNT(*)

This query shows a couple of interesting results. First, DISTINCT forces COUNT to count
only the number of unique city names. If asked to count the DISTINCT midnight temperatures,
it would return 7, because two of the eight temperatures were the same. When COUNT is used
on City but not forced to look at DISTINCT cities, it finds 8.

This also shows that COUNT can work on a character column. It's not making a computation
on the values in the column, as SUM or AVG must; it is merely counting how many rows have a
value in the specified column.

COUNT has another unique property: value can be an asterisk, meaning that COUNT tells
you how many rows are in the table, regardless of whether any specific columns are NULL. It
will count a row even if all its fields are NULL.

The other group functions do not share COUNT’s ability to use an asterisk, nor its ability to use
a character column for value (although MAX and MIN can). They do all share its use of DISTINCT,
which forces each of them to operate only on unique values. A table with values such as

"= select FirstNanme, Age from Bl RTHDAY;

FI RSTNAMVE ACE
GEORGE 42
ROBERT 52
NANCY 42
VI CTORI A 42

FRANK 42

182 Partll: SQL and SQL*Plus

would produce this result:

"= select AVGE DI STI NCT Age) AS Aver age,
SUM DI STI NCT Age) AS Tot al
f r om Bl RTHDAY;

AVERAGE TOTAL

which, if you wanted to know the average age of your friends, is not the right answer. The use of
DISTINCT other than in COUNT is likely to be extremely rare, except perhaps in some statistical
calculations. MAX and MIN produce the same result with or without DISTINCT.

The alternative option to DISTINCT is ALL, which is the default. ALL tells SQL to check every
row, even if the value is a duplicate of the value in another row. You do not need to type ALL; if
you don't type DISTINCT, ALL is used automatically.

List Functions

Unlike the group-value functions, which work on a group of rows, the list functions work on

a group of columns, either actual or calculated values, within a single row. In other words, list
functions compare the values of each of several columns and pick either the greatest or least
of the list. Consider the COMFORT table, shown here:

= select Cty, SanpleDate, Noon, M dnight from COVFORT;

aTy SAMPLEDAT NOON M DNI GHT
SAN FRANCI SCO 21- MAR-03 62.5 42.3
SAN FRANCI SCO 22-JUN-03 51.1 71.9
SAN FRANCI SCO 23- SEP- 03 61.5
SAN FRANCI SCO 22-DEC-03 52.6 39.8
KEENE 21-MAR-03 39.9 -1.2
KEENE 22-JUN-03 85.1 66.7
KEENE 23-SEP-03 99.8 82.6
KEENE 22-DEG-03 -7.2 -1.2

Now compare this query result with the following one. Note especially June and September
in San Francisco, and December in Keene:

. select Cty, SanplebDate, GREATEST(M dni ght, Noon) AS Hi gh,
LEAST(M dni ght, Noon) AS Low
from COVFORT;

aTy SAMPLEDAT HIGH LOW

SAN FRANCI SCO 21- MAR-03 62.5 42.3
SAN FRANCI SCO 22-JUN-03 71.9 51.1

SAN FRANCI SCO 23- SEP- 03
SAN FRANCI SCO 22- DEC- 03

KEENE 21- MAR- 03
KEENE 22-JUN- 03
KEENE 23- SEP-03
KEENE 22-DEC- 03

52.6
39.9
85.1
99.8
-1.2

39.
-1.
66.
82.
-7.

N O ~NN

Chapter 9: Playing the Numbers

September in San Francisco has a NULL result because GREATEST and LEAST couldn’t
legitimately compare an actual midnight temperature with an unknown noon temperature. In the
other two instances, the midnight temperature was actually higher than the noon temperature.

Here are the formats for GREATEST and LEAST:

" = GREATEST(val uel, val ue2, val ue3.

LEAST(val uel, val ue2, val ue3.

)

-)

Both GREATEST and LEAST can be used with many values, and the values can be columns,
literal numbers, calculations, or combinations of other columns. GREATEST and LEAST can also be
used with character columns. For example, they can choose the names that fall last (GREATEST) or
first (LEAST) in alphabetical order:

" = GREATEST(' Bob',' George',"' Andrew ,'lsaiah')
LEAST(' Bob', "' George',' Andrew ,'|saiah')

| sai ah
Andr ew

You can use the COALESCE function to evaluate multiple values for non-NULL values. Given
a string of values, COALESCE will return the first non-NULL value encountered; if all are NULL,
then a NULL result will be returned.

In the COMFORT table, there is a NULL value for Noon for one of the San Francisco
measurements. The following query returns

" = select COALESCE(Noon, M dnight) from COMFORT
where City = ' SAN FRANCI SCO ;

COALESCE(NOON, M DNI GHT)

In the first two records of the output, the value displayed is the Noon value. In the third record,
Noon is NULL, so Midnight is returned instead. Oracle’s DECODE and CASE functions provide
similar functionality, as described in Chapter 16.

Finding Rows with MAX or MIN

Which city had the highest temperature ever recorded, and on what date? The answer is easy
with just eight rows to look at, but what if you have data from every city in the country and for

183

184 Partll: SQL and SQL*Plus

every day of every year for the last 50 years? Assume for now that the highest temperature for
the year occurred closer to noon than midnight. The following won’t work:

. select Cty, SanplebDate, MAX(Noon)
from COVFORT;

Oracle flags the City column and gives this error message:
= select Cty, SanpleDate, MAX(Noon)
*

ERROR at |ine 1:
ORA-00937: not a single-group group function

This error message is a bit opaque. It means that Oracle has detected a flaw in the logic of
the question. Asking for columns means you want individual rows to appear; asking for MAX,
a group function, means you want a group result for all rows. These are two different kinds of
requests. The first asks for a set of rows, but the second requests just one computed row, so
there is a conflict. Here is how to construct the query:

= select Cty, SanpleDate, Noon
from COVFORT
where Noon = (sel ect MAX(Noon) from COVFORT);

aTy SAVPLEDAT NOON

KEENE 23-SEP-03 99.8

This only produces one row. You might think, therefore, that the combination of a request for
the City and SampleDate columns, along with the MAX of Noon, is not so contradictory as was
just implied. But what if you’d asked for the minimum temperature instead?

= select Cty, SanpleDate, M dnight
from COVFORT
where M dnight = (select M N(M dnight) from COVFORT);

aTy SAMPLEDAT M DNI GHT
KEENE 21- MAR- 03 -1.2
KEENE 22-DEC- 03 -1.2

Two rows! More than one satisfied the MIN request, so there is a conflict in trying to combine
a regular column request with a group function.

It is also possible to use two subqueries, each with a group-value function in it (or two subqueries,
where one does and the other doesn’t have a group function). Suppose you want to know the
highest and lowest noon temperatures for the year:

"= select Cty, SanpleDate, Noon
from COVFORT
where Noon = (sel ect MAX(Noon) from COVFORT)

Chapter 9: Playing the Numbers

or Noon = (select M N(Noon) from COVFORT);

aTy SAVPLEDAT NOON
KEENE 23-SEP-03 99.8
KEENE 22-DEG-03 -7.2

Precedence and Parentheses

When more than one arithmetic or logical operator is used in a single calculation, which one
is executed first, and does it matter what order they are in? Consider the following query of the
DUAL table (a one-column, one-row table provided by Oracle):

. select 2/2/4 from DUAL;

When parentheses are introduced, although the numbers and the operation (division) stay
the same, the answer changes considerably:

= select 2/(2/4) from DUAL;

2/ (21 4)

The reason for this is precedence. Precedence defines the order in which mathematical
computations are made, not just in Oracle but in mathematics in general. The rules are simple:
Operations within parentheses have the highest precedence, then multiplication and division,
then addition and subtraction. When an equation is computed, any calculations inside parentheses
are made first. Multiplication and division are next. Finally, any addition and subtraction are
completed. When operations of equal precedence are to be performed, they are executed from
left to right. Here are a few examples:

. 2*%4/2*3 = 12 (the sanme as ((2*4)/2)*3)
(2*4)/(2*3) = 1.333
4-2*5 = -6 (the sane as 4 - (2*5))

(4-2)*5 = 10

AND and OR also obey precedence rules, with AND having the higher precedence. Observe
the effect of the AND as well as the left-to-right order in these two queries:

.~ select * from NEWSPAPER
where Section = 'B" AND Page = 1 OR Page = 2;

Weat her C 2

185

186 Partll: SQL and SQL*Plus

Modern Life B 1
Bri dge B 2

3 rows sel ected.

sel ect * from NEWSPAPER
where Page = 1 OR Page = 2 AND Section = 'B';

Nat i onal News A 1
Sports D 1
Busi ness E 1
Modern Life B 1
Bri dge B 2

5 rows sel ect ed.

If what you really want is page 1 or 2 in Section B, then parentheses are needed to overcome
the precedence of the AND. Parentheses override any other operations.

= select * from NEWSPAPER
where Section = 'B" AND (Page = 1 OR Page = 2);

FEATURE S PAGE
Modern Life B 1
Bri dge B 2

2 rows sel ected.

The truth is that even experienced programmers and mathematicians have trouble remembering
what will execute first when they write a query or an equation. It is always wise to make explicit
the order you want Oracle to follow. Use parentheses whenever there could be the slightest risk
of confusion.

Review

Single-value functions work on values in a row-by-row fashion. List functions compare columns
and choose just one, again in a row-by-row fashion. Single-value functions almost always change
the value of the column they are applied to. This doesn’t mean, of course, that they have modified
the database from which the value was drawn, but they do make a calculation with that value,
and the result is different from the original value.

List functions don’t change values in this way, but rather they simply choose (or report) the
GREATEST or LEAST of a series of values in a row. Both single-value and list functions will not
produce a result if they encounter a value that is NULL.

Both single-value and list functions can be used anywhere an expression can be used, such
as in the select and where clauses.

Chapter 9: Playing the Numbers

The group-value functions tell something about a whole group of numbers—all of the rows in
a set. The group-value functions tell you the average of those numbers, or the largest of them, or
how many there are, or the standard deviation of the values, and so on. Group functions ignore
NULL values, and this fact must be kept firmly in mind when reporting about groups of values;
otherwise, there is considerable risk of misunderstanding the data.

Group-value functions also can report information on subgroups within a table, or they can
be used to create a summary view of information from one or more tables. Chapter 12 gives
details on these additional features.

Finally, mathematical and logical precedence affect the order in which queries are evaluated,
and this can have a dramatic effect on query results. Get into the habit of using parentheses to
make the order you want both explicit and easy to understand.

187

CHAPTER
10

Dates: Then, Now,
and the Difference

190 Partll: SQL and SQL*Plus

' ne of Oracle’s strengths is its ability to store and calculate dates, and the number
of seconds, minutes, hours, days, months, and years between dates. In addition
to basic date functions, Oracle supports a wide array of time zone—conversion
- functions. It also has the ability to format dates in virtually any manner you can

- B Cconceive of, from the simple 01-MAY-04, to May 1st in the 778th Year of the
Reign of Louis IX. You probably won’t use many of these date-formatting and -computing functions,
but the most basic ones will prove to be very important.

Date Arithmetic

DATE is an Oracle datatype, just as VARCHAR2 and NUMBER are, and it has its own unique
properties. The DATE datatype is stored in a special internal Oracle format that includes not just
the month, day, and year, but also the hour, minute, and second. The benefit of all this detail
should be obvious. If you have, for instance, a customer help desk, for each call that is logged in,
Oracle can automatically store the date and time of the call in a single DATE column. You can
format the DATE column on a report to show just the date, or the date and the hour, or the century,
date, hour, and minute, or the date, hour, minute, and second. You can use the TIMESTAMP datatype
to store fractional seconds. See the “Using the TIMESTAMP Datatypes” section later in this chapter
for details.

SQL*Plus and SQL recognize columns that are of the DATE datatype, and they understand
that instructions to do arithmetic with them call for date arithmetic, not regular math. Adding 1
to a date, for instance, will give you another date—the next day. Subtracting one date from another
will give you a number—the count of days between the two dates.

However, because Oracle dates can include hours, minutes, and seconds, doing date arithmetic
can prove to be tricky because Oracle could tell you, for example, that the difference between
today and tomorrow is .516 days! (This will be explained later in this chapter.)

SYSDATE, CURRENT_DATE, and SYSTIMESTAMP

Oracle taps into the computer’s operating system for the current date and time. It makes these
available to you through a special function called SYSDATE. Think of SYSDATE as a function
whose result is always the current date and time, and it can be used anywhere any other Oracle
function can be used. You also can regard it as a hidden column or pseudo-column that is in
every table. Here, SYSDATE shows today’s date:

.~ select SysDate from DUAL,;

SYSDATE

23- MAR- 04

NOTE

DUAL is a small but useful Oracle table created for testing functions
or doing quick calculations. Later in this chapter, the sidebar “The
DUAL Table for Quick Tests and Calculations” describes DUAL.

Chapter 10: Dates: Then, Now, and the Difference 191

A second function, CURRENT_DATE, reports the system date in the session’s time zone (you
can set the time zone within your local session, which may differ from the database’s time zone).

"= 'select Current_Date from DUAL;

CURRENT D

23- VAR- 04
Another function, SYSTIMESTAMP, reports the system date in the TIMESTAMP datatype format:
= select SysTinmeStanp from DUAL;

SYSTI MESTAMP

23- MAR- 04 04. 49. 31. 718000 PM -05: 00

See the “Using the TIMESTAMP Datatypes” section later in this chapter for details on the
TIMESTAMP datatype and the time zone format and functions. The following sections focus on
the use of the DATE datatype, because DATE will satisfy most date-processing requirements.

The Difference Between Two Dates
HOLIDAY is a table of some secular holidays in the United States during 2004:

.~ select Holiday, Actual Date, Cel ebratedDate from HOLI DAY;

HOLI DAY ACTUALDAT CELEBRATE
NEW YEARS DAY 01- JAN-04 01-JAN-04
MARTI N LUTHER KI NG, JR. 15-JAN- 04 19- JAN- 04
LI NCOLNS BI RTHDAY 12- FEB- 04 16- FEB- 04
WASHI NGTONS BI RTHDAY 22-FEB-04 16- FEB-04
FAST DAY, NEW HAMPSH RE 22- FEB- 04 22- FEB- 04
MEMORI AL DAY 30- MAY- 04 31- MAY- 04
| NDEPENDENCE DAY 04- JUL- 04 04-JUL-04
LABOR DAY 06- SEP- 04 06- SEP- 04
COLUMBUS DAY 12-OCT-04 11-COCT-04
THANKSG VI NG 25- NOv- 04 25- NOv- 04

Which holidays are not celebrated on the actual date of their anniversary during 20042 This
can be easily answered by subtracting CelebratedDate from ActualDate. If the answer is not zero,
there is a difference between the two dates:

"= select Holiday, Actual Date, Cel ebratedDate
from Hol i day
wher e Cel ebratedDate - Actual Date != 0;

HOLI DAY ACTUALDAT CELEBRATE

MARTI N LUTHER KI NG, JR. 15-JAN- 04 19- JAN- 04

192 Partll: SQL and SQL*Plus

LI NCOLNS BI RTHDAY 12- FEB- 04 16- FEB- 04
WASHI NGTONS Bl RTHDAY 22-FEB-04 16- FEB-04
MEMORI AL DAY 30- MAY- 04 31- MAY- 04
COLUMBUS DAY 12-OCT-04 11-COCT-04

The DUAL Table for Quick Tests and Calculations

DUAL is a tiny table Oracle provides with only one row and one column in it:

descri be DUAL

DUMMY VARCHAR(1)

Because Oracle’s many functions work on both columns and literals, using DUAL lets
you see some functioning using just literals. In these examples, the select statement doesn’t
care which columns are in the table, and a single row is sufficient to demonstrate a point.
For example, suppose you want to quickly calculate POWER(4,3)—that is, four “cubed”:

sel ect PONER(4, 3) from DUAL,;

POVNER(4, 3)

The actual column in DUAL is irrelevant. This means that you can experiment with date
formatting and arithmetic using the DUAL table and the date functions in order to understand
how they work. Then, those functions can be applied to actual dates in real tables.

Date Functions
The major functions performed on DATE datatype columns are as follows:
® ADD_MONTHS(date,count)y Adds count months to date.
®m CURRENT_DATE Returns the current date in the session’s time zone.

® CURRENT_TIMESTAMP Returns the current timestamp with the active time zone
information.

®m DBTIMEZONE Returns the current database time zone, in UTC format.

m EXTRACT(timeunit FROM datetime) Extracts a portion of a date from a date
value—such as extracting the month value from a DATE column’s values.

Chapter 10: Dates: Then, Now, and the Difference

FROM_TZ(timestamp) Converts a timestamp value to a timestamp with a time
zone value.

GREATEST (date1,date2,date3,...) Picks the latest date from a list of dates.
LEAST(datel,date2,date3,...) Picks the earliest date from a list of dates.
LAST_DAY(date) Gives the date of the last day of the month that date is in.

LOCALTIMESTAMP Returns the local timestamp in the active time zone, with no
time zone information shown.

MONTHS_BETWEEN(date2,date1) Gives date2 minus datel in months (can be
fractional months).

NEW_TIME(date, this’,’other’) Gives the date (and time) in this time zone. this
will be replaced by a three-letter abbreviation for the current time zone. other will
be replaced by a three-letter abbreviation for the other time zone for which you’d
like to know the time and date. The time zones are as follows:

AST/ADT Atlantic standard/daylight time

BST/BDT Bering standard/daylight time

CST/CDT Central standard/daylight time

EST/EDT Eastern standard/daylight time

GMT Greenwich mean time

HST/HDT Alaska-Hawaii standard/daylight time

MST/MDT Mountain standard/daylight time

NST Newfoundland standard time

PST/PDT Pacific standard/daylight time

YST/YDT Yukon standard/daylight time

NEXT_DAY(date,'day’) Gives the date of the next day after date, where ‘day’ is

‘Monday’, ‘Tuesday’, and so on.

NUMTODSINTERVAL(‘value’,’ dateunit’) Converts value to an INTERVAL DAY
TO SECOND literal, where ‘dateunit’ is ‘DAY’, 'HOUR’, ‘MINUTE’, or ‘SECOND’.

NUMTOYMINTERVAL('value’,’ dateunit’) Converts value to an INTERVAL YEAR
TO MONTH literal, where “dateunit’ is “YEAR" or ‘'MONTH'.

ROUND(date,’ format’) Without format specified, this function rounds a date to
12 A.M. (midnight, the beginning of that day) if the time of date is before noon;
otherwise, it rounds up to the next day. For the use of format for rounding, see
ROUND in the Alphabetical Reference.

193

194 Partll: SQL and SQL*Plus

m SESSIONTIMEZONE Returns the value of the current session’s time zone.

m SYS EXTRACT UTC Extracts the Coordinated Universal Time (UTC) from the
current date.

m SYSTIMESTAMP Returns the system date, including fractional seconds and the
time zone of the database.

B SYSDATE Returns the current date and time.

m TO_CHAR(date,'format’) Reformats date according to format. (See the sidebar
“Date Formats” later in this chapter.)

m TO_DATE(string,’'format’) Converts a string in a given format into an Oracle date.
Will also accept a number instead of a string, with certain limits. format is
restricted.

m TO_DSINTERVAL(‘value’) Converts the value of a CHAR, VARCHAR2, NCHAR,
or NVARCHAR?2 datatype to an INTERVAL DAY TO SECOND type.

B TO_TIMESTAMP(‘value’) Converts the value of a CHAR, VARCHAR2, NCHAR,
or NVARCHAR?2 datatype to a value of the TIMESTAMP datatype.

B TO_TIMESTAMP_TZ(‘value’) Converts the value of a CHAR, VARCHAR2,
NCHAR, or NVARCHAR2 datatype to a value of the TIMESTAMP WITH TIME
ZONE datatype.

B TO_YMINTERVAL(‘value’) Converts the value of a CHAR, VARCHAR2, NCHAR,
or NVARCHAR?2 datatype to a value of the INTERVAL YEAR TO MONTH datatype.

B TRUNC(date,'format’) Without format specified, this function sets a date to 12
AM. (midnight, the beginning of that day). For the use of format for truncating, see
TRUNC in the Alphabetical Reference.

m TZ_OFFSET(‘value’) Returns the time zone offset corresponding to the value
entered based on the date the statement is executed.

Adding Months

If February 22 is “Fast Day” in New Hampshire, perhaps six months later could be celebrated as
“Feast Day.” If so, what would the date be? Simply use the ADD_MONTHS function, adding a
count of six months, as shown here:

. |colum Feast Day headi ng "Feast Day"
sel ect ADD_MONTHS(Cel ebr at edDat e, 6) AS Feast Day

from HOLI DAY
where Holiday |ike 'FAST% ;

Chapter 10: Dates: Then, Now, and the Difference 195

22- AUG 04

Subtracting Months

If picnic area reservations have to be made at least six months before Columbus Day, what's the
last day you can make them? Take the CelebratedDate for Columbus Day and use ADD_MONTHS,
adding a negative count of six months (this is the same as subtracting months). This will tell you
the date six months before Columbus Day. Then subtract one day.

"= colum LastDay heading "Last Day"

sel ect ADD_MONTHS(Cel ebr at edDate,-6) - 1 AS Last Day
from HOLI DAY
where Holiday = ' COLUVBUS DAY ;

10- APR- 04

GREATEST and LEAST

Which comes first for each of the holidays that were moved to fall on Mondays, the actual or the
celebrated date? The LEAST function chooses the earliest date from a list of dates, whether columns
or literals; GREATEST, on the other hand, chooses the latest date. These GREATEST and LEAST
functions are exactly the same ones used with numbers and character strings:

" select Holiday, LEAST(Actual Date, Cel ebratedDate) AS First,
Act ual Dat e, Cel ebr at edDat e
from HOLI DAY
where Actual Date - Cel ebratedDate != 0;

HOLI DAY FI RST ACTUALDAT CELEBRATE

MARTI N LUTHER KI NG, JR. 15- JAN- 04 15-JAN-04 19- JAN- 04

LI NCOLNS Bl RTHDAY 12- FEB- 04 12- FEB-04 16- FEB-04
WASHI NGTONS BI RTHDAY 16- FEB- 04 22- FEB- 04 16- FEB- 04
MEMORI AL DAY 30- MAY- 04 30- MAY- 04 31- MVAY- 04
COLUMBUS DAY 11- OCT- 04 12-OCT-04 11- CCT-04

Here, LEAST worked just fine, because it operated on DATE columns from a table. What about
literals?

= select LEAST('20-JAN-04','20-DEC-04') from DUAL,;

20- DEC- 04

196 Partll: SQL and SQL*Plus

A Warning about GREATEST and LEAST

Unlike many other Oracle functions and logical operators, the GREATEST and LEAST
functions will not evaluate literal strings that are in date format as dates. The dates are
treated as strings:

sel ect Holiday, Cel ebratedDate
from HOLI DAY
where Cel ebratedDate = LEAST('19-JAN-04', '06-SEP-04');

HOLI DAY CELEBRATE

LABOR DAY 02- SEP- 02

In order for LEAST and GREATEST to work properly, the function TO_DATE must
be applied to the literal strings:

sel ect Holiday, Cel ebratedDate
from HOLI DAY
where Cel ebratedDate = LEAST(TO DATE(' 19- JAN-04'),
TO _DATE(' 06- SEP-04"));

HOLI DAY CELEBRATE

MARTI N LUTHER KI NG, JR. 04- JAN- 04

This is quite wrong, almost as if you'd said GREATEST instead of LEAST. December 20, 2004
is not earlier than January 20, 2004. Why did this happen? Because LEAST treated these literals
as strings.

It did not know to treat them as dates. The TO_DATE function converts these literals into an
internal DATE format Oracle can use for its date-oriented functions:

= sel ect LEAST(TO DATE(' 20-JAN-04'), TO DATE(' 20-DEC-04'))
from DUAL;

20- JAN- 04

NEXT_DAY

NEXT_DAY computes the date of the next named day of the week (that is, Sunday, Monday, Tuesday,
Wednesday, Thursday, Friday, or Saturday) after the given date. For example, suppose payday is
always the first Friday after the 15th of the month. The table PAYDAY contains only the pay cycle
dates, each one being the 15th of the month, with one row for each month of the year:

Chapter 10: Dates: Then, Now, and the Difference 197

'~ select Cyclebate from PAYDAY,;

CYCLEDATE
15- JAN- 04
15- FEB- 04
15- MAR- 04
15- APR- 04
15- MAY- 04
15- JUN- 04
15-JUL- 04
15- AUG 04
15- SEP- 04
15- OCT- 04
15- NOv- 04
15- DEC- 04

What will be the actual payment dates?
"= colum Payday headi ng "Pay Day"

sel ect NEXT_DAY(Cycl eDate,' FRI DAY') AS Payday
f r om PAYDAY;

16- JAN- 04
20- FEB- 04
19- MAR- 04
16- APR- 04
21- VAY- 04
18- JUN- 04
16-JUL- 04
20- AUG 04
17- SEP- 04
22- OCT- 04
19- NOv- 04
17- DEC- 04

This is nearly correct, except for October, because NEXT_DAY is the date of the next Friday
after the cycle date. Because October 15, 2004, is a Friday, this (wrongly) gives the following
Friday instead. The correct version is as follows:

"= colum Payday headi ng "Pay Day"

sel ect NEXT_DAY(Cycl eDate-1,"' FRI DAY') AS PayDay
f r om PAYDAY;

NEXT_DAY is really a “greater than” kind of function. It asks for the next date greater than the
given date that falls on a specific day of the week. To catch those cycle dates that are already on
Friday, subtract one from the cycle date. This makes every cycle date appear one day earlier to
NEXT_DAY. The paydays are then always the correct Friday.

198 Partll: SQL and SQL*Plus

LAST_DAY

LAST_DAY produces the date of the last day of the month. Suppose that commissions and
bonuses are always paid on the last day of the month. What are those dates in 20042

"= colum EndMonth headi ng "End Month"

sel ect LAST_DAY(Cycl eDate) AS EndMonth
f r om PAYDAY;

End Month
31- JAN- 04
29- FEB- 04
31- VAR- 04
30- APR- 04
31- MAY- 04
30- JUN- 04
31-JUL- 04
31- AUG 04
30- SEP- 04
31- OCT- 04
30- NOV- 04
31- DEC- 04

MONTHS_BETWEEN Two Dates

You recently came across a file containing the birthdates of a group of friends. You load the
information into a table called BIRTHDAY and display it:

= select FirstNanme, LastNane, BirthDate from Bl RTHDAY;

FI RSTNAMVE LASTNAME Bl RTHDATE
GEORCE SAND 12- MAY- 46
ROBERT JAMES 23- AUG 37
NANCY LEE 02- FEB- 47
VI CTORI A LYNN 20- MAY- 49
FRANK Pl LOT 11- NOV-42

To calculate each person’s age, compute the months between today’s date and their birth dates,
and divide by 12 to get the years. The division will print the age with a decimal component. Because
most people over the age of 7 don't report their age using portions of years, apply a FLOOR function
to the computation.

" . 'select FirstNane, LastNane, Birthdate,
FLOOR(
MONTHS_BETWEEN(SysDat e, Bi rt hdate) /12
) AS Age
f r om Bl RTHDAY;

Chapter 10: Dates: Then, Now, and the Difference

FI RSTNAME LASTNAME Bl RTHDATE ACE
GEORGE SAND 12- MAY- 46 57
ROBERT JAMES 23- AUG 37 66
NANCY LEE 02- FEB-47 57
VI CTORI A LYNN 20- MAY- 49 54
FRANK PI LOT 11- NOvV- 42 61

Combining Date Functions

You are hired on March 23, 2004, at a great new job, with a starting salary that is lower than you
had hoped, but with a promise of a review the first of the month after six months have passed. If
the current date is March 23, 2004, when is your review date?

.~ select SysDate AS Today,
LAST_DAY(ADD_MONTHS(SysDate, 6)) + 1 Review
from DUAL;

23- MAR- 04 01-OCT-04

ADD_MONTHS takes the SysDate and adds six months to it. LAST_DAY takes this result and
figures the last day of that month. You then add 1 to the date to get the first day of the next month.
How many days until that review? You simply subtract today’s date from it. Note the use of
parentheses to ensure the proper order of the calculation:

"= select (LAST_DAY(ADD MONTHS(SysDate,6))+ 1)-SysDate Wit
from DUAL;

ROUND and TRUNC in Date Calculations

Assume that this is today’s SysDate:
23- VAR- 04

In the beginning of the chapter, it was noted that Oracle could subtract one date from another,
such as tomorrow minus today, and come up with an answer other than a whole number. Let’s

look at it:

o« sel ect TO DATE(' 24- MAR-04') - SysDate from DUAL;

199

200 Partll: SQL and SQL*Plus

TO DATE(' 24- MAR- 04") - SYSDATE

The reason for the fractional number of days between today and tomorrow is that Oracle
keeps hours, minutes, and seconds with its dates, and SysDate is always current, up to the second.
It is obviously less than a full day until tomorrow.

To simplify some of the difficulties you might encounter using fractions of days, Oracle makes a
couple of assumptions about dates:

m A date entered as a literal, such as ‘24-MAR-04’, is given a default time of 12 A.M.
(midnight) at the beginning of that day.

B A date entered through SQL*Plus, unless a time is specifically assigned to it, is set to
12 A.M. (midnight) at the beginning of that day.

B SysDate always includes both the date and the time, unless you intentionally round it
off. Using the ROUND function on any date sets it to 12 A.M. for that day if the time is
before exactly noon, and to 12 A.M. the next day if it is after noon. The TRUNC function
acts similarly, except that it sets the time to 12 A.M. for any time up to and including one
second before midnight.

To get the rounded number of days between today and tomorrow, use this:
. select TO DATE('25-MAR-04') - ROUND(SysDate) from DUAL;

TO DATE(" 25- MAR- 04') - ROUND(SYSDATE)

If the current time is after noon, the rounded difference will be 0 days.

ROUND, without a ‘format’ (see the earlier sidebar, “Date Functions”), always rounds a date
to 12 AM. of the closest day. If dates that you will be working with contain times other than noon,
either use ROUND or accept possible fractional results in your calculations. TRUNC works similarly,
but it sets the time to 12 A.M. of the current day.

TO_DATE and TO_CHAR Formatting

TO_DATE and TO_CHAR are alike insofar as they both have powerful formatting capabilities.
They are opposite insofar as TO_DATE converts a character string or a number into an Oracle
date, whereas TO_CHAR converts an Oracle date into a character string. The formats for these
two functions are as follows:

. . TOCHAR(date[,'format'[,' NLSparaneters']])

TO DATE(string[,' format'[,' NLSparaneters']])

date must be a column defined as a DATE datatype in Oracle. It cannot be a string, even if
it is in the most common date format of DD-MON-YY. The only way to use a string where date
appears in the TO_CHAR function is to enclose it within a TO_DATE function.

Chapter 10: Dates: Then, Now, and the Difference

string is a literal string, a literal number, or a database column containing a string or a number.
In every case but one, the format of string must correspond to that described by format. Only if a
string is in the default format can format be left out. The default starts out as ‘'DD-MON-YY’, but
you can change this with

"= alter session set NLS DATE FORVAT = "DD/ MON/ YYYY";

for a given SQL session or with the NLS_DATE_FORMAT init.ora parameter.

format is a collection of many options that can be combined in virtually an infinite number of
ways. The sidebar “Date Formats” lists these options with explanations. Once you understand the
basic method of using the options, putting them into practice is simple.

NLSparameters is a string that sets the NLS_DATE_LANGUAGE option to a specific language,
as opposed to using the language for the current SQL session. You shouldn’t need to use this option
often. Oracle will return day and month names in the language set for the session with alter session.

- NOTE
5 n many cases, you can use the EXTRACT function in place of TO_
~~ CHAR. See the “Using the EXTRACT Function” section later in this
chapter for examples.

TO_CHAR will be used as an example of how the options work. Defining a column format
for the TO_CHAR function results is the first task, because without it, TO_CHAR will produce
a column in SQL*Plus nearly 100 characters wide. By renaming the column (so its heading is
intelligible) and setting its format to 30 characters, a practical display is produced:

= colum Formatted format a30 word_wr apped
sel ect BirthDate,
TO CHAR(Bi rt hDate,' MM DD YY') AS Fornmatted
f r om Bl RTHDAY
where FirstNane = 'VICTORI A';

Bl RTHDATE FORVATTED

20- VAY- 49 05/ 20/ 49

BirthDate shows the default Oracle date format: DD-MON-YY (day of the month, dash, three-
letter abbreviation for the month, dash, the last two digits of the year). The TO_CHAR function in
the select statement is nearly self-evident. MM, DD, and YY in the TO_CHAR statement are key
symbols to Oracle in formatting the date. The slashes (/) are just punctuation, and Oracle will
accept a wide variety of punctuation.

"= select BirthDate, TO CHAR(BirthDate,' YYMWDD) Fornatted
f r om Bl RTHDAY
where FirstNane = 'VICTORI A’ ;

Bl RTHDATE FORVATTED

20- MAY- 49 4905>20

201

202 Partll: SQL and SQL*Plus

Date Formats
Date format models are used in conversion functions. Here are the data model

components:

5= Raeks Punctuation to be incorporated in display for TO_CHAR or ignored
in format for TO_DATE.

A.D. or AD AD indicator, with or without periods.

A.M. or AM Displays A.M. or P.M., depending upon time of day, with or without
periods.

BIGFonB® Same as A.D. or AD.

@@ Century (for example, 21 for 2004).

SCC Century, with BC dates prefixed with -.

D Number of days in a week: 1 to 7.

DAY The day fully spelled out, padded to nine characters.

DD Number of days in a month: 1 to 31.

DDD Number of days in a year (since Jan 1): 1 to 366.

DL The date in local long format; in the U.S. format this is equivalent to
‘fmDay, Month dd, yyyy’.

DS The date in local short format; in the U.S. format this is equivalent to
‘MM/DD/RRRR’.

DY Three-letter abbreviation of a day (for example, FRI).

E Abbreviated era name (Japanese Imperial, ROC Official, and Thai
Buddha calendars).

EE Full era name version of the E format.

EEEO] Fractional seconds. The number following FF specifies the number
of digits in the fractional seconds portion displayed.

FM Suppresses leading and trailing blanks. Without FM, all months and
days are displayed at the same width.

FX Specifies the exact format matching for the character argument and
the date format model.

HH Hour of the day (always 1 to 12).

HH12 Same as HH.

HH24 Hour of the day, 24-hour clock (values 0 to 23).

Chapter 10: Dates: Then, Now, and the Difference 203

[One-digit year from 1SO standard.

IW Weeks in the year from ISO standard (1 to 53).

N Two-digit year from ISO standard.

1YY Three-digit year from I1SO standard.

IYYY Four-digit year from I1SO standard.

J “Julian” (days since December 31, 4712 B.C.).

MI Minutes of the hour (values 0 to 59).

MM Number of the month (for example, 12).

MON Three-letter abbreviation of the month (for example, AUG).

MONTH The month fully spelled out (for example, AUGUST).

P.M. Same effect as A.M.

Q Quarter of the year (1 to 4).

RM Roman numeral month.

RR Last two digits of the year relative to the current date.

RRRR Rounded year, accepting either two- or four-digit input.

SS Seconds of the minute (for example, 43).

SSSSS Seconds since midnight, always 0 to 86399 (for example, 43000).

S Short time format, for use with DL or DS.

TZD Daylight savings time information.

TZH Time zone hour.

TZM Time zone minute.

TZR Time zone region.

W Number of weeks in a month, where Week 1 starts on the first day
of the month.

WW Number of weeks in a year, where Week 1 starts on the first day of
the year.

X Local radix character.

YEAR or SYEAR The year spelled out; ‘S” marks B.C. dates with a leading minus sign.
YYYY or SYYYY Full four-digit year; ‘S” marks B.C. dates with a leading minus sign.

NS Year, with a comma.

204 Partll: SQL and SQL*Plus

Y Last one digit of a year.
aYe Last two digits of a year.
YARY Last three digits of a year.

Date formats that work only with TO_CHAR, but not TO_DATE, include the following:

“string” string is incorporated in the display for TO_CHAR.

TH Suffix to a number. For example, ddTH or DDTH produces 24th or 24TH,
respectively. Capitalization comes from the case of the number—DD—not
from the case of TH. Works with any number in a date: YYYY, DD, MM,
HH, MI, SS, and so on.

SP Suffix to a number that forces the number to be spelled out. For example,
DDSP, DdSP, or ddSP produces THREE, Three, or three, respectively.
Capitalization comes from the case of the number—DD—not from the
case of SP. Works with any number in a date: YYYY, DD, MM, HH, M,
SS, and so on.

SPTH Suffix combination of TH and SP that forces a number to be both spelled
out and given an ordinal suffix. For example, Ddspth produces Third.
Capitalization comes from the case of the number—DD—not from the
case of SP. Works with any number in a date: YYYY, DD, MM, HH, M,
SS, and so on.

THSP Same as SPTH.

In addition to standard punctuation, Oracle allows you to insert text into the format. This is
done by enclosing the desired text in double quotation marks:

= 'select BirthDate,
TO CHAR(Bi rthDate, ' Month, DDth "in, um"
YyyY') AS Formatted
f rom Bl RTHDAY ;

Bl RTHDATE FORVATTED

12- VAY- 46 May , 12TH in, um
1946

23- AUG 37 August , 23RD in, um
1937

02- FEB- 47 February , 02ND in, um
1947

Chapter 10: Dates: Then, Now, and the Difference 205

20- MAY- 49 May , 20TH in, um
1949

11- NOV- 42 Novenber , 11TH in, um
1942

Several consequences of the format are worth observing here. The full word “Month” told
Oracle to use the full name of the month in the display. Because it was typed with the first letter
in uppercase and the remainder in lowercase, each month in the result was formatted the same
way. The options for month are as follows:

Format Result
Month August
Month August
Mon Aug
Mon Aug

The day of the month is produced by the DD in the format. A suffix of th on DD tells Oracle
to use ordinal suffixes, such as “TH”, “RD”, and “ND” with the number. In this instance, the
suffixes are also case sensitive, but their case is set by the DD, not the th:

Format Result
DDth or DDTH 11TH
Ddth or DATH 11Th
Ddth or ddTH 11th

This same approach holds true for all numbers in the format, including century, year, quarter,
month, week, day of the month (DD), Julian day, hours, minutes, and seconds.

The words between double quotation marks are simply inserted where they are found. Spaces
between any of these format requests are reproduced in the result (look at the three spaces before
the word “in” in the preceding example). YyyY is included simply to show that case is irrelevant
unless a suffix such as Th is being used. For simplicity’s sake, consider this format request:

"= 'select BirthDate, TO CHAR(BirthbDate, ' Month, ddth, YyyY')
AS Formatted
f rom Bl RTHDAY;

Bl RTHDATE FORVATTED

12- VAY- 46 May , 12th, 1946
23- AUG 37 August , 23rd, 1937
02- FEB-47 February , 02nd, 1947
20- MAY- 49 May , 20th, 1949

11- NOV-42 Novenber , 11th, 1942

206 Partll: SQL and SQL*Plus

This is a reasonably normal format. The days are all aligned, which makes comparing the rows
easy. This is the default alignment, and Oracle accomplishes it by padding the month names on
the right with spaces up to a width of nine spaces. There will be circumstances when it is more
important for a date to be formatted normally, such as at the top of a letter. The spaces between
the month and the comma would look odd. To eliminate the spaces, fm is used as a prefix for the
words “month” and “day”:

Format Result

Month, ddth August , 20th
fmMonth, ddth August, 20th
Day, ddth Monday , 20th
fmDay, ddth Monday, 20th

This is illustrated in the following example:

. select BirthDate, TO CHAR(BirthDate,' fmvonth, ddth, YyyY')
AS Fornmatted
from Bl RTHDAY;

Bl RTHDATE FORMATTED

12- VAY-46 May, 12th, 1946

23- AUG 37 August, 23rd, 1937
02- FEB- 47 February, 2nd, 1947
20- VAY- 49 May, 20th, 1949

11- NOV- 42 Novenber, 11th, 1942

By combining all these format controls and adding hours and minutes, you can produce a
birth announcement:

'~ select FirstNane, Birthdate, TO CHAR(BI rthDate,
""Baby Grl on" fnmVonth ddth, YYYY, "at" HH M "in the Morning"")
AS Formatted
fr om Bl RTHDAY
where FirstNane = 'VICTORI A’ ;

FI RSTNAMVE Bl RTHDATE FORVATTED

VI CTORI A 20- VAY-49 Baby G rl on May 20th, 1949,
at 3:27 in the Mrning

Suppose that after looking at this, you decide you’d rather spell out the date. Do this with the
sp control:

'~ select FirstNane, Birthdate, TO CHAR(BI rthDate,
""Baby Grl on the" Ddsp "of" fmVonth, YYYY, "at" HHM")
AS Formatted

Chapter 10: Dates: Then, Now, and the Difference 207

f r om Bl RTHDAY
where FirstNane = 'VICTORI A’ ;

FI RSTNAMVE Bl RTHDATE FORVATTED

VI CTORI A 20- MAY- 49 Baby Grl on the Twenty of
May, 1949, at 3:27

Well, 20 was spelled out, but it still doesn’t look right. Add the th suffix to sp:

'~ select FirstNane, Birthdate, TO CHAR(BIi rthDate,
""Baby Grl on the" Ddspth "of" fmvonth, YYYY, "at" HHM"')
AS Formatted
f r om Bl RTHDAY
where FirstName = 'VICTORI A ;

FI RSTNAMVE Bl RTHDATE FORVATTED

VI CTORI A 20- MAY- 49 Baby G rl on the Twentieth of
May, 1949, at 3:27

But was it 3:27 A.M. or 3:27 P.M.2 These could be added inside double quotation marks, but
then the result would always say “A.M.” or “P.M.”, regardless of the actual time of the day (because
double quotation marks enclose a literal). Instead, Oracle lets you add either “A.M.” or “P.M.”
after the time, but not in double quotation marks. Oracle then interprets this as a request to
display whether it is A.M. or P.M. Note how the select has this formatting control entered as P.M.,
but the result shows A.M., because the birth occurred in the morning:

'~ select FirstNane, Birthdate, TO CHAR(BI rthDate,
""Baby Grl on the" Ddspth "of" fmvonth, YYYY, "at" HHM P.M")
AS Formatted
f r om Bl RTHDAY
where FirstName = 'VICTORI A ;

FI RSTNAME Bl RTHDATE FORVATTED

VI CTORI A 20- MAY- 49 Baby G rl on the Twentieth of
May, 1949, at 3:27 A M

Consult the sidebar “Date Formats,” earlier in the chapter, for a list of all the possible date
options. How would you construct a date format for the 778th Year of the Reign of Louis IX? Use
date arithmetic to alter the year from A.D. to A.L. (Louis’s reign began in 1226, so subtract 1,226
years from the current year) and then simply format the result using TO_CHAR.

The Most Common TO CHAR Error

Always check the date formats when using the TO_CHAR function. The most common error is to
interchange the ‘MM’ (Month) format and the ‘MI” (Minutes) format when formatting the time portion
of a date.

208 Partll: SQL and SQL*Plus

For example, to view the current time, use the TO_CHAR function to query the time portion
of SysDate:

= select TO CHAR(SysDate,'HH: M :SS') Now
from DUAL;

05:11: 48

This example is correct because it uses ‘MI" to show the minutes. However, users often select
‘MM’ instead—partly because they are also selecting two other pairs of double letters, ‘HH’ and
‘SS’. Selecting ‘MM’ will return the month, not the minutes:

"= select TO CHAR(SysDate,' HH MV SS') NowW ong
from DUAL;

05: 03: 48

This time is incorrect, because the month was selected in the minutes place. Because Oracle is
so flexible and has so many different supported date formats, it does not prevent you from making
this error.

NEW_TIME: Switching Time Zones

The NEW_TIME function tells you the time and date of a date column or literal date in other time
zones. Here is the format for NEW_TIME:

. NEWTIME(date," ' this',' other')

date is the date (and time) in this time zone. this will be replaced by a three-letter abbreviation
for the current time zone. other will be replaced by a three-letter abbreviation of the other time
zone for which you’d like to know the time and date. The time zone options are given in the
sidebar “Date Functions,” earlier in this chapter. To compare just the date, without showing the
time, of Victoria’s birth between Eastern standard time and Hawaiian standard time, use this:

"= 'select Birthdate, NEWTI ME(Birthdate,' EST' ,"' HST")
f rom Bl RTHDAY
where FirstNane = 'VICTORI A’ ;

Bl RTHDATE NEW TI Mg(

20- MAY- 49 19- MAY- 49

But how could Victoria have been born on two different days? Because every date stored in
Oracle also contains a time, it is simple enough using TO_CHAR and NEW_TIME to discover
both the date and the time differences between the two zones. This will answer the question:

Chapter 10: Dates: Then, Now, and the Difference 209

.~ select TOCHAR(Birthdate,' fnmvonth Ddth, YYYY "at" HHM AM) AS Birth,
TO_CHAR(NEW TI ME(Bi rt hdat e, ' EST', ' HST'),
"fmvonth ddth, YYYY "at®" HHHM AM) AS Birth
f r om Bl RTHDAY
where FirstNane = 'VICTORI A’ ;

May 20th, 1949 at 3:27 AM May 19th, 1949 at 10:27 PM

TO_DATE Calculations
TO_DATE follows the same formatting conventions as TO_CHAR, with some restrictions. The
purpose of TO_DATE is to turn a literal string, such as MAY 20, 1949, into an Oracle date format.
This allows the date to be used in date calculations.

Here is the format for TO_DATE:

. TO DATE(string[,' format'])

To put the string 22-MAR-04 into Oracle date format, use this:
"= select TO DATE('22-MAR-04',' DD MON-YY') from DUAL;

TO_DATE("

22- MAR- 04

Note, however, that the 22-MAR-04 format is already in the default format in which Oracle
displays and accepts dates. When a literal string has a date in this format, the format in TO_DATE
can be left out, with exactly the same result:

"= select TO DATE('22-MAR-04') from DUAL;

TO_DATE("

22- MAR- 04

Note that the punctuation is ignored. Even if your default date format is 22/MAR/04, the query
will still work, but it will return data in the format 22/MAR/04.

But what century is the date in? Is it 1902 or 20027 If you do not specify the full four-digit
value for the year, then you are relying on the database to default to the proper century value.

If the string is in a familiar format, but not the default Oracle format of DD-MON-YY, TO_

DATE fails:
= select TO DATE(' 03/22/04") from DUAL;

sel ect TO DATE(' 03/22/04') from DUAL;
*

ERROR at line 1:

ORA-01843: not a valid nonth

210 Partll: SQL and SQL*Plus

When the format matches the literal string, the string is successfully converted to a date and is
then displayed in the default date format:

| select TO_DATE('03/22/04',' MM DD/ YY') from DUAL;

TO DATE("

22- VAR- 04

Suppose you need to know the day of the week of March 22. The TO_CHAR function will
not work, even with the literal string in the proper format, because TO_CHAR requires a date
(see its format at the very beginning of the “TO_DATE and TO_CHAR Formatting” section):

"= select TO CHAR('22-FEB-02','Day') from DUAL;

ERROR at line 1:
ORA-01722: invalid nunber

The message is somewhat misleading, but the point is that the query fails. You could use the
EXTRACT function, but this query will also work if you first convert the string to a date. Do this
by combining the two functions TO_CHAR and TO_DATE:

2 select TO CHAR(TO DATE(' 22- MAR-04'), 'Day') from DUAL;

TO_DATE can also accept numbers, without single quotation marks, instead of strings, as long
as they are formatted consistently. Here is an example:

= select TO DATE(11051946,"' MVDDYYYY') from DUAL;

TO DATE(1

The punctuation in the format is ignored, but the number must follow the order of the format
controls. The number itself must not have punctuation.

How complex can the format control be in TO_DATE? Suppose you simply reversed the TO_
CHAR select statement shown earlier, put its result into the string portion of TO_DATE, and kept
its format the same as TO_CHAR:

" select TO DATE('Baby G rl on the Twentieth of My, 1949,
at 3:27 AM"',
""Baby Grl on the" Ddspth "of" fm\onth, YYYY,
"at" HHM P.M")
AS Formatted
from Bl RTHDAY

Chapter 10:

where FirstNane = ' VICTORI A’ ;

ERROR at line 1:
ORA-01858: a non-nuneric character was found
where a nuneric was expected

Dates: Then, Now, and the Difference

This failed. As it turns out, only a limited number of the format controls can be used. Here are
the restrictions on format that govern TO_DATE:

Dates in where Clauses

No literal strings are allowed, such as “Baby Girl on the”.

Days cannot be spelled out. They must be numbers.

Punctuation is permitted.

fm is not necessary. If used, it is ignored.

If Month is used, the month in the string must be spelled out. If Mon is used, the month
must be a three-letter abbreviation. Uppercase and lowercase are ignored.

Early in this chapter, you saw an example of date arithmetic used in a where clause:

e sel ect

where Cel ebratedDate - Actual Date !
HOLI DAY ACTUALDAT
MARTI N LUTHER KI NG JR 15- JAN- 04
LI NCOLNS Bl RTHDAY 12- FEB- 04
WASHI NGTONS BI RTHDAY 22- FEB- 04
MEMORI AL DAY 30- MAY- 04
COLUMBUS DAY 12- OCT- 04

Hol i day, Actual Date, Cel ebratedDate
from Hol i day

= 0;

CELEBRATE
19- JAN- 04
16- FEB- 04
16- FEB- 04
31- MAY- 04
11- OCT- 04

Dates can be used with other Oracle logical operators as well, with some warnings and
restrictions. The BETWEEN operator will do date arithmetic if the column preceding it is a date,
even if the test dates are literal strings:

o sel ect

Hol i day, Cel ebratedDate

from HOLI DAY
wher e Cel ebr at edDat e BETWEEN

"01-JAN-04' and ' 22-FEB-04';

HOLI DAY CELEBRATE

NEW YEARS DAY 01- JAN- 04
MARTI N LUTHER KI NG, JR. 19- JAN- 04
LI NCOLNS BI RTHDAY 16- FEB- 04

211

212 Partll: SQL and SQL*Plus

WASHI NGTONS Bl RTHDAY 16- FEB- 04
FAST DAY, NEW HAVPSH RE 22- FEB- 04

The logical operator IN works as well with literal strings:

" = select Holiday, CelebratedDate
from HOLI DAY
where Cel ebratedDate IN (' 01-JAN-04', '22-FEB-04');

HOLI DAY CELEBRATE

NEW YEARS DAY 01- JAN- 04
FAST DAY, NEW HAVPSH RE 22- FEB- 04

If you cannot rely on 2000 being the default century value, you can use the TO_DATE function
to specify the century values for the dates within the IN operator:

" = 'select Holiday, CelebratedDate
f rom HOLI DAY
where Cel ebratedDate I N
(TO_DATE(' 01- JAN-2004' , ' DD- MON- YYYY'),
TO _DATE(' 22- FEB-2004' , ' DD- MON- YYYY')) ;

HOLI DAY CELEBRATE

NEW YEARS DAY 01- JAN- 04
FAST DAY, NEW HAVMPSH RE 22- FEB- 04

LEAST and GREATEST do not work, because they assume the literal strings are strings, not
dates. Refer to the sidebar “A Warning about GREATEST and LEAST,” earlier in this chapter, for
an explanation of LEAST and GREATEST.

Dealing with Multiple Centuries

If your applications use only two-digit values for years, you may encounter problems related to
the year 2000. If you only specify two digits of a year (such as ‘98" for ‘1998’), you are relying on
the database to specify the century value (the “19’) when the record is inserted. If you are putting
in dates prior to the year 2000 (for example, birth dates), you may encounter problems with the
century values assigned to your data.

In Oracle, all date values have century values. If you only specify the last two digits of the
year value, Oracle will, by default, use the current century as the century value when it inserts
a record. For example, the following listing shows an insert into the BIRTHDAY table:

" . insert into Bl RTHDAY
(FirstNane, LastNane, BirthDate)
val ues
("ALICIA, "ANN', '21-NOv-39');

Chapter 10: Dates: Then, Now, and the Difference 213

In the preceding example, no century value is specified for the BirthDate column, and no age
is specified. If you use the TO_CHAR function on the BirthDate column, you can see the full birth
date Oracle inserted—it defaulted to the current century:

"= select TO CHAR(BIirthDate,' DD- MON- YYYY') AS Bday
f rom Bl RTHDAY
where FirstNanme = 'ALICI A
and LastNane = ' ANN ;

21- NOv- 2039

For dates that can properly default to the current century, using the default does not present
a problem. Alicia’s BirthDate value is 21-NOV-2039—wrong by 100 years! Wherever you insert
date values, you should specify the full four-digit year value.

Using the EXTRACT Function

You can use the EXTRACT function in place of the TO_CHAR function when you are selecting
portions of date values—such as just the month or day from a date. The EXTRACT function’s
syntax is

W EXTRACT
({{ YEAR
MONTH
DAY
HOUR
M NUTE
SECOND

I

I

I

I

I

}

{ TI MEZONE_HOUR

| TI MEZONE_M NUTE
}

{ TI MEZONE_REG ON
| TI MEZONE_ABBR
}

}

FROM { datetinme_val ue_expression | interval _val ue_expression }

For instance, to extract the month in which Victoria was born, you could execute the following:

= select BirthDate,
EXTRACT(Month from BirthDate) AS Mnth
f r om Bl RTHDAY
where FirstNane = ' VICTORI A’ ;

214 Partll: SQL and SQL*Plus

Bl RTHDATE MONTH

20- MAY- 49 5

For more complex extractions, you will need to use TO_CHAR, but EXTRACT can support
many common date value queries.

Using the TIMESTAMP Datatypes

The DATE datatype stores the date and time to the second; TIMESTAMP datatypes store the date
to the billionth of a second.

The base datatype for timestamp values is called TIMESTAMP. Like DATE, it stores the year,
month, day, hour, minute, and second. It also includes a fractional_seconds_precision setting that
determines the number of digits in the fractional part of the seconds field. By default, the precision
is 6; valid values are 0 to 9.

In the following example, a table is created with the TIMESTAMP datatype, and it’s populated
via the SYSTIMESTAMP function:

. ‘create table X1
(tscol TIMESTAMP(5));

insert into X1 val ues (SYSTI MESTAWP);
Now select that value from the table:

. 'select * from X1;
23- MAR- 04 05.27.32.71800 PM

The output shows the second the row was inserted, down to five places after the decimal.

The SYSTIMESTAMP function returns data in the form of the TIMESTAMP (fractional_seconds_
precision) WITH TIME ZONE datatype. The exact same row, inserted into a column that is defined
with the TIMESTAMP(5) WITH TIME ZONE datatype, returns the data in the following format:

. . create table X2
(tscol TIMESTAMP(5) WTH TI ME ZONE) ;

insert into X2 val ues (SYSTI MESTAWP) ;
sel ect * from X2;
23- MAR- 04 05.29. 11. 64000 PM —-05: 00

In this output, the time zone is displayed as an offset of Coordinated Universal Time (UTC).
The database is presently set to a time zone that is five hours prior to UTC.

Chapter 10: Dates: Then, Now, and the Difference 215

Oracle also supports the TIMESTAMP (fractional_seconds_ precision) WITH LOCAL TIME
ZONE datatype, which is similar to TIMESTAMP WITH TIME ZONE. It differs in that the data is
normalized to the database time zone when it is stored in the database, and during retrievals the
users see data in the session time zone.

In addition to the TIMESTAMP datatypes, Oracle also supports two interval datatypes: INTERVAL
YEAR (year_precision) TO MONTH and INTERVAL DAY (day_precision) TO SECOND (fractional_
seconds_precision). INTERVAL YEAR TO MONTH stores a period of time in years and months,
where the precision is the number of digits in the YEAR field (ranging from 0O to 9, with the default
being 2). The INTERVAL DAY TO SECOND datatype stores a period of time in days, hours, minutes,
and seconds; the precision for the day and seconds accepts values from 0 to 9. The INTERVAL
datatypes are mostly used during statistical analysis and data mining.

CHAPTER

11

Conversion and
Transformation
Functions

218 Partll: SQL and SQL*Plus

his chapter looks at functions that convert, or transform, one datatype into
another. Four major datatypes and their associated functions have been
covered thus far:

m CHAR (fixed-length character strings) and VARCHAR2 (variable-length character strings)
include any letter of the alphabet, any number, and any of the symbols on the keyboard.
Character literals must be enclosed in single quotation marks:

"Sault Ste. Marie!'

®m NUMBER includes just the digits O through 9, a decimal point, and a minus sign,
if necessary. NUMBER literals are not enclosed in quotation marks:

- 246. 320

m DATE is a special type that includes information about the date, time, and time zone.
It has a default format of DD-MON-YY, but can be displayed in many ways using the
TO_CHAR function, as you saw in Chapter 10. DATE literals must be enclosed in single
quotation marks:

' 26- AUG 81'

Each of these datatypes has a group of functions designed especially to manipulate data of its
own type, as shown in Chapters 7, 8, 9, and 10. String functions are used with character columns
or literals, arithmetic functions are used with NUMBER columns or literals, and DATE functions are
used with DATE columns or literals. Most group and miscellaneous functions work with any of
these types. Some of these functions change the object they affect (whether CHAR, VARCHAR?2,
NUMBER, or DATE), whereas others report information about the object.

In one sense, most of the functions studied so far have been transformation functions, meaning
they changed their objects. However, the functions covered in this chapter change their objects
in an unusual way: They transform them from one datatype into another, or they make a profound
transformation of the data in them. Table 11-1 describes these functions.

Function Name Definition

ASCIISTR Translates a string in any character set and returns an ASCII string in the
database character set.

BIN_TO_NUM Converts a binary value to its numerical equivalent.

CAST Casts one built-in or collection type to another; commonly used with nested

tables and varying arrays.

CHARTOROWID Changes a character string to act like an internal Oracle row identifier, or RowlID.

TABLE 11-1. Conversion Functions

Chapter 11: Conversion and Transformation Functions

Function Name

COMPOSE

CONVERT
DECODE

DECOMPOSE

HEXTORAW
NUMTODSINTERVAL
NUMTOYMINTERVAL
RAWTOHEX
RAWTONHEX

ROWIDTOCHAR
ROWIDTONCHAR
SCN_TO_TIMESTAMP
TIMESTAMP_TO_SCN
TO_BINARY_DOUBLE
TO_BINARY_FLOAT
TO_CHAR

TO_CLOB

TO_DATE
TO_DSINTERVAL

TO_LOB
TO_MULTI_BYTE
TO_NCHAR

TO_NCLOB

TO_NUMBER
TO_SINGLE_BYTE

Definition

Translates a string in any datatype to a Unicode string in its fully normalized
form in the same character set as the input.

Converts a character string from one national language character set to another.

Decodes a CHAR, VARCHAR2, or NUMBER into any of several different
character strings or NUMBERs, based on value. This is a very powerful
if-then-else function. Chapter 16 is devoted to DECODE.

Translates a string in any datatype to a Unicode string after canonical
decomposition in the same character set as the input.

Changes a character string of hexadecimal numbers into binary.
Converts a number to an INTERVAL DAY TO SECOND literal.
Converts a number to an INTERVAL YEAR TO MONTH literal.
Changes a string of binary numbers to a character string of hex numbers.

Converts raw to an NVARCHAR?2 character value containing its hexadecimal
equivalent.

Changes an internal Oracle row identifier, or RowlID, to a character string.
Converts a RowlID value to an NVARCHAR2 datatype.

Converts a system change number to an approximate timestamp.
Converts a timestamp to an approximate system change number.

Returns a double-precision floating-point number.

Returns a single-precision floating-point number.

Converts a NUMBER or DATE to a character string.

Converts NCLOB values in a LOB column or other character strings
to CLOB values.

Converts a NUMBER, CHAR, or VARCHAR2 to a DATE (an Oracle datatype).

Converts a character string of the datatype CHAR, VARCHAR2, NCHAR,
or NVARCHAR2 to an INTERVAL DAY TO SECOND type.

Converts a LONG to a LOB as part of an insert as select.
Converts the single-byte characters in a character string to multibyte characters.

Converts a character string, NUMBER, or DATE from the database character set
to the national character set.

Converts CLOB values in a LOB column or other character strings to NCLOB
values.

Converts a CHAR or VARCHAR2 to a number.
Converts the multibyte characters in a CHAR or VARCHAR2 to single bytes.

TABLE 11-1.

Conversion Functions (continued)

219

220 Partll: SQL and SQL*Plus

Function Name Definition

TO_TIMESTAMP Converts a character string to a value of the TIMESTAMP datatype.

TO_TIMESTAMP_TZ Converts a character string to a value of the TIMESTAMP WITH TIME ZONE
datatype.

TO_YMINTERVAL Converts a character string of the datatype CHAR, VARCHAR2, NCHAR,
or NVARCHAR2 to an INTERVAL YEAR TO MONTH type.

TRANSLATE Translates characters in a string into different characters.

UNISTR Converts a string into Unicode in the database Unicode character set.

TABLE 11-1. Conversion Functions (continued)

Elementary Conversion Functions

Although Table 11-1 lists many conversion functions, the most commonly used are the following
three, whose purpose is to convert one datatype into another:

B TO_CHAR Transforms a DATE or NUMBER into a character string.

m TO_DATE Transforms a NUMBER, CHAR, or VARCHAR?2 into a DATE. For working
with timestamps, you can use TO_TIMESTAMP or TO_TIMESTAMP_TZ.

B TO_NUMBER Transforms a CHAR or VARCHAR?2 into a NUMBER.

Why are these transformations important? TO_DATE is obviously necessary to accomplish
date arithmetic. TO_CHAR allows you to manipulate a number as if it were a string, using string
functions. TO_NUMBER allows you to use a string that happens to contain only numbers as if it
were a number; by using it, you can add, subtract, multiply, divide, and so on.

This means that if you stored a nine-digit ZIP code as a number, you could transform it into
a string and then use SUBSTR and concatenation to add a dash (such as when printing addresses
on envelopes):

o sel ect SUBSTR(TO_CHAR(948033515),1,5)||'-"]|
SUBSTR(TO_CHAR(948033515),6) AS Zip
from DUAL;

94803- 3515

Here, the TO_CHAR function transforms the pure number 948033515 (notice that it has no
single quotation marks around it, as a CHAR or VARCHAR?2 string must) into a character string.
SUBSTR then clips out positions 1 to 5 of this string, producing 94803. A dash is concatenated
on the right end of this string, and then another TO_CHAR creates another string, which another
SUBSTR clips out from position 6 to the end. The second string, 3515, is concatenated after the
dash. The whole rebuilt string is relabeled Zip, and Oracle displays it: 94803-3515. This TO_CHAR
function lets you use string-manipulation functions on numbers (and dates) as if they were actually
strings. Handy? Yes. But watch this:

Chapter 11: Conversion and Transformation Functions 221

"= select SUBSTR(948033515,1,5)||"-"||
SUBSTR(948033515, 6) AS Zip
from DUAL;

94803- 3515

This shouldn’t work, because 948033515 is a NUMBER, not a character string. Yet, the string
function SUBSTR clearly worked anyway. Would it work with an actual NUMBER database
column? Here’s a table with Zip as a NUMBER:

" = describe ADDRESS

Nane Nul | ? Type
LASTNAVE VARCHAR2(25)
FI RSTNAMVE VARCHAR2(25)
STREET VARCHAR2(50)
aTY VARCHAR2(25)
STATE CHAR(2)

ZI P NUMBER
PHONE VARCHAR2(12)
EXT VARCHAR2(5)

Select just the ZIP code for all the Marys in the table:

= select SUBSTR(Zip,1,5]|]"-"]]|
SUBSTR(Zi p, 6) AS Zip
f rom ADDRESS
where FirstNane = ' MARY" ;

94941- 4302
60126- 2460

SUBSTR works here just as well as it does with strings, even though Zip is a NUMBER column
from the ADDRESS table. Will other string functions also work?

= select Zip, RTRIMZip,20)
f r om ADDRESS
where FirstNane = ' MARY';

ZI P RTRI M ZI P, 20)

949414302 9494143
601262460 60126246

The column on the left demonstrates that Zip is a NUMBER; it is even right-justified, as numbers
are by default. But the RTRIM column is left-justified, just as strings are, and it has removed zeros

222 Partll: SQL and SQL*Plus

and twos from the right side of the ZIP codes. Something else is peculiar here. Recall from Chapter 7
the format for RTRIM, shown here:

. RTRIMstring [,"set'])

The set to be removed from the string is enclosed within single quotation marks, yet in this next
example, there are no quotation marks:

2= RTRI M Zi p, 20)

So what is going on?

Automatic Conversion of Datatypes
Oracle is automatically converting these numbers, both Zip and 20, into strings, almost as if they
both had TO_CHAR functions in front of them. In fact, with a few clear exceptions, Oracle will
automatically transform any datatype into any other datatype, based on the function that is going
to affect it. If it's a string function, Oracle will convert a NUMBER or a DATE instantly into a string,
and the string function will work. If it's a DATE function and the column or literal is a string in the
format DD-MON-YY, Oracle will convert it into a DATE. If the function is arithmetic and the column
or literal is a character string, Oracle will convert it into a NUMBER and do the calculation.

Will this always work? No. For Oracle to automatically convert one datatype into another, the
first datatype must already “look” like the datatype it is being converted to. The basic guidelines
are as follows:

® Any NUMBER or DATE can be converted to a character string. Any string function can
be used on a NUMBER or DATE column. Literal NUMBERs do not have to be enclosed
in single quotation marks when used in a string function; literal DATEs do.

B A CHAR or VARCHAR?2 value will be converted to a NUMBER if it contains only
NUMBERs, a decimal point, or a minus sign on the left.

m A CHAR or VARCHAR? value will be converted to a DATE only if it is in the default date
format (usually DD-MON-YY). This is true for all functions except GREATEST and LEAST,
which will treat the value as a string, and it’s true for BETWEEN only if the column to
the left after the word BETWEEN is a DATE. Otherwise, TO_DATE must be used, with the
proper format.

These guidelines may be confusing, so favor the use of TO_DATE and other conversion
functions to make sure the values are treated properly. The following examples should help to
clarify the guidelines. The following are the effects of several randomly chosen string functions
on NUMBERs and DATEs:

"= select | N TCAP(LONER(SysDate)) from DUAL;
| NI TCAP(LONER(SYSDATE))

22- Mar - 04

Chapter 11: Conversion and Transformation Functions

Note that the INITCAP function put the first letter of “mar” into uppercase even though “mar”
was buried in the middle of the string “22-mar-04.” This is a feature of INITCAP that is not confined
to dates, although it is illustrated here for the first time. It works because the following works:

. select INITCAP('this-is_a.test,of:punctuation;for+initcap')
from DUAL;

I NI TCAP(' THI S-1 S_A. TEST, OF: PUNCTUATI ON; FO

This-1s_A Test, O : Punctuati on; For+I ni t cap

INITCAP puts the first letter of every word into uppercase. It determines the beginning of a
word based on its being preceded by any character other than a letter. You can also cut and paste
dates using string functions, just as if they were strings:

"= select SUBSTR(SysDate, 4,3) from DUAL;

NOTE
You can also use the TO_CHAR or EXTRACT function to return
the month value from a date.

Here, a DATE is left-padded with 9s for a total length of 20:
"= select LPAD(SysDate, 20,'9") from DUAL;
LPAD(SYSDATE, 20, ' 9")

9999999999922- MAR- 04

LPAD, or any other string function, also can be used on NUMBERs, whether literal (as shown
here) or as a column:

.~ select LPAD(9,20,0) from DUAL;
LPAD(9, 20, 0)

00000000000000000009

These examples show how string functions treat both NUMBERs and DATEs as if they were
character strings. The result of the function (what you see displayed) is itself a character string.

223

224 Partll: SQL and SQL*Plus

In this next example, a string (note the single quotation marks) is treated as a NUMBER by the NUMBER
function FLOOR:

"= select FLOOR('-323.78') from DUAL;
FLOOR(' -323.78")

Here, two literal character strings are converted to DATEs for the DATE function MONTHS_
BETWEEN. This works only because the literal strings are in the default date format DD-MON-YY:

oo o sel ect MONTHS BETWEEN(' 16- MAY- 04',' 01- NOV-04') from DUAL;
MONTHS_BETWEEN(' 16- MAY- 02' , ' 01- NOV- 02')

-5.516129

One of the guidelines says that a DATE will not be converted to a NUMBER. Yet, here is an
example of addition and subtraction with a DATE. Does this violate the guideline?

"= select SysDate, SysDate + 1, SysDate - 1 from DUAL;
SYSDATE SYSDATE+1 SYSDATE- 1

22- MAR- 04 23- MAR- 04 21- VAR- 04

It does not, because the addition and subtraction is date arithmetic, not regular arithmetic. Date
arithmetic (covered in Chapter 10) works only with addition and subtraction, and only with DATEs.
Most functions will automatically convert a character string in default date format into a DATE. An
exception is this attempt at date addition with a literal:

. select '22-MAR-04' + 1 from DUAL;
ERROR: ORA-01722: invalid nunber

Date arithmetic, even with actual DATE datatypes, works only with addition and subtraction.
Any other arithmetic function attempted with a date will fail. Dates are not converted to numbers,
as this attempt to divide a date by 2 illustrates:

"= select SysDate / 2 from DUAL;
*

ERROR at |ine 1:
ORA-00932: inconsistent datatypes: expected NUVBER got DATE

Finally, a NUMBER will never be automatically converted to a DATE, because a pure number
cannot be in the default format for a DATE, which is DD-MON-YY:

Chapter 11: Conversion and Transformation Functions 225

. select NEXT_DAY(032602,"' FRI DAY') from DUAL;
*

ERROR at |ine 1:
ORA-00932: inconsistent data types: expected DATE got NUVBER

To use a NUMBER in a DATE function, TO_DATE is required.

A Warning About Automatic Conversion

The issue of whether it is a good practice to allow SQL to do automatic conversion of datatypes
has arguments on either side. On one hand, this practice considerably simplifies and reduces the
functions necessary to make a select statement work. On the other hand, if your assumption about
what will be in the column is wrong (for example, you assume a particular character column will
always have a number in it, meaning you can use it in a calculation), then, at some point, a query
will stop working, Oracle will produce an error, and time will have to be spent trying to find the
problem. Further, another person reading your select statement may be confused by what appear
to be inappropriate functions at work on characters or numbers. Using TO_NUMBER makes it clear
that a numeric value is always expected, even if the column uses the VARCHAR2 datatype.

A simple rule of thumb might be that it is best to use functions where the risk is low, such as
string-manipulation functions on numbers, rather than arithmetic functions on strings. For your
benefit and that of others using your work, always put a note near the select statement signaling
the use of automatic type conversion.

Specialized Conversion Functions

As shown earlier in Table 11-1, Oracle includes several specialized conversion functions. If you
expect to use SQL*Plus and Oracle simply to produce reports, you probably won’t ever need any
of these functions. On the other hand, if you plan to use SQL*Plus to update the database, if you
expect to build Oracle applications, or if you are using National Language Support, this information
will eventually prove valuable. The functions can be found, by name, in the Alphabetical Reference
section of this book.

NOTE

¥~ The CAST function is used with nested tables and varying arrays; see
~ Chapter 34 for details. The DECODE function is covered in Chapter 16.

-

The conversion functions generally take a single value as input and return a single converted
value as output. For example, the BIN_TO_NUM function converts binary values to decimal
numeric values. Its input value is a list of the digits of a binary value, separated by commas and
treated as a single input string:

o select BIN.TONUM1,1,0,1) from DUAL;

BIN.TO NUM 1, 1, 0, 1)

226 Partll: SQL and SQL*Plus

select BIN.TO NUM1,1,1,0) from DUAL;

BIN.TO NUM 1, 1, 1, 0)

When working with flashback operations (see Chapters 27 and 28), you can convert system
change numbers (SCNs) to timestamp values via the SCN_TO_TIMESTAMP function; TIMESTAMP_
TO_SCN returns the SCN for a particular timestamp.

As of Oracle Database 10g, you can use the TO_BINARY_DOUBLE and TO_BINARY_FLOAT
functions to convert values into double- and single-precision floating-point numbers, respectively.

Transformation Functions

Although in one sense any function that changes its object could be called a transformation
function, there are two unusual functions that you can use in many interesting ways to control your
output based on your input, instead of simply transforming it. These functions are TRANSLATE
and DECODE.

TRANSLATE

TRANSLATE is a simple function that does an orderly character-by-character substitution in a string.
This is the format for TRANSLATE:

" = TRANSLATE(string,if,then)

TRANSLATE looks at each character in string and then checks ifto see whether that character
is there. If it is, it notes the position in if where it found the character and then looks at the same
position in then. TRANSLATE substitutes whichever character it finds there for the character in
string. Normally, the function is written on a single line, like this:

= select TRANSLATE(7671234, 234567890, ' BCDEFGHI J')
from DUAL;

But it might be easier to understand if it's simply broken onto two lines (SQL doesn’t care,
of course):

= select TRANSLATE(7671234, 234567890,

' BCDEFCGHI J')
from DUAL;

Chapter 11: Conversion and Transformation Functions 227

When TRANSLATE sees a 7 in string, it looks for a 7 in if and translates it to the character in the
same position in then (in this case, an uppercase G). If the character is not in if, it is not translated
(observe what TRANSLATE did with the 1).

TRANSLATE is technically a string function, but, as you can see, it will do automatic data
conversion and work with a mix of strings and numbers. The following is an example of a very
simple code cipher, where every letter in the alphabet is shifted one position. Many years ago, spies
used such character-substitution methods to encode messages before sending them. The recipient
simply reversed the process. Do you remember the smooth-talking computer, HAL, in the movie
2001: A Space Odyssey? If you TRANSLATE HAL’s name with a one-character shift in the alphabet,
you get this:

= select TRANSLATE(' HAL', ' ABCDEFCHI JKLMNOPQRSTUVWKYZ' ,
' BCDEFGHI JKLMNOPQRSTUVWKYZA') AS Who
from DUAL;

VWHO

| BM

See the discussion of the REGEXP_REPLACE function in Chapter 8 for details on the string
manipulation possible with regular expressions in Oracle Database 10g.

DECODE

If TRANSLATE is a character-by-character substitution, DECODE can be considered a value-by-
value substitution. For every value it sees in a field, DECODE checks for a match in a series of if-
then tests. DECODE is an incredibly powerful function, with a broad range of areas where it can
be useful. Chapter 16 is devoted entirely to the advanced use of DECODE and CASE.

This is the format for DECODE:

"= DECODE(value,ifl,thenl,if2 then2, if3, then3, . . . ,else)

Only three if-then combinations are illustrated here, but there is no practical limit. To see how
this function works, recall the NEWSPAPER table you saw in earlier chapters:

= select * from NEWSPAPER,

FEATURE S PAGE
Nat i onal News A 1
Sports D 1
Editorials A 12
Busi ness E 1
Weat her C 2
Tel evi si on B 7
Births F 7
Classified F 8
Modern Life B 1
Com cs C 4

228 Partll: SQL and SQL*Plus

Movi es B 4
Bri dge B 2
Qoi tuari es F 6
Doctor Is In F 6

In the next example, the page number is decoded. If the page number is 1, then the words
“Front Page” are substituted. If the page number is anything else, the words “Turn to” are
concatenated with the page number. This illustrates that else can be a function, a literal, or
another column.

"= 'select Feature, Section,
DECODE(Page, ' 1' ,' Front Page',' Turn to '|| Page)
f r om NEWSPAPER,

FEATURE S DECODE(PAGE, ' 1',"' FRONTPAGE' , ' TURNTO | | PAGE)
Nat i onal News A Front Page
Sports D Front Page
Editorials A Turn to 12
Busi ness E Front Page
Weat her C Turn to 2
Tel evi si on B Turn to 7
Births F Turn to 7
Classified F Turn to 8
Modern Life B Front Page
Com cs C Turn to 4
Movi es B Turn to 4
Bri dge B Turn to 2
oi tuari es F Turn to 6
Doctor Is In F Turn to 6

There are some restrictions on the datatypes in the list of if and then clauses, which will be
covered in Chapter 16.

Review

Most functions in Oracle, although they are intended for a specific datatype such as CHAR,
VARCHAR2, NUMBER, or DATE, will actually work with other datatypes as well. They do this
by performing an automatic type conversion. With a few logical exceptions, and the hope of future
compatibility, they will do this as long as the data to be converted “looks” like the datatype
required by the function.

Character functions will convert any NUMBER or DATE. NUMBER functions will convert a
CHAR or VARCHAR? if it contains the digits O through 9, a decimal point, or a minus sign on the
left. NUMBER functions will not convert DATEs. DATE functions will convert character strings if
they are in the format DD-MON-YY. However, they will not convert NUMBERs.

Two functions, TRANSLATE and DECODE, will fundamentally change the data they act on.
TRANSLATE will do a character substitution according to any pattern you specify, and DECODE
will do a value substitution for any pattern you specify.

CHAPTER
12

Grouping Things
Together

230 Partll: SQL and SQL*Plus

tables, how the where clause can limit the number of rows being returned to only
those that meet certain rules that you define, and how the rows returned can be
~ sorted in ascending or descending sequence using order by. You've also seen
how the values in columns can be modified by character, NUMBER, and DATE
functlons and how group functions can tell you something about the whole set of rows.

Beyond the group functions you've seen, there are also two group clauses: having and group
by. These are parallel to the where and order by clauses, except that they act on groups, not on
individual rows. These clauses can provide very powerful insights into your data.

The Use of group by and having

If you want to generate a count of titles on the bookshelf, categorized by the type of book, you
would write a query like this:

"= select CategoryName, COUNT(*)
from BOOKSHELF
group by CategoryNane;

and Oracle would respond with the following:

ADULTFI C 6
ADULTNF 10
ADULTREF 6
CHI LDRENFI C 5
CHI LDRENNF 1
CHI LDRENPI C 3

Notice the mix of a column name, CategoryName, and the group function COUNT in the
select clause. This mix is possible only because CategoryName is referenced in the group by clause.
If it were not there, the opaque message first encountered in Chapter 9 would have resulted in this:

' = select CategoryNane, COUNT(*) from BOOKSHELF;
sel ect CategoryNanme, COUNT(*) from BOOKSHELF
*

ERROR at line 1:
ORA-00937: not a single-group group function

This result occurs because the group functions, such as SUM and COUNT, are designed to tell
you something about a group of rows, not the individual rows of the table. The error is avoided
by using CategoryName in the group by clause, which forces the COUNT function to count all
the rows grouped within each CategoryName.

The having clause works very much like a where clause, except that its logic is only related
to the results of group functions, as opposed to columns or expressions for individual rows, which
can still be selected by a where clause. Here, the rows in the previous example are further restricted
to just those where there are more than five books in a category:

Chapter 12: Grouping Things Together 231

. select CategoryName, COUNT(*)
fr om BOOKSHELF
group by CategoryNane
havi ng COUNT(*) > 5;

CATEGORYNAME COUNT(*)
ADULTFI C 6
ADULTNF 10
ADULTREF 6

To determine the average rating by category, you can use the AVG function, as shown in the
following listing:

. select CategoryName, COUNT(*), AVG Rating)
fr om BOOKSHELF
group by CategoryNang;

CATEGORYNAMVE COUNT(*) AVGE RATI NG)
ADULTFI C 6 3.66666667
ADULTNF 10 4.2
ADULTREF 6 3.16666667
CHI LDRENFI C 5 2.8
CHI LDRENNF 1 3
CHI LDRENPI C 3 1

Rating is a character column, defined as a VARCHAR2, but it contains numeric values, so
Oracle can perform numeric functions on it (see Chapter 11). What is the overall average rating?

"= select AVE Rating) from BOOKSHELF;

AVG RATI NG

3. 32258065

In this case, there is no group by clause because the entire set of rows in the BOOKSHELF table
is treated as the group. Now you can use this result as part of a larger query: What categories have
average ratings that are greater than the average rating of all books?

"= select CategoryNane, COUNT(*), AVE Rating)
f r om BOOKSHELF
group by CategoryNane
havi ng AVE Rating) >
(sel ect AVGE Rating) from BOOKSHELF);

CATEGORYNAMVE COUNT(*) AVG RATI NG)

ADULTFI C 6 3.66666667
ADULTNF 10 4.2

232 Partll: SQL and SQL*Plus

Looking back at the earlier listings, this result is correct—only two of the groups have average
rating values greater than the overall average.

Although the results are sorted by the CategoryName column, the purpose of group by is not to
produce a desired sequence but rather to collect “like” things together. The order they appear in
is a byproduct of how group by works; group by is not meant to be used to change the sorting order.

Adding an order by
The solution for creating an alternative order for display is the addition of an order by clause
following the having clause. For example, you could add the following:

"= order by CategoryNane desc

This would reverse the order of the list:

. select CategoryName, COUNT(*)
f r om BOOKSHELF
group by CategoryNane
order by CategoryNane desc;

CATEGORYNAVE COUNT(*)
CHI LDRENPI C 3
CHI LDRENNF 1
CHI LDRENFI C 5
ADULTREF 6
ADULTNF 10
ADULTFI C 6

Or, you could use this instead:

"= order by COUNT(*) desc

Here’s the result:

ADULTNF 10
ADULTFI C 6
ADULTREF 6
CHI LDRENFI C 5
CH LDRENPI C 3
CHI LDRENNF 1

Although you can use the column alias as part of the order by clause, you can’t use it as
part of the having clause. Giving COUNT(*) an alias of “Counter” and attempting to use having
Counter > 1 as a clause in this query will result in an “invalid column name” error:

' = select CategoryNanme, COUNT(*) as Counter
from BOOKSHELF

Chapter 12: Grouping Things Together 233

group by CategoryNane
havi ng Counter > 1
order by COUNT(*) desc;

havi ng Counter > 1
*

ERROR at line 4:
ORA-00904: "COUNTER': invalid identifier

Order of Execution
The previous query has quite a collection of competing clauses! Here are the rules Oracle uses to
execute each of them, and the order in which execution takes place:

1. Choose rows based on the where clause.

2. Group those rows together based on the group by clause.
3. Calculate the results of the group functions for each group.
4. Choose and eliminate groups based on the having clause.
5

. Order the groups based on the results of the group functions in the order by clause. The
order by clause must use either a group function or a column specified in the group by
clause.

The order of execution is important because it has a direct impact on the performance of your
queries. In general, the more records that can be eliminated via where clauses, the faster the query
will execute. This performance benefit is due to the reduction in the number of rows that must be
processed during the group by operation.

If a query is written to use a having clause to eliminate groups, you should check to see if the
having condition can be rewritten as a where clause. In many cases, this rewrite won’t be possible.
It is usually only available when the having clause is used to eliminate groups based on the grouping
columns.

For example, suppose you have this query:

"= select CategoryNane, COUNT(*), AVE Rating)
f r om BOOKSHELF
where Rating > 1
group by CategoryNane
havi ng Cat egoryNane |ike 'A%
order by COUNT(*) desc;

CATEGORYNAVE COUNT(*) AVG RATI NG)
ADULTNF 10 4.2
ADULTFI C 6 3.66666667

ADULTREF 6 3.16666667

234 Partll: SQL and SQL*Plus

The order of execution would be as follows:

1. Eliminate rows based on
where Rating > 1

2. Group the remaining rows based on
group by CategoryNane

3. For each CategoryName, calculate the
COUNT(*)

4. Eliminate groups based on
havi ng Cat egoryNane |ike 'A%

5. Order the remaining groups.

This query will run faster if the groups eliminated in Step 4 can be eliminated as rows in Step 1.
If they are eliminated at Step 1, fewer rows will be grouped (Step 2), fewer calculations will be
performed (Step 3), and no groups will be eliminated (Step 4). Thus, each of these steps in the
execution will run faster.

Because the having condition in this example is not based on a calculated column, it is easily
changed into a where condition:

' = select CategoryNane, COUNT(*), AVQ Rating)
f rom BOOKSHELF
where Rating > 1
and CategoryNane |ike 'A%
group by CategoryNane
order by COUNT(*) desc;

In the modified version, fewer rows will be grouped, resulting in a performance savings. As the
number of rows in your tables increases, the performance savings from early row elimination can
grow dramatically.

This may seem like a trivial tuning example because the table has few rows in it. But even such
a small query can have a significant impact in a production application. There are many examples
of production applications whose performance is severely impacted by high volumes of executions of
seemingly small queries. When those small queries are executed thousands or millions of times per
day, they become the most resource-intensive queries in the database. When planning the SQL
access paths for your application, tune even the small queries.

Views of Groups
In Chapter 5, a view called INVASION, which joined together the WEATHER and LOCATION
tables, was created for the oracle at Delphi. This view appeared to be a table in its own right,
with columns and rows, but each of its rows contained columns that actually came from two
separate tables.

The same process of creating a view can be used with groups. The difference is that each row
will contain information about a group of rows—a kind of subtotal table. For example, consider
this group query:

Chapter 12: Grouping Things Together 235

. select CategoryName, COUNT(*)
f r om BOOKSHELF
group by CategoryNang;

You can create a view based on this query, and you can then query the view:

"= create or replace view CATEGORY_COUNT as
sel ect CategoryNane, COUNT(*) AS Counter
f rom BOOKSHELF
group by CategoryNane;

desc CATEGORY_COUNT

Narne Nul | ? Type
CATEGORYNAMVE VARCHAR2(20)
COUNTER NUMBER

sel ect * from CATEGORY_COUNT;

ADULTFI C 6
ADULTNF 10
ADULTREF 6
CHI LDRENFI C 5
CHI LDRENNF 1
CHI LDRENPI C 3

NOTE

Because the COUNT(*) column is a function, you have to give it a
column alias (in this case, Counter) when using the query as the basis
for a view.

Renaming Columns with Aliases
Notice the name Counter in the select clause. The AS Counter clause renames the column it
follows. The new names are called aliases, because they are used to disguise the real names of
the underlying columns (which are complicated because they have functions).

When you query the view, you can (and must) now use the new column names:

" = select CategoryNane, Counter from CATEGORY_COUNT;

“Counter” is referred to as a column alias—another name to use when referring to a column. In the
description of the view, and in the query, there is no evidence of the grouping function performed—
just the Counter column name. It is as if the view CATEGORY_COUNT were a real table with rows
of monthly sums. Why?

236 Partll: SQL and SQL*Plus

Oracle automatically takes a single word, without quotes, and uses it to rename the column
the word follows. When it does this, Oracle forces the word—the alias—into uppercase, regardless
of how it was typed. You can see evidence of this by comparing the column names in the create
view and the describe commands. When creating a view, never put double quotes around your
column aliases. Always leave aliases in create view statements without quotes. This will cause
them to be stored in uppercase, which is required for Oracle to find them. See the sidebar “Aliases
in View Creation” for a warning on aliases.

You now have Category counts collected in a view. A total for the entire bookshelf could also
be created, using BOOKCOUNT as both the view name and the column alias for COUNT(*):

"= create or replace view BOOKCOUNT as
sel ect COUNT(*) BOOKCOUNT
f r om BOOKSHELF;

Vi ew creat ed.
If you query the view, you'll discover it has only one record:

= sel ect BOOKCOUNT
f r om BOOKCOUNT;

As new rows are added and committed to the BOOKSHELF table, the BOOKCOUNT and
CATEGORY_COUNT views will reflect the changes to the counts.

The Power of Views of Groups

Now you’ll see the real power of a relational database. You’ve created a view with the count
by Category and a second view displaying the count for the entire table. These views can now be
joined together, just as the tables were in Chapter 5, to reveal information never before apparent.
For instance, what percentage of the books are in each category?

Aliases in View Creation
Internally, Oracle works with all column and table names in uppercase. This is how they are
stored in its data dictionary, and this is how it always expects them to be. When aliases are
typed to create a view, they should always be naked—without quotation marks around
them. Putting double quotation marks around an alias can force the column name stored
internally by Oracle to be in mixed case. If you do this, Oracle will not be able to find the
column when you execute a select unless you enclose the column name within quotes
during all your queries.

Never use double quotation marks in creating aliases for a view.

Chapter 12: Grouping Things Together 237

. select CategoryNane, Counter, (Counter/BookCount)*100 as Percent
from CATEGORY_COUNT, BOOKCOUNT
order by CategoryNang;

CATEGORYNAME COUNTER PERCENT
ADULTFI C 6 19. 3548387
ADULTNF 10 32.2580645
ADULTREF 6 19. 3548387
CHI LDRENFI C 5 16. 1290323
CHI LDRENNF 1 3.22580645
CHI LDRENPI C 3 9.67741935

In this query, two views are listed in the from clause, but they are not joined in a where
clause. Why not? In this particular case, no where clause is necessary, because one of the
views, BOOKCOUNT, will only return one row (as shown in the previous listing). The one row
in BOOKCOUNT is joined to each row in CATEGORY_COUNT, yielding one row of output for
each row in CATEGORY_COUNT. The same results could have been obtained by directly joining
the BOOKSHELF table with the BOOKCOUNT view, but as you can see, the query is more
complicated and difficult to understand—and as the number of groups expands, the query will
grow even more cumbersome:

"= select CategoryName, COUNT(*),
(COUNT(*)/ MAX(BookCount))*100 as Percent
from BOOKSHELF, BOOKCOUNT
group by CategoryNane
order by CategoryNang;

Notice the percentage calculation:

4R (COUNT(*) / MAX(BookCount))*100 as Percent

Because this result is part of a grouping function, each of the values must be grouped. Therefore,
an initial attempt such as this would fail because BookCount is not grouped:

4R (COUNT(*)/ BookCount) *100 as Percent

Because there is only one row in the BOOKCOUNT view, you can perform a MAX function on it
to return that single row, grouped by itself.

To create queries that compare one grouping of rows with another grouping of rows, at least
one of the groupings must be a view or an “inline view” created in the from clause of the query.
Beyond this technical restriction, however, it is just simpler and easier to understand doing the
queries with views. Compare the last two examples, and the difference in clarity is apparent. Views
hide complexity.

To use the inline view method, put the view’s text within the from clause and give its columns
aliases there:

" = select CategoryNane, Counter, (Counter/BookCount)*100 as Percent
f rom CATEGORY_COUNT,
(sel ect COUNT(*) as BookCount from BOOKSHELF)
order by CategoryNang;

238 Partll: SQL and SQL*Plus

In this example, the BOOKCOUNT view has been removed from the from clause and replaced
by its base query. In that query, the BookCount alias is given to the result of a COUNT(*) performed
against the BOOKSHELF table. In the main query, that BookCount alias is then used as part of a
calculation. Using this coding method, there is no need to create the BOOKCOUNT view. Be
careful when working with multiple grouping levels within the same query—creating views
commonly helps to simplify the creation and maintenance of the code.

Using order by in Views

From a strictly theoretical perspective, there is no reason to have an order by clause stored in a
view—you can issue an order by clause when you query the view. Oracle supports the order by
clause within views, as shown here:

. create view BOOKSHELF_SORTED
as select * from BOOKSHELF
order by Title;

Having the data sorted in the view may simplify your application development. For example, if
your code steps through a set of records, having those records presorted may make your processing
and error checking simpler. In your application development, you will know that the data will
always be returned to you in an ordered fashion. The following query selects the Title values, using
the RowNum pseudo-column to limit the output to nine records:

= select Title from BOOKSHELF_SORTED
where Rownum < 10;

ANNE OF GREEN GABLES

BOX SOCI ALS

CHARLOTTE' S VEB

COWPLETE PCEM5 OF JOHN KEATS

El THER/ OR

EMVA WHO SAVED MY LI FE

GOOD DOG, CARL

GOSPEL

HARRY POTTER AND THE GOBLET OF FIRE

The BOOKSHELF_SORTED view is doing more work than just querying from the BOOKSHELF
table—it is performing a sorting operation to return the rows in a particular order. If you do not
need the rows returned in that order, you are asking the database to do work that does not benefit
your application.

The views also give you more power to use the many character, NUMBER, and DATE datatypes
at will, without worrying about things such as months appearing in alphabetical order.

Logic in the having Clause

In the having clause, the choice of the group function and the column on which it operates might
bear no relation to the columns or group functions in the select clause:

. select CategoryName, COUNT(*),

Chapter 12:

(COUNT(*)/ MAX(BookCount))*100 as Percent

from BOOKSHELF, BOOKCOUNT
group by CategoryNane
havi ng Avg(Rating) > 4
order by CategoryNang;

ADULTNF

10 32. 2580645

Grouping Things Together

Here, the having clause selected only those categories (the group by collected all the rows into
groups by CategoryName) with an average rating greater than 4. All other groups are eliminated.
For the group that met that criterion, the percentage of the total count was calculated.

The having clause is very effective for determining which rows in a table have duplicate values
in specific columns. For example, if you are trying to establish a new unique index on a column
(or set of columns) in a table, and the index creation fails due to uniqueness problems with the
data, you can easily determine which rows caused the problem.

First, select the columns you want to be unique, followed by a COUNT(*) column. Group by
the columns you want to be unique, and use the having clause to return only those groups having
COUNT(*)>1. The only records returned will be duplicates. The following query shows this check

being performed for the AuthorName column of the AUTHOR table:

"= select AuthorNane, COUNT(*)
from AUTHOR
group by Aut hor Nane
havi ng COUNT(*)>1
order by Aut hor Nane;

no rows sel ected

Which books have more than one author? Select the titles from BOOKSHELF_AUTHOR for which

the group (by Title) has more than one member:
= colum Title format a40

select Title, COUNT(*)
f r om BOOKSHELF_AUTHOR
group by Title

havi ng COUNT(*) >1;

COWPLETE POCEMs OF JOHN KEATS
JOURNALS OF LEW S AND CLARK
Kl ERKEGAARD ANTHOLOGY
RUNAVAY BUNNY

239

240 Partll: SQL and SQL*Plus

Who are those ten authors? You could create a view based on this query, or try it as an

inline view:

= colum Title format a40
col unmm Aut hor Nane fornmat a30

select Title, AuthorNane
from BOOKSHELF_AUTHOR,

(select Title as G oupedTitle,

f rom BOOKSHELF_AUTHOR
group by Title
havi ng COUNT(*) > 1)
where Title = GoupedTitle
order by Title, AuthorNang;

COWPLETE POCEM5 OF JOHN KEATS
COWPLETE PCEMs OF JOHN KEATS
JOURNALS OF LEW S AND CLARK
JOURNALS OF LEW S AND CLARK
JOURNALS OF LEW S AND CLARK
JOURNALS OF LEW S AND CLARK
Kl ERKEGAARD ANTHOLOGY

Kl ERKEGAARD ANTHOLOGY
RUNAVAY BUNNY

RUNAVWAY BUNNY

COUNT(*) as TitleCounter

JOHN BARNARD

JOHN KEATS

BERNARD DE VOTO
MVERI WVETHER LEW S
STEPHEN AMBROSE

W LLI AM CLARK
ROBERT BRETALL
SOREN KI ERKEGAARD
CLEMENT HURD
MARGARET W SE BROWN

This query may look complicated (and using a view would make it simpler to read), but it is
based on the concepts covered in this chapter: An inline view performs a group by function and
uses a having clause to return only those titles with multiple authors. Those titles are then used as
the basis of a query against the BOOKSHELF_AUTHOR table. In a single query, the BOOKSHELF_
AUTHOR table is queried for grouped data and individual row data.

Using order by with Columns and Group Functions

The order by clause is executed after the where, group by, and having clauses. It can employ group
functions, or columns from the group by, or a combination. If it uses a group function, that function
operates on the groups, and then the order by sorts the results of the function in order. If the order
by uses a column from the group by, it sorts the rows that are returned based on that column. Group
functions and single columns (so long as the column is in the group by) can be combined in the
order by.

In the order by clause, you can specify a group function and the column it affects even though
they have nothing at all to do with the group functions or columns in the select, group by, or having
clause. On the other hand, if you specify a column in the order by clause that is not part of a group
function, it must be in the group by clause. Let’s take the last example and modify the order by
clause:

= order by TitleCounter desc, Title, AuthorName

Chapter 12: Grouping Things Together

The titles and authors will now be ordered based on the number of authors (with the greatest
number first), then by Title and AuthorName:

TITLE AUTHORNANME
JOURNALS OF LEW S AND CLARK BERNARD DE VOTO
JOURNALS OF LEW S AND CLARK VERI WVETHER LEW S
JOURNALS OF LEW S AND CLARK STEPHEN AMBROSE
JOURNALS OF LEW S AND CLARK W LLI AM CLARK
COVWPLETE PCEM5 OF JOHN KEATS JOHN BARNARD
COWPLETE PCEMS OF JOHN KEATS JOHN KEATS

KI ERKEGAARD ANTHOLOGY ROBERT BRETALL

Kl ERKEGAARD ANTHOLOGY SOREN KI ERKEGAARD
RUNAVAY BUNNY CLEMENT HURD
RUNAVWAY BUNNY MARGARET W SE BROWN

Join Columns

As explained in Chapters 4 and 5, joining two tables together requires that they have a relationship

defined by a common column. This is also true in joining views, or tables and views. The only

exception is when one of the tables or views has just a single row, as the BOOKCOUNT table does.
In this case, SQL joins the single row to every row in the other table or view, and no reference to

the joining columns needs to be made in the where clause of the query.

Any attempt to join two tables that both have more than one row without specifying the joined
columns in the where clause will produce what’s known as a Cartesian product, usually a giant
result where every row in one table is joined with every row in the other table. A small 80-row
table joined to a small 100-row table in this way would produce 8,000 rows in your display, and
few of them would be at all meaningful.

More Grouping Possibilities

In addition to the operations shown in this chapter, you can perform complex groupings of rows—
creating crosstab reports, following hierarchies within the data, and more. Those groupings, and
the related functions and clauses (such as connect by, ROLLUP, GROUPING, and CUBE), are
described in Chapter 14.

As you work with groupings within your application-development environment, you will
generally find that using views makes the writing of complex queries simpler. You can use views
to represent logical groupings of rows that are helpful to end users writing reports, while leaving
the underlying table structures unchanged. This benefits the users—the data is presented in a
format they understand—while allowing you to preserve the integrity of your database design.

241

CHAPTER
13

When One
Query Depends
upon Another

244 Partll: SQL and SQL*Plus

his chapter and Chapter 14 introduce concepts that are more difficult than we've
previously seen. Although many of these concepts are rarely used in the normal
a,"'l course of running queries or producing reports, there will be occasions that call
. for the techniques taught in these chapters. If they seem too challenging as you

o study them, read on anyway. The odds are good that by the time you need these
methods, you'll be able to use them.

Advanced Subqueries

You've encountered subqueries—those select statements that are part of a where clause in a
preceding select statement—in earlier chapters. Subqueries also can be used in insert, update,
and delete statements. This use will be covered in Chapter 15.

Often, a subquery will provide an alternative approach to a query. For example, suppose you
want to know what categories of books have been checked out. The following three-way join
provides this information:

"= select distinct C. ParentCategory, C.SubCategory
from CATEGORY C, BOOKSHELF B, BOOKSHELF_CHECKOUT BC
where C. Cat egoryNane = B. Cat egor yNane
and B.Title = BC. Title;

PARENTCA SUBCATEGORY

ADULT FI CTI ON
ADULT NONFI CTI ON
ADULT REFERENCE
CH LDREN FI CTI ON

CHI LDREN PI CTURE BOCK

Three tables are joined in the same way that two tables are. The common columns are set
equal to each other in the where clause, as shown in the preceding listing. To join three tables
together, you must join two of them to a third. In this example, the CATEGORY table is joined
to the BOOKSHELF table, and the result of that join is joined to the BOOKSHELF_CHECKOUT

table. The distinct clause tells Oracle to return only the distinct combinations of ParentCategory
and SubCategory.

NOTE
Not every table is joined to every other table. In fact, the number of

links between the tables is usually one less than the number of tables
being joined.

Once the tables are joined, as shown in the first two lines of the where clause, you can
determine the count of checkouts by parent category and subcategory.

Chapter 13: When One Query Depends upon Another 245

Correlated Subqueries

Is there another way to perform multitable joins? Recall that a where clause can contain a subquery
select. Subquery selects can be nested—that is, a where clause in a subquery also can contain a
where clause with a subquery, which can contain a where clause with a subquery—on down for
more levels than you are ever likely to need. The following shows three selects, each connected
to another through a where clause:

"= select distinct C ParentCategory, C.SubCategory
from CATEGORY C
wher e CategoryNane in
(sel ect CategoryNanme from BOOKSHELF
where Title in
(select Title from BOOKSHELF_CHECKOUT)
)

PARENTCA SUBCATEGORY

ADULT FI CTI ON
ADULT NONFI CTI ON
ADULT REFERENCE
CH LDREN FI CTI ON

CH LDREN PI CTURE BOCK

This query selects any categories containing books that have been checked out. It does this
simply by requesting a book whose title is in the BOOKSHELF table and whose checkout record
is in the BOOKSHELF_CHECKOUT table. In a subquery, Oracle assumes the columns to be from
the first select statement, the one that contains the subquery in its where clause. This is called a
nested subquery, because for every CategoryName in the main (outer) query, the CategoryName
may be correlated in the second where clause.

Said differently, a subquery may refer to a column in a table used in its main query (the query
that has the subquery in its where clause). Consider the following query:

= select Title from BOOKSHELF_AUTHOR
where Title in
(select Title from BOOKSHELF
wher e Aut hor Nane = ' STEPHEN JAY GOULD);

WONDERFUL LI FE
THE M SMEASURE COF NAN

Why does this query work? Taken on its own, the subquery would fail:

. select Title from BOOKSHELF
wher e Aut hor Name = ' STEPHEN JAY GOULD ;

246 Partll: SQL and SQL*Plus

wher e Aut hor Name = ' STEPHEN JAY GOULD
*
ERROR at line 2:
ORA-00904: "AUTHORNAME': invalid identifier

When executed as a subquery, it is correlated to the parent query—you can reference columns
of the first select in the subquery. You'll see additional examples of correlated subqueries in this
chapter and the chapters that follow.

Coordinating Logical Tests

If a reader is looking for more books in a particular category, what authors should he or she read?
Suppose that Fred Fuller, who has checked out two biographies, asks for recommendations. Who
else should you recommend?

"= select distinct AuthorNanme from BOOKSHELF_AUTHOR
where Title in
(select Title from BOOKSHELF
wher e CategoryNane in
(sel ect distinct CategoryNanme from BOOKSHELF
where Title in
(select Title
f r om BOOKSHELF_CHECKQOUT bc
where BC. Nane = ' FRED FULLER)));

This may look a bit daunting at first, but it’s easy to follow if you talk through the code. Start
at the innermost query: Get a list of the titles that Fred Fuller has checked out. For those titles,
go to the BOOKSHELF table and get a list of the distinct CategoryName values those books are
assigned to. Now go to BOOKSHELF a second time and get all the titles in those categories. For
those titles, go to the BOOKSHELF_AUTHOR table and generate the list of authors. Here are the
results:

BERNARD DE VOTO
BERYL MARKHAM
DANI EL BOORSTI N
DAVI D MCCULLQOUGH
DI ETRI CH BONHOEFFER
G B. TALBOT

JOHN ALLEN PAULCS
MERI WVETHER LEW S
STEPHEN AMBROSE
STEPHEN JAY GOULD
W LLI AM CLARK

Fred is asking for recommendations for new authors, so let’s exclude the ones he’s already
read. To see who Fred has read, simply query the BOOKSHELF_CHECKOUT and BOOKSHELF_
AUTHOR tables:

Chapter 13: When One Query Depends upon Another 247

= = select distinct AuthorNane
from BOOKSHELF_AUTHOR ba, BOOKSHELF_CHECKQUT bc
where ba.Title = bc. Title
and bc. Nane = ' FRED FULLER ;

DAVI D MCCULLOUGH

Now let’s exclude that author from the list we’re going to provide. We'll do that by adding
an extra and clause to the query:

"= select distinct AuthorNane from BOOKSHELF_AUTHOR
where Title in
(select Title from BOOKSHELF
where CategoryNane in
(sel ect distinct CategoryNanme from BOOKSHELF
where Title in
(select Title
f r om BOOKSHELF_CHECKOUT bc
where BC. Nane = ' FRED FULLER)))
and Aut hor Name not in
(sel ect Author Nane
fr om BOOKSHELF_AUTHOR ba, BOOKSHELF_CHECKOUT bc
where ba.Title = bc. Title
and bc. Name = ' FRED FULLER);

BERNARD DE VOTO
BERYL MARKHAM

DANI EL BOORSTI N

DI ETRI CH BONHOEFFER
G B. TALBOT

JOHN ALLEN PAULCS
MERI WVETHER LEW S
STEPHEN ANMBROSE
STEPHEN JAY GOULD
W LLI AM CLARK

This and is a part of the main query, even though it follows the subquery. Also note that some
of the tables are queried at multiple points within the script; each of those queries is treated as
a separate access of the table.

Using EXISTS and Its Correlated Subquery

EXISTS is a test for existence. It is placed the way IN might be placed with a subquery, but it
differs in that it is a logical test for the return of rows from a query, not for the rows themselves.

248 Partll: SQL and SQL*Plus

How many authors have written more than one book on the bookshelf?

" = select AuthorNanme, COUNT(*)
f rom BOOKSHELF_AUTHOR
group by Aut hor Name
havi ng COUNT(*) > 1,

DAVI D MCCULLQOUGH 2
DI ETRI CH BONHOEFFER 2
E. B. WHTE 2
SOREN KI ERKEGAARD 2
STEPHEN JAY GOULD 2
W P. KINSELLA 2
W LTON BARNHARDT 2

Attempting to find both AuthorName and Title fails, however, because the group by made
necessary by the COUNT(*) is on the primary key of the BOOKSHELF_AUTHOR table (AuthorName,
Title). Because each primary key, by definition, uniquely identifies only one row, the count of
titles for that one row can never be greater than 1, so the having clause always tests false—
it doesn’t find any rows:

"= select AuthorName, Title, COUNT(*)
from BOOKSHELF_AUTHOR
group by AuthorNanme, Title
havi ng COUNT(*) > 1,

no rows sel ected.

EXISTS provides a solution. The following subquery asks, for each AuthorName selected in
the outer query, whether an AuthorName exists in the BOOKSHELF_AUTHOR table with a count
of Titles greater than one. If the answer for a given name is yes, the EXISTS test is true, and the
outer query selects an AuthorName and Title. The author names are correlated by the “BA” alias
given to the first BOOKSHELF_AUTHOR table.

" = columm Aut horNane format a25
colum Title format a30

sel ect AuthorNane, Title
from BOOKSHELF_AUTHOR BA
where EXI STS
(select *
from BOOKSHELF_AUTHOR BA2
wher e BA. Aut hor Nane = BA2. Aut hor Nane
group by BA2. Aut hor Nane
havi ng COUNT(BA2. Title) > 1)
order by AuthorNane, Title;

DAVI D MCCULLOUGH
DAVI D MCCULLQOUGH

DI ETRI CH BONHOEFFER
DI ETRI CH BONHOEFFER
E. B. WH TE

E. B. WVHTE

SOREN KI ERKEGAARD
SOREN KI ERKEGAARD
STEPHEN JAY GOULD
STEPHEN JAY GOULD
W P. KINSELLA

W P. KINSELLA

W LTON BARNHARDT

W LTON BARNHARDT

Chapter 13: When One Query Depends upon Another

TRUVAN

LETTERS AND PAPERS FROM PRI SON
THE COST OF DI SCI PLESHI P
CHARLOTTE' S VEB

TRUMPET OF THE SWAN

El THER/ OR

KI ERKEGAARD ANTHOLOGY
THE M SMEASURE OF NMAN
WONDERFUL LI FE

BOX SCCI ALS

SHOELESS JOE

EMVA VHO SAVED MY LI FE
GOSPEL

The two queries are correlated—note that the subquery references the BA.AuthorName column
even though that column is in the outer query, not the subquery. Within the subquery, the BA2
alias is not required but helps make the code easier to maintain.

This same query could have been built using IN and a test on the column name. No correlated

subquery is necessary here:

. 'select AuthorNane, Title

f r om BOOKSHELF_AUTHOR BA

where Aut horNane in

(sel ect Aut hor Nane
f r om BOOKSHELF_AUTHOR
group by Aut hor Nane

havi ng COUNT(Ti t !l
order by AuthorNane, Titl

Outer Joins

e) > 1)
€,

The syntax for outer joins has changed considerably in Oracle9i. In the following examples, you
will see both the Oracle9i syntax and the pre-Oracle9i syntax. The pre-Oracle9i syntax is still
supported in Oracle9i, but its use should be discontinued. New development should use the new
syntax. The new syntax complies with ANSI SQL standards, whereas the old syntax does not. The
old syntax is discussed here because many third-party tools continue to use it.

Pre-Oracle9i Syntax for Outer Joins
What books were checked out during the time period tracked in the BOOKSHELF_CHECKOUT

table?
"« colum Title format a40

select distinct Title
f rom BOOKSHELF_CHECKOUT;

249

250 Partll: SQL and SQL*Plus

ANNE OF GREEN GABLES
El THER/ OR

GOOD DOG, CARL

HARRY POTTER AND THE GOBLET OF FI RE
I NNUMERACY

JOHN ADAMS

M DNl GHT MAG C

MY LEDGER

POLAR EXPRESS

THE DI SCOVERERS

THE M SMEASURE CF NAN
THE SHI PPI NG NEWS

TO KILL A MOCKI NGBI RD
TRUVAN

VEST WTH THE NI GHT
WONDERFUL LI FE

That's a correct report, but it doesn’t show the 0 counts—the books that were not checked out.
If you need to see the inventory of all books along with the checkout list, you’ll need to join
BOOKSHELF_CHECKOUT to BOOKSHELF:

. select distinct B.Title
from BOOKSHELF_CHECKOUT BC, BOOKSHELF B
where BC. Title = B. Title;

But that query will return the exact same records—the only rows in BOOKSHELF that can
meet the join criteria are those that have been checked out. To list the rest of the books, you'll
need to use an outer join—telling Oracle to return a row even if the join does not produce a
match. Pre-Oracle9i, the syntax for an outer join uses (+) on the side of the join that will be
returning additional rows. In this case, that's BOOKSHELF_CHECKOUT. The following query
shows the maximum number of days each book was checked out:

"= 'select B.Title, MAX(BC. ReturnedDate - BC. Checkout Dat e)
"Most Days Qut"
fr om BOOKSHELF_CHECKOUT BC, BOOKSHELF B
where BC. Title (+) = B. Title
group by B. Title;

TITLE Most Days CQut
ANNE OF GREEN GABLES 18
BOX SOCI ALS

CHARLOTTE' S VEB

COWPLETE POCEM5 OF JOHN KEATS

El THER/ OR 8
EMVA WHO SAVED MY LI FE

GOOD DOG, CARL 14

Chapter 13: When One Query Depends upon Another 251

GOSPEL

HARRY POTTER AND THE GOBLET OF FI RE 11
I NNUMERACY 21
JOHN ADANMS 28

JOURNALS OF LEW S AND CLARK
Kl ERKEGAARD ANTHOLOGY
LETTERS AND PAPERS FROM PRI SON

M DNI GHT MAG C 14
MY LEDGER 16
POLAR EXPRESS 14

PREACH NG TO HEAD AND HEART
RUNAVWAY BUNNY

SHOELESS JOE

THE COST OF DI SCI PLESHI P

THE DI SCOVERERS 48
THE GOOD BOOK

THE M SMEASURE COF NAN 31
THE SHI PPI NG NEWS 59
TO KILL A MOCKI NGBI RD 14
TRUVAN 19

TRUMPET OF THE SWAN

UNDER THE EYE OF THE CLOCK

VEST WTH THE NI GHT 48
WONDERFUL LI FE 31

All the titles in BOOKSHELF are returned, even those that do not meet the join criteria. If you
display the BOOKSHELF_CHECKOUT.Title values instead, you will see that those values are NULL.
Think of (+), which must immediately follow the join column of the shorter table, as saying “add
an extra (NULL) row of BC.Title anytime there’s no match for B.Title.”

Current Syntax for Outer Joins

You can use the ANSI SQL standard syntax for outer joins. In the from clause, you can tell Oracle
to perform a left, right, or full outer join. Let’s start with the example from the last section:

"= 'select B.Title, MAX(BC. ReturnedDate - BC. Checkout Dat e)
"Most Days Qut"
f rom BOOKSHELF_CHECKOUT BC, BOOKSHELF B
where BC. Title (+) = B. Title
group by B.Title;

In this case, the BOOKSHELF_CHECKOUT table is having rows returned from it during the
join, even if no matches are found. This can be rewritten as follows:

"= select B. Title, MAX(BC. ReturnedDate - BC. Checkout Dat e)
"Mbst Days Qut"
from BOOKSHELF_CHECKOUT BC right outer join BOOKSHELF B
on BC.Title = B. Title
group by B. Title;

252 Partll: SQL and SQL*Plus

Note the use of the on clause as part of the outer join syntax. Note that
(7= from BOOKSHELF_CHECKOUT BC right outer join BOOKSHELF B
is equivalent to
[= (from BOOKSHELF B | eft outer join BOOKSHELF CHECKOUT BC

You can replace the on clause with a using clause along with the name of the column the
tables have in common—do not qualify the column name with a table name or table alias.

= select Title, MAX(BC. ReturnedDate - BC. Checkout Dat e)
"Most Days CQut*
f rom BOOKSHELF_CHECKOUT BC ri ght outer join BOOKSHELF B
using (Title)
group by Title;

Note that you cannot specify a table alias for the columns listed in the using clause—even in
the group by and select clauses.

As with the old syntax, the side used as the driving table for the outer join makes a difference;
doing a left outer join will not return all the titles.

"= 'select B.Title, MAX(BC. ReturnedDate - BC. Checkout Dat e)
"Most Days CQut"
from BOOKSHELF_CHECKOUT BC | eft outer join BOOKSHELF B
on BC.Title = B. Title
group by B.Title;

TI TLE Most Days Qut
ANNE OF GREEN GABLES 18
El THER/ OR 8
GOOD DOG, CARL 14
HARRY POTTER AND THE GOBLET OF FI RE 11
| NNUVERACY 21
JOHN ADAMS 28
M DNI GHT MAG C 14
MY LEDGER 16
POLAR EXPRESS 14
THE DI SCOVERERS 48
THE M SMEASURE OF MAN 31
THE SHI PPI NG NEWS 59
TO KILL A MOCKI NGBI RD 14
TRUVAN 19
VWEST W TH THE NI GHT 48
WONDERFUL LI FE 31

16 rows sel ected.

Chapter 13: When One Query Depends upon Another 253

A third option, full outer join, returns all rows from both tables. Rows that do not satisfy the
on condition return NULL values. In this example, there are no rows to satisfy this condition, so
the query returns the same 31 rows as the right outer join.

"= 'select B.Title, MAX(BC. ReturnedDate - BC. Checkout Dat e)
"Most Days Qut"
from BOOKSHELF_CHECKOUT BC full outer join BOOKSHELF B
on BC.Title = B. Title
group by B. Title;

Prior to Oracle9i, you can generate the full outer join results by performing two separate
outer joins—using each table as the outer table—and using a union operation to combine the
results in a single query.

Replacing NOT IN with an Outer Join

The various logical tests that can be done in a where clause all have their separate performance
measures. A NOT IN test may force a full read of the table in the subquery select. For example,
what books were not checked out? You could write a query like this:

. select Title
f r om BOOKSHELF

where Title not in
(select Title from BOOKSHELF_CHECKOUT)
order by Title;

BOX SOCI ALS

CHARLOTTE' S VEB

COVWPLETE PCEMS OF JOHN KEATS
EMVA WHO SAVED MY LI FE
GOSPEL

JOURNALS OF LEW S AND CLARK
KI ERKEGAARD ANTHOLOGY
LETTERS AND PAPERS FROM PRI SON
PREACH NG TO HEAD AND HEART
RUNAVWAY BUNNY

SHOELESS JOE

THE COST OF DI SCI PLESHI P

THE GOOD BOOK

TRUWPET OF THE SWAN

UNDER THE EYE OF THE CLOCK

This is typically the way such a query would be written, even though experienced Oracle
users know it may be slow—you may be forcing Oracle to perform a time-intensive full table
scan on the BOOKSHELF_CHECKOUT table. The optimizer may internally transform that NOT
IN to one of the following functionally identical approaches. The following query uses an outer

254 Partll: SQL and SQL*Plus

join and produces the same result. The difference is that this one will be efficient because the
optimizer can take advantage of indexes on the join columns:

= select distinct