
ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Front Matter
Blind Folio FM:i

Oracle Database 10g:
The Complete Reference

Kevin Loney

McGraw-Hill/Osborne

New York Chicago San Francisco
Lisbon London Madrid Mexico City Milan
New Delhi San Juan Seoul Singapore Sydney Toronto

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Front Matter
Blind Folio FM:ii

McGraw-Hill/Osborne
2100 Powell Street, 10th Floor
Emeryville, California 94608
U.S.A.

To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers, please contact
McGraw-Hill/Osborne at the above address. For information on translations or book distributors outside the
U.S.A., please see the International Contact Information page immediately following the index of this book.

Oracle Database 10g: The Complete Reference

Copyright © 2004 by The McGraw-Hill Companies, Inc. (Publisher). All rights reserved. Printed in the
United States of America. Except as permitted under the Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system,
without the prior written permission of Publisher.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission
of Oracle Corporation and/or its affiliates.

Excerpts of copyrighted Oracle user documentation have been reproduced herein with the permission of
Oracle Corporation and/or its affiliates.

1234567890 CUS CUS 01987654

Book p/n 0-07-225352-5 and CD p/n 0-07-225353-3
parts of
ISBN 0-07-225351-7

Publisher
Brandon A. Nordin

Vice President & Associate Publisher
Scott Rogers

Acquisitions Editor
Lisa McClain

Project Editors
Patty Mon, Janet Walden

Acquisitions Coordinator
Athena Honore

Technical Editor
Pete Sharman

Copy Editors
Bart Reed, Margaret Berson, William F. McManus

Proofreader
Carol Henry

Indexer
Jack Lewis

Computer Designer
Apollo Publishing Services

Cover Series Design
Damore Johann Design, Inc.

This book was composed with Corel VENTURA™ Publisher.

Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or mechanical
error by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness of any information included
in this work and is not responsible for any errors or omissions or the results obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any information
contained in this Work, and is not responsible for any errors or omissions.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To my parents, and to Sue, Emily, Rachel, and Jane.

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Front Matter
Blind Folio FM:iii

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

About the Author
Kevin Loney is a senior technical management consultant with
TUSC (http://www.tusc.com), an Oracle-focused consultancy
headquartered in Chicago. He was selected as ORACLE Magazine’s
Consultant of the Year in 2002. He is an expert in the design,
development, administration, tuning, security, and recovery of
Oracle-based applications. An Oracle DBA and developer since
1987, he is the primary author of 15 books for Oracle DBAs and
developers. He is a frequent and highly-rated presenter at local
and international Oracle user groups.

About the Technical Reviewers
Pete Sharman has 16 years’ IT experience designing, implementing,
and managing the performance of Oracle solutions. As a solo
consultant and team leader, Pete has provided administrative and
technical leadership to leading Internet-based businesses as well
as several Fortune 100 and Fortune 500 companies. He has also
completed world-class benchmarks and implementation reviews
of the Oracle RDBMS, and performed high-impact performance
tuning. A proven technical leader, Pete has acquired expert-level
skills in Oracle Parallel Server and Real Application Clusters database
design, administration, backup and recovery, operations planning
and management, performance management, system management,
and security and management of complex data centers.

Currently, Pete is performing the role of Oracle9i and Oracle 10g
Database Global Consulting Lead, acting as an interface between
Oracle Development and North America Sales and Consulting.
Pete has also passed all the Oracle DBA Certifications (Oracle7,
Oracle8, Oracle8i, and Oracle9i) and was one of the first 20 people
in the world to qualify as an Oracle9i Certified Master.

Bob Bryla is an Oracle 8, 8i, 9i, and 10g Certified Professional with
more than 15 years of experience in database design, database
application development, training, and database administration,
and he is the tech editor and author of several Oracle Press and
Sybex Oracle DBA books. He is an Internet database analyst and
Oracle DBA at Lands’ End, Inc., in Dodgeville, Wisconsin.

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Front Matter
Blind Folio FM:iv

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:v

Contents

ACKNOWLEDGEMENTS. xv
INTRODUCTION . xvii

PART I
Critical Database Concepts

1 Oracle Database 10g Architecture Options . 3
Databases and Instances . 5
Inside the Database . 5
Choosing Architectures and Options . 9

2 Installing Oracle Database 10g and Creating a Database . 11
Overview of Licensing and Installation Options . 13

3 Upgrading to Oracle Database 10g . 27
Choosing an Upgrade Method . 29
Before Upgrading . 30
Using the Database Upgrade Assistant . 30
Performing a Manual Direct Upgrade . 31
Using Export and Import . 34
Using the Data-Copying Method . 35
After Upgrading . 36

4 Planning Oracle Applications—Approaches, Risks, and Standards 37
The Cooperative Approach . 39
Everyone Has “Data” . 40
The Familiar Language of Oracle . 41
Some Common, Everyday Examples . 45
What Are the Risks? . 47
The Importance of the New Vision . 48
How to Reduce the Confusion . 50
Capitalization in Names and Data . 57
Normalizing Names . 58
Good Design Has a Human Touch . 58
Understanding the Data . 62
Toward Object Name Normalization . 65

v

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

vi Oracle Database 10g: The Complete Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Front Matter
Blind Folio FM:vi

Intelligent Keys and Column Values . 68
The Commandments . 68

PART II
SQL and SQL*Plus

5 The Basic Parts of Speech in SQL . 73
Style . 75
Creating the NEWSPAPER Table . 76
Using SQL to Select Data from Tables . 76
select, from, where, and order by . 80
Logic and Value . 82
Another Use for where: Subqueries . 91
Combining Tables . 95
Creating a View . 97

6 Basic SQL*Plus Reports and Commands . 101
Building a Simple Report . 104
Other Features . 114
Checking the SQL*Plus Environment . 120
Building Blocks . 122

7 Getting Text Information and Changing It . 123
Datatypes . 124
What Is a String? . 124
Notation . 126
Concatenation (||) . 127
How to Cut and Paste Strings . 128
Using order by and where with String Functions . 145
Review . 148

8 Searching for Regular Expressions . 149
Search Strings . 150
REGEXP_SUBSTR . 154

9 Playing the Numbers . 163
The Three Classes of Number Functions . 164
Notation . 164
Single-Value Functions . 168
Aggregate Functions . 175
List Functions . 182
Finding Rows with MAX or MIN . 183
Precedence and Parentheses . 185
Review . 186

10 Dates: Then, Now, and the Difference . 189
Date Arithmetic . 190
ROUND and TRUNC in Date Calculations . 199

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Contents vii

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Front Matter
Blind Folio FM:vii

TO_DATE and TO_CHAR Formatting . 200
Dates in where Clauses . 211
Dealing with Multiple Centuries . 212
Using the EXTRACT Function . 213
Using the TIMESTAMP Datatypes . 214

11 Conversion and Transformation Functions . 217
Elementary Conversion Functions . 220
Specialized Conversion Functions . 225
Transformation Functions . 226
Review . 228

12 Grouping Things Together . 229
The Use of group by and having . 230
Views of Groups . 234
The Power of Views of Groups . 236
More Grouping Possibilities . 241

13 When One Query Depends upon Another . 243
Advanced Subqueries . 244
Outer Joins . 249
Natural and Inner Joins . 255
UNION, INTERSECT, and MINUS . 256

14 Some Complex Possibilities . 261
Complex Groupings . 262
Using Temporary Tables . 263
Using ROLLUP, GROUPING, and CUBE . 264
Family Trees and connect by . 268

15 Changing Data: insert, update, merge, and delete . 279
insert . 280
rollback, commit, and autocommit . 283
Multitable Inserts . 285
delete . 289
update . 291
Using the merge Command . 293

16 DECODE and CASE: if, then, and else in SQL . 297
if, then, else . 298
Replacing Values via DECODE . 301
DECODE Within DECODE . 302
Greater Than and Less Than in DECODE . 305
Using CASE . 307

17 Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 311
Creating a Table . 312
Dropping Tables . 320
Altering Tables . 321

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Creating a Table from a Table . 326
Creating an Index-Organized Table . 327
Using Partitioned Tables . 328
Creating a View . 333
Indexes . 336
Clusters . 342
Sequences . 344

18 Basic Oracle Security . 345
Users, Roles, and Privileges . 346
What Users Can Grant . 353
Granting Limited Resources . 367

PART III
Beyond the Basics

19 Advanced Security—Virtual Private Databases . 371
Initial Configuration . 372
Create an Application Context . 373
Create a Logon Trigger . 375
Create a Security Policy . 376
Apply the Security Policy to Tables . 377
Test VPD . 378
How to Implement Column-Level VPD . 379
How to Disable VPD . 380
How to Use Policy Groups . 381

20 Working with Tablespaces . 383
Tablespaces and the Structure of the Database . 384
Planning Your Tablespace Usage . 389

21 Using SQL*Loader to Load Data . 391
The Control File . 392
Starting the Load . 394
Control File Syntax Notes . 398
Managing Data Loads . 400
Tuning Data Loads . 402
Additional Features . 404

22 Using Data Pump Export and Import . 405
Creating a Directory . 406
Data Pump Export Options . 406
Starting a Data Pump Export Job . 409
Data Pump Import Options . 413
Starting a Data Pump Import Job . 416

23 Accessing Remote Data . 423
Database Links . 424
Using Synonyms for Location Transparency . 431

viii Oracle Database 10g: The Complete Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Front Matter
Blind Folio FM:viii

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using the User Pseudo-Column in Views . 432
Dynamic Links: Using the SQL*Plus copy Command . 434
Connecting to a Remote Database . 435

24 Using Materialized Views . 437
Functionality . 438
Required System Privileges . 438
Required Table Privileges . 439
Read-Only vs. Updatable . 439
create materialized view Syntax . 440
Using Materialized Views to Alter Query Execution Paths . 445
Using DBMS_ADVISOR . 447
Refreshing Materialized Views . 449
create materialized view log Syntax . 455
Altering Materialized Views and Logs . 456
Dropping Materialized Views and Logs . 457

25 Using Oracle Text for Text Searches . 459
Adding Text to the Database . 460
Text Queries and Text Indexes . 461
Index Sets . 474

26 Using External Tables . 477
Accessing the External Data . 478
Creating an External Table . 479
Altering External Tables . 489
Limitations, Benefits, and Potential Uses of External Tables . 490

27 Using Flashback Queries . 493
Time-Based Flashback Example . 494
Saving the Data . 496
SCN-Based Flashback Example . 497
What If the Flashback Query Fails? . 499
What SCN Is Associated with Each Row? . 499
Flashback Version Queries . 500
Planning for Flashbacks . 502

28 Flashback—Tables and Databases . 503
The flashback table Command . 504
The flashback database Command . 507

PART IV
PL/SQL

29 An Introduction to PL/SQL . 513
PL/SQL Overview . 514
Declarations Section . 514
Executable Commands Section . 518
Exception Handling Section . 531

Contents ix

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Front Matter
Blind Folio FM:ix

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

x Oracle Database 10g: The Complete Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Front Matter
Blind Folio FM:x

30 Triggers . 535
Required System Privileges . 536
Required Table Privileges . 536
Types of Triggers . 537
Trigger Syntax . 538
Enabling and Disabling Triggers . 548
Replacing Triggers . 549
Dropping Triggers . 550

31 Procedures, Functions, and Packages . 555
Required System Privileges . 556
Required Table Privileges . 558
Procedures vs. Functions . 558
Procedures vs. Packages . 558
create procedure Syntax . 559
create function Syntax . 561
create package Syntax . 568
Viewing Source Code for Procedural Objects . 572
Compiling Procedures, Functions, and Packages . 572
Replacing Procedures, Functions, and Packages . 573
Dropping Procedures, Functions, and Packages . 573

32 Using Native Dynamic SQL and DBMS_SQL . 575
Using EXECUTE IMMEDIATE . 576
Using Bind Variables . 578
Using DBMS_SQL . 579

PART V
Object-Relational Databases

33 Implementing Types, Object Views, and Methods . 587
Working with Abstract Datatypes . 588
Implementing Object Views . 593
Methods . 599

34 Collectors (Nested Tables and Varying Arrays) . 603
Varying Arrays . 604
Nested Tables . 610
Additional Functions for Nested Tables and Varying Arrays . 615
Management Issues for Nested Tables and Varying Arrays . 615

35 Using Large Objects . 619
Available Datatypes . 620
Specifying Storage for LOB Data . 621
Manipulating and Selecting LOB Values . 623

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Contents xi

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Front Matter
Blind Folio FM:xi

Row Objects vs. Column Objects . 648
Object Tables and OIDs . 648
Object Views with REFs . 656
Object PL/SQL . 661
Objects in the Database . 662

PART VI
Java in Oracle

37 An Introduction to Java . 667
Java vs. PL/SQL: An Overview . 668
Getting Started . 669
Declarations . 669
Executable Commands . 670
Classes . 679

38 JDBC Programming . 685
Getting Started . 686
Using the JDBC Classes . 688

39 Java Stored Procedures . 697
Loading the Class into the Database . 700
How to Access the Class . 702

PART VII
Clustered Oracle—The Grid

40 Oracle Real Application Clusters . 709
Preinstallation Steps . 710
Installing RAC . 710
Starting and Stopping RAC Instances . 714
Transparent Application Failover . 716
Adding Nodes and Instances to the Cluster . 717
Managing the Cluster Registry and Services . 718

41 Grid Architecture and Management . 719
Hardware and Operating System Configuration Issues . 720
Adding Servers to the Grid . 723
Sharing Data Across the Grid . 724
Managing the Grid . 724
Launching OEM . 726

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

36 Advanced Object-Oriented Concepts . 647

A Note About Nomenclature . 732
New Views Introduced in Oracle Database 10g . 733
New Columns Introduced in Oracle Database 10g . 738
The Road Maps: DICTIONARY (DICT) and DICT_COLUMNS 745
Things You Select From: Tables (and Columns), Views, Synonyms, and Sequences . . 746
Recycle Bin—USER_RECYCLEBIN and DBA_RECYCLEBIN . 755
Constraints and Comments . 755
Abstract Datatypes, ORDBMS-Related Structures, and LOBs 764
Database Links and Materialized Views . 767
Triggers, Procedures, Functions, and Packages . 770
Dimensions . 773
Space Allocation and Usage, Including Partitions and Subpartitions 774
Users and Privileges . 780
Roles . 782
Auditing . 783
Miscellaneous . 785
Monitoring: The V$ Dynamic Performance Tables . 785

43 The Hitchhiker’s Guide to Tuning Applications and SQL . 791
New Tuning Features in Oracle Database 10g . 792
Tuning—Best Practices . 794
Generating and Reading Explain Plans . 803
Major Operations Within Explain Plans . 808
Implementing Stored Outlines . 831
Review . 833

44 Case Studies in Tuning . 835
Case Study 1: Waits, Waits, and More Waits . 836
Case Study 2: Application-Killing Queries . 839
Case Study 3: Long-Running Batch Jobs . 841

45 The Hitchhiker’s Guide to Oracle Application Server 10g . 845
What Is Oracle Application Server 10g? . 847
Communication Services . 854
Content Management Services . 859
Business Logic Services . 859
Presentation Services . 861
Business Intelligence Services . 863
Portal Services . 865
Web Services . 866
Developer Toolkits . 867
Persistence Layer Services . 872
Caching Services . 874
System Services . 876
Development Tools . 878

xii Oracle Database 10g: The Complete Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Front Matter
Blind Folio FM:xii

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

PART VIII
Hitchhiker’s Guides

42 The Hitchhiker’s Guide to the Oracle10g Data Dictionary . 731

Starting and Stopping the Database . 887
Sizing and Managing Memory Areas . 888
Allocating and Managing Space for the Objects . 891
Monitoring an Undo Tablespace . 900
Automating Storage Management . 901
Segment Space Management . 902
Transporting Tablespaces . 903
Performing Backups . 904
Where to Go from Here . 919

47 The Hitchhiker’s Guide to XML in Oracle . 921
Document Type Definitions, Elements, and Attributes . 922
XML Schema . 926
Using XSU to Select, Insert, Update, and Delete XML Values 928
Using XMLType . 934
Other Features . 936

Alphabetical Reference . 937

Contents xiii

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Front Matter
Blind Folio FM:xiii

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

46 The Hitchhiker’s Guide to Database Administration . 885
Creating a Database . 886

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Front Matter
Blind Folio FM:xiv

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Front Matter
Blind Folio FM:xv

Acknowledgments

This book is dedicated to my family. Thank you for your patience, support, and love.
This book is the product of many hands, and countless hours from many people. My thanks go
out to all those who helped, whether through their comments, feedback, edits, or suggestions.
For additional information about the book, see the publisher’s site (http://www.osborne.com)
and my site (http://www.kevinloney.com). Additional articles and presentations can be found
on the company site at http://www.tusc.com.

■ To the contributors and reviewers at TUSC, including Chris Ostrowski, Brad Brown,
and Shaun O’Brien.

■ To the management, including Rich Niemiec, Joe Trezzo, Brad Brown, and others for
their dedication to the Oracle user community and their commitment to establishing
and following best practices.

■ To my peers at TUSC, including Bill Callahan, Patrick Callahan, Tony Catalano, Holly
Clawson, Judy Corley, Mike Killough, Randy Swanson, Bob Taylor, Bob Yingst, and
many others for their insights and contributions.

Thanks to my colleagues and friends, including Eyal Aronoff, Steve Bobrowski, Rachel
Carmichael, Steven Feuerstein, Mike McDonnell, Vinny Smith, Susan St. Claire, and Marlene
Theriault. This book has benefited from the knowledge they have shared, and I have benefited
from their friendship and guidance.

Thanks to the folks at McGraw-Hill/Osborne who guided this product through its stages: Scott
Rogers, Athena Honore, Lisa McClain, Patty Mon, Bart Reed, Margaret Berson, Bill McManus, and
the others at Osborne with whom I never directly worked. Thanks to the reviewers, including
Pete Sharman and Bob Bryla (who also contributed material). Thanks also to the Oracle component
of Oracle Press. This book would not have been possible without the earlier excellent work of
George Koch and Robert Muller.

Thanks to the writers and friends along the way: Jerry Gross, Jan Riess, Robert Meissner, Marie
Paretti, Br. Declan Kane, CFX, Br. William Griffin, CFX, Chris O’Neill, Cheryl Bittner, Bill Fleming,
and the FSOUG board.

Special thanks to Sue, Emily, Rachel, Jane, and the rest of the home team. As always, this has
been a joint effort.

—Kevin Loney

xv

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Front Matter
Blind Folio FM:xvi

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Front Matter
Blind Folio FM:xvii

Introduction

Oracle documentation is thoroughgoing and voluminous, currently spanning multiple CDs.
Oracle Database 10g: The Complete Reference is the first entity that has gathered all the major Oracle
definitions, commands, functions, features, and products together in a single, massive core reference—
one volume that every Oracle user and developer can keep handy on his or her desk.

The audience for this book will usually fall into one of three categories:

■ An Oracle end user Oracle can easily be used for simple operations such as entering
data and running standard reports. But such an approach would ignore its great power;
it would be like buying a high-performance racing car and then pulling it around with a
horse. With the introduction provided in the first two sections of this book, even an end
user with little or no data processing background can become a proficient Oracle user—
generating ad hoc, English-language reports, guiding developers in the creation of new
features and functions, and improving the speed and accuracy of the real work done in
a business. The language of the book is simple, clear English without data processing
jargon, and with few assumptions about previous knowledge of computers or databases.
It will help beginners to become experts with an easy-to-follow format and numerous
real examples.

■ A developer who is new to Oracle With as many volumes of documentation as Oracle
provides, finding a key command or concept can be a time-consuming effort. This book
attempts to provide a more organized and efficient manner of learning the essentials of
the product. The format coaches a developer new to Oracle quickly through the basic
concepts, covers areas of common difficulty, examines misunderstandings of the product
and relational development, and sets clear guidelines for effective application building.

■ An experienced Oracle developer As with any product of great breadth and sophistication,
there are important issues about which little, if anything, has been published. Knowledge
comes through long experience, but is often not transferred to others. This book delves
deeply into many such subject areas (including new features such as the flashback options,
Data Pump, and many others). The text also reveals many common misconceptions and
suggests rigorous guidelines for application development and designing for performance
issues.

xvii

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In Chapter 1, you will see a roadmap to the organization of this book. Briefly, the first part
of the book focuses on installing Oracle, upgrading from prior versions of Oracle, and reviewing
new features introduced with the latest version. The following sections provide guidance on the
technologies you use to exploit Oracle’s capabilities—SQL, PL/SQL, dynamic SQL, object-relational
features, Java, and more. The chapters progress from basic information on SQL to detailed examples
of complex programs.

The final two parts of the book contain the “hitchhiker’s guides”—guided tours of the data
dictionary, optimizer, tuning case studies, the application server, database administration, and
XML—and the Alphabetical Reference. The Alphabetical Reference contains the syntax and
description of all functions and commands supported by Oracle Database 10g. The reference
is intended for use by both developers and users of Oracle but assumes some familiarity with
the products.

xviii Oracle Database 10g: The Complete Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Front Matter
Blind Folio FM:xviii

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1

PART
I

Critical Database
Concepts

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:2

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:3

CHAPTER
1

Oracle Database 10g
Architecture Options

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:4

O
racle Database 10g is a significant upgrade from prior releases of Oracle. New
features give developers, database administrators, and end users greater control
over the storage, processing, and retrieval of their data. In this chapter, you will
see highlights of the Oracle Database 10g architecture. You will see detailed
discussions of new features such as regular expression support, flashback

version queries, and Data Pump in later chapters. The goal of this chapter is to present a high-
level overview of the capabilities you can feature in your Oracle applications and provide an
introduction to the chapters that describe them.

This book is divided into nine major sections.
In Part I, “Critical Database Concepts,” you will see an overview of Oracle Database 10g’s

options, how to install the Oracle software, how to create or upgrade a database, and advice on
planning your application implementation. These chapters establish the common vocabulary that
both end users and developers can use to coherently and intelligently share concepts and ensure the
success of any development effort. This introductory chapter and Chapter 4 are intended for both
developers and end users of Oracle; Chapters 2 and 3 are intended for database administrators.

Part II, “SQL and SQL*Plus,” teaches the theory and techniques of relational database systems
and applications, including SQL (Structured Query Language) and SQL*Plus. The section begins
with relatively few assumptions about data-processing knowledge on the part of the reader and
then advances, step by step, through some very deep issues and complex techniques. The method
very consciously uses clear, conversational English, with unique and interesting examples, and
strictly avoids the use of undefined terms or jargon. This section is aimed primarily at developers
and end users who are new to Oracle or need a quick review of certain Oracle features. It moves
step by step through the basic capabilities of SQL and Oracle’s interactive query facility, SQL*Plus.
When you’ve completed this section, you should have a thorough understanding of all SQL
keywords, functions, and operators. Within an Oracle database, you should be able to produce
complex queries, create tables, and insert, update, and delete data.

Part III, “Beyond the Basics,” covers advanced options, including virtual private databases,
Data Pump, replication, text indexing, external tables, and the use of the flashback options for
developers and database administrators. Most of the features described in this section will not
be directly used by end users, but the applications they use can be based on these features.

Part IV, “PL/SQL,” provides coverage of PL/SQL. The topics include a review of PL/SQL structures,
plus triggers, stored procedures, and packages. Both standard and native dynamic PL/SQL is covered.

Part V, “Object-Relational Databases,” provides extensive coverage of object-oriented features
such as abstract datatypes, methods, object views, object tables, nested tables, varying arrays, and
large objects.

Part VI, “Java in Oracle,” provides coverage of the Java features in the Oracle database. This
section includes an overview of Java syntax as well as chapters on JDBC and Java stored procedures.

Part VII, “Clustered Oracle—The Grid,” provides an overview of the Real Application Cluster
and grid architecture available in Oracle Database 10g.

Part VIII contains several “hitchhiker’s” guides—to the data dictionary, the database optimizer,
Oracle Application Server, database administration, and Oracle’s XML implementation. These
guides provide an overview of areas that developers may need to use in their application
development and administration.

Part IX, the “Alphabetical Reference,” is a reference for the Oracle server—a book unto itself.
Reading the introductory pages to this reference will make its use much more effective and
understandable. This section contains references for most major Oracle commands, keywords,
products, features, and functions, with extensive cross-referencing of topics. The reference is

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

intended for use by both developers and users of Oracle but assumes some familiarity with the
products. To make the most productive use of any of the entries, it’s worthwhile to read the
introductory pages of the reference. These pages explain in greater detail what is and is not
included and how to read the entries.

The CD that accompanies this book contains a special electronic edition of Oracle Database 10g:
The Complete Reference. Now, with this electronic version, you can easily store all the valuable
information contained in the book on your PC while the print version of the book remains in your
office or home. The CD also contains the table-creation statements and row insertions for all the
tables used in this book. For anyone learning Oracle, having these tables available on your own
Oracle ID, or on a practice ID, will make trying or expanding on the examples very easy.

Databases and Instances
An Oracle database is a collection of data in one or more files. The database contains physical
and logical structures. In the course of developing an application, you create structures such as
tables and indexes to store rows and speed their retrieval. You can create synonyms for the object
names, view objects in different databases (across database links), and you can restrict access to
the objects. You can even use external tables to access files outside the database as if the rows
in the files were rows in tables. In this book, you will see how to create these objects and develop
applications based on them.

An Oracle instance comprises a memory area called the System Global Area (SGA) and the
background processes that interact between the SGA and the database files on disk. In an Oracle
Real Application Cluster (RAC), more than one instance will use the same database (see Chapter 40).
The instances generally are on separate servers connected by a high-speed interconnect.

Inside the Database
Within the Oracle database, the basic structure is a table. Oracle Database 10g supports many types
of tables, including the following:

■ Relational tables Using the Oracle-supplied datatypes (see “Datatypes” in the
Alphabetical Reference), you can create tables to store the rows inserted and manipulated
by your applications. Tables have column definitions, and you can add or drop columns
as the application requirements change. Tables are created via the create table command.

■ Object-relational tables To take advantage of features such as type inheritance, you
can use Oracle’s object-relational capabilities. You can define your own datatypes and
then use them as the basis for column definitions, object tables, nested tables, varying
arrays, and more. See Part V of this book.

■ Index-organized tables You can create a table that stores its data within an index
structure, allowing the data to be sorted within the table. See Chapter 17.

■ External tables Data stored in flat files may be treated as a table that users can query
directly and join to other tables in queries. You can use external tables to access large
volumes of data without ever loading them into your database. See Chapter 26. Note
that Oracle also supports BFILE datatypes, a pointer to an external binary file. Before
creating a BFILE or an external table, you must create a directory alias within Oracle

Chapter 1: Oracle Database 10g Architecture Options 5

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:5

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

(via the create directory command) pointing to the physical location of the file. See
Chapter 35 for details on BFILEs and other large object datatypes.

■ Partitioned tables You can divide a table into multiple partitions, which allows you
to separately manage each part of the table. You can add new partitions to a table, split
existing partitions, and administer a partition apart from the other partitions of the table.
Partitioning may simplify or improve the performance of maintenance activities and user
queries. You can partition tables on ranges of values, on lists of values, on hashes of
column values, or on combinations of those options. See Chapter 17.

■ Materialized views A materialized view is a replica of data retrieved by a query. User
queries may be redirected to the materialized views to avoid large tables during execution—
the optimizer will rewrite the queries automatically. You can establish and manage refresh
schedules to keep the data in the materialized views fresh enough for the business needs.
See Chapter 24.

■ Temporary tables You can use the create global temporary table command to create
a table in which multiple users can insert rows. Each user sees only his or her rows in
the table. See Chapter 14.

■ Clustered tables If two tables are commonly queried together, you can physically store
them together via a structure called a cluster. See Chapter 17.

■ Dropped tables As of Oracle Database 10g, you can quickly recover dropped tables
via the flashback table to before drop command. You can flash back multiple tables at
once or flash back the entire database to a prior point in time. Oracle supports flashback
queries, which return earlier versions of rows from an existing table.

To support access to tables, you can use views that perform joins and aggregations, limit the
rows returned, or alter the columns displayed. Views may be read-only or updatable, and they
can reference local or remote tables. Remote tables can be accessed via database links. You can
use synonyms to mask the physical location of the tables. See Chapter 23 for details on database
links, and Chapter 17 for details on views and synonyms.

To tune the accesses to these tables, Oracle supports many types of indexes, including the
following:

■ B*-tree indexes A B*-tree index is the standard type of index available in Oracle, and
it’s very useful for selecting rows that meet an equivalence criteria or a range criteria.
Indexes are created via the create index command.

■ Bitmap indexes For columns that have few unique values, a bitmap index may be able
to improve query performance. Bitmap indexes should only be used when the data is
batch loaded (as in many data warehousing or reporting applications).

■ Reverse key indexes If there are I/O contention issues during the inserts of sequential
values, Oracle can dynamically reverse the indexed values prior to storing them.

■ Function-based indexes Instead of indexing a column, such as Name, you can index
a function-based column, such as UPPER(Name). The function-based index gives the
Oracle optimizer additional options when selecting an execution path.

6 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:6

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Partitioned indexes You can partition indexes to support partitioned tables or to simplify
the index management. Index partitions can be local to table partitions or may globally
apply to all rows in the table.

■ Text indexes You can index text values to support enhanced searching capabilities,
such as expanding word stems or searching for phrases. Text indexes are sets of tables
and indexes maintained by Oracle to support complex text-searching requirements.
Oracle Database 10g offers enhancements to text indexes that simplify their administration
and maintenance.

See Chapters 17 and 43 for further details on the index types listed here (excluding text indexes).
For text indexes, see Chapter 25.

Storing the Data
All of these logical structures in the database must be stored somewhere in the database. Oracle
maintains a data dictionary (see Chapter 42) that records metadata about each object—the object
owner, a definition, related privileges, and so on. For objects that require physical storage space
of their own, Oracle will allocate space within a tablespace.

Tablespaces
A tablespace consists of one or more datafiles; a datafile can be a part of one and only one tablespace.
Oracle Database 10g creates at least two tablespaces for each database—SYSTEM and SYSAUX—to
support its internal management needs. You can use Oracle managed files (OMF) to simplify the
creation and maintenance of datafiles.

As of Oracle Database 10g, you can create a special kind of tablespace, called a bigfile
tablespace, that can be many thousands of terabytes in size. Along with OMF, the management of
bigfiles makes tablespace management completely transparent to the DBA; the DBA can manage
the tablespace as a unit without worrying about the size and structure of the underlying datafiles.

If a tablespace is designated as a temporary tablespace, the tablespace itself is permanent;
only the segments saved in the tablespace are temporary. Oracle uses temporary tablespaces
to support sorting operations such as index creations and join processing. Temporary segments
should not be stored in the same tablespaces as permanent objects.

Tablespaces can be either dictionary managed or locally managed. In a dictionary-managed
tablespace, space management is recorded in the data dictionary. In a locally managed tablespace
(the default in Oracle Database 10g), Oracle maintains a bitmap in each datafile of the tablespace to
track space availability. Only quotas are managed in the data dictionary, dramatically reducing
the contention for data dictionary tables.

Automated Storage Management
Automatic storage management (ASM), available as of Oracle Database 10g, automates the layout
of datafiles and other operating system–level files used by the database, by distributing them
across all available disks. When new disks are added to the ASM instance, the database files are
automatically redistributed across all disks in the defined disk group for optimal performance.
The multiplexing features of an ASM instance minimize the possibility of data loss and are
generally more effective than a manual scheme that places critical files and backups on different
physical drives. See Chapter 46.

Chapter 1: Oracle Database 10g Architecture Options 7

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:7

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

8 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:8

Automatic Undo Management
To support your transactions, Oracle can dynamically create and manage undo segments, which
help maintain prior images of the changed blocks and rows. Users who have previously queried
the rows you are changing will still see the rows as they existed when their queries began. Automatic
Undo Management (AUM) allows Oracle to manage the undo segments directly with no database
administrator intervention required. The use of AUM also simplifies the use of flashback queries.
As of Oracle Database 10g, you can execute flashback version queries to see the different versions
of a row as it changed during a specified time interval. See Chapter 27 for further details on the
use of undo segments, flashback queries, and flashback version queries.

Dropped Data
The recycle bin concept introduced with Oracle Database 10g impacts the space requirements
for your tablespaces and datafiles. In Oracle Database 10g, the default behavior for the drop of a
table is for the table to retain its space allocation; you can see its space usage via the RECYCLEBIN
data dictionary view. If you create and drop a table twice, there will be two copies of the table
in the recycle bin. Although this architecture greatly simplifies recoveries of accidentally dropped
tables, it may considerably increase the space used in your database. Use the purge command
to remove old entries from your recycle bin. See the Alphabetical Reference for the syntax of the
purge command.

Guarding the Data
You can fully control the access to your data. You can grant other users privileges to perform
specific functions (such as select, insert, and so on) on your objects. You can pass along the right to
execute further grants. You can grant privileges to roles, which are then granted to users, grouping
privileges into manageable sets.

Oracle supports a very detailed level of privileges; you can control which rows are accessible
and, during auditing, which rows trigger audit events to be recorded. When you use the Virtual
Private Database (VPD) option, users’ queries of tables are always limited regardless of the method
by which they access the tables. As of Oracle Database 10g, VPD has been further enhanced to
include column masking for columns containing sensitive data. See Chapter 19 for details on the
implementation of VPD.

In addition to securing access to the data, you can audit activities in the database. Auditable
events include privileged actions (such as creating users), changes to data structures, and access
of specific rows and tables.

Programmatic Structures
Oracle supports a wide array of programmatic access methods. The SQL language, described in
detail throughout this book, is key to any application development effort. Other access methods
include the following:

■ PL/SQL As described in Part IV of this book, PL/SQL is a critical component of most
application implementations. You can use PL/SQL to create stored procedures and
functions, and you can call your functions within queries. Procedures and functions
can be collected into packages. You can also create triggers, telling the database what
steps to take when different events occur within the database. Triggers may occur during
database events (such as database startup), changes to structures (such as attempts to drop

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

tables), or changes to rows. In each case, you will use PL/SQL to control the behavior of
the database or application when the triggering event occurs.

■ Dynamic SQL You can generate SQL at run time and pass it to procedures that execute
it via dynamic SQL. See Chapter 32.

■ SQL*Plus As shown throughout this book, SQL*Plus provides a simple interface to the
Oracle database. SQL*Plus can support rudimentary reporting requirements, but it is
better known for its support of scripting. It provides a consistent interface for retrieving
data from the data dictionary and creating database objects.

■ Java and JDBC As shown in Part VI of this book, Oracle’s support for Java and JDBC
allow you to use Java in place of PL/SQL for many operations. You can even write Java-
based stored procedures. Oracle’s Java offerings have been expanded and enhanced
with each new release.

■ XML As described in Chapter 47, you can use Oracle’s XML interfaces and XML types
to support inserting and retrieving data via XML.

■ Object-oriented SQL and PL/SQL You can use Oracle to create and access object-
oriented structures, including user-defined datatypes, methods, large objects (LOBs),
object tables, and nested tables. See Part V.

■ Data Pump Data Pump Import and Data Pump Export, both introduced in Oracle
Database 10g, greatly enhance the manageability and performance of the earlier Import
and Export utilities. You can use Data Pump to quickly extract data and move it to
different databases while altering the schema and changing the rows. See Chapter 22
for details on the use of Data Pump.

■ SQL*Loader You can use SQL*Loader to quickly load flat files into Oracle tables.
A single flat file can be loaded into multiple tables during the same load, and loads
can be parallelized. See Chapter 21.

■ External programs and procedures You can embed SQL within external programs,
or you can create procedural libraries that are later linked to Oracle. See Chapter 31.

■ UTL_MAIL A package introduced in Oracle Database 10g, UTL_MAIL allows a PL/SQL
application developer to send e-mails without having to know how to use the underlying
SMTP protocol stack.

Choosing Architectures and Options
Oracle provides a full array of tools for developing applications based on Oracle Database 10g.
Although this book does not cover each of the possible tools and their uses, see Chapter 45 for
a detailed overview of the Oracle Application Server and its capabilities. You can use Oracle
Application Server as the middle tier for three-tier applications that access Oracle Database 10g.

Many of the features introduced with Oracle Database 10g will be available to you regardless
of the application architecture you select. These features include database administration features
such as automatic storage management, automatic tuning, and automatic resizing of the memory
areas in the SGA. See Chapter 46 for descriptions of the primary tasks performed by database
administrators.

Chapter 1: Oracle Database 10g Architecture Options 9

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:9

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If you have previously implemented applications in earlier versions of Oracle, you should review
your database to identify areas where new features will benefit your application. For example,
if you have previously implemented materialized views, you may be able to take advantage of new
features that expand the possibilities for incremental (“fast”) refreshes of the materialized views.
Oracle provides a set of procedures that help you manage your materialized view refresh schedule.
For example, you can execute a procedure that will generate a description of your refresh possibilities
and the configuration issues (if any) that prevent you from using the fastest options possible. You
can use another Oracle-provided procedure to generate recommendations for tuning materialized
view structures based on a provided set of sample queries.

Some of the new features may contain small changes that can have dramatic impact on your
application or your coding approach. For example, regular expression searches are available as
of Oracle Database 10g. If you are not performing complex string searches, you may decide not
to change an existing application to use the new search functions. However, the regular expression
search functionality includes the ability to perform case-insensitive searches—potentially eliminating
the need for other function calls or function-based indexes. You should evaluate your previous
architecture decisions in light of the new features available.

In the next several chapters, you will see how to install Oracle Database 10g and how to
upgrade to Oracle Database 10g from prior releases. Following those chapters, you will see an
overview of application planning, followed by many chapters on the use of SQL, PL/SQL, Java,
object-oriented features, and XML to get the most out of your Oracle database. Your application
architecture may change over time as the business process changes. During those changes you
should be sure to review the latest features to determine how your application can best exploit
them for functionality and performance.

10 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:10

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 2
Blind Folio 2:11

CHAPTER
2

Installing Oracle
Database 10g and

Creating a Database

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

12 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 2
Blind Folio 2:12

A
s Oracle’s installation software becomes easier to use with each release, it is very
tempting to open the box of CDs and start the installation right away. Although
this is fine if you’re going to experiment with some new database features, a lot
more planning is required to perform a successful installation without rework or
even reinstallation a month from now. Although the complete details of an

Oracle Database 10g installation are beyond the scope of this book, you will see the basics of
an Oracle install using the Oracle Universal Installer (OUI), along with a basic template for doing
a manual install of the database using the create database command. In any case, a thorough review
of the installation guide for your specific platform is another key to a successful Oracle database
deployment.

NOTE
Although this chapter is intended for beginning database administrators,
the planning process should include end users, application developers,
and system administrators, so the workload and space requirements
will be as accurate as possible.

The following issues should be addressed or resolved before you start the installation:

■ Decide on the local database name, and which domain will contain this database. These
names are set in the initialization parameters DB_NAME and DB_DOMAIN.

■ For the first project to use the database, estimate the number of tables and indexes as
well as their size, to plan for disk space estimates beyond what is required for the Oracle
SYSTEM tablespace and the associated Oracle software and tools.

■ Plan the locations of the physical datafiles on the server’s disk to maximize performance
and recoverability. In general, the more physical disks, the better. If a RAID or Network
Attached Storage area will be used for the datafiles, consider Oracle Managed Files to
manage the placement of the datafiles. As of Oracle Database 10g, you can use automatic
storage management (ASM) to simplify your storage management. See Chapter 46 for
details on ASM.

■ Review and understand the basic initialization parameters.

■ Select the database character set, along with an alternate character set. Although it’s easy
to let the character sets default on install, you may need to consider where the users of
the database are located and their language requirements. Character sets can be changed
after installation only if the new character set is a superset of the existing character set.

■ Decide on the best default database block size. The default block size defined by DB_
BLOCK_SIZE cannot be changed later without reinstalling the database. Note that Oracle
can support multiple block sizes within a single database.

■ Plan to store non-SYSTEM user objects in non-SYSTEM tablespaces. Make sure that all
nonadministrative users are assigned a non-SYSTEM tablespace as their default tablespace.

■ Plan to implement Automatic Undo Management to ease administration of transaction
undo information.

■ Plan a backup and recovery strategy. Decide how the database needs to be backed up,
and how often. Plan to use more than one method to back up the database.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 2: Installing Oracle Database 10g and Creating a Database 13

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 2
Blind Folio 2:13

Familiarity with a couple of key Web sites is a must. Oracle Technology Network (OTN), at
http://otn.oracle.com, has a wealth of information, including white papers, free tools, sample code,
and the online version of Oracle Magazine. There is no charge for using OTN, other than registering
on the site.

Purchasing a license for Oracle database software is a good start, but an Oracle support contract
with Web support may be the key to a successful installation and deployment. Using Oracle’s
Metalink (http://metalink.oracle.com) means you might never have to leave the friendly confines
of your Web browser to keep your database up and running. Through Metalink, you can submit
a support request, search through other support requests, download patches, download white
papers, and search the bug database.

Overview of Licensing and Installation Options
A successful initial software installation is the first step. Regardless of the software and hardware
platform on which you’re installing Oracle, the types of installations you can perform are the same.
Although these may change with product releases, they generally include the following:

■ Enterprise Edition This is the most feature rich and extensible version of the Oracle
database. It includes features such as Flashback Database and allows you to add additional
pieces of licensed functionality, such as Oracle Spatial, Oracle OLAP, Oracle Label
Security, and Oracle Data Mining.

■ Standard Edition This edition provides a good subset of the features of the Enterprise
Edition, generally including the features that a small business will need.

■ Personal Edition This edition allows for development of applications that will run on
either the Standard or Enterprise Edition. This edition cannot be used in a production
environment.

As of Oracle Database 10g, licensing for the Oracle database is only by named user or CPU,
and there is no longer a concurrent user licensing option. Therefore, the DBA should use the
initialization parameter LICENSE_MAX_USERS to specify the maximum number of users that
can be created in the database. As a result, LICENSE_MAX_SESSIONS and LICENSE_SESSIONS_
WARNING are deprecated in Oracle Database 10g.

In addition, the Oracle Management Server (the back end for an Oracle Enterprise Manager, or
OEM, client) can be installed during a server- or client-side installation. However, it is recommended
that this installation be performed after a basic database installation has been completed.

Using OUI to Install the Oracle Software
Use the Oracle Universal Installer (OUI) to install and manage all Oracle components for both
the server-side and client-side components. You can also deinstall any Oracle products from the
initial OUI screens.

During the server installation, you will choose the version of Oracle Database 10g from the list
in the previous section: Enterprise Edition, Standard Edition, or one of the other options available
for your platform.

It is strongly recommended that you create a starter database when prompted during the install.
Creating the starter database is a good way to make sure the server environment is set up correctly,
as well as to review any new features of Oracle Database 10g. The starter database may also be
a good candidate as a repository for either OEM or Recovery Manager.

The exact flow of the installation process may change depending on your operating environment
and Oracle version.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

14 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 2
Blind Folio 2:14

NOTE
For UNIX environments, you will need to set a proper value for the
DISPLAY environment variable and enable xhost prior to starting OUI
via the runInstaller script.

For the major steps related to database creation, figures of screen contents will be shown in
the next section of this chapter.

NOTE
The following steps are based on a custom installation. Standard
installations may not prompt you for all the steps described here.

In general, the steps will be as follows:

1. An opening screen, choose to install products or deinstall previously installed products.

2. Specify source file locations for the products you want to install and the home directory
into which the Oracle software will be installed. The installer should present you with
default values. In general, the default values for the software source files should be correct,
whereas the others may have to be changed.

3. Select a product to install. Your options here will include the database and the client. If
you received a client or companion CD with the installation media, you should install
that as well because it will include important files and software libraries. If you select the
“database” option, OUI will install a preconfigured starter database, product options,
management tools, networking services, and basic client software for the Oracle database
server. If you select the “client” option, OUI will install enterprise management tools,
networking services, utilities, development tools, precompilers, and basic client software.
For your first installation, you should use the “database” option to create the starter database.

4. Choose installation type—Enterprise Edition, Personal Edition, or Custom.

5. If you chose the “database” option in step 3, you will now be prompted to confirm the
creation of the starter database.

6. You will be prompted to choose among standard database configurations (general purpose,
transaction processing, or data warehouse).

7. For the starter database, choose the database configuration options. These options include
the global database name, the instance name, the character set, and whether or not to
include sample schemas.

8. Specify a single password to use for all preloaded schemas in the starter database, or specify
separate passwords for all accounts.

9. Specify the database storage option to use. If you are using file system files, specify the
directories to use. Other options include automatic storage management and raw devices.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 2: Installing Oracle Database 10g and Creating a Database 15

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 2
Blind Folio 2:15

10. You will be prompted to finalize the selection of management and services options prior
to accepting the configuration and beginning the installation.

During the software installation, the Database Configuration Assistant (DBCA) takes over and
prompts you for the parameters necessary to size and configure your database (starting at step 6
in this list). The installation steps in the next session assume that you have already completed the
software installation and created a starter database; we will create and configure a second database
on the same server with DBCA.

NOTE
As of Oracle 10g, DBCA can configure nodes in a Real Application
Clusters environment.

Using DBCA to Create a Database
In UNIX, you can start DBCA by executing the dbca file located in the $ORACLE_HOME/bin
directory. You must configure your DISPLAY environment variable and xhost settings prior to
starting DBCA.

In Windows, DBCA is located under the Configuration and Migration Tools submenu under
the Oracle programs menu.

In the subsections that follow, you will receive tips and guidance for most of the screens during
the creation of the database.

DBCA Options
After an initial welcome screen, you are presented with a choice of four options:

■ Create a Database This one is fairly straightforward; you are creating a new database
from scratch, using a template as a starting point.

■ Configure Database Options in a Database Some of the system parameters for an
existing database installation can be changed, such as changing from a dedicated server
mode to shared server.

■ Delete a Database This one is also straightforward—and very dangerous! It will shut
down the database and delete all the datafiles and control files associated with the database.
You will need the SYS or SYSTEM password to proceed with this option.

■ Manage Templates This option allows you to add, modify, or delete templates. During
a DBCA session, once all database parameters have been gathered, you have the option
to save your settings as a template. In many cases, the predefined templates that Oracle
provides are not quite perfect for your environment, and it is a time-saver to be able to
save your database options for selection as a template in a future DBCA session.

Selecting a Database Template
In Figure 2-1, you are presented with the list of templates available. If you have created your own
templates in previous DBCA sessions, they will appear on this screen also.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

16 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 2
Blind Folio 2:16

The template choices are as follows:

■ Custom Database Use this option if you have performed many installations and know
ahead of time the values for all the options you need in the database. This option is good
if you are creating a new template from scratch or have very specific requirements for the
configuration of your database.

■ Data Warehouse This template is for database environments where users are performing
numerous, complex queries that join many large tables for reporting, forecasting, and
analytics.

■ General Purpose If you are not sure of the intended use of your database yet, or if you
need to host users with both analytical and transaction-processing requirements, choose
this template.

■ Transaction Processing In 24×7 environments where the number of users is high, the
transactions are heavy but short, and the bulk of the activity is creating and updating,
use this template.

In this installation, we are choosing the General Purpose template. It combines the features
of both a data warehouse and an OLTP environment into a single database; use this option if you

FIGURE 2-1. Database template selection screen

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

must use this database for both environments. Ideally, however, any database you create should
be configured and tuned for the types of users and transactions on the database.

Database Identification
In the next step of DBCA, you will identify the name of the instance along with the global
database name.

NOTE
If the global database name needs to be changed in the future, you
must use the alter database command to change it, in addition to
changing it in the initialization parameter file. The global database
name is stored in the data dictionary when the database is created.

Unless you have an existing domain, use the default domain name .world. Check with your
system administrator to see if a specific global database name should be used.

Database Credentials
Figure 2-2 shows the setting of the initial passwords for the SYS and SYSTEM user accounts. After
the installation, be sure to create at least one account with DBA privileges to use instead of SYS
or SYSTEM for day-to-day administrative tasks.

Chapter 2: Installing Oracle Database 10g and Creating a Database 17

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 2
Blind Folio 2:17

FIGURE 2-2. Database Credentials screen

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

On this screen, you can also set up this instance to be included as a managed node in an existing
OEM environment, or you can specify this instance as the OEM Repository. If you specify this node
as the OEM Repository, it is strongly recommended that this node be used only for that purpose.

Storage Options
The database can use a number of different methods for storing datafiles, control files, and redo log
files. If you have the resources to dedicate another database instance for managing disk space,
choose ASM. If you are in a Real Application Clusters environment and you don’t have a cluster
file system available (such as OCFS), choose Raw Devices. Figure 2-3 shows these options on the
Storage Options screen.

File Locations
The next screen, shown in Figure 2-4, is where you select the locations for datafiles, control files,
and redo log files, as well as the archiving and backup and recovery locations.

New to Oracle Database 10g is the concept of a Flash Recovery Area. This is a dedicated
location on disk, separate from the location of the database’s operational files, containing the

18 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 2
Blind Folio 2:18

FIGURE 2-3. Storage Options screen

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

backup files from RMAN (Recovery Manager). It is highly recommended that you use a Flash
Recovery Area so that RMAN can more easily manage backup and recovery operations. Be sure
that the Flash Recovery Area is large enough to hold at least two copies of all datafiles, incremental
backups, control files, SPFILEs, and archived redo log files that are still on disk.

You can also enable ARCHIVELOG mode, as well as specify the location or locations for the
archived redo log files. It is recommended that you leave archiving off until the database is installed,
because enabling it will increase the database creation time. The parameters for ARCHIVELOG mode
can easily be changed in init.ora or the SPFILE immediately after the database is up and running.

Database Components
In the next step of the DBCA session, you are asked about installing sample schemas. In non-
production databases, it is highly recommended that you install the sample schemas; many tutorials
and study guides rely on the sample schemas being in the database. They are also useful in that the
samples demonstrate nearly all datatypes and constructs available in the database, ranging from
bitmapped indexes to clustered tables and object types.

Chapter 2: Installing Oracle Database 10g and Creating a Database 19

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 2
Blind Folio 2:19

FIGURE 2-4. File Locations screen

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Initialization Parameters
The screen shown in Figure 2-5 allows the DBA to adjust the key initialization parameters for the
database. Figure 2-5 shows the Memory tab of the Initialization Parameters screen. If you select
Typical, or if you select Custom with Shared Memory Management Auto, Oracle will make
assumptions about the memory it can use for the SGA and background processes. Even by defaulting
many of the parameters in a Typical configuration, you can still specify how much of the server’s
physical memory should be used for Oracle, depending on how much memory is used by the
operating system and whether any other applications are going to be running on this server along
with Oracle. The value for Java Pool must be at least the size of one granule in the database,
either 4MB or 16MB, but at least 20MB is recommended.

Later screens in this section of the DBCA allow you to specify the default block size of the
database, the total number of processes that will be simultaneously connecting, the connection
mode to use, and the character set for the database.

20 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 2
Blind Folio 2:20

FIGURE 2-5. Initialization Parameters screen’s Memory tab

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Database Storage
On the DBCA Database Storage screen, you can review and revise the locations of the control files,
datafiles, and redo log files, as well as multiplex the control files and create redo log file groups.
The names and locations of the control files on this screen determine the value of CONTROL_FILES
in the initialization parameter file.

Creation Options
In Figure 2-6, we are ready to create the database. In addition, we can use the information we
provided in the previous screens and save it to a template. If in doubt, save it as a template;
the storage required to save only a template is minimal, and it can easily be deleted later by
rerunning DBCA.

Before the database is created, an HTML summary of your template is presented, and you have
the option to save this report as an HTML file for documentation purposes.

Chapter 2: Installing Oracle Database 10g and Creating a Database 21

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 2
Blind Folio 2:21

FIGURE 2-6. Database and template creation options

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Completing the Installation
After you click OK on the Summary screen, DBCA performs the tasks needed to create the database
and start the instance. A standard set of scripts is run when the database first starts; this includes
the scripts that create the sample schemas, plus any custom scripts you may have specified earlier.
The standard set of scripts will vary depending on the options you’ve selected via the DBCA.

Once the initialization and creation scripts have completed, a summary screen is presented,
giving the location of the log file for this installation. It is recommended that you review this log file
to ensure that there were no unexpected errors during the install. You should also save this log
file with the other documentation for this database; it can also be useful for future installations as
a baseline.

The Oracle database you just created is up and running. You have the option to unlock other
accounts created during this install and to assign passwords to them.

Manually Creating a Database
The DBCA can support complex installation requirements. For example, if you need to create the
same database on different servers, you can use the DBCA to create and execute templates.

You can manually create a database instead of using DBCA. Oracle provides a sample database-
creation script that can be customized for a manual install.

Here are the basic steps needed to create a database manually. Some of these steps are operating
system or platform dependent, and the differences will be noted. Be sure to review the Installation
Guide for your specific platform before attempting a manual installation. For example, under
Windows, you will need to run the utility oradim to create the Oracle background process and
to set the relevant registry values.

1. Decide on a directory structure for the database; it is recommended that you comply with
Oracle’s Optimal Flexible Architecture standards when placing your files on disk. See your
operating system’s Installation Guide for Oracle for more information on OFA.

2. Select an Oracle SID (instance identifier) to distinguish this instance from any other ones
that are running on this server. Frequently, this is the same as the database name specified
in the DB_NAME initialization parameter. In a Windows command prompt, you will
type this:

set ORACLE_SID=rjbdb

Under UNIX, you will use either

export ORACLE_SID=rjbdb

or

setenv ORACLE_SID=rjbdb

depending on your default command shell.

3. Establish an authentication method for connecting privileged users to the database. Use the
orapwd command-line utility to create a password file if you want Oracle to authenticate the
privileged users; you will set the initialization parameter REMOTE_LOGIN_PASSWORDFILE
to EXCLUSIVE. If you are using operating system authentication, there is no need for a
password file; therefore, set REMOTE_LOGIN_PASSWORDFILE to NONE.

22 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 2
Blind Folio 2:22

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4. Create an initialization parameter file and place it in the default location for your platform,
at least initially for the install. Under UNIX, the default location is $ORACLE_HOME/dbs;
under Windows, it is $ORACLE_HOME\database. Here is a sample initialization file:

Cache and I/O

DB_BLOCK_SIZE=4096

DB_CACHE_SIZE=20971520

Cursors and Library Cache

CURSOR_SHARING=SIMILAR

OPEN_CURSORS=300

Diagnostics and Statistics

BACKGROUND_DUMP_DEST=/u01/oracle10g/admin/rjbdb/bdump

CORE_DUMP_DEST=/u01/oracle10g/admin/rjbdb/cdump

TIMED_STATISTICS=TRUE

USER_DUMP_DEST=/u01/oracle10g/admin/rjbdb/udump

Control File Configuration

CONTROL_FILES=("/u01/oracle10g/prod/rjbdb/control01.ctl",

"/u02/oracle10g/prod/rjbdb/control02.ctl",

"/u03/oracle10g/prod/rjbdb/control03.ctl")

Archive

LOG_ARCHIVE_DEST_1='LOCATION=/u06/oracle10g/oradata/rjbdb/archive'

New log archive format. If compatibility 10.0 and up,

this is enforced.

LOG_ARCHIVE_FORMAT=%t_%s_%r.dbf

The following parameter is deprecated in 10iR1

LOG_ARCHIVE_START=TRUE

Shared Server

Starts shared server if set > 0.

SHARED_SERVERS=2

Uncomment and use first DISPATCHERS parameter

below when your listener is

configured for SSL

(listener.ora and sqlnet.ora)

DISPATCHERS = "(PROTOCOL=TCPS)(SER=MODOSE)",

"(PROTOCOL=TCPS)(PRE=oracle.aurora.server.SGiopServer)"

DISPATCHERS="(PROTOCOL=TCP)(SER=MODOSE)",

"(PROTOCOL=TCP)(PRE=oracle.aurora.server.SGiopServer)",

(PROTOCOL=TCP)

Miscellaneous

COMPATIBLE=10.0.0

DB_NAME=rjbdb

Chapter 2: Installing Oracle Database 10g and Creating a Database 23

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 2
Blind Folio 2:23

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Distributed, Replication and Snapshot

DB_DOMAIN=rjbdba.com

REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE

Network Registration

INSTANCE_NAME=rjbdb

Pools

JAVA_POOL_SIZE=31457280

LARGE_POOL_SIZE=1048576

SHARED_POOL_SIZE=52428800

Processes and Sessions

PROCESSES=150

Redo Log and Recovery

FAST_START_MTTR_TARGET=300

Resource Manager

RESOURCE_MANAGER_PLAN=SYSTEM_PLAN

Sort, Hash Joins, Bitmap Indexes

SORT_AREA_SIZE=524288

Automatic Undo Management

UNDO_MANAGEMENT=AUTO

UNDO_TABLESPACE=undotbs

5. Connect to the instance using SQL*Plus:

sqlplus /nolog

connect SYS/password as sysdba

Note that although the instance itself exists, there is not much we can do with it because
we have not created the database yet.

6. Create a server parameter file (SPFILE). If the initialization file is in the default location,
the following command will create the SPFILE:

create spfile from pfile;

7. Start the instance using the following command:

startup nomount

Note that because we do not have a database created yet, this is the only option we can
use with the startup command.

8. Issue the create database command. Here is an example (note that we are specifying
passwords for the SYS and SYSTEM accounts):

CREATE DATABASE rjbdb

USER SYS IDENTIFIED BY paris703

24 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 2
Blind Folio 2:24

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

USER SYSTEM IDENTIFIED BY tyler12

LOGFILE GROUP 1 ('/u02/oracle10g/oradata/rjbdb/redo01.log') SIZE 100M,

GROUP 2 ('/u04/oracle10g/oradata/rjbdb/redo02.log') SIZE 100M,

GROUP 3 ('/u06/oracle10g/oradata/rjbdb/redo03.log') SIZE 100M

MAXLOGFILES 6

MAXLOGMEMBERS 5

MAXLOGHISTORY 1

MAXDATAFILES 100

MAXINSTANCES 1

CHARACTER SET US7ASCII

NATIONAL CHARACTER SET AL16UTF16

DATAFILE '/u01/oracle10g/oradata/rjbdb/system01.dbf' SIZE 325M REUSE

EXTENT MANAGEMENT LOCAL

SYSAUX DATAFILE '/u01/oracle10g/oradata/rjbdb/sysaux01.dbf'

SIZE 325M REUSE

DEFAULT TABLESPACE tbs_1

DEFAULT TEMPORARY TABLESPACE tempts1

TEMPFILE '/u01/oracle10g/oradata/rjbdb/temp01.dbf'

SIZE 20M REUSE

UNDO TABLESPACE undotbs

DATAFILE '/u02/oracle10g/oradata/rjbdb/undotbs01.dbf'

SIZE 200M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

Several things are worth noting in this example. We are explicitly setting the passwords
for SYS and SYSTEM; if we didn’t specify them here, they will default to “change_on_
install” and “manager,” respectively.

The redo log file groups have only one member each; once our database is in production,
we should multiplex them. Because we specified an undo tablespace with the UNDO_
TABLESPACE parameter in the initialization parameter file, we need to create that tablespace
here; otherwise, the instance will not start.

After the create database command completes successfully, the database is mounted and
opened for use.

9. Create additional tablespaces for users, indexes, and applications.

10. Build data dictionary views with the supplied scripts catalog.sql and catproc.sql. The
script catalog.sql creates views against the data dictionary tables, dynamic performance
views, and public synonyms for most of the views. The group PUBLIC is granted read-
only access to the views. The script catproc.sql sets up PL/SQL.

11. Back up the database using either a cold backup or Recovery Manager. In case of a database
failure in the early stages of deployment, you have a complete and running database to fall
back on, and most likely you will not have to re-create the database from scratch.

You have now installed the Oracle software, created the starter database, and optionally created
a second database. In the next chapter, you will see how to upgrade to Oracle Database 10g from
prior releases of Oracle.

Chapter 2: Installing Oracle Database 10g and Creating a Database 25

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 2
Blind Folio 2:25

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 2
Blind Folio 2:26

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 3
Blind Folio 3:27

CHAPTER
3

Upgrading to
Oracle Database 10g

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

I
f you have previously installed an earlier version of the Oracle database server, you
can upgrade your database to Oracle Database 10g. Multiple upgrade paths are
supported; the right choice for you will depend on factors such as your current Oracle
software version and your database size. In this chapter, you will see descriptions of
these methods along with guidelines for their use.

If you have not used a version of Oracle prior to Oracle Database 10g, you can skip this chapter
for now. However, you will likely need to refer to it when you upgrade from Oracle Database 10g
to a later version or when you migrate data from a different database into your database.

Prior to beginning the upgrade, you should read the Oracle Database 10g Installation Guide
for your operating system. A successful installation is dependent on a properly configured
environment—including operating system patch levels and system parameter settings. Plan to
get the installation and upgrade right the first time, rather than attempting to restart a partially
successful installation.

This chapter assumes that your installation of the Oracle Database 10g software (see Chapter 2)
completed successfully and that you have an Oracle database that uses an earlier version of the
Oracle software. To upgrade that database, you have four options:

■ Use the Database Upgrade Assistant to guide and perform the upgrade in place. The old
database will become an Oracle 10g database during this process.

■ Perform a manual upgrade of the database. The old database will become an Oracle 10g
database during this process.

■ Use the Export and Import utilities to move data from an earlier version of Oracle to the
Oracle 10g database. Two separate databases will be used—the old database as the source
for the export, and the new database as the target for the import.

■ Copy data from an earlier version of Oracle to an Oracle 10g database. Two separate
databases will be used—the old database as the source for the copy, and the new database
as the target for the copy.

Upgrading a database in place—via either the Database Upgrade Assistant or the manual
upgrade path—is called a direct upgrade. Because a direct upgrade does not involve creating a
second database for the one being upgraded, it may complete faster and require less disk space
than an indirect upgrade.

NOTE
Direct upgrade of the database to version 10 is only supported if your
present database is using one of these releases of Oracle: 8.0.6, 8.1.7,
9.0.1, or 9.2. If you are using any other release, you will have to first
upgrade the database to one of those releases, or you will need to use
a different upgrade option. Oracle 8.0.6 is only supported for some
versions (generally 64-bit), so be sure to check the online certification
matrixes at Oracle’s Metalink site.

28 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 3
Blind Folio 3:28

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
Plan your upgrades carefully; you may need to allow time for multiple
incremental upgrades (such as from 8.1.6 to 8.1.7) prior to upgrading
to Oracle Database 10g.

Choosing an Upgrade Method
As described in the previous section, two direct upgrade paths and two indirect upgrade paths
are available. In this section, you will see a more detailed description of the options, followed
by usage descriptions.

In general, the direct upgrade paths will perform the upgrade the fastest because they upgrade
the database in place. The other methods involve copying data, either to an Export dump file on the
file system or across a database link. For very large databases, the time required to completely re-
create the database via the indirect methods may exclude them as viable options.

The first direct method relies on the Database Upgrade Assistant (DBUA). DBUA is an
interactive tool that guides you through the upgrade process. DBUA evaluates your present
database configuration and recommends modifications that can be implemented during the
upgrade process. These recommendations may include the sizing of files and the specifications
for the new SYSAUX tablespace. After you accept the recommendations, DBUA performs the
upgrade in the background while a progress panel is displayed. DBUA is very similar in approach
to Database Configuration Assistant (DBCA). As discussed in Chapter 2, DBCA is a graphical
interface to the steps and parameters required to make the upgrade a success.

The second direct method is called a manual upgrade. Whereas DBUA runs scripts in the
background, the manual upgrade path involves database administrators’ running the scripts
themselves. The manual upgrade approach gives you a great deal of control, but it also adds
to the level of risk in the upgrade because you must perform the steps in the proper order.

You can use Export and Import as an indirect method for upgrading a database. In this method,
you export the data from the old version of the database and then import it into a database that
uses the new version of the Oracle software. This process may require disk space for multiple
copies of the data—in the source database, in the Export dump file, and in the target database.
In exchange for these costs, this method gives you great flexibility in choosing which data will
be migrated. You can select specific tablespaces, schemas, tables, and rows to be exported.

In the Export/Import method, the original database is not upgraded; its data is extracted and
moved, and the database can then either be deleted or be run in parallel with the new database
until testing of the new database has been completed. In the process of performing the export/
import, you are selecting and reinserting each row of the database. If the database is very large,
the import process may take a long time, impacting your ability to provide the upgraded database
to your users in a timely fashion. See Chapters 22 and 46 for details on the Export and Import
utilities.

NOTE
Depending on the version of the source database, you will need to
use a specific version of the Export and Import utilities. See “Export
and Import Versions to Use” later in this chapter.

Chapter 3: Upgrading to Oracle Database 10g 29

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 3
Blind Folio 3:29

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In the data-copying method, you issue a series of create table as select or insert as select
commands that cross database links (see Chapter 23) to retrieve the source data. The tables are
created in the Oracle 10g database based on queries of data from a separate source database.
This method allows you to bring over data incrementally and to limit the rows and columns
migrated. However, you will need to be careful that the copied data maintains all the necessary
relationships among tables. As with the Export/Import method, this method may require a significant
amount of time for large databases.

Selecting the proper upgrade method requires you to evaluate the technical expertise of your
team, the data that is to be migrated, and the allowable downtime for the database during the
migration. In general, using DBUA will be the method of choice for very large databases, whereas
smaller databases may use an indirect method.

Before Upgrading
Prior to beginning the migration, you should back up the existing database and database software.
If the migration fails for some reason and you are unable to revert the database or software to its
earlier version, you will be able to restore your backup and re-create your database.

You should develop and test scripts that will allow you to evaluate the performance and
functionality of the database following the upgrade. This evaluation may include the performance
of specific database operations or the overall performance of the database under a significant
user load.

Prior to executing the upgrade process on a production database, you should attempt the
upgrade on a test database so that any missing components (such as operating system patches)
can be identified and the time required for the upgrade can be measured.

Prior to performing a direct upgrade, you should analyze the data dictionary tables. During
the upgrade process to Oracle Database 10g, the data dictionary will be analyzed if it has not been
analyzed already, so performing this step in advance will aid the performance of the upgrade.

Using the Database Upgrade Assistant
You can start the Database Upgrade Assistant (DBUA) via the

dbua

command (in UNIX environments) or by selecting “Database Upgrade Assistant” from the Oracle
Configuration and Migration Tools menu option (in Windows environments).

When started, DBUA will display a Welcome screen. At the next screen, select the database
you want to upgrade from the list of available databases. You can upgrade only one database at
a time.

After you make your selection, the upgrade process begins. DBUA will perform preupgrade
checks (such as for obsolete initialization parameters or files that are too small). DBUA will then
create the SYSAUX tablespace, a standard tablespace in all Oracle 10g databases. You can override
Oracle’s defaults for the location and size parameters for the datafiles used by the SYSAUX tablespace.

DBUA will then prompt you to recompile invalid PL/SQL objects (see Part IV of this book)
following the upgrade. If you do not recompile these objects after the upgrade, the first user of
these objects will be forced to wait while Oracle performs a run-time recompilation.

30 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 3
Blind Folio 3:30

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DBUA will then prompt you to back up the database as part of the upgrade process. If you have
already backed up the database prior to starting DBUA, you may elect to skip this step. If you choose
to have DBUA back up the database, it will shut down the database and perform an offline backup
of the datafiles to the directory location you specify. DBUA will also create a batch file in that
directory to automate the restoration of those files to their earlier locations.

The next step is to choose whether or not to enable Oracle Enterprise Manager (OEM) to
manage the database. If you enable the Oracle Management Agent, the upgraded database will
automatically be available via OEM.

You will then be asked to finalize the security configuration for the upgraded database. As with
the database-creation process, you can specify passwords for each privileged account or you can
set a single password to apply to all the OEM user accounts.

Finally, you will be prompted for details on the flash recovery area location (see Chapter 28),
the archive log setting (see Chapter 46), and the network configuration. A final summary screen
displays your choices for the upgrade, and the upgrade starts when you accept them. After the
upgrade has completed, DBUA will display the Checking Upgrade Results screen, showing the
steps performed, the related log files, and the status. The section of the screen titled Password
Management allows you to manage the passwords and the locked/unlocked status of accounts
in the upgraded database.

If you are not satisfied with the upgrade results, you can choose the Restore option. If you
used DBUA to perform the backup, the restoration will be performed automatically; otherwise,
you will need to perform the restoration manually.

When you exit DBUA after successfully upgrading the database, DBUA removes the old
database’s entry in the network listener configuration file, inserts an entry for the upgraded database,
and reloads the file.

Performing a Manual Direct Upgrade
In a manual upgrade, you must perform the steps that DBUA performs. The result will be a direct
upgrade of the database in which you are responsible for (and control) each step in the upgrade
process.

You should use the Pre-Upgrade Information Tool to analyze the database prior to its upgrade.
This tool is provided in a SQL script that is installed with the Oracle Database 10g software; you
will need to run it against the database to be upgraded. The file, named utlu101i.sql, is located
in the /rdbms/admin subdirectory under the Oracle Database 10g software home directory. You
should run that file in the database to be upgraded as a SYSDBA-privileged user, spooling the results
to a log file. The results will show potential problems that should be addressed prior to the upgrade.

If there are no issues to resolve prior to the upgrade, you should shut down the database and
perform an offline backup before continuing with the upgrade process.

Once you have a backup you can restore if needed, you are ready to proceed with the upgrade
process. The process is detailed and script-based, so you should consult with the Oracle installation
and upgrade documentation for your environment and version. The steps are as follows:

1. Copy configuration files (init.ora, spfile.ora, password file) from their old location to the
new Oracle software home directory. By default, the configuration files are found in
the /dbs subdirectory on UNIX platforms and in the /database directory on Windows
platforms.

Chapter 3: Upgrading to Oracle Database 10g 31

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 3
Blind Folio 3:31

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

32 Part I: Critical Database Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 3
Blind Folio 3:32

2. Remove obsolete and deprecated initialization parameters from the configuration files.
Update the COMPATIBLE parameter for Oracle 10. Make sure your SHARED_POOL_
SIZE parameter is set to at least 96MB for 32-bit platforms and at least 144MB for 64-bit
platforms. Set PGA_AGGREGATE_TARGET to at least 24MB, LARGE_POOL_SIZE to
at least 8MB, and JAVA_POOL_SIZE to at least 48MB. For Windows parameters, set
BACKGROUND_DUMP_DEST to \oradata\database_name under the Oracle base
software directory, and set USER_DUMP_DEST to \oradata\database_name\archive
under the Oracle base software directory. Use full pathnames in the parameter files.

3. If you are upgrading a cluster database, set the CLUSTER_DATABASE initialization
parameter to FALSE. After the upgrade, you must set this initialization parameter back
to TRUE.

4. Shut down the instance.

5. If you are using Windows, stop the service associated with the instance and delete the
Oracle service at the command prompt. For Oracle 8.0, use the command ORADIM80
–DELETE –SID instance_name. For Oracle8.1 and higher, use ORADIM –DELETE –SID
instance_name. Then create the new Oracle Database 10g service using ORADIM, as
shown here:

C:\> ORADIM -NEW -SID SID -INTPWD PASSWORD -MAXUSERS USERS
-STARTMODE AUTO -PFILE ORACLE_HOME\DATABASE\INITSID.ORA

Here’s a list of the variables for this command:

Variable Description

SID The name of the SID (instance identifier) of the database you are
upgrading.

PASSWORD The password for the new release 10.1 database instance. This is
the password for the user connected with SYSDBA privileges. If you
do not specify INTPWD, operating system authentication is used
and no password is required.

USERS The maximum number of users who can be granted SYSDBA and
SYSOPER privileges.

ORACLE_HOME The release 10.1 Oracle home directory. Ensure that you specify the
full pathname with the -PFILE option, including the drive letter of
the Oracle home directory.

6. If your operating system is UNIX, make sure that the following environment variables
point to the new release 10.1 directories: ORACLE_HOME, PATH, ORA_NLS33, and
LD_LIBRARY_PATH.

7. Log into the system as the owner of the Oracle Database 10g software.

8. Change your directory to the /rdbms/admin subdirectory under the Oracle software home
directory.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

9. Connect to SQL*Plus as a user with SYSDBA privileges.

10. Issue the startup upgrade command.

11. Use the spool command to log the results of the following steps.

12. Create a SYSAUX tablespace via the create tablespace command. You should allocate
SYSAUX between 500MB and 5GB of disk space, depending on the number of user
objects. SYSAUX must be created with the following clauses: online, permanent, read
write, extent management local, and segment space management auto. Here’s an
example:

create tablespace SYSAUX

datafile '/u01/oradata/db1/sysaux01.dbf'

size 500m reuse

extent management local

segment space management auto

online;

13. Run the script for the old release. For example, if you are upgrading from Release 8.0.6, run
only the u0800060.sql script and then move on to the next step in the upgrade process.

Upgrading From: Run Script:

8.0.6 u0800060.sql

8.1.7 u0801070.sql

9.0.1 u0900010.sql

9.2 u0902000.sql

14. Stop spooling (via spool off) and review the spool file for errors. Resolve any problems
identified there.

15. Run the utlu101s.sql file, with TEXT as the input parameter:

@utlu101s TEXT

Oracle will then display the status of the upgrade. The upgrade elements should all be
listed with a status of “Normal successful completion.”

16. Shut down and restart the instance.

17. Run the utlrp.sql script to recompile invalid packages. You can then verify that all packages
and classes are valid:

select distinct Object_Name from DBA_OBJECTS

where Status = 'INVALID';

18. Exit SQL*Plus.

19. Shut down the database and perform an offline backup of the database; then restart the
database. The upgrade is complete.

Chapter 3: Upgrading to Oracle Database 10g 33

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 3
Blind Folio 3:33

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
After the upgrade, you should never start your Oracle 10g database
with the software from an earlier release.

Using Export and Import
Export and Import provide you with an indirect method for the upgrade. You can create an
Oracle 10g database alongside your existing database and use Export and Import to move data
from the old database to the new database. When the movement of the data is complete, you
will need to point your applications to connect to the new database instead of the old database.
You will also need to update any configuration files, version-specific scripts, and the networking
configuration files (tnsnames.ora and listener.ora) to point to the new database.

Export and Import Versions to Use
When you create an Export dump file via the Export utility, that file can be imported into all later
releases of Oracle. Export dump files are not backward compatible, so if you ever need to revert
to an earlier version of Oracle, you will need to carefully select the version of Export and Import
used. The following table shows the versions of the Export and Import executables you should
use when going between versions of Oracle.

Export From: Import To: Use Export Utility For: Use Import Utility For:

Release 9.2 Release 10.1 Release 9.2 Release 10.1

Release 8.1.7 Release 10.1 Release 8.1.7 Release 10.1

Release 8.0.6 Release 10.1 Release 8.0.6 Release 10.1

Release 7.3.4 Release 10.1 Release 7.3.4 Release 10.1

Release 10.1 Release 8.0.6 Release 8.0.6 Release 8.0.6

Release 10.1 Release 8.1.7 Release 8.1.7 Release 8.1.7

Release 10.1 Release 9.0.1 Release 9.0.1 Release 9.0.1

Release 10.1 Release 9.2 Release 9.2 Release 9.2

Release 10.1 Release 10.1 Release 10.1 Release 10.1

Note that when you are exporting in order to downgrade your database release, you should
use the older version of the Export utility to minimize compatibility problems. You may still encounter
compatibility problems if the newer version of the database uses new features (such as new datatypes)
that the old version will not support.

Performing the Upgrade
Export the data from the source database using the version of the Export utility specified in the
prior section. Perform a consistent export, or perform the export when the database is not available
for updates during and after the export.

34 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 3
Blind Folio 3:34

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 3: Upgrading to Oracle Database 10g 35

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 3
Blind Folio 3:35

NOTE
If you have little free space available, you may back up and delete the
existing database at this point and then install Oracle Database 10g
software and create a target database for the import. If at all possible,
maintain the source and target databases concurrently during the
upgrade. The only benefit of having only one database on the server
at a time is that they can share the same database name.

Install the Oracle Database 10g software and create the target database. In the target database,
precreate the users and tablespaces needed to store the source data. If the source and target
databases will coexist on the server, you need to be careful not to overwrite datafiles from
one database with datafiles from the other. The Import utility will attempt to execute the create
tablespace commands found in the Export dump file, and those commands will include the
datafile names from the source database. By default, those commands will fail if the files already
exist (although this can be overridden via Import’s DESTROY parameter). Precreate the tablespaces
with the proper datafile names to avoid this problem.

NOTE
You can export specific tablespaces, users, tables, and rows.

Once the database has been prepared, use Import or Data Pump Import (see Chapter 22) to
load the data from the Export dump file into the target database. Review the log file for information
about objects that did not import successfully.

Using the Data-Copying Method
The data-copying method requires that the source database and target database coexist. This
method is most appropriate when the tables to be migrated are fairly small and few in number.
As with the Export/Import method, you must guard against transactions occurring in the source
database during and after the extraction of the data. In this method, the data is extracted via
queries across database links.

Create the target database using the Oracle Database 10g software and then precreate the
tablespaces, users, and tables to be populated with data from the source database. Create database
links (see Chapter 23) in the target database that access accounts in the source database. Use the
insert as select command to move data from the source database to the target.

The data-copying method allows you to bring over just the rows and columns you need; your
queries limit the data migrated. You will need to be careful with the relationships between the
tables in the source database so you can re-create them properly in the target database. If you
have a long application outage available for performing the upgrade and you need to modify the
data structures during the migration, the data-copying method may be appropriate for your needs.
Note that this method requires that the data be stored in multiple places at once, thus impacting
your storage needs.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To improve the performance of this method, you may consider the following options:

■ Disable all indexes and constraints until all the data has been loaded.

■ Run multiple data-copying jobs in parallel.

■ Use the parallel query option to enhance the performance of individual queries and inserts.

■ Use the APPEND hint to enhance the performance of inserts.

See Chapter 43 for additional advice on performance tuning.

After Upgrading
Following the upgrade, you should double-check the configuration and parameter files related to
the database, particularly if the instance name changed in the migration process. These files include

■ The tnsnames.ora file

■ The listener.ora file

■ Programs that may have hard-coded instance names in them

NOTE
You will need to manually reload the modified listener.ora file if you
are not using DBUA to perform the upgrade.

You should review your database initialization parameters to make sure deprecated and obsolete
parameters have been removed; these should have been identified during the migration process. Be
sure to recompile any programs you have written that rely on the database software libraries.

Once the upgrade has completed, perform the functional and performance tests identified
before the upgrade began. If there are issues with the database functionality, attempt to identify
any parameter settings or missing objects that may be impacting the test results. If the problem
cannot be resolved, you may need to revert to the prior release.

36 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 3
Blind Folio 3:36

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:37

CHAPTER
4

Planning Oracle
Applications—

Approaches, Risks,
and Standards

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

F
or an Oracle application to be built and used rapidly and effectively, users and
developers must share a common language and a deep and common understanding
of both the business application and the Oracle tools. In the preceding chapters you
have seen the overall Oracle product descriptions and the installation/upgrade steps
involved. Now that the software is installed, you have the opportunity to build

applications that build on the shared business and data understanding among your technical and
business area staff members.

Historically, the systems analyst studied the business requirements and built an application to
meet those needs. The user was involved only in describing the business and, perhaps, in reviewing
the functionality of the application after it was completed.

With the new tools and approaches available, and especially with Oracle, applications can be
built that more closely match the needs and work habits of the business—but only if a common
understanding exists.

This book is aimed specifically at fostering this understanding, and at providing the means for
both user and developer to exploit Oracle’s full potential. The end user will know details about the
business that the developer will not comprehend. The developer will understand internal functions
and features of Oracle and the computer environment that will be too technically complex for the
end user. But these areas of exclusive expertise will be minor compared with what both end users
and developers can share in using Oracle. There is a remarkable opportunity here.

It is no secret that “business” people and “systems” people have been in conflict for decades.
Reasons for this include differences in knowledge, culture, professional interests, and goals, and
the alienation that simple physical separation between groups can often produce. To be fair, this
syndrome is not peculiar to data processing. The same thing occurs between people in accounting,
personnel, or senior management, as members of each group gather apart from other groups on a
separate floor or in a separate building or city. Relations between the individuals from one group
and another become formalized, strained, and abnormal. Artificial barriers and procedures that
stem from this isolationism become established, and these also contribute to the syndrome.

This is all very well, you say, and may be interesting to sociologists, but what does it have to
do with Oracle?

Because Oracle isn’t cloaked in arcane language that only systems professionals can
comprehend, it fundamentally changes the nature of the relationship between business and
systems people. Anybody can understand it. Anybody can use it. Information that previously was
trapped in computer systems until someone in systems created a new report and released it now
is accessible, instantly, to a business person, simply by typing an English query. This changes the
rules of the game.

Where Oracle is used, it has radically improved the understanding between the two camps,
has increased their knowledge of one another, and has even begun to normalize relations between
them. This has also produced superior applications and end results.

Since its first release, Oracle has been based on the easily understood relational model
(explained shortly), so nonprogrammers can readily understand what Oracle does and how it
does it. This makes it approachable and unimposing.

Some individuals neither accept nor understand this yet, nor do they realize just how vital it is
that the dated and artificial barriers between “users” and “systems” continue to fall. But the advent
of cooperative development will profoundly affect applications and their usefulness.

However, many application developers have fallen into an easy trap with Oracle: carrying
forward unhelpful methods from previous-generation system designs. There is a lot to unlearn.

38 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:38

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Many of the techniques (and limitations) that were indispensable to a previous generation of systems
are not only unnecessary in designing with Oracle, they are positively counterproductive. In the
process of explaining Oracle, the burden of these old habits and approaches must be lifted. Refreshing
new possibilities are available.

Throughout this book, the intent will be to explain Oracle in a way that is clear and simple, in
terms that both users and developers can understand and share. Outdated or inappropriate design
and management techniques will be exposed and replaced.

The Cooperative Approach
The Oracle database is an object-relational database management system. A relational database is
an extremely simple way of thinking about and managing the data used in a business. It is nothing
more than a collection of tables of data. We all encounter tables every day—weather reports, stock
charts, sports scores, and so on. These are all tables, with column headings and rows of information
simply presented. Even so, the relational approach can be sophisticated and powerful enough for
even the most complex of businesses. An object-relational database supports all the features of a
relational database while also supporting object-oriented concepts and features. You can use Oracle
as a relational database management system (RDBMS) or take advantage of its object-oriented
features.

Unfortunately, the very people who can benefit most from a relational database—the business
users—usually understand it the least. Application developers, who must build systems that these users
need to do their jobs, often find relational concepts difficult to explain in simple terms. A common
language is needed to make this cooperative approach work.

The first two parts of this book explain, in readily understandable terms, just what a relational
database is and how to use it effectively in business. It may seem that this discussion is for the
benefit of “users” only. An experienced relational application designer may be inclined to skip these
early chapters and simply use the book as a primary source Oracle reference. Although much of
this material may seem like elementary review, it is an opportunity for an application designer to
acquire a clear, consistent, and workable terminology with which to talk to users about their needs
and how these needs might be quickly met. If you are an application designer, this discussion may
also help you unlearn some unnecessary and probably unconscious design habits. Many of these
habits will be uncovered in the course of introducing the relational approach. It is important to
realize that even Oracle’s power can be diminished considerably by design methods appropriate
only to nonrelational development.

If you are an end user, understanding the basic ideas behind object-relational databases will
help you express your needs cogently to application developers and comprehend how those needs
can be met. An average person working in a business role can go from beginner to expert in short
order. With Oracle, you’ll have the power to get and use information, have hands-on control over
reports and data, and possess a clear-eyed understanding of what the application does and how
it does it. Oracle gives you, the user, the ability to control an application or query facility expertly
and know whether you are getting all the available flexibility and power.

You also will be able to unburden programmers of their least favorite task: writing new reports.
In large organizations, as much as 95 percent of all programming backlog is composed of new
report requests. Because you can write your own reports, in minutes instead of months, you will
be delighted to have the responsibility.

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 39

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:39

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Everyone Has “Data”
A library keeps lists of members, books, and fines. The owner of a baseball-card collection
keeps track of players’ names, dates, averages, and card values. In any business, certain pieces
of information about customers, products, prices, financial status, and so on must be saved. These
pieces of information are called data.

Information philosophers like to say that data is just data until it is organized in a meaningful
way, at which point it becomes “information.” If this is true, then Oracle is also a means of easily
turning data into information. Oracle will sort through and manipulate data to reveal pieces of
knowledge hidden there—such as totals, buying trends, or other relationships—that are as yet
undiscovered. You will learn how to make these discoveries. The main point here is that you
have data, and you do three basic things with it: acquire it, store it, and retrieve it.

Once you’ve achieved the basics, you can make computations with data, move it from one
place to another, or modify it. This is called processing, and, fundamentally, it involves the same
three steps that affect how information is organized.

You could do all this with a cigar box, pencil, and paper, but as the volume of data increases,
your tools tend to change. You may use a file cabinet, calculators, pencils, and paper. Although
at some point it makes sense to make the leap to computers, your tasks remain the same.

A relational database management system (RDBMS) such as Oracle gives you a way of doing
these tasks in an understandable and reasonably uncomplicated way. Oracle basically does three
things:

■ Lets you put data into it

■ Keeps the data

■ Lets you get the data out and work with it

Figure 4-1 shows how simple this process is.

40 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:40

FIGURE 4-1. What Oracle does with data

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Oracle supports this in/keep/out approach and provides clever tools that allow you considerable
sophistication in how the data is captured, edited, modified, and put in; how you keep it securely;
and how you get it out to manipulate and report on it.

The Familiar Language of Oracle
The information stored in Oracle is kept in tables—much like the weather table from a daily
newspaper, shown in Figure 4-2.

This table has four columns: City, Temperature, Humidity, and Condition. It also has a row for
each city from Athens to Sydney. Last, it has a table name: WEATHER.

These are the three major characteristics of most tables you’ll see in print: columns, rows, and a
name. The same is true in a relational database. Anyone can understand the words and the ideas
they represent, because the words used to describe the parts of a table in an Oracle database are
the same words used in everyday conversation. The words have no special, unusual, or esoteric
meanings. What you see is what you get.

Tables of Information
Oracle stores information in tables, an example of which is shown in Figure 4-3. Each of these
tables has one or more columns. The column headings—such as City, Temperature, Humidity, and
Condition in Figure 4-3—describe the kind of information kept in the column. The information is
stored row after row (city after city). Each unique set of data, such as the temperature, humidity,
and condition for the city of Manchester, gets its own row.

Oracle avoids specialized, academic terminology in order to make the product more
approachable. In research papers on relational theory, a column may be called an “attribute,”
a row may be called a “tuple” (rhymes with “couple”), and a table may be called an “entity.”
For an end user, however, these terms are confusing. More than anything, they are an unnecessary
renaming of things for which there are already commonly understood names in our shared everyday
language. Oracle takes advantage of this shared language, and developers can too. It is imperative
to recognize the wall of mistrust and misunderstanding that the use of unnecessary technical jargon
produces. Like Oracle, this book will stick with “tables,” “columns,” and “rows.”

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 41

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:41

WEATHER

City Temperature Humidity Condition
Athens....... 97 89 Sunny
Chicago...... 66 88 Rain
Lima......... 45 79 Rain
Manchester... 66 98 Fog
Paris........ 81 62 Cloudy
Sparta....... 74 63 Cloudy
Sydney....... 69 99 Sunny

FIGURE 4-2. A weather table from a newspaper

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Structured Query Language
Oracle was the first company to release a product that used the English-based Structured Query
Language, or SQL. This language allows end users to extract information themselves, without
using a systems group for every little report.

Oracle’s query language has structure, just as English or any other language has structure. It
has rules of grammar and syntax, but they are basically the normal rules of careful English speech
and can be readily understood.

SQL, pronounced either “sequel” or “S-Q-L,” is an astonishingly capable tool, as you will see.
Using it does not require any programming experience.

Here’s an example of how you might use SQL. If someone asked you to select from the preceding
WEATHER table the city where the humidity is 89, you would quickly respond “Athens.” If you were
asked to select cities where the temperature is 66, you would respond “Chicago and Manchester.”

Oracle is able to answer these same questions nearly as easily as you are, and in response
to simple queries very much like the ones you were just asked. The keywords used in a query to
Oracle are select, from, where, and order by. They are clues to Oracle to help it understand your
request and respond with the correct answer.

A Simple Oracle Query
If Oracle had the example WEATHER table in its database, your first query (with a semicolon to
tell Oracle to execute the command) would be simply this:

select City from WEATHER where Humidity = 89 ;

Oracle would respond as follows:

City

ATHENS

42 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:42

WEATHER

City Temperature Humidity Condition
---------- ----------- -------- ---------
ATHENS 97 89 SUNNY
CHICAGO 66 88 RAIN
LIMA 45 79 RAIN
MANCHESTER 66 98 FOG
PARIS 81 62 CLOUDY
SPARTA 74 63 CLOUDY
SYDNEY 69 99 SUNNY

FIGURE 4-3. A WEATHER table from Oracle

A row

Table name
A column

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Your second query would be this:

select City from WEATHER where Temperature = 66 ;

For this query, Oracle would respond with the following:

City

MANCHESTER
CHICAGO

As you can see, each of these queries uses the keywords select, from, and where. What about
order by? Suppose you wanted to see all the cities listed in order by temperature. You’d simply
type this:

select City, Temperature from WEATHER
order by Temperature ;

and Oracle would instantly respond with this:

City Temperature
----------- -----------
LIMA 45
MANCHESTER 66
CHICAGO 66
SYDNEY 69
SPARTA 74
PARIS 81
ATHENS 97

Oracle has quickly reordered your table by temperature. (This table lists lowest temperatures
first; in a later chapter, you’ll learn how to specify whether you want low numbers or high
numbers first.)

There are many other questions you can ask with Oracle’s query facility, but these examples
show how easy it is to obtain the information you need from an Oracle database in the form that
will be most useful to you. You can build complicated requests from simple pieces of information,
but the method used to do this will always be understandable. For instance, you can combine the
where and order by keywords, both simple by themselves, to tell Oracle to select those cities where
the temperature is greater than 80, and show them in order by increasing temperature. You would
type this:

select City, Temperature from WEATHER
where Temperature > 80
order by Temperature ;

and Oracle would instantly respond with this:

City Temperature
----------- -----------
PARIS 81
ATHENS 97

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 43

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:43

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Or, to be even more specific, you could request cities where the temperature is greater than 80
and the humidity is less than 70:

select City, Temperature, Humidity from WEATHER
where Temperature > 80
and Humidity < 70

order by Temperature ;

and Oracle would respond with this:

City Temperature Humidity
----------- ----------- --------
PARIS 81 62

Why It Is Called “Relational”
Notice that the WEATHER table lists cities from several countries, and some countries have more
than one city listed. Suppose you need to know in which country a particular city is located. You
could create a separate LOCATION table of cities and their countries, as shown in Figure 4-4.

For any city in the WEATHER table, you can simply look at the LOCATION table, find the name
in the City column, look over to the Country column in the same row, and see the country’s
name.

These are two completely separate and independent tables. Each contains its own information
in columns and rows. The tables have one significant thing in common: the City column. For
each city name in the WEATHER table, there is an identical city name in the LOCATION table.

For instance, what are the current temperature, humidity, and condition in an Australian city?
Look at the two tables, figure it out, and then resume reading this.

44 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:44

LOCATION

City Country
WEATHER ----------- --------

ATHENS GREECE
CHICAGO UNITED STATES

City Temperature Humidity Condition CONAKRY GUINEA
---------- ----------- -------- --------- LIMA PERU
ATHENS 97 89 SUNNY MADRAS INDIA
CHICAGO 66 88 RAIN MADRID SPAIN
LIMA 45 79 RAIN MANCHESTER ENGLAND
MANCHESTER 66 98 FOG MOSCOW RUSSIA
PARIS 81 62 CLOUDY PARIS FRANCE
SPARTA 74 63 CLOUDY ROME ITALY
SYDNEY 69 99 SUNNY SHENYANG CHINA

SPARTA GREECE
SYDNEY AUSTRALIA
TOKYO JAPAN

FIGURE 4-4. WEATHER and LOCATION tables

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

How did you solve it? You found just one AUSTRALIA entry, under the Country column, in
the LOCATION table. Next to it, in the City column of the same row, was the name of the city,
SYDNEY. You took this name, SYDNEY, and then looked for it in the City column of the WEATHER
table. When you found it, you moved across the row and found the Temperature, Humidity, and
Condition: 69, 99, and SUNNY.

Even though the tables are independent, you can easily see that they are related. The city name
in one table is related to the city name in the other (see Figure 4-5, above). This relationship is
the basis for the name relational database.

This is the basic idea of a relational database (sometimes called a relational model). Data is
stored in tables. Tables have columns, rows, and names. Tables can be related to each other if
each has a column with a common type of information.

That’s it. It’s as simple as it seems.

Some Common, Everyday Examples
Once you understand the basic idea of relational databases, you’ll begin to see tables, rows, and
columns everywhere. Not that you didn’t see them before, but you probably didn’t think about
them in quite the same way. Many of the tables you are accustomed to seeing could be stored in
Oracle. They could be used to quickly answer questions that would take you quite some time to
answer using nearly any other method.

A typical stock market report in the paper might look like the one in Figure 4-6. This is a small
portion of a dense, alphabetical listing that fills several narrow columns on several pages in a
newspaper. Which stock traded the most shares? Which had the biggest percentage change in
its price, either positively or negatively? The answers to these questions can be obtained through
simple English queries in Oracle, which can find the answers much faster than you could by
searching the columns on the newspaper page.

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 45

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:45

LOCATION

City Country
WEATHER ---------- -------

ATHENS GREECE
CHICAGO UNITED STATES

City Temperature Humidity Condition CONAKRY GUINEA
---------- ----------- -------- --------- LIMA PERU
ATHENS 97 89 SUNNY MADRAS INDIA
CHICAGO 66 88 RAIN MADRID SPAIN
LIMA 45 79 RAIN MANCHESTER ENGLAND
MANCHESTER 66 98 FOG MOSCOW RUSSIA
PARIS 81 62 CLOUDY PARIS FRANCE
SPARTA 74 63 CLOUDY ROME ITALY
SYDNEY 69 99 SUNNY SHENYANG CHINA

SPARTA GREECE
SYDNEY AUSTRALIA
TOKYO JAPAN

FIGURE 4-5. The relationship between the WEATHER and LOCATION tables

Relationship

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Figure 4-7 is an index to a newspaper. What’s in section F? If you read the paper from front to
back, in what order would you read the articles? The answers to these questions are obtainable via
simple English queries in Oracle. You will learn how to do all these queries, and even build the
tables to store the information, in the course of using this reference.

Throughout this book, the examples use data and objects encountered frequently in business
and everyday life. Similar data to use for your exercises should be as easy to find as your nearest
bookshelf. You will learn how to enter and retrieve data in the pages ahead, using examples based
on these everyday data sources.

As with any new technology or new venture, it’s sensible to think through not only the benefits
and opportunities that are presented, but also the costs and risks. Combine a relational database
with a series of powerful and easy-to-use tools, as Oracle does, and the possibility of being seduced
into disaster by its simplicity becomes real. Add in object-oriented and web capabilities, and the
dangers increase. The following sections discuss some of the dangers that both developers and
users need to consider.

46 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:46

Close Close Shares
Company Yesterday Today Traded
Ad Specialty 31.75 31.75 18,333,876
Apple Cannery 33.75 36.50 25,787,229
AT Space 46.75 48.00 11,398,323
August Enterprises 15.00 15.00 12,221,711
Brandon Ellipsis 32.75 33.50 25,789,769
General Entropy 64.25 66.00 7,598,562
Geneva Rocketry 22.75 27.25 22,533,944
Hayward Antiseptic 104.25 106.00 3,358,561
IDK 95.00 95.25 9,443,523
India Cosmetics 30.75 30.75 8,134,878
Isaiah James Storage 13.25 13.75 22,112,171
KDK Airlines 80.00 85.25 7,481,566
Kentgen Biophysics 18.25 19.50 6,636,863
LaVay Cosmetics 21.50 22.00 3,341,542
Local Development 26.75 27.25 2,596,934
Maxtide 8.25 8.00 2,836,893
MBK Communications 43.25 41.00 10,022,980
Memory Graphics 15.50 14.25 4,557,992
Micro Token 77.00 76.50 25,205,667
Nancy Lee Features 13.50 14.25 14,222,692
Northern Boreal 26.75 28.00 1,348,323
Ockham Systems 21.50 22.00 7,052,990
Oscar Coal Drayage 87.00 88.50 25,798,992
Robert James Apparel 23.25 24.00 19,032,481
Soup Sensations 16.25 16.75 22,574,879
Wonder Labs 5.00 5.00 2,553,712

FIGURE 4-6. A stock market table

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 47

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:47

What Are the Risks?
The primary risk in developing relational database applications is that it is as easy as they say.
Understanding tables, columns, and rows isn’t difficult. The relationship between two tables is
conceptually simple. Even normalization, the process of analyzing the inherent or “normal”
relationships between the various elements of a company’s data, is fairly easy to learn.

Unfortunately, this often produces instant “experts,” full of confidence but with little experience
in building real, production-quality applications. For a tiny marketing database, or a home inventory
application, this doesn’t matter very much. The mistakes made will reveal themselves in time,
the lessons will be learned, and the errors will be avoided the next time around. In an important
application, however, this is a sure formula for disaster. This lack of experience is usually behind
the press’s stories of major project failures.

Older development methods are generally slower, primarily because the tasks of the older
methods—coding, submitting a job for compilation, linking, and testing—result in a slower pace.
The cycle, particularly on a mainframe, is often so tedious that programmers spend a good deal
of time “desk-checking” in order to avoid going through the delay of another full cycle because of
an error in the code.

Fourth-generation tools seduce developers into rushing into production. Changes can be made
and implemented so quickly that testing is given short shrift. The elimination of virtually all desk-
checking compounds the problem. When the negative incentive (the long cycle) that encouraged
desk-checking disappeared, desk-checking went with it. The attitude of many seems to be, “If the
application isn’t quite right, we can fix it quickly. If the data gets corrupted, we can patch it with
a quick update. If it’s not fast enough, we can tune it on the fly. Let’s get it in ahead of schedule
and show the stuff we’re made of.”

Feature Section Page
Births F 7
Bridge B 2
Business E 1
Classified F 8
Comics C 4
Doctor's In F 6
Editorials A 12
Modern Life B 1
Movies B 4
National News A 1
Obituaries F 6
Sports D 1
Television B 7
Weather C 2

FIGURE 4-7. A table based on sections of a newspaper

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The testing cycle in an important Oracle project should be longer and more thorough than in
a traditional project. This is true even if proper project controls are in place, and even if seasoned
project managers are guiding the project, because there will be less desk-checking and an inherent
overconfidence. This testing must check the correctness of data-entry screens and reports, of data
loads and updates, of data integrity and concurrence, and particularly of transaction and storage
volumes during peak loads.

Because it really is as easy as they say, application development with Oracle’s tools can be
breathtakingly rapid. But this automatically reduces the amount of testing done as a normal part
of development, and the planned testing and quality assurance must be consciously lengthened
to compensate. This is not usually foreseen by those new to either Oracle or fourth-generation
tools, but you must budget for it in your project plan.

The Importance of the New Vision
Many of us look forward to the day when we can simply type a “natural” language query in English,
and have the answer back, on our screen, in seconds.

We are closer to this goal than most of us realize. The limiting factor is no longer technology,
but rather the rigor of thought in our application designs. Oracle can straightforwardly build English-
based systems that are easily understood and exploited by unsophisticated users. The potential is
there, already available in Oracle’s database and tools, but only a few have understood and used it.

Clarity and understandability should be the hallmarks of any Oracle application. Applications
can operate in English, be understood readily by end users who have no programming background,
and provide information based on a simple English query.

How? First of all, a major goal of the design effort must be to make the application easy to
understand and simple to use. If you err, it must always be in this direction, even if it means
consuming more CPU or disk space. The limitation of this approach is that you could make an
application exceptionally easy to use by creating overly complex programs that are nearly impossible
to maintain or enhance. This would be an equally bad mistake. However, all things being equal,
an end-user orientation should never be sacrificed for clever coding.

Changing Environments
Consider that the cost to run a computer, expressed as the cost per million instructions per second
(MIPS), has historically declined at the rate of 20 percent per year. Labor costs, on the other hand,
have risen steadily. This means that any work that can be shifted from human laborers to machines
may represent a cost savings.

Have we factored this incredible shift into our application designs? The answer is “somewhat,”
but terribly unevenly. The real progress has been in environments, such as the visionary work first
done at Xerox Palo Alto Research Center (PARC), and then on the Macintosh, and now in web-
based browsers and other graphical icon-based systems. These environments are much easier to
learn and understand than the older, character-based environments, and people who use them
can produce in minutes what previously took days. The improvement in some cases has been so
huge that we’ve entirely lost sight of how hard some tasks used to be.

Unfortunately, this concept of an accommodating and friendly environment hasn’t been grasped
by many application developers. Even when they work in these environments, they continue old
habits that are just no longer appropriate.

48 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:48

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 49

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:49

Codes, Abbreviations, and Naming Standards
The problem of old programming habits is most pronounced in codes, abbreviations, and naming
standards, which are almost completely ignored when the needs of end users are considered. When
these three issues are thought about at all, usually only the needs and conventions of the systems
groups are considered. This may seem like a dry and uninteresting problem to be forced to think
through, but it can make the difference between great success and grudging acceptance, between
an order-of-magnitude leap in productivity and a marginal gain, between interested, effective users
and bored, harried users who make continual demands on the developers.

Here’s what happened. Business records used to be kept in ledgers and journals. Each event
or transaction was written down, line by line, in English. As we developed applications, codes
were added to replace data values (such as “01” for “Accounts Receivable,” “02” for “Accounts
Payable,” and so on). Key-entry clerks would actually have to know or look up most of these
codes and type them in at the appropriately labeled fields on their screens. This is an extreme
example, but literally thousands of applications take exactly this approach and are every bit as
difficult to learn or understand.

This problem has been most pronounced in large, conventional mainframe systems development.
As relational databases are introduced into these groups, they are used simply as replacements
for older input/output methods such as Virtual Storage Access Method (VSAM) and Information
Management System (IMS). The power and features of the relational database are virtually wasted
when used in such a fashion.

Why Are Codes Used Instead of English?
Why use codes at all? Two primary justifications are usually offered:

■ A category has so many items in it that all of them can’t reasonably be represented or
remembered in English.

■ To save space in the computer.

The second point is an anachronism. Memory and permanent storage were once so expensive
and CPUs so slow (with less power than a modern hand-held calculator) that programmers had to
cram every piece of information into the smallest possible space. Numbers, character for character,
take half of the computer storage space of letters, and codes reduce the demands on the machine
even more.

Because machines were expensive, developers had to use codes for everything to make anything
work at all. It was a technical solution to an economic problem. For users, who had to learn all
sorts of meaningless codes, the demands were terrible. Machines were too slow and too expensive
to accommodate the humans, so the humans were trained to accommodate the machines. It was
a necessary evil.

This economic justification for codes vanished years ago. Computers are now fast enough and
cheap enough to accommodate the way people work, and use words that people understand. It’s
high time that they did so. Yet, without really thinking through the justifications, developers and
designers continue to use codes.

The first point—that of too many items per category—is more substantive, but much less so
than it first appears. One idea is that it takes less effort (and is therefore less expensive) for someone
to key in the numeric codes than actual text string values such as book titles. This justification is

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

untrue in Oracle. Not only is it more costly to train people to know the correct customer, product,
transaction, and other codes, and more expensive because of the cost of mistakes (which are high
with code-based systems), but using codes also means not using Oracle fully; Oracle is able to take
the first few characters of a title and fill in the rest of the name itself. It can do the same thing with
product names, transactions (a “b” will automatically fill in with “buy,” an “s” with “sell”), and so
on, throughout an application. It does this with very robust pattern-matching capabilities.

The Benefit of User Feedback
There is an immediate additional benefit: Key-entry errors drop almost to zero because the users
get immediate feedback, in English, of the business information they’re entering. Digits don’t get
transposed; codes don’t get remembered incorrectly; and, in financial applications, money rarely
is lost in accounts due to entry errors, with significant savings.

Applications also become much more comprehensible. Screens and reports are transformed
from arcane arrays of numbers and codes into a readable and understandable format. The change
of application design from code-oriented to English-oriented has a profound and invigorating effect
on a company and its employees. For users who have been burdened by code manuals, an English-
based application produces a tremendous psychological release.

How to Reduce the Confusion
Another version of the “too many items per category” justification is that the number of products,
customers, or transaction types is just too great to differentiate each by name, or there are too many
items in a category that are identical or very similar (customers named “John Smith,” for instance).
A category can contain too many entries to make the options easy to remember or differentiate, but
more often this is evidence of an incomplete job of categorizing information: Too many dissimilar
things are crammed into too broad a category. Developing an application with a strong English-
based (or French, German, Spanish, and so on) orientation, as opposed to code-based, requires
time spent with users and developers—taking apart the information about the business, understanding
its natural relationships and categories, and then carefully constructing a database and naming
scheme that simply and accurately reflect these discoveries.

There are three basic steps to doing this:

1. Normalize the data.

2. Choose English names for the tables and columns.

3. Choose English words for the data.

Each of these steps will be explained in order. The goal is to design an application in which
the data is sensibly organized, is stored in tables and columns whose names are familiar to the
user, and is described in familiar terms, not codes.

Normalization
Relations between countries, or between departments in a company, or between users and
developers, are usually the product of particular historical circumstances, which may define
current relations even though the circumstances have long since passed. The result of this can be
abnormal relations, or, in current parlance, dysfunctional relations. History and circumstance

50 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:50

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 51

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:51

often have the same effect on data—on how it is collected, organized, and reported. And data,
too, can become abnormal and dysfunctional.

Normalization is the process of putting things right, making them normal. The origin of the term
is norma, the Latin word for a carpenter’s square that’s used for ensuring a right angle. In geometry,
when a line is at a right angle to another line, it is said to be “normal” to it. In a relational database,
the term also has a specific mathematical meaning having to do with separating elements of
data (such as names, addresses, or skills) into affinity groups, and defining the normal, or “right,”
relationships between them.

The basic concepts of normalization are being introduced here so that users can contribute
to the design of an application they will be using, or better understand one that has already been
built. It would be a mistake, however, to think that this process is really only applicable to designing
a database or a computer application. Normalization results in deep insights into the information
used in a business and how the various elements of that information are related to each other.
This will prove educational in areas apart from databases and computers.

The Logical Model
An early step in the analysis process is the building of a logical model, which is simply a normalized
diagram of the data used by the business. Knowing why and how the data gets broken apart and
segregated is essential to understanding the model, and the model is essential to building an
application that will support the business for a long time, without requiring extraordinary support.

Normalization is usually discussed in terms of form: First, Second, and Third Normal Form are
the most common, with Third representing the most highly normalized state. There are Fourth and
Fifth normalization levels defined as well, but they are beyond the scope of this discussion.

Consider a bookshelf: For each book, you can store information about it—the title, publisher,
authors, and multiple categories or descriptive terms for the book. Assume that this book-level data
became the table design in Oracle. The table might be called BOOKSHELF, and the columns might
be Title, Publisher, Author1, Author2, Author3, and Category1, Category2, Category3. The users
of this table already have a problem: In the BOOKSHELF table, users are limited to listing just three
authors or categories for a single book.

What happens when the list of acceptable categories changes? Someone has to go through
every row in the BOOKSHELF table and correct all the old values. And what if one of the authors
changes his or her name? Again, all the related records must be changed. What will you do when
a fourth author contributes to a book?

These are not really computer or technical issues, even though they became apparent because
you were designing a database. They are much more basic issues of how to sensibly and logically
organize the information of a business. They are the issues that normalization addresses. This is done
with a step-by-step reorganization of the elements of the data into affinity groups, by eliminating
dysfunctional relationships and by ensuring normal relationships.

Normalizing the Data
Step one of the reorganization is to put the data into First Normal Form. This is done by moving
data into separate tables, where the data in each table is of a similar type, and giving each table
a primary key—a unique label or identifier. This eliminates repeating groups of data, such as the
authors on the bookshelf.

Instead of having only three authors allowed per book, each author’s data is placed in a separate
table, with a row per name and description. This eliminates the need for a variable number of
authors in the BOOKSHELF table and is a better design than limiting the BOOKSHELF table to
just three authors.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Next, you define the primary key to each table: What will uniquely identify and allow you
to extract one row of information? For simplicity’s sake, assume the titles and authors’ names are
unique, so AuthorName is the primary key to the AUTHOR table.

You now have split BOOKSHELF into two tables: AUTHOR, with columns AuthorName
(the primary key) and Comments, and BOOKSHELF, with a primary key of Title, and with columns
Publisher, Category1, Category2, Category3, Rating, and RatingDescription. A third table,
BOOKSHELF_AUTHOR, provides the associations: Multiple authors can be listed for a single book
and an author can write multiple books—known as a many-to-many relationship. Figure 4-8 shows
these relationships and primary keys.

The next step in the normalization process, Second Normal Form, entails taking out data that’s
only dependent on a part of the key. If there are attributes that do not depend on the entire key, those
attributes should be moved to a new table. In this case, RatingDescription is not really dependent
on Title—it’s based on the Rating column value, so it should be moved to a separate table.

The final step, Third Normal Form, means getting rid of anything in the tables that doesn’t
depend solely on the primary key. In this example, the categories are interrelated; you would not
list a title as both Fiction and Nonfiction, and you would have different subcategories under the
Adult category than you would have under the Children category. Category information is therefore
moved to a separate table. Figure 4-9 shows the tables in Third Normal Form.

Anytime the data is in Third Normal Form, it is already automatically in Second and First
Normal Form. The whole process can therefore actually be accomplished less tediously than by
going from form to form. Simply arrange the data so that the columns in each table, other than
the primary key, are dependent only on the whole primary key. Third Normal Form is sometimes
described as “the key, the whole key, and nothing but the key.”

Navigating Through the Data
The bookshelf database is now in Third Normal Form. Figure 4-10 shows a sample of what these
tables might contain. It’s easy to see how these tables are related. You navigate from one to the other
to pull out information on a particular author, based on the keys to each table. The primary key in
each table is able to uniquely identify a single row. Choose Stephen Jay Gould, for instance, and
you can readily discover his record in the AUTHOR table, because AuthorName is the primary key.

52 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:52

FIGURE 4-8. The BOOKSHELF, AUTHOR, and BOOKSHELF_AUTHOR tables

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 53

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:53

FIGURE 4-9. BOOKSHELF and related tables

AUTHOR
AuthorName Comments
--------------------- ---
DIETRICH BONHOEFFER GERMAN THEOLOGIAN, KILLED IN A WAR CAMP
ROBERT BRETALL KIERKEGAARD ANTHOLOGIST
ALEXANDRA DAY AUTHOR OF PICTURE BOOKS FOR CHILDREN
STEPHEN JAY GOULD SCIENCE COLUMNIST, HARVARD PROFESSOR
SOREN KIERKEGAARD DANISH PHILOSOPHER AND THEOLOGIAN
HARPER LEE AMERICAN NOVELIST, PUBLISHED ONLY ONE NOVEL
LUCY MAUD MONTGOMERY CANADIAN NOVELIST
JOHN ALLEN PAULOS MATHEMATICS PROFESSOR
J. RODALE ORGANIC GARDENING EXPERT

RATING
Rating RatingDescription
---------- -----------------
1 ENTERTAINMENT
2 BACKGROUND INFORMATION
3 RECOMMENDED
4 STRONGLY RECOMMENDED
5 REQUIRED READING

FIGURE 4-10. Sample data from the BOOKSHELF tables

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Look up Harper Lee in the AuthorName column of the BOOKSHELF_AUTHOR table and you’ll
see that she has published one novel, whose title is To Kill A Mockingbird. You can then check the
publisher, category, and rating for that book in the BOOKSHELF table. You can check the RATING
table for a description of the rating.

When you looked up To Kill A Mockingbird in the BOOKSHELF table, you were searching
by the primary key for the table. To find the author of that book, you could reverse your earlier
search path, looking through BOOKSHELF_AUTHOR for the records that have that value in the
Title column—the column Title is a foreign key in the BOOKSHELF_AUTHOR table. When the
primary key for BOOKSHELF appears in another table, as it does in the BOOKSHELF_AUTHOR
table, it is called a foreign key to that table.

54 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:54

CATEGORY
CategoryName ParentCategory SubCategory
-------------- --------------- ------------
ADULTREF ADULT REFERENCE
ADULTFIC ADULT FICTION
ADULTNF ADULT NONFICTION
CHILDRENPIC CHILDREN PICTURE BOOK
CHILDRENFIC CHILDREN FICTION
CHILDRENNF CHILDREN NONFICTION

BOOKSHELF_AUTHOR
Title AuthorName
------------------------------ ---------------------
TO KILL A MOCKINGBIRD HARPER LEE
WONDERFUL LIFE STEPHEN JAY GOULD
INNUMERACY JOHN ALLEN PAULOS
KIERKEGAARD ANTHOLOGY ROBERT BRETALL
KIERKEGAARD ANTHOLOGY SOREN KIERKEGAARD
ANNE OF GREEN GABLES LUCY MAUD MONTGOMERY
GOOD DOG, CARL ALEXANDRA DAY
LETTERS AND PAPERS FROM PRISON DIETRICH BONHOEFFER

BOOKSHELF
Title Publisher CategoryName Rating
------------------------------ --------------------- ------------ ------
TO KILL A MOCKINGBIRD HARPERCOLLINS ADULTFIC 5
WONDERFUL LIFE W.W.NORTON & CO. ADULTNF 5
INNUMERACY VINTAGE BOOKS ADULTNF 4
KIERKEGAARD ANTHOLOGY PRINCETON UNIV PR ADULTREF 3
ANNE OF GREEN GABLES GRAMMERCY CHILDRENFIC 3
GOOD DOG, CARL LITTLE SIMON CHILDRENPIC 1
LETTERS AND PAPERS FROM PRISON SCRIBNER ADULTNF 4

FIGURE 4-10. Sample data from the BOOKSHELF tables (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

These tables also show real-world characteristics: There are ratings and categories that are not
yet used by books on the bookshelf. Because the data is organized logically, you can keep a record
of potential categories, ratings, and authors even if none of the current books use those values.

This is a sensible and logical way to organize information, even if the “tables” are written in a
ledger book or on scraps of paper kept in cigar boxes. Of course, there is still some work to do to
turn this into a real database. For instance, AuthorName probably ought to be broken into FirstName
and LastName, and you might want to find a way to show which author is the primary author, or
if one is an editor rather than an author.

This whole process is called normalization. It really isn’t any trickier than this. Although some
other issues are involved in a good design, the basics of analyzing the “normal” relationships among
the various elements of data are just as simple and straightforward as they’ve just been explained.
It makes sense regardless of whether or not a relational database or a computer is involved at all.

One caution needs to be raised, however. Normalization is a part of the process of analysis.
It is not design. Design of a database application includes many other considerations, and it is a
fundamental mistake to believe that the normalized tables of the logical model are the “design”
for the actual database. This fundamental confusion of analysis and design contributes to the
stories in the press about the failure of major relational applications. These issues are addressed
for developers more fully later in this chapter.

English Names for Tables and Columns
Once the relationships between the various elements of the data in an application are understood
and the data elements are segregated appropriately, considerable thought must be devoted to
choosing names for the tables and columns into which the data will be placed. This is an area
given too little attention, even by those who should know better. Table and column names are
often developed without consulting end users and without rigorous review. Both of these failings
have serious consequences when it comes to actually using an application.

For example, consider the tables shown in Figure 4-10. The table and column names are
virtually all self-explanatory. An end user, even one new to relational ideas and SQL, would
have little difficulty understanding or even replicating a query such as this:

select Title, Publisher
from BOOKSHELF
order by Publisher;

Users understand this because the words are all familiar. There are no obscure or ill-defined
terms. When tables with many more columns in them must be defined, naming the columns can
be more difficult, but a few consistently enforced rules will help immensely. Consider some of
the difficulties commonly caused by a lack of naming conventions. What if you had chosen these
names instead?

BOOKSHELF B_A AUTHS CATEGORIES
------------- -------- ------------ --------------
title title anam cat
pub anam comms p_cat
cat s_cat
rat

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 55

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:55

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

56 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:56

The naming techniques in this table, as bizarre as they look, are unfortunately very common.
They represent tables and columns named by following the conventions (and lack of conventions)
used by several well-known vendors and developers.

Here are a few of the more obvious difficulties in the list of names:

■ Abbreviations are used without good reason. This makes remembering the “spelling” of
a table or column name virtually impossible. The names may as well be codes, because
the users will have to look them up.

■ Abbreviations are inconsistent.

■ The purpose or meaning of a column or table is not apparent from the name. In addition
to abbreviations making the spelling of names difficult to remember, they obscure the
nature of the data that the column or table contains. What is P_cat? Comms?

■ Undescores are used inconsistently. Sometimes they are used to separate words in a name,
but other times they are not. How will anyone remember which name does or doesn’t
have an underscore?

■ Use of plurals is inconsistent. Is it CATEGORY or CATEGORIES? Comm or Comms?

■ Rules apparently used have immediate limitations. If the first letter of the table name is
to be used for a name column, as in Anam for a table whose table name starts with A,
what happens when a second table beginning with the letter A becomes necessary? Does
the name column in that table also get called Anam? If so, why isn’t the column in both
simply called Name?

These are only a few of the most obvious difficulties. Users subjected to poor naming of tables
and columns will not be able to simply type English queries. The queries won’t have the intuitive
and familiar “feel” that the BOOKSHELF table query has, and this will harm the acceptance and
usefulness of the application significantly.

Programmers used to be required to create names that were a maximum of six to eight characters
in length. As a result, names unavoidably were confused mixes of letters, numbers, and cryptic
abbreviations. Like so many other restrictions forced on users by older technology, this one is just
no longer applicable. Oracle allows table and column names up to 30 characters long. This gives
designers plenty of room to create full, unambiguous, and descriptive names.

The difficulties outlined here imply solutions, such as avoiding abbreviations and plurals, and
either eliminating underscores or using them consistently. These quick rules of thumb will go a long
way in solving the naming confusion so prevalent today. At the same time, naming conventions
need to be simple, easily understood, and easily remembered. In a sense, what is called for is a
normalization of names. In much the same way that data is analyzed logically, segregated by
purpose, and thereby normalized, the same sort of logical attention needs to be given to naming
standards. The job of building an application is improperly done without it.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 57

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:57

English Words for the Data
Having raised the important issue of naming conventions for tables and columns, the next step is
to look at the data itself. After all, when the data from the tables is printed on a report, how self-
evident the data is will determine how understandable the report is. In the BOOKSHELF example,
Rating is a code value, and Category is a concatenation of multiple values. Is this an improvement?
If you asked another person about a book, would you want to hear that it was rated a 4 in AdultNF?
Why should a machine be permitted to be less clear?

Additionally, keeping the information in English makes writing and understanding queries
much simpler. The query should be as English-like as possible:

select Title, AuthorName
from BOOKSHELF_AUTHOR;

Capitalization in Names and Data
Oracle makes it slightly easier to remember table and column names by ignoring whether you type
in capital letters, small letters, or a mixture of the two. It stores table and column names in its
internal data dictionary in uppercase. When you type a query, it instantly converts the table and
column names to uppercase, and then checks for them in the dictionary. Some other relational
systems are case sensitive. If users type a column name as “Ability,” but the database thinks it is
“ability” or “ABILITY” (depending on what it was told when the table was created), it will not
understand the query.

NOTE
You can force Oracle to create tables and columns with mixed-case
names, but doing so will make querying and working with the data
difficult. Use the default uppercase behavior.

The ability to create case-sensitive table names is promoted as a benefit because it allows
programmers to create many tables with, for instance, similar names. They can make a worker
table, a Worker table, a wORker table, and so on. These will all be separate tables. How is anyone,
including the programmer, supposed to remember the differences? This is a drawback, not a benefit,
and Oracle was wise not to fall into this trap.

A similar case can be made for data stored in a database. There are ways to find information
from the database regardless of whether the data is in uppercase or lowercase, but these methods
impose an unnecessary burden. With few exceptions, such as legal text or form-letter paragraphs,
it is much easier to store data in the database in uppercase. It makes queries easier and provides
a more consistent appearance on reports. When and if some of this data needs to be put into
lowercase, or mixed uppercase and lowercase (such as the name and address on a letter), then the
Oracle functions that perform the conversion can be invoked. It will be less trouble overall, and
less confusing, to store and report data in uppercase. You can interact with Oracle in ways that

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

make queries case insensitive, but it is generally simpler to develop applications with consistent
case choices for your data.

Looking back over this chapter, you’ll see that this practice was not followed. Rather, it was
delayed until the subject could be introduced and put in its proper context. From here on, with
the exception of one or two tables and a few isolated instances, data in the database will be in
uppercase.

Normalizing Names
Several query tools have come on the market whose purpose is to let you make queries using
common English words instead of odd conglomerations. These products work by building a logical
map between the common English words and the hard-to-remember, non-English column names,
table names, and codes. The mapping takes careful thought, but once completed, it makes the user’s
interaction with the application easy. But why not put the care in at the beginning? Why create a
need for yet another layer, another product, and more work, when much of the confusion can be
avoided simply by naming things better the first time around?

For performance reasons, it may be that some of an application’s data must still be stored in
a coded fashion within the computer’s database. These codes should not be exposed to users, during
either data entry or retrieval, and Oracle allows them to be easily hidden.

The instant that data entry requires codes, key-entry errors increase. When reports contain codes
instead of English, errors of interpretation begin. And when users need to create new or ad hoc
reports, their ability to do so quickly and accurately is severely impaired both by codes and by
not being able to remember strange column and table names.

Oracle gives users the power to see and work with English throughout the entire application.
It is a waste of Oracle’s power to ignore this opportunity, and it will without question produce a
less understandable and less productive application. Developers should seize the opportunity.
Users should demand it. Both will benefit immeasurably.

Good Design Has a Human Touch
At this point, if you are new to Oracle you may want to go right into working with Oracle and
the SQL language. That is covered in the next chapter; the remainder of this chapter focuses on
performance, naming, and design considerations. You can refer back to this section later when you
are ready to design and implement an application.

This section looks at a method of approaching a development project that takes into account
the real business tasks your end users have to accomplish. This distinguishes this method from
the more common data orientation of many developers and development methodologies. Data
normalization and CASE (Computer Aided Software Engineering) technologies have become so
much the center of attention with relational application development that a focus on the data and
the issues of referential integrity, keys, normalization, and table diagrams has become almost an
obsession. These issues are so often confused with design—and even believed to be design—that
the reminder that they are analysis is often met with surprise.

Normalization is analysis, not design. And it is only a part of the analysis necessary to understand
a business and build a useful application. The goal of application development, after all, is to help
the business run more successfully by improving the speed and efficiency with which business
tasks are done and by making the environment in which people work as meaningful and supportive
as possible. Give people control over their information, and intuitive, straightforward access to it,

58 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:58

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 59

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:59

and they will respond gratefully and productively. Assign the control to a remote group, cloud the
information in codes and user-hostile interfaces, and they will be unhappy and unproductive.

The methods outlined in this section are not intended to be a rigorous elucidation of the process,
and the tools you use and are familiar with for data structures or flows are probably sufficient
for the task. The purpose here is to disclose an approach that is effective in creating responsive,
appropriate, and accommodating applications.

Understanding the Application Tasks
One of the often-neglected steps in building software is understanding the end user’s job—the tasks
that computer automation is intended to support. Occasionally, this is because the application
itself is quite specialized; more often, it is because the approach to design tends to be data oriented.
Frequently, these are the major questions asked in the analysis:

■ What data should be captured?

■ How should the data be processed?

■ How should the data be reported?

These questions expand into a series of subquestions, and they include issues such as input
forms, codes, screen layouts, computations, postings, corrections, audit trails, retention, storage
volumes, processing cycles, report formatting, distribution, and maintenance. These are all vitally
important areas. One difficulty, however, is that they all focus solely on data.

People use data, but they do tasks. One might argue that although this may be true of professional
workers, key-entry clerks really only transfer data from an input form to a keyboard; their tasks are
very data oriented. This is a fair portrayal of these jobs today. But is this a consequence of the real
job that needs to get done, or is it a symptom of the design of the computer application? Using
humans as input devices, particularly for data that is voluminous, consistent in format (as on forms),
and in a limited range of variability, is an expensive and antiquated, not to mention dehumanizing,
method of capturing data. Like the use of codes to accommodate machine limitations, it’s an idea
whose time has passed.

This may sound like so much philosophy, but it has practical import in the way application
design is done. People use data, but they do tasks. And they don’t do tasks through to completion
one at a time. They do several tasks that are subsets of or in intersection with each other, and they
do them all at once, in parallel.

When designers allow this idea to direct the analysis and creation of an application, rather
than focusing on the data orientation that has been historically dominant, the very nature of the
effort changes significantly. Why have windowing environments been so successful? Because
they allow a user to jump quickly among small tasks, keeping them all active without having to
shut down and exit one in order to begin another. The windowing environment comes closer to
mapping the way people really think and work than the old “one thing at a time” approach ever
did. This lesson should not be lost. It should be built upon.

Understanding the application tasks means going far beyond identifying the data elements,
normalizing them, and creating screens, processing programs, and reports. It means really
understanding what the users do and what their tasks are, and designing the application to be
responsive to those tasks, not just to capture the data associated with them. In fact, when the
orientation is toward the data, the resulting design will inevitably distort the users’ tasks rather
than support them.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

60 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:60

How do you design an application that is responsive to tasks rather than data? The biggest
hurdle is simply understanding that focusing on tasks is necessary. This allows you to approach
the analysis of the business from a fresh perspective.

The first step in the analysis process is to understand the tasks. For which tasks do the members
of this group really need to use computers? What is the real service or product produced? This seems
like a fundamental and even simplistic first question, but you’ll find that a surprising number of
business people are quite unclear about the answer. An amazing number of businesses, from
healthcare to banking, from shipping to manufacturing, used to think they were in the data processing
business. After all, they input data, process it, and report it, don’t they? This delusion is yet another
symptom of the data orientation our systems designs have had that has led dozens of companies
to attempt to market their imagined “real” product, data processing, with disastrous consequences
for most of them.

Hence the importance of learning about a business application: You have to keep an open
mind, and may often have to challenge pet notions about what the business is in order to learn
what it really is. This is a healthy, if sometimes difficult, process.

And, just as it is essential that business people become literate users of SQL and understand
the basics of the relational model, so it is important that application designers really understand the
service or product being delivered, and the tasks necessary to make that happen. A project team
that includes end users who have been introduced to the essentials of SQL and the relational
approach, such as by reading this book, and designers who are sensitive to end users’ needs and
understand the value of a task-oriented, readable application environment, will turn out extraordinarily
good systems. The members of such a project team check, support, and enhance each other’s efforts.

One approach to this process is to develop two converging documents: a task document and
a data document. It is in the process of preparing the task document that the deep understanding
of the application comes about. The data document will help implement the vision and ensure
that the details and rules are all accounted for, but the task document defines the vision of what
the business is.

Outline of Tasks
The task document is a joint effort of the business users and the application designers. It lists the tasks
associated with the business from the top down. It begins with a basic description of the business.
This should be a simple declarative sentence of three to ten words, in the active voice, without
commas and with a minimum of adjectives:

We sell insurance.

It should not be:

Amalgamated Diversified is a leading international supplier of financial resources, training,
information processing, transaction capture and distribution, communications, customer support,
and industry direction in the field of shared risk funding for health care maintenance, property
preservation, and automobile liability.

There is a tremendous temptation to cram every little detail about a business and its dreams
about itself into this first sentence. Don’t do it. The effort of trimming the descriptive excesses down
to a simple sentence focuses the mind wonderfully. If you can’t get the business down to ten words,
you haven’t understood it yet.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

But, as an application designer, creating this sentence isn’t your task alone; it is a joint effort
with the business user, and it initiates the task documentation process. It provides you with the
opportunity to begin serious questioning about what the business does and how it does it. This is
a valuable process for the business itself, quite independent of the fact that an application is being
built. You will encounter numerous tasks and subtasks, procedures, and rules that will prove to be
meaningless or of marginal use. Typically, these are artifacts of either a previous problem, long
since solved, or of information or reporting requests from managers long since departed.

Some wags have suggested that the way to deal with too many reports being created, whether
manually or by computer, is to simply stop producing them and see if anyone notices. This is a
humorous notion, but the seed of truth it contains needs to be a part of the task documentation
process. In fact, it proved quite useful in Y2K remediation efforts—many programs and reports
didn’t have to be fixed, simply because they were no longer used!

Your approach to the joint effort of documenting tasks allows you to ask skeptical questions and
look at (and reevaluate the usefulness of) what may be mere artifacts. Be aware, however, that you
need to proceed with the frank acknowledgment that you, as a designer, cannot understand the
business as thoroughly as the user does. There is an important line between seizing the opportunity
of an application development project to rationalize what tasks are done and why, and possibly
offending the users by presuming to understand the “real” business better than they do.

Ask the user to describe a task in detail and explain to you the reason for each step. If the
reason is a weak one, such as “We’ve always done it this way,” or “I think they use this upstairs for
something,” red flags should go up. Say that you don’t understand, and ask again for an explanation.
If the response is still unsatisfactory, put the task and your question on a separate list for resolution.
Some of these will be answered simply by someone who knows the subject better, others will
require talking to senior management, and many tasks will end up eliminated because they are no
longer needed. One of the evidences of a good analysis process is the improvement of existing
procedures, independent of, and generally long before, the implementation of a new computer
application.

General Format of the Task Document
This is the general format for the task document:

■ Summary sentence describing the business (three to ten words)

■ Summary sentences describing and numbering the major tasks of the business (short
sentences, short words)

■ Additional levels of task detail, as needed, within each of the major tasks

By all means, follow the summary sentence for every level with a short, descriptive paragraph,
if you want, but don’t use this as an excuse to avoid the effort of making the summary sentence
clear and crisp. Major tasks are typically numbered 1.0, 2.0, 3.0, and so on, and are sometimes
referred to as zero-level tasks. The levels below each of these are numbered using additional dots,
as in 3.1 and 3.1.14. Each major task is taken down to the level where it is a collection of atomic
tasks—tasks for which no subtask is meaningful in itself and that, once started, is either taken to
completion or dropped entirely. Atomic tasks are never left half-finished.

Writing a check is an atomic task; filling in the dollar amount is not. Answering the telephone
as a customer service representative is not an atomic task; answering the phone and fulfilling the
customer’s request is atomic. Atomic tasks must be meaningful and must complete an action.

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 61

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:61

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The level at which a task is atomic will vary by task. The task represented by 3.1.14 may be
atomic yet still have several additional sublevels. The task 3.2 may be atomic, or 3.1.16.4 may
be. What is important is not the numbering scheme (which is nothing more than a method for
outlining a hierarchy of tasks) but the decomposition to the atomic level. The atomic tasks are
the fundamental building blocks of the business. Two tasks can still be atomic if one occasionally
depends upon the other, but only if each can and does get completed independently. If two tasks
always depend upon each other, they are not atomic. The real atomic task includes them both.

In most businesses, you will quickly discover that many tasks do not fit neatly into just one of
the major (zero-level) tasks, but seem to span two or more, and work in a network or “dotted line”
fashion. This is nearly always evidence of improper definition of the major tasks or incomplete
atomization of the lower tasks. The goal is to turn each task into a conceptual “object,” with a well-
defined idea of what it does (its goal in life) and what resources (data, computation, thinking, paper,
pencil, and so on) it uses to accomplish its goal.

Insights Resulting from the Task Document
Several insights come out of the task document. First, because the task document is task oriented
rather than data oriented, it is likely to substantially change the way user screens are designed. It
will affect what data is captured, how it is presented, how help is implemented, and how users
switch from one task to another. The task orientation will help ensure that the most common kinds
of jumping between tasks will not require inordinate effort from the user.

Second, the categorization of major tasks will change as conflicts are discovered; this will affect
how both the designers and the business users understand the business.

Third, even the summary sentence itself will probably change. Rationalizing a business into
atomic task “objects” forces a clearing out of artifacts, misconceptions, and unneeded dependencies
that have long weighed down the business unnecessarily.

This is not a painless process, but the benefits in terms of the business’s self-understanding,
the cleanup of procedures, and the automation of the tasks will usually far exceed the emotional
costs and time spent. It helps immensely if there is general understanding going into the project
that uncomfortable questions will be asked, incorrect assumptions will be corrected, and step-by-
step adjustments will be made to the task document until it is completed.

Understanding the Data
In conjunction with the decomposition and description of the tasks, the resources required at each
step are described in the task document, especially in terms of the data required. This is done on
a task-by-task basis, and the data requirements are then included in the data document. This is a
conceptually different approach from the classical view of the data. You will not simply take the
forms and screens currently used by each task and record the elements they contain. The flaw in
this “piece of paper in a cigar box” approach lies in our tendency (even though we don’t like to
admit it) to accept anything printed on paper as necessary or true.

In looking at each task, you should determine what data is necessary to do the task, rather than
what data elements are on the form you use to do the task. By requiring that the definition of the
data needed come from the task rather than from any existing forms or screens, you force an
examination of the true purpose of the task and the real data requirements. If the person doing the
task doesn’t know the use to which data is put, the element goes on the list for resolution. An
amazing amount of garbage is eliminated by this process.

62 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:62

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Once the current data elements have been identified, they must be carefully scrutinized. Numeric
and letter codes are always suspect. They disguise real information behind counterintuitive,
meaningless symbols. There are times and tasks for which codes are handy, easily remembered, or
made necessary by sheer volume. But, in your final design, these cases should be rare and obvious.
If they are not, you’ve lost your way.

In the scrutiny of existing data elements, codes should be set aside for special attention. In each
case, ask yourself whether the element should be a code. Its continued use as a code should be
viewed suspiciously. There must be good arguments and compelling reasons for perpetuating the
disguise. The process for converting codes back into English is fairly simple, but it’s a joint effort.
The codes are first listed by data element, along with their meanings. These are then examined by
users and designers, and short English versions of the meanings are proposed, discussed, and
tentatively approved.

In this same discussion, designers and end users should decide on names for the data elements.
These will become column names in the database, and will be regularly used in English queries, so
the names should be descriptive (avoiding abbreviations, other than those common to the business)
and singular. Because of the intimate relationship between the column name and the data it contains,
the two should be specified simultaneously. A thoughtful choice of a column name will vastly
simplify determining its new English contents.

Data elements that are not codes also must be rigorously examined. By this point, you have
good reason to believe that all the data elements you’ve identified are necessary to the business
tasks, but they are not necessarily well organized. What appears to be one data element in the
existing task may in fact be several elements mixed together that require separation. Names,
addresses, and phone numbers are very common examples of this, but every application has a
wealth of others.

First and last names were mixed together, for example, in the AUTHOR table. The AuthorName
column held both first and last names, even though the tables were in Third Normal Form. This
would be an extremely burdensome way to actually implement an application, in spite of the fact
that the normalization rules were technically met. To make the application practical and prepare it
for English queries, the AuthorName column needs to be decomposed into at least two new columns,
LastName and FirstName. This same categorization process is regularly needed in rationalizing
other data elements, and it’s often quite independent of normalization.

The degree of decomposition depends on how the particular data elements are likely to be
used. It is possible to go much too far and decompose categories that, though made up of separable
pieces, provide no additional value in their new state. Decomposition is application dependent
on an element-by-element basis. Once decomposition has been done, these new elements, which
will become columns, need to be thoughtfully named, and the data they will contain needs to be
scrutinized. Text data that will fall into a definable number of values should be reviewed for naming.
These column names and values, like those of the codes, are tentative.

The Atomic Data Models
Now the process of normalization begins, and with it the drawing of the atomic data models. There
are many good texts on the subject and a wide variety of analysis and design tools that can speed
the process, so this book doesn’t suggest any particular method, because recommending one method
may hinder rather than help.

Each atomic transaction should be modeled, and it should be labeled with the task number
to which it applies. Included in the model are table names, primary and foreign keys, and major

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 63

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:63

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

64 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:64

columns. Each normalized relationship should have a descriptive name, and estimated row counts
and transaction rates should appear with each table. Accompanying each model is an additional
sheet with all the columns and datatypes, their ranges of value, and the tentative names for the
tables, columns, and named values in the columns.

The Atomic Business Model
This data document is now combined with the task document. The combined document is a
business model. It’s reviewed jointly by the application designers and end users for accuracy
and completeness.

The Business Model
At this point, both the application designers and the end users should possess a clear vision of the
business, its tasks, and its data. Once the business model is corrected and approved, the process
of synthesizing the tasks and data models into an overall business model begins. This part of the
process sorts common data elements between tasks, completes final, large-scale normalization,
and resolves consistent, definitive names for all the parts.

This can be quite a large drawing for major applications, with supporting documentation that
includes the tasks, the data models (with corrected element names, based on the full model), and
a list of all the full-scale tables and their column names, datatypes, and contents. A final check of
the effort is made by tracing the data access paths of each transaction in the full business model to
determine that all the data the transaction requires is available for selection or insertion, and that
no tasks insert data with elements missing that are essential to the model’s referential integrity.

With the exception of the effort spent to properly name the various tables, columns, and common
values, virtually everything to this point has been analysis, not design. The aim has been to promote
understanding of the business and its components.

Data Entry
Screen design does not proceed from the business model. It is not focused on tables, but rather on
tasks, so screens are created that support the task orientation and the need to jump between subtasks
when necessary. In practical terms, this will often map readily to a primary table used by the task,
and to other tables that can be queried for values or updated as the primary table is accessed.

But there will also be occasions when there simply is no main table, but instead a variety of
related tables, all of which will supply or receive data to support the task. These screens will look
and act quite differently from the typical table-oriented screens developed in many applications,
but they will significantly amplify the effectiveness of their users and their contribution to the
business. And that’s the whole purpose of this approach.

The interaction between the user and the machine is critical; the input and query screens should
consistently be task oriented and descriptive, in English. The use of icons and graphical interfaces
plays an important role as well. Screens must reflect the way work is actually done and be built
to respond in the language in which business is conducted.

Query and Reporting
If anything sets apart the relational approach, and SQL, from more traditional application
environments, it is the ability for end users to easily learn and execute ad hoc queries. These are
those reports and one-time queries that are outside of the basic set usually developed and delivered
along with the application code.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 65

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:65

With Oracle’s SQL*Plus utility, a command line utility for creating and querying database
objects, end users are given unprecedented control over their own data. Both the users and
developers benefit from this ability: the users because they can build reports, analyze information,
modify their queries, and reexecute them, all in a matter of minutes, and the developers because
they are relieved of the undesirable requirement of creating new reports.

Users are granted the power to look into their data, analyze it, and respond with a speed and
thoroughness unimaginable just a few years ago. This leap in productivity is greatly extended if the
tables, columns, and data values are carefully crafted in English; it is greatly foreshortened if bad
naming conventions and meaningless codes and abbreviations are permitted to infect the design.
The time spent in the design process to name the objects consistently and descriptively will pay
off quickly for the users, and therefore for the business.

Some people, typically those who have not built major relational applications, fear that turning
query facilities over to end users will cripple the machine on which the facilities are used. The
fear is that users will write inefficient queries that will consume overwhelming numbers of CPU
cycles, slowing the machine and every other user. Experience shows that this generally is not true.
Users quickly learn which kinds of queries run fast, and which do not. Further, most business
intelligence and reporting tools available today can estimate the amount of time a query will take,
and restrict access—by user, time of day, or both—to queries that would consume a disproportionate
amount of resources. In practice, the demands users make on a machine only occasionally get
out of hand, but the benefits they derive far exceed the cost of the processing. Virtually any time
you can move effort from a person to a machine, you save money.

The real goal of design is to clarify and satisfy the needs of the business and business users.
If there is a bias, it must always be toward making the application easier to understand and use,
particularly at the expense of CPU or disk, but less so if the cost is an internal complexity so great
that maintenance and change become difficult and slow.

Toward Object Name Normalization
The basic approach to naming is to choose meaningful, memorable, and descriptive readable
names, avoiding abbreviations and codes, and using underscores either consistently or not at all.
In a large application, table, column, and data names will often be multiword, as in the case of
ReversedSuspenseAccount or Last_GL_Close_Date. The goal of thoughtful naming methods is ease
of use: The names must be easily remembered and must follow rules that are easily explained and
applied. In the pages ahead, a somewhat more rigorous approach to naming is presented, with the
ultimate goal of developing a formal process of object name normalization.

Level-Name Integrity
In a relational database system, the hierarchy of objects ranges from the database, to the table
owners, to the tables, to the columns, to the data values. In very large systems, there may even
be multiple databases, and these may be distributed within locations. For the sake of brevity, the
higher levels will be ignored for now, but what is said will apply to them as well.

Each level in this hierarchy is defined within the level above it, and each level should be given
names appropriate to its own level and should not incorporate names from outside its own level.
For example, a table cannot have two columns called Name, and the account named George
cannot own two tables named AUTHOR.

There is no requirement that each of George’s tables have a name that is unique throughout
the entire database. Other owners may have AUTHOR tables as well. Even if George is granted

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

access to them, there is no confusion, because he can identify each table uniquely by prefixing
its owner’s name to the table name, as in Dietrich.AUTHOR. It would not be logically consistent
to incorporate George’s owner name into the name of each of his tables, as in GEOAUTHOR,
GEOBOOKSHELF, and so on. This confuses and complicates the table name by placing part of
its parent’s name in its own, in effect a violation of level-name integrity.

Brevity should never be favored over clarity. Including pieces of table names in column names
is a bad technique, because it violates the logical idea of levels and the level-name integrity that
this requires. It is also confusing, requiring users to look up column names virtually every time
they want to write a query. Object names must be unique within their parent, but no incorporation
of names from outside an object’s own level should be permitted.

The support for abstract datatypes in Oracle strengthens your ability to create consistent names
for attributes. If you create a datatype called ADDRESS_TY, it will have the same attributes each
time it is used. Each of the attributes will have a consistent name, datatype, and length, making
their implementation more consistent across the enterprise. However, using abstract datatypes in
this manner requires that you do both of the following:

■ Properly define the datatypes at the start so that you can avoid the need to modify the
datatype later.

■ Support the syntax requirements of abstract datatypes.

Foreign Keys
The one area of difficulty with using brief column names is the occasional appearance of a foreign
key in a table in which another column has the same name that the foreign key column has in its
home table. One possible long-term solution is to allow the use of the full foreign key name, including
the table name of its home table, as a column name in the local table (such as BOOKSHELF.Title
as a column name).

The practical need to solve the same-name column problem requires one of the following
actions:

■ Invent a name that incorporates the source table of the foreign key in its name without
using the dot (using an underscore, for instance).

■ Invent a name that incorporates an abbreviation of the source table of the foreign key
in its name.

■ Invent a name different from its name in its source table.

■ Change the name of the conflicting column.

None of these is particularly attractive, but if you come across the same-name dilemma, you’ll
need to take one of these actions.

Singular Names
One area of great inconsistency and confusion is the question of whether objects should have
singular or plural names. Should it be the AUTHOR table or the AUTHORS table? Should it be
the Name column or the Names column?

66 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:66

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

There are two helpful ways to think about this issue. First, consider some columns common
to nearly every database: Name, Address, City, State, and Zip. Other than the first column, does it
ever occur to anyone to make these names plural? It is nearly self-evident when considering these
names that they describe the contents of a single row, a record. Even though relational databases
are “set oriented,” clearly the fundamental unit of a set is a row, and it is the content of that row
that is well-described by singular column names. When designing a data-entry screen to capture
a person’s name and address, should it look like this?

Names: ___

Addresses: ___

Cities: ____________________________ States __ Zips _____-____

Or will you make these column names singular on the screen because you’re capturing
one name and address at a time, but tell the users that when they write queries they must all be
converted to plural? It is simply more intuitive and straightforward to restrict column names to
singular.

If all objects are named consistently, neither you nor a user has to try to remember the rules
for what is plural and what isn’t. The benefit of this should be obvious. Suppose we decide that
all objects will henceforth be plural. We now have “s” or “es” on the end of virtually every object,
perhaps even on the end of each word in a long multiword object name. Of what possible benefit
is it to key all these extra letters all the time? Is it easier to use? Is it easier to understand? Is it easier
to remember? Obviously, it is none of these.

Therefore, the best solution is this: All object names are always singular. The sole exception
to this rule is any widely accepted term already commonly used in the business, such as “sales.”

Brevity
As mentioned earlier, clarity should never be sacrificed for brevity, but given two equally meaningful,
memorable, and descriptive names, always choose the shorter. During application development,
propose alternative column and table names such as these to a group of users and developers and
get their input on choosing the clearest name. How do you build lists of alternatives? Use a thesaurus
and a dictionary. On a project team dedicated to developing superior, productive applications,
every team member should be given a thesaurus and a dictionary as basic equipment, and then
should be reminded over and over again of the importance of careful object naming.

Object Name Thesaurus
Ultimately, relational databases should include an object name thesaurus, just as they include
a data dictionary. This thesaurus should enforce the company’s naming standards and ensure
consistency of name choice and abbreviation (where used).

Such standards may require the use of underscores in object naming to make the parsing of
the name into component parts a straightforward task. This also helps enforce the consistent use
of underscores, rather than the scattered, inconsistent usage within an application that underscores
frequently receive now.

If you work directly with a government agency or large firm, that organization may already
have object-naming standards. The object-naming standards of large organizations have over the

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 67

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:67

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

years radiated into the rest of the commercial marketplace, and they may form the basis for the
naming standards used at your company. For example, those standards may provide the direction
to choose between “Corporation” and “Firm.” If they do not, you should develop your naming
standards to be consistent, both with those base standards and with the guidelines put forth in
this chapter.

Intelligent Keys and Column Values
Intelligent keys are so named because they contain nontrivial combinations of information. The
term is misleading in the extreme because it implies something positive or worthwhile. A more
meaningful term might be overloaded keys. General ledger and product codes often fall into this
category and contain all the difficulties associated with other codes, and more. Further, the
difficulties found in overloaded keys also apply to non-key columns that are packed with more
than one piece of meaningful data.

Typical of an overloaded key or column value is this description: “The first character is the
region code. The next four characters are the catalog number. The final digit is the cost center code,
unless this is an imported part, in which case an I is tagged onto the end of the number, or unless
it is a high-volume item, such as screws, in which case only three digits are used for catalog number,
and the region code is HD.”

Eliminating overloaded key and column values is essential in good relational design. The
dependencies built on pieces of these keys (usually foreign keys into other tables) are all at risk if
the structure is maintained. Unfortunately, many application areas have overloaded keys that have
been used for years and are deeply embedded in the company’s tasks. Some of them were created
during earlier efforts at automation, using databases that could not support multiple key columns
for composite keys. Others came about through historical accretion, by forcing a short code, usually
numeric, to mean more and to cover more cases than it was ever intended to at the beginning.
Eliminating the existing overloaded keys may have practical ramifications that make it impossible
to do immediately. This makes building a new, relational application more difficult.

The solution to this problem is to create a new set of keys, both primary and foreign, that
properly normalizes the data; then, make sure that people can access tables only through these
new keys. The overloaded key is then kept as an additional, and unique, table column. Access to
it is still possible using historical methods (matching the overloaded key in a query, for instance),
but the newly structured keys are promoted as the preferred method of access. Over time, with
proper training, users will gravitate to the new keys. Eventually, the overloaded keys (and other
overloaded column values) can simply be NULLed out or dropped from the table.

Failing to eliminate overloaded keys and values makes extracting information from the database,
validating the values, ensuring data integrity, and modifying the structure all extremely difficult
and costly.

The Commandments
All the major issues in designing for productivity have now been discussed. It probably is worthwhile
to sum these up in a single place—thus “The Commandments” (or perhaps “The Suggestions”).
Their presentation does not assume that you need to be told what to do, but rather that you are
capable of making rational judgments and can benefit from the experience of others facing the
same challenges. The purpose here is not to describe the development cycle, which you probably

68 Part I: Critical Architecture Concepts

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:68

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

understand better than you want to, but rather to bias that development with an orientation that
will radically change how the application will look, feel, and be used. Careful attention to these
ideas can dramatically improve the productivity and happiness of an application’s users.

The ten commandments of humane design:

1. Include users. Put them on the project team and teach them the relational model and SQL.

2. Name tables, columns, keys, and data jointly with the users. Develop an application
thesaurus to ensure name consistency.

3. Use English words that are meaningful, memorable, descriptive, short, and singular.
Use underscores consistently or not at all.

4. Don’t mix levels in naming.

5. Avoid codes and abbreviations.

6. Use meaningful keys where possible.

7. Decompose overloaded keys.

8. Analyze and design from the tasks, not just the data. Remember that normalization is not
design.

9. Move tasks from users to the machine. It is profitable to spend cycles and storage to gain
ease of use.

10. Don’t be seduced by development speed. Take time and care in analyses, design, testing,
and tuning.

There’s a reason why this chapter precedes the ones on the commands and functions—if
you have a poor design, your application will suffer no matter what commands you use. Plan
for functionality, plan for performance, plan for recoverability, plan for security, and plan for
availability. Plan for success.

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 69

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:69

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 4
Blind Folio 4:70

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:71

PART
II

SQL and SQL*Plus

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:72

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:73

CHAPTER
5

The Basic Parts of
Speech in SQL

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

W
ith the Structured Query Language (SQL), you tell Oracle which information
you want it to select, insert, update, or delete. In fact, these four verbs are
the primary words you will use to give Oracle instructions. As of Oracle9i,
you can use an additional command, merge, to perform inserts and updates
with a single command. As of Oracle Database 10g, the merge command

capabilities have been extended to include greater control over the inserts, updates, and even
deletes performed within a single statement. Also as of Oracle Database 10g, these basic commands
are further enhanced to support flashback version queries and other features.

In Part I, you saw what is meant by “relational,” how tables are organized into columns and
rows, and how to instruct Oracle to select certain columns from a table and show you the information
in them, row by row. In this and the following chapters, you will learn how to do this more
completely for the different datatypes supported by Oracle. In this part, you will learn how to
interact with SQL*Plus, a powerful Oracle product that can take your instructions for Oracle, check
them for correctness, submit them to Oracle, and then modify or reformat the response Oracle
gives, based on orders or directions you’ve set in place.

It may be a little confusing at first to understand the difference between what SQL*Plus is
doing and what Oracle is doing, especially because the error messages that Oracle produces are
simply passed on to you by SQL*Plus, but you will see as you work through this book where the
differences lie. As you get started, just think of SQL*Plus as a coworker—an assistant who follows
your instructions and helps you do your work more quickly. You interact with this coworker by
typing on your keyboard.

You may follow the examples in this and subsequent chapters by typing the commands shown.
Your Oracle and SQL*Plus programs should respond just as they do in these examples. However,
you do need to make certain that the tables used in this book have been loaded into your copy of
Oracle.

You can understand what is described in this book without actually typing it in yourself; for
example, you can use the commands shown with your own tables. It will probably be clearer and
easier, though, if you have the same tables loaded into Oracle as the ones used here and practice
using the same queries.

The CD contains instructions on loading the tables. Assuming that you have loaded the demo
tables into an Oracle database, you can connect to SQL*Plus and begin working by typing this:

sqlplus

(If you want to run SQL*Plus from your desktop client machine, select the SQL Plus program
option from the Application Development menu option under the Oracle software menu option.)
This starts SQL*Plus. (Note that you don’t type the * that is in the middle of the official product
name, and the asterisk doesn’t appear in the program name, either. Because Oracle is careful to
guard who can access the data it stores, it requires that you enter an ID and password to connect
to it. Oracle will display a copyright message and then ask for your username and password. Log
into your database using the account and password you created to hold the sample tables (such
as practice/practice). If you provide a valid username and password, SQL*Plus will announce that
you’re connected to Oracle and then will display this prompt:

SQL>

74 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:74

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You are now in SQL*Plus, and it awaits your instructions. If the command fails, there are
several potential reasons: Oracle is not in your path, you are not authorized to use SQL*Plus,
or Oracle hasn’t been installed properly on your computer. If you get the message

ERROR: ORA-1017: invalid username/password; logon denied

either you’ve entered the username or password incorrectly or your username has not yet been set
up properly on your copy of Oracle. After three unsuccessful attempts to enter a username and
password that Oracle recognizes, SQL*Plus will terminate the attempt to log on, showing this
message:

unable to CONNECT to ORACLE after 3 attempts, exiting SQL*Plus

If you get this message, contact your company’s database administrator. Assuming everything
is in order, and the SQL> prompt has appeared, you may now begin working with SQL*Plus.

When you want to quit working and leave SQL*Plus, type this:

quit

Style
First, some comments on style. SQL*Plus doesn’t care whether the SQL commands you type are
in uppercase or lowercase. For example, the command

SeLeCt feaTURE, section, PAGE FROM newsPaPeR;

will produce exactly the same result as this one:

select Feature, Section, Page from NEWSPAPER;

Case matters only when SQL*Plus or Oracle is checking an alphanumeric value for equality.
If you tell Oracle to find a row where Section = ‘f’, and Section is really equal to ‘F’, Oracle won’t
find it (because f and F are not identical). Aside from this usage, case is completely irrelevant.
(Incidentally, ‘F’, as used here, is called a literal, meaning that you want Section to be tested literally
against the letter F, not a column named F. The single quote marks enclosing the letter tell Oracle
that this is a literal and not a column name.)

As a matter of style, this book follows certain conventions about case to make the text easier
to read:

■ select, from, where, order by, having, and group by will always be lowercase and
boldface in the body of the text.

■ SQL*Plus commands also will be lowercase and boldface (for example, column, set,
save, ttitle, and so on).

■ IN, BETWEEN, UPPER, and other SQL operators and functions will be uppercase and
boldface.

Chapter 5: The Basic Parts of Speech in SQL 75

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:75

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Column names will be mixed uppercase and lowercase without boldface (for example,
Feature, EastWest, Longitude, and so on).

■ Table names will be uppercase without boldface (for example, NEWSPAPER, WEATHER,
LOCATION, and so on).

You may want to follow similar conventions in creating your own queries, or your company
already may have standards it would like you to use. You may even choose to invent your own.
Regardless, the goal of any such standards should always be to make your work simple to read
and understand.

Creating the NEWSPAPER Table
The examples in this book are based on the tables created by the scripts located on the CD. Each
table is created via the create table command, which specifies the names of the columns in the
table, as well as the characteristics of those columns. Here is the create table command for the
NEWSPAPER table, which is used in many of the examples in this chapter:

create table NEWSPAPER (
Feature VARCHAR2(15) not null,
Section CHAR(1),
Page NUMBER
);

In later chapters in this book, you’ll see how to interpret all the clauses of this command. For
now, you can read it as, “Create a table called NEWSPAPER. It will have three columns, named
Feature (a variable-length character column), Section (a fixed-length character column), and Page
(a numeric column). The values in the Feature column can be up to 15 characters long, and every
row must have a value for Feature. Section values will all be one character long.”

In later chapters, you’ll see how to extend this simple command to add constraints, indexes,
and storage clauses. For now, the NEWSPAPER table will be kept simple so that the examples can
focus on SQL.

Using SQL to Select Data from Tables
Figure 5-1 shows a table of features from a local newspaper. If this were an Oracle table, rather
than just paper and ink on the front of the local paper, SQL*Plus would display it for you if you
typed this:

select Feature, Section, Page from NEWSPAPER;

FEATURE S PAGE
--------------- - ----------
National News A 1
Sports D 1
Editorials A 12
Business E 1
Weather C 2

76 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:76

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Television B 7
Births F 7
Classified F 8
Modern Life B 1
Comics C 4
Movies B 4
Bridge B 2
Obituaries F 6
Doctor Is In F 6

14 rows selected.

NOTE
Depending on your configuration, the listing may have a page break
in it. If that happens, use the set pagesize command to increase the
size of each displayed page of results. See the Alphabetical Reference
for details on this command.

What’s different between the table you created and the one shown in the output in Figure 5-1?
Both tables have the same information, but the format differs and the order of rows may be different.

Chapter 5: The Basic Parts of Speech in SQL 77

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:77

Feature Section Page

Births F 7

Bridge B 2

Business E 1

Classified F 8

Comics C 4

Doctor Is In F 6

Editorials A 12

Modern Life B 1

Movies B 4

National News A 1

Obituaries F 6

Sports D 1

Television B 7

Weather C 2

FIGURE 5-1. A NEWSPAPER table

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

78 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:78

For example, the column headings differ slightly. In fact, they even differ slightly from the columns
you just asked for in the select statement.

Notice that the column named Section shows up as just the letter S. Also, although you used
uppercase and lowercase letters to type the column headings in the command

select Feature, Section, Page from NEWSPAPER;

the column headings came back with all the letters in uppercase.
These changes are the result of the assumptions SQL*Plus makes about how information should

be presented. You can change these assumptions, and you probably will, but until you give SQL*Plus
different orders, this is how it changes what you input:

■ It changes all the column headings to uppercase.

■ It allows columns to be only as wide as a column is defined to be in Oracle.

■ It squeezes out any spaces if the column heading is a function. (This will be demonstrated
in Chapter 7.)

The first point is obvious. The column names you used were shifted to uppercase. The second
point is not obvious. How are the columns defined? To find out, ask Oracle. Simply tell SQL*Plus
to describe the table, as shown here:

describe NEWSPAPER

Name Null? Type
------------------------------- -------- ------------
FEATURE NOT NULL VARCHAR2(15)
SECTION CHAR(1)
PAGE NUMBER

This display is a descriptive table that lists the columns and their definitions for the NEWSPAPER
table; the describe command works for any table. Note that the details in this description match
the create table command given earlier in this chapter.

The first column tells the names of the columns in the table being described.
The second column (Null?) is really a rule about the column named to its left. When the

NEWSPAPER table was created, the NOT NULL rule instructed Oracle not to allow any user to
add a new row to the table if he or she left the Feature column empty (NULL means empty). Of
course, in a table such as NEWSPAPER, it probably would have been worthwhile to use the same
rule for all three columns. What good is it to know the title of a feature without also knowing what
section it’s in and what page it’s on? But, for the sake of this example, only Feature was created
with the rule that it could not be NULL.

Because Section and Page have nothing in the Null? column, they are allowed to be empty
in any row of the NEWSPAPER table.

The third column (Type) tells the basic nature of the individual columns. Feature is a VARCHAR2
(variable-length character) column that can be up to 15 characters (letters, numbers, symbols, or
spaces) long.

Section is a character column as well, but it is only one character long. The creator of the table
knew that newspaper sections in the local paper are only a single letter, so the column was defined

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: The Basic Parts of Speech in SQL 79

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:79

to be only as wide as it needed to be. It was defined using the CHAR datatype, which is used for
fixed-length character strings. When SQL*Plus went to display the results of your query

select Feature, Section, Page from NEWSPAPER;

it knew from Oracle that Section was a maximum of only one character. It assumed that you did
not want to use up more space than this, so it displayed a column just one character wide and used
as much of the column name as it could—in this case, just the letter S.

The third column in the NEWSPAPER table is Page, which is simply a number. Notice that the
Page column shows up as ten spaces wide, even though no pages use more than two digits—
numbers usually are not defined as having a maximum width, so SQL*Plus assumes a maximum
just to get started.

You also may have noticed that the heading for the only column composed solely of numbers,
Page, was right-justified—that is, it sits over on the right side of the column, whereas the headings
for columns that contain characters sit over on the left. This is standard alignment for column
headings in SQL*Plus. As with other column features, you’ll see in Chapter 6 how to change
alignment as needed.

Finally, SQL*Plus tells you how many rows it found in Oracle’s NEWSPAPER table. (Notice the
“14 rows selected” notation at the bottom of the display.) This is called feedback. You can make
SQL*Plus stop giving feedback by setting the feedback option, as shown here:

set feedback off

Alternatively, you can set a minimum number of rows for feedback to work:

set feedback 25

This last example tells Oracle that you don’t want to know how many rows have been displayed until
there have been at least 25. Unless you tell SQL*Plus differently, feedback is set to 6.

The set command is a SQL*Plus command, which means that it is an instruction telling SQL*Plus
how to act. There are many SQL*Plus options, such as feedback, that you can set. Several of these
will be shown and used in this chapter and in the chapters to follow. For a complete list, look up
set in the Alphabetical Reference section of this book.

The set command has a counterpart named show that allows you to see what instructions
you’ve given to SQL*Plus. For instance, you can check the setting of feedback by typing

show feedback

SQL*Plus will respond with the following:

FEEDBACK ON for 25 or more rows

The width used to display numbers also is changed by the set command. You check it by
typing

show numwidth

SQL*Plus will reply as shown here:

numwidth 9

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

80 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:80

Because 9 is a wide width for displaying page numbers that never contain more than two digits,
shrink the display by typing

set numwidth 5

However, this means that all number columns will be five digits wide. If you anticipate having
numbers with more than five digits, you must use a number higher than 5. Individual columns in
the display also can be set independently. This will be covered in Chapter 6.

select, from, where, and order by
You will use four primary keywords in SQL when selecting information from an Oracle table:
select, from, where, and order by. You will use select and from in every Oracle query you do.

The select keyword tells Oracle which columns you want, and from tells Oracle the name(s)
of the table(s) those columns are in. The NEWSPAPER table example showed how these keywords
are used. In the first line that you entered, a comma follows each column name except the last.
You’ll notice that a correctly typed SQL query reads pretty much like an English sentence. A query
in SQL*Plus usually ends with a semicolon (sometimes called the SQL terminator). The where
keyword tells Oracle what qualifiers you’d like to put on the information it is selecting. For example,
if you input

select Feature, Section, Page from NEWSPAPER
where Section = 'F';

FEATURE S PAGE
--------------- - -----
Births F 7
Classified F 8
Obituaries F 6
Doctor Is In F 6

Oracle checks each row in the NEWSPAPER table before sending the row back to you. It skips
over those without the single letter F in their Section column. It returns those where the Section
entry is ‘F’, and SQL*Plus displays them to you.

To tell Oracle that you want the information it returns sorted in the order you specify, use
order by. You can be as elaborate as you like about the order you request. Consider these examples:

select Feature, Section, Page from NEWSPAPER
where Section = 'F'
order by Feature;

FEATURE S PAGE
--------------- - -----
Births F 7
Classified F 8
Doctor Is In F 6
Obituaries F 6

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: The Basic Parts of Speech in SQL 81

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:81

They are nearly reversed when ordered by page, as shown here:

select Feature, Section, Page from NEWSPAPER
where Section = 'F'
order by Page;

FEATURE S PAGE
--------------- - -----
Obituaries F 6
Doctor Is In F 6
Births F 7
Classified F 8

In the next example, Oracle first puts the features in order by page (see the previous listing
to observe the order they are in when they are ordered only by page). It then puts them in further
order by feature, listing Doctor Is In ahead of Obituaries.

select Feature, Section, Page from NEWSPAPER
where Section = 'F'
order by Page, Feature;

FEATURE S PAGE
--------------- - -----
Doctor Is In F 6
Obituaries F 6
Births F 7
Classified F 8

Using order by also can reverse the normal order, like this:

select Feature, Section, Page from NEWSPAPER
where Section = 'F'
order by Page desc, Feature;

FEATURE S PAGE
--------------- - -----
Classified F 8
Births F 7
Doctor Is In F 6
Obituaries F 6

The desc keyword stands for descending. Because it followed the word Page in the order by
line, it put the page numbers in descending order. It would have the same effect on the Feature
column if it followed the word Feature in the order by line.

Notice that each of these keywords—select, from, where, and order by—has its own way of
structuring the words that follow it. The groups of words including these keywords are often called
clauses, as shown in Figure 5-2.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

82 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:82

Logic and Value
Just as the order by clause can have several parts, so can the where clause, but with a significantly
greater degree of sophistication. You control the extent to which you use where through the careful
use of logical instructions to Oracle on what you expect it to return to you. These instructions are
expressed using mathematical symbols called logical operators. These are explained shortly, and
they also are listed in the Alphabetical Reference section of this book.

The following is a simple example in which the values in the Page column are tested to see if
any equals 6. Every row where this is true is returned to you. Any row in which Page is not equal
to 6 is skipped (in other words, those rows for which Page = 6 is false).

select Feature, Section, Page
from NEWSPAPER
where Page = 6;

FEATURE S PAGE
--------------- - -----
Obituaries F 6
Doctor Is In F 6

The equal sign is called a logical operator, because it operates by making a logical test that
compares the values on either side of it—in this case, the value of Page and the value 6—to see
if they are equal.

In this example, no quotes are placed around the value being checked because the column the
value is compared to (the Page column) is defined as a NUMBER datatype. Number values do not
require quotes around them during comparisons.

Single-Value Tests
You can use one of several logical operators to test against a single value, as shown in the upcoming
sidebar “Logical Tests Against a Single Value.” Take a few examples from any of the expressions
listed in this sidebar. They all work similarly and can be combined at will, although they must
follow certain rules about how they’ll act together.

Select Feature, Section, Page <--select clause

from NEWSPAPER <--from clause

where Section = ‘F’ <--where clause

FIGURE 5-2. Clauses

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: The Basic Parts of Speech in SQL 83

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:83

Logical Tests Against a Single Value
All these operators work with letters or numbers, and with columns or literals.

Equal, Greater Than, Less Than, Not Equal

Page= 6 Page is equal to 6.

Page> 6 Page is greater than 6.

Page>= 6 Page is greater than or equal to 6.

Page< 6 Page is less than 6.

Page<= 6 Page is less than or equal to 6.

Page!= 6 Page is not equal to 6.

Page^= 6 Page is not equal to 6.

Page<> 6 Page is not equal to 6.

Because some keyboards lack an exclamation mark (!) or a caret (^), Oracle allows three
ways of typing the not equal operator. The final alternative, <>, qualifies as a not equal operator
because it permits only numbers less than 6 (in this example) or greater than 6, but not 6 itself.

LIKE

Feature LIKE ‘Mo%’ Feature begins with the letters Mo.

Feature LIKE ‘_ _ I%’ Feature has an I in the third position.

Feature LIKE ‘%o%o%’ Feature has two o’s in it.

LIKE performs pattern matching. An underline character (_) represents exactly one
character. A percent sign (%) represents any number of characters, including zero characters.

IS NULL, IS NOT NULL

Precipitation IS NULL Precipitation is unknown.

Precipitation IS NOT NULL Precipitation is known.

NULL tests to see if data exists in a column for a row. If the column is completely empty,
it is said to be “null.” The word IS must be used with NULL and NOT NULL; equal, greater-
than, and less-than signs do not work with NULL and NOT NULL.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Equal, Greater Than, Less Than, Not Equal
Logical tests can compare values, both for equality and for relative value. Here, a simple test
is made for all sections equal to ‘B’:

select Feature, Section, Page
from NEWSPAPER
where Section = 'B';

FEATURE S PAGE
--------------- - -----
Television B 7
Modern Life B 1
Movies B 4
Bridge B 2

The following is the test for all pages greater than 4:

select Feature, Section, Page
from NEWSPAPER
where Page > 4;

FEATURE S PAGE
--------------- - -----
Editorials A 12
Television B 7
Births F 7
Classified F 8
Obituaries F 6
Doctor Is In F 6

The following is the test for sections greater than ‘B’ (this means later in the alphabet than
the letter B):

select Feature, Section, Page
from NEWSPAPER
where Section > 'B';

FEATURE S PAGE
--------------- - -----
Sports D 1
Business E 1
Weather C 2
Births F 7
Classified F 8
Comics C 4
Obituaries F 6
Doctor Is In F 6

Just as a test can be made for greater than, so can a test be made for less than, as shown here
(all page numbers less than 8):

84 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:84

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select Feature, Section, Page
from NEWSPAPER
where Page < 8;

FEATURE S PAGE
--------------- - ----------
National News A 1
Sports D 1
Business E 1
Weather C 2
Television B 7
Births F 7
Modern Life B 1
Comics C 4
Movies B 4
Bridge B 2
Obituaries F 6
Doctor Is In F 6

The opposite of the test for equality is the not equal test, as given here:

select Feature, Section, Page
from NEWSPAPER
where Page <> 1;

FEATURE S PAGE
--------------- - ----------
Editorials A 12
Weather C 2
Television B 7
Births F 7
Classified F 8
Comics C 4
Movies B 4
Bridge B 2
Obituaries F 6
Doctor Is In F 6

NOTE
Be careful when using the greater-than and less-than operators against
numbers that are stored in character datatype columns. All values in
VARCHAR2 and CHAR columns will be treated as characters during
comparisons. Therefore, numbers that are stored in those types of
columns will be compared as if they were character strings, not numbers.
If the column’s datatype is NUMBER, then 12 is greater than 9. If it is
a character column, then 9 is greater than 12, because the character
‘9’ is greater than the character ‘1’.

Chapter 5: The Basic Parts of Speech in SQL 85

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:85

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

86 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:86

LIKE
One of the most powerful features of SQL is a marvelous pattern-matching operator called LIKE,
which is able to search through the rows of a database column for values that look like a pattern
you describe. It uses two special characters to denote which kind of matching to do: a percent
sign, called a wildcard, and an underline, called a position marker. To look for all the features
that begin with the letters Mo, use the following:

select Feature, Section, Page from NEWSPAPER
where Feature LIKE 'Mo%';

FEATURE S PAGE
--------------- - ----------
Modern Life B 1
Movies B 4

The percent sign (%) means anything is acceptable here: one character, a hundred characters,
or no characters. If the first letters are Mo, LIKE will find the feature. If the query had used ‘MO%’
as its search condition instead, then no rows would have been returned, due to Oracle’s case-
sensitivity in data values.

If you want to find those features that have the letter i in the third position of their titles, and
you don’t care which two characters precede the i or what set of characters follows, using two
underlines (_ _) specifies that any character in those two positions is acceptable. Position three must
have a lowercase i, and the percent sign after that says anything is okay.

select Feature, Section, Page from NEWSPAPER
where Feature LIKE '__i%';

FEATURE S PAGE
--------------- - ----------
Editorials A 12
Bridge B 2
Obituaries F 6

Multiple percent signs also can be used. To find those words with two lowercase o’s anywhere
in the Feature title, three percent signs are used, as shown here:

select Feature, Section, Page from NEWSPAPER
where Feature LIKE '%o%o%';

FEATURE S PAGE
--------------- - ----------
Doctor Is In F 6

For the sake of comparison, the following is the same query, but it is looking for two i’s:

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: The Basic Parts of Speech in SQL 87

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:87

select Feature, Section, Page from NEWSPAPER
where Feature LIKE '%i%i%';

FEATURE S PAGE
--------------- - ----------
Editorials A 12
Television B 7
Classified F 8
Obituaries F 6

This pattern-matching feature can play an important role in making an application friendlier
by simplifying searches for names, products, addresses, and other partially remembered items. In
Chapter 8, you will see how to use advanced regular expression searches available as of Oracle
Database 10g.

NULL and NOT NULL
The NEWSPAPER table has no columns in it that are NULL, even though the describe you did on
it showed that they are allowed. The following query on the COMFORT table contains, among
other data, the precipitation for San Francisco, California, and Keene, New Hampshire, for four
sample dates during 2003:

select City, SampleDate, Precipitation
from COMFORT;

CITY SAMPLEDAT PRECIPITATION
------------- --------- -------------
SAN FRANCISCO 21-MAR-03 .5
SAN FRANCISCO 22-JUN-03 .1
SAN FRANCISCO 23-SEP-03 .1
SAN FRANCISCO 22-DEC-03 2.3
KEENE 21-MAR-03 4.4
KEENE 22-JUN-03 1.3
KEENE 23-SEP-03
KEENE 22-DEC-03 3.9

You can find out the city and dates on which precipitation was not measured with this query:

select City, SampleDate, Precipitation
from COMFORT
where Precipitation IS NULL;

CITY SAMPLEDAT PRECIPITATION
------------- --------- -------------
KEENE 23-SEP-03

IS NULL essentially instructs Oracle to identify columns in which the data is missing. You don’t
know for that day whether the value should be 0, 1, or 5 inches. Because it is unknown, the value

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

88 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:88

in the column is not set to 0; it stays empty. By using NOT, you also can find those cities and dates
for which data exists, with this query:

select City, SampleDate, Precipitation
from COMFORT
where Precipitation IS NOT NULL;

CITY SAMPLEDAT PRECIPITATION
------------- --------- -------------
SAN FRANCISCO 21-MAR-03 .5
SAN FRANCISCO 22-JUN-03 .1
SAN FRANCISCO 23-SEP-03 .1
SAN FRANCISCO 22-DEC-03 2.3
KEENE 21-MAR-03 4.4
KEENE 22-JUN-03 1.3
KEENE 22-DEC-03 3.9

Oracle lets you use the relational operators (=, !=, and so on) with NULL, but this kind of
comparison will not return meaningful results. Use IS or IS NOT for comparing values to NULL.

Simple Tests Against a List of Values
If there are logical operators that test against a single value, are there others that will test against
many values, such as a list? The sidebar “Logical Tests Against a List of Values” shows just such
a group of operators.

Logical Tests Against a List of Values

Logical tests with numbers:

Page IN (1,2,3) Page is in the list (1,2,3)

Page NOT IN (1,2,3) Page is not in the list (1,2,3)

Page BETWEEN 6 AND 10 Page is equal to 6, 10, or anything
in between

Page NOT BETWEEN 6 AND 10 Page is below 6 or above 10

With letters (or characters):

Section IN (‘A’,‘C’,‘F’) Section is in the list (‘A’,‘C’,‘F’)

Section NOT IN (‘A’,‘C’,‘F’) Section is not in the list (‘A’,‘C’,‘F’)

Section BETWEEN ‘B’ AND ‘D’ Section is equal to ‘B’, ‘D’, or anything
in between (alphabetically)

Section NOT BETWEEN ‘B’ AND ‘D’ Section is below ‘B’ or above ‘D’
(alphabetically)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: The Basic Parts of Speech in SQL 89

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:89

Here are a few examples of how these logical operators are used:

select Feature, Section, Page
from NEWSPAPER
where Section IN ('A','B','F');

FEATURE S PAGE
--------------- - ----------
National News A 1
Editorials A 12
Television B 7
Births F 7
Classified F 8
Modern Life B 1
Movies B 4
Bridge B 2
Obituaries F 6
Doctor Is In F 6

select Feature, Section, Page
from NEWSPAPER
where Section NOT IN ('A','B','F');

FEATURE S PAGE
--------------- - ----------
Sports D 1
Business E 1
Weather C 2
Comics C 4

select Feature, Section, Page
from NEWSPAPER
where Page BETWEEN 7 and 10;

FEATURE S PAGE
--------------- - ----------
Television B 7
Births F 7
Classified F 8

These logical tests also can be combined, as in this case:

select Feature, Section, Page
from NEWSPAPER
where Section = 'F'
AND Page > 7;

FEATURE S PAGE
--------------- - ----------
Classified F 8

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

90 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:90

The AND command has been used to combine two logical expressions and requires any row
Oracle examines to pass both tests; both Section = ‘F’ and Page > 7 must be true for a row to be
returned to you. Alternatively, OR can be used, which will return rows to you if either logical
expression turns out to be true:

select Feature, Section, Page
from NEWSPAPER
where Section = 'F'

OR Page > 7;

FEATURE S PAGE
--------------- - -----
Editorials A 12
Births F 7
Classified F 8
Obituaries F 6
Doctor Is In F 6

There are some sections here that qualify even though they are not equal to ‘F’ because their
page is greater than 7, and there are others whose page is less than or equal to 7 but whose section
is equal to ‘F’.

Finally, choose those features in Section F between pages 7 and 10 with this query:

select Feature, Section, Page
from NEWSPAPER
where Section = 'F'
and Page BETWEEN 7 AND 10;

FEATURE S PAGE
--------------- - -----
Births F 7
Classified F 8

There are a few additional many-value operators whose use is more complex; they will be
covered in Chapter 9. They also can be found, along with those just discussed, in the Alphabetical
Reference section of this book.

Combining Logic
Both AND and OR follow the commonsense meanings of the words. They can be combined in a
virtually unlimited number of ways, but you must use care, because ANDs and ORs get convoluted
very easily.

Suppose you want to find the features in the paper that the editors tend to bury, those that are
placed somewhere past page 2 of section A or B. You might try this:

select Feature, Section, Page
from NEWSPAPER
where Section = 'A'

or Section = 'B'
and Page > 2;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: The Basic Parts of Speech in SQL 91

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:91

FEATURE S PAGE
--------------- - -----
National News A 1
Editorials A 12
Television B 7
Movies B 4

Note that the result you got back from Oracle is not what you wanted. Somehow, page 1 of
section A was included. Why is this happening? Is there a way to get Oracle to answer the question
correctly? Although both AND and OR are logical connectors, AND is stronger. It binds the logical
expressions on either side of it more strongly than OR does (technically, AND is said to have higher
precedence), which means the where clause

where Section = 'A'
or Section = 'B'

and Page > 2;

is interpreted to read, “where Section = ‘A’, or where Section = ‘B’ and Page > 2.” If you look at
the failed example just given, you’ll see how this interpretation affected the result. The AND is
always acted on first.

You can break this bonding by using parentheses that enclose those expressions you want to be
interpreted together. Parentheses override the normal precedence:

select Feature, Section, Page
from NEWSPAPER
where Page > 2
and (Section = 'A' or Section = 'B');

FEATURE S PAGE
------------------ - ----
Editorials A 12
Television B 7
Movies B 4

The result is exactly what you wanted in the first place. Note that although you can type this
with the sections listed first, the result is identical because the parentheses tell Oracle what to
interpret together. Compare this to the different results caused by changing the order in the first
example, where parentheses were not used.

Another Use for where: Subqueries
What if the logical operators in the previous sidebars, “Logical Tests Against a Single Value” and
“Logical Tests Against a List of Values,” could be used not just with a single literal value (such as ‘F’)
or a typed list of values (such as 4,2,7 or ‘A’,’C’,’F’), but with values brought back by an Oracle
query? In fact, this is a powerful feature of SQL.

Imagine that you are the author of the “Doctor Is In” feature, and each newspaper that publishes
your column sends along a copy of the table of contents that includes your piece. Of course, each
editor rates your importance a little differently, and places you in a section he or she deems suited
to your feature. Without knowing ahead of time where your feature is, or with what other features

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

you are placed, how could you write a query to find out where a particular local paper places you?
You might do this:

select Section from NEWSPAPER
where Feature = 'Doctor Is In';

S
-
F

The result is ‘F’. Knowing this, you could do this query:

select FEATURE from NEWSPAPER
where Section = 'F';

FEATURE

Births
Classified
Obituaries
Doctor Is In

You’re in there with births, deaths, and classified ads. Could the two separate queries have
been combined into one? Yes, as shown here:

select FEATURE from NEWSPAPER
where Section = (select Section from NEWSPAPER

where Feature = 'Doctor Is In');

FEATURE

Births
Classified
Obituaries
Doctor Is In

Single Values from a Subquery
In effect, the select in parentheses (called a subquery) brought back a single value, F. The main
query then treated this value as if it were a literal ‘F’, as was used in the previous query. Remember
that the equal sign is a single-value test. It can’t work with lists, so if your subquery returned more
than one row, you’d get an error message like this:

select * from NEWSPAPER
where Section = (select Section from NEWSPAPER

where Page = 1);
where Section = (select Section from NEWSPAPER

*
ERROR at line 2:
ORA-01427: single-row subquery returns more than one row

92 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:92

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: The Basic Parts of Speech in SQL 93

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:93

All the logical operators that test single values can work with subqueries, as long as the subquery
returns a single row. For instance, you can ask for all the features in the paper where the section
is less than (that is, earlier in the alphabet) the section that carries your column. The asterisk in this
select shows a shorthand way to request all the columns in a table without listing them individually.
They will be displayed in the order in which they were created in the table.

select * from NEWSPAPER
where Section < (select Section from NEWSPAPER

where Feature = 'Doctor Is In');

FEATURE S PAGE
--------------- - -----
National News A 1
Sports D 1
Editorials A 12
Business E 1
Weather C 2
Television B 7
Modern Life B 1
Comics C 4
Movies B 4
Bridge B 2

10 rows selected.

Ten other features rank ahead of your medical advice in this local paper.

Lists of Values from a Subquery
Just as the single-value logical operators can be used on a subquery, so can the many-value
operators. If a subquery returns one or more rows, the value in the column for each row will be
stacked up in a list. For example, suppose you want to know the cities and countries where it is
cloudy. You could have a table of complete weather information for all cities, and a LOCATION
table for all cities and their countries, as shown here:

select City, Country from LOCATION;

CITY COUNTRY
-------------------------- ---------------------------
ATHENS GREECE
CHICAGO UNITED STATES
CONAKRY GUINEA
LIMA PERU
MADRAS INDIA
MANCHESTER ENGLAND
MOSCOW RUSSIA
PARIS FRANCE
SHENYANG CHINA
ROME ITALY
TOKYO JAPAN

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SYDNEY AUSTRALIA
SPARTA GREECE
MADRID SPAIN

select City, Condition from WEATHER;

CITY CONDITION
----------- -----------
LIMA RAIN
PARIS CLOUDY
MANCHESTER FOG
ATHENS SUNNY
CHICAGO RAIN
SYDNEY SUNNY
SPARTA CLOUDY

First, you’d discover which cities were cloudy:

select City from WEATHER
where Condition = 'CLOUDY';

CITY

PARIS
SPARTA

Then, you would build a list including those cities and use it to query the LOCATION table:

select City, Country from LOCATION
where City IN ('PARIS', 'SPARTA');

CITY COUNTRY
-------------------------- ---------------------------
PARIS FRANCE
SPARTA GREECE

The same task can be accomplished by a subquery, where the select in parentheses builds
a list of cities that are tested by the IN operator, as shown here:

select City, Country from LOCATION
where City IN (select City from WEATHER

where Condition = 'CLOUDY');

CITY COUNTRY
-------------------------- ---------------------------
PARIS FRANCE
SPARTA GREECE

The other many-value operators work similarly. The fundamental task is to build a subquery
that produces a list that can be logically tested. The following are some relevant points:

94 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:94

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: The Basic Parts of Speech in SQL 95

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:95

■ The subquery must either have only one column or compare its selected columns to
multiple columns in parentheses in the main query (covered in Chapter 13).

■ The subquery must be enclosed in parentheses.

■ Subqueries that produce only one row can be used with either single- or many-value
operators.

■ Subqueries that produce more than one row can be used only with many-value operators.

Combining Tables
If you’ve normalized your data, you’ll probably need to combine two or more tables to get all the
information you want.

Suppose you are the oracle at Delphi. The Athenians come to ask about the forces of nature
that might affect the expected attack by the Spartans, as well as the direction from which they are
likely to appear:

select City, Condition, Temperature from WEATHER;

CITY CONDITION TEMPERATURE
----------- ----------- -----------
LIMA RAIN 45
PARIS CLOUDY 81
MANCHESTER FOG 66
ATHENS SUNNY 97
CHICAGO RAIN 66
SYDNEY SUNNY 69
SPARTA CLOUDY 74

You realize your geography is rusty, so you query the LOCATION table:

select City, Longitude, EastWest, Latitude, NorthSouth
from LOCATION;

CITY LONGITUDE E LATITUDE N
------------------------- --------- - -------- -
ATHENS 23.43 E 37.58 N
CHICAGO 87.38 W 41.53 N
CONAKRY 13.43 W 9.31 N
LIMA 77.03 W 12.03 S
MADRAS 80.17 E 13.05 N
MANCHESTER 2.15 W 53.3 N
MOSCOW 37.35 E 55.45 N
PARIS 2.2 E 48.52 N
SHENYANG 123.27 E 41.48 N
ROME 12.29 E 41.54 N
TOKYO 139.46 E 35.42 N
SYDNEY 151.13 E 33.52 S
SPARTA 22.27 E 37.05 N
MADRID 3.41 W 40.24 N

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This is much more than you need, and it doesn’t have any weather information. Yet these two
tables, WEATHER and LOCATION, have a column in common: City. You can therefore put the
information from the two tables together by joining them. You merely use the where clause to tell
Oracle what the two tables have in common:

select WEATHER.City, Condition, Temperature, Latitude,
NorthSouth, Longitude, EastWest

from WEATHER, LOCATION
where WEATHER.City = LOCATION.City;

CITY CONDITION TEMPERATURE LATITUDE N LONGITUDE E
----------- ----------- ----------- -------- - --------- -
ATHENS SUNNY 97 37.58 N 23.43 E
CHICAGO RAIN 66 41.53 N 87.38 W
LIMA RAIN 45 12.03 S 77.03 W
MANCHESTER FOG 66 53.3 N 2.15 W
PARIS CLOUDY 81 48.52 N 2.2 E
SYDNEY SUNNY 69 33.52 S 151.13 E
SPARTA CLOUDY 74 37.05 N 22.27 E

Notice that the only rows in this combined table are those where the same city is in
both tables. The where clause is still executing your logic, as it did earlier in the case of the
NEWSPAPER table. The logic you gave described the relationship between the two tables. It says,
“Select those rows in the WEATHER table and the LOCATION table where the cities are equal.”
If a city is only in one table, it would have nothing to be equal to in the other table. The notation
used in the select statement is TABLE.ColumnName—in this case, WEATHER.City.

The select clause has chosen those columns from the two tables that you’d like to see
displayed; any columns in either table that you did not ask for are simply ignored. If the first
line had simply said

select City, Condition, Temperature, Latitude

then Oracle would not have known to which city you were referring. Oracle would tell you that the
column name City was ambiguous. The correct wording in the select clause is WEATHER.City or
LOCATION.City. In this example, it won’t make a bit of difference which of these alternatives is
used, but you will encounter cases where the choice of identically named columns from two or
more tables will contain very different data.

The where clause also requires the names of the tables to accompany the identical column
name by which the tables are combined: “where weather dot city equals location dot city” (that is,
where the City column in the WEATHER table equals the City column in the LOCATION table).

Consider that the combination of the two tables looks like a single table with seven columns
and seven rows. Everything that you excluded is gone. There is no Humidity column here, even
though it is a part of the WEATHER table. There is no Country column here, even though it is a
part of the LOCATION table. And of the 14 cities in the LOCATION table, only those that are in
the WEATHER table are included in this table. Your where clause didn’t allow the others to be
selected.

A table that is built from columns in one or more tables is sometimes called a projection
table, or a result table.

96 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:96

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: The Basic Parts of Speech in SQL 97

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:97

Creating a View
There is even more here than meets the eye. Not only does this look like a new table, but you can
give it a name and treat it like one. This is called “creating a view.” A view provides a way of hiding
the logic that created the joined table just displayed. It works this way:

create view INVASION AS
select WEATHER.City, Condition, Temperature, Latitude,

NorthSouth, Longitude, EastWest
from WEATHER, LOCATION

where WEATHER.City = LOCATION.City;

View created.

Now you can act as if INVASION were a real table with its own rows and columns. You can
even ask Oracle to describe it to you:

describe INVASION

Name Null? Type
------------------------------- -------- ------------
CITY VARCHAR2(11)
CONDITION VARCHAR2(9)
TEMPERATURE NUMBER
LATITUDE NUMBER
NORTHSOUTH CHAR(1)
LONGITUDE NUMBER
EASTWEST CHAR(1)

You can query it, too (note that you will not have to specify which table the City columns were
from, because that logic is hidden inside the view):

select City, Condition, Temperature, Latitude, NorthSouth,
Longitude, EastWest

from INVASION;

CITY CONDITION TEMPERATURE LATITUDE N LONGITUDE E
----------- ----------- ----------- -------- - --------- -
ATHENS SUNNY 97 37.58 N 23.43 E
CHICAGO RAIN 66 41.53 N 87.38 W
LIMA RAIN 45 12.03 S 77.03 W
MANCHESTER FOG 66 53.3 N 2.15 W
PARIS CLOUDY 81 48.52 N 2.2 E
SYDNEY SUNNY 69 33.52 S 151.13 E
SPARTA CLOUDY 74 37.05 N 22.27 E

There will be some Oracle functions you won’t be able to use on a view that you can use on
a plain table, but they are few and mostly involve modifying rows and indexing tables, which will
be discussed in later chapters. For the most part, a view behaves and can be manipulated just like
any other table.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
Views do not contain any data. Tables contain data. Although you
can create “materialized views” that contain data, they are truly
tables, not views.

Suppose now you realize that you don’t really need information about Chicago or other cities
outside of Greece, so you change the query. Will the following work?

select City, Condition, Temperature, Latitude, NorthSouth,
Longitude, EastWest

from INVASION
where Country = 'GREECE';

SQL*Plus passes back this message from Oracle:

where Country = 'GREECE'
*

ERROR at line 4:
ORA-00904: "COUNTRY": invalid identifier

Why? Because even though Country is a real column in one of the tables behind the view
called INVASION, it was not in the select clause when the view was created. It is as if it does not
exist. So, you must go back to the create view statement and include only the country of Greece
there:

create or replace view INVASION as
select WEATHER.City, Condition, Temperature, Latitude,

NorthSouth, Longitude, EastWest
from WEATHER, LOCATION

where WEATHER.City = LOCATION.City
and Country = 'GREECE';

View created.

Using the create or replace view command allows you to create a new version of a view
without first dropping the old one. This command will make it easier to administer users’
privileges to access the view, as will be described in Chapter 18.

The logic of the where clause has now been expanded to include both joining two tables,
and a single-value test on a column in one of those tables. Now, query Oracle. You’ll get this
response:

select City, Condition, Temperature, Latitude, NorthSouth,
Longitude, EastWest

from INVASION;

CITY CONDITION TEMPERATURE LATITUDE N LONGITUDE E
----------- ----------- ----------- -------- - --------- -
ATHENS SUNNY 97 37.58 N 23.43 E
SPARTA CLOUDY 74 37.05 N 22.27 E

98 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:98

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This allows you to warn the Athenians that the Spartans are likely to appear from the southwest
but will be overheated and tired from their march. With a little trigonometry, you could even make
Oracle calculate how far they will have marched.

Expanding the View
The power of views to hide or even modify data can be used for a variety of useful purposes. Very
complex reports can be built up by the creation of a series of simple views, and specific individuals
or groups can be restricted to seeing only certain pieces of the whole table.

In fact, any qualifications you can put into a query can become part of a view. You could,
for instance, let supervisors looking at a payroll table see only their own salaries and those of the
people working for them, or you could restrict operating divisions in a company to seeing only
their own financial results, even though the table actually contains results for all divisions. Most
importantly, views are not snapshots of the data at a certain point in the past. They are dynamic
and always reflect the data in the underlying tables. The instant data in a table is changed, any
views created with that table change as well.

For example, you may create a view that restricts values based on column values. As shown
here, a query that restricts the LOCATION table on the Country column could be used to limit
the rows that are visible via the view:

create or replace view PERU_LOCATIONS as
select * from LOCATION
where Country = 'PERU';

A user querying PERU_LOCATIONS would not be able to see any rows from any country other
than Peru.

The queries used to define views may also reference pseudo-columns. A pseudo-column is a
“column” that returns a value when it is selected, but is not an actual column in a table. The User
pseudo-column, when selected, will always return the Oracle username that executed the query.
So, if a column in the table contains usernames, those values can be compared against the User
pseudo-column to restrict its rows, as shown in the following listing. In this example, the NAME
table is queried. If the value of its Name column is the same as the name of the user entering the
query, then rows will be returned.

create or replace view RESTRICTED_NAMES as
select * from NAME
where Name = User;

This type of view is very useful when users require access to selected rows in a table. It prevents
them from seeing any rows that do not match their Oracle username.

Views are powerful tools. There will be more to come on the subject of views in Chapter 17.
The where clause can be used to join two tables based on a common column. The resulting

set of data can be turned into a view (with its own name), which can be treated as if it were a
regular table itself. The power of a view is in its ability to limit or change the way data is seen by
a user, even though the underlying tables themselves are not affected.

Chapter 5: The Basic Parts of Speech in SQL 99

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:99

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 5
Blind Folio 5:100

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 6
Blind Folio 6:101

CHAPTER
6

Basic SQL*Plus
Reports and
Commands

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

102 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 6
Blind Folio 6:102

S
QL*Plus is usually thought of as a tool to manipulate data and perform ad hoc queries
against the database; it can also function as an interactive report writer. It uses SQL
to get information from the Oracle database, and it lets you create reports by giving
you easy control over titles, column headings, subtotals and totals, reformatting of
numbers and text, and much more. It also can be used to change the database through

the insert, update, merge, and delete commands in SQL. SQL*Plus can even be used as a code
generator, where a series of commands in SQL*Plus can dynamically build a program and then
execute it.

In most production applications, more-advanced report writers are used—such as Web-based
parameter-driven reports. SQL*Plus is most commonly used for simple queries and printed reports.
Getting SQL*Plus to format information in reports according to your tastes and needs requires only
a handful of commands—keywords that instruct SQL*Plus how to behave. These are listed in
Table 6-1. Detailed explanations, examples, and additional features of each of these commands
are given in the Alphabetical Reference section of this book.

In this chapter, you will see a basic report that was written using SQL*Plus, along with an
explanation of the features used to create it. If building a report seems a bit daunting at first, don’t
worry. Once you try the steps, you’ll find them simple to understand, and they will soon become
familiar.

You can write SQL*Plus reports while working interactively with SQL*Plus—that is, you can
type commands about page headings, column titles, formatting, breaks, totals, and so on, and
then execute a SQL query, and SQL*Plus will immediately produce the report formatted to your
specifications. For quick answers to simple questions that aren’t likely to recur, this is a fine approach.
More common, however, are complex reports that need to be produced periodically and that
you’ll want to print rather than just view on the screen. Unfortunately, when you quit SQL*Plus, it
promptly forgets every instruction you’ve given it. If you were restricted to using SQL*Plus only in
this interactive way, then running the same report at a later time would require typing everything
all over again.

The alternative is very straightforward. You simply type the commands, line by line, into a file.
SQL*Plus can then read this file as if it were a script, and execute your commands just as if you
were typing them. In effect, you create a report program, but you do it without a programmer or
a compiler. You create this file using any of the popular editor programs available, or even (given
certain restrictions) a word processor.

The editor is not a part of Oracle. Editors come in hundreds of varieties, and every company or
person seems to have a favorite. Oracle realized this and decided to let you choose which editor
program to use, rather than packaging a program with Oracle and forcing you to use it. When you’re
ready to use your editor program, you suspend SQL*Plus, jump over to the editor program, create
or change your SQL*Plus report program (also called a start file), and then jump back to SQL*Plus,
right at the spot you left, and run the report (see Figure 6-1).

SQL*Plus also has a built-in editor of its own, sometimes called the command line editor,
that allows you to quickly modify a SQL query without leaving SQL*Plus. The editor’s use will
be covered later in this chapter.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 6: Basic SQL*Plus Reports and Commands 103

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 6
Blind Folio 6:103

Command Definition

remark Tells SQL*Plus that the words to follow are to be treated as comments,
not instructions.

set headsep The heading separator identifies the single character that tells SQL*Plus
to split a title into two or more lines.

ttitle Sets the top title for each page of a report.

btitle Sets the bottom title for each page of a report.

column Gives SQL*Plus a variety of instructions on the heading, format, and
treatment of a column.

break on Tells SQL*Plus where to put spaces between sections of a report, or
where to break for subtotals and totals.

compute sum Makes SQL*Plus calculate subtotals.

set linesize Sets the maximum number of characters allowed on any line of the report.

set pagesize Sets the maximum number of lines per page.

set newpage Sets the number of blank lines between pages.

spool Moves a report you would normally see displayed on the screen into
a file, so you can print it.

/* */ Marks the beginning and ending of a comment within a SQL entry.
Similar to remark.

-- Marks the beginning of an inline comment within a SQL entry. Treats
everything from the mark to the end of the line as a comment. Similar
to remark.

set pause Makes the screen display stop between pages of display.

save Saves the SQL query you’re creating into the file of your choice.

host Sends any command to the host operating system.

start or @ Tells SQL*Plus to follow (execute) the instructions you’ve saved in a file.

edit Pops you out of SQL*Plus and into an editor of your choice.

define _editor Tells SQL*Plus the name of the editor of your choice.

exit or quit Terminates SQL*Plus.

TABLE 6-1. Basic SQL*Plus Commands

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

104 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 6
Blind Folio 6:104

Building a Simple Report
Figure 6-2 provides a quick-and-easy report showing the dates books were checked out and
returned during a three-month time period.

remark
The first line of Figure 6-3, at Circle 1, is documentation about the start file itself. Documentation
lines begin with

rem

which stands for remark. SQL*Plus ignores anything on a line that begins with rem, thus allowing
you to add comments, documentation, and explanations to any start file you create. It is always a
good idea to place remarks at the top of a start file, giving the filename, its creator and date of
creation, the name of anyone who has modified it, the date of modification, what was modified,
and an explanation of the purpose of the file. This will prove invaluable later on, as you develop
more complex reports or when dozens of reports begin to accumulate.

FIGURE 6-1. Report-creation process

1

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 6: Basic SQL*Plus Reports and Commands 105

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 6
Blind Folio 6:105

Thu Apr 04 page 1
Checkout Log for 1/1/02-3/31/02

Days
NAME TITLE CHECKOUTD RETURNEDD Out
-------------------- -------------------- --------- --------- -------
DORAH TALBOT EITHER/OR 02-JAN-02 10-JAN-02 8.00

POLAR EXPRESS 01-FEB-02 15-FEB-02 14.00
GOOD DOG, CARL 01-FEB-02 15-FEB-02 14.00
MY LEDGER 15-FEB-02 03-MAR-02 16.00

******************** -------
avg 13.00

EMILY TALBOT ANNE OF GREEN GABLES 02-JAN-02 20-JAN-02 18.00
MIDNIGHT MAGIC 20-JAN-02 03-FEB-02 14.00
HARRY POTTER AND THE 03-FEB-02 14-FEB-02 11.00
GOBLET OF FIRE

******************** -------
avg 14.33

FRED FULLER JOHN ADAMS 01-FEB-02 01-MAR-02 28.00
TRUMAN 01-MAR-02 20-MAR-02 19.00

******************** -------
avg 23.50

GERHARDT KENTGEN WONDERFUL LIFE 02-JAN-02 02-FEB-02 31.00
MIDNIGHT MAGIC 05-FEB-02 10-FEB-02 5.00
THE MISMEASURE OF 13-FEB-02 05-MAR-02 20.00
MAN

******************** -------
avg 18.67

JED HOPKINS INNUMERACY 01-JAN-02 22-JAN-02 21.00
TO KILL A 15-FEB-02 01-MAR-02 14.00
MOCKINGBIRD

******************** -------
avg 17.50

PAT LAVAY THE SHIPPING NEWS 02-JAN-02 12-JAN-02 10.00
THE MISMEASURE OF 12-JAN-02 12-FEB-02 31.00
MAN

******************** -------
avg 20.50

ROLAND BRANDT THE SHIPPING NEWS 12-JAN-02 12-MAR-02 59.00
THE DISCOVERERS 12-JAN-02 01-MAR-02 48.00
WEST WITH THE NIGHT 12-JAN-02 01-MAR-02 48.00

******************** -------
avg 51.67

avg 22.58

from the Bookshelf

FIGURE 6-2. Bookshelf checkout report output

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

106 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 6
Blind Folio 6:106

rem Bookshelf activity report

set headsep !

ttitle 'Checkout Log for 1/1/02-3/31/02'
btitle 'from the Bookshelf'

column Name format a20
column Title format a20 word_wrapped
column DaysOut format 999.99
column DaysOut heading 'Days!Out'

break on Name skip 1 on report
compute avg of DaysOut on Name
compute avg of DaysOut on report

set linesize 80
set pagesize 60
set newpage 0
set feedback off

spool activity.lst

select Name, Title, CheckoutDate, ReturnedDate,
ReturnedDate-CheckoutDate as DaysOut /*Count Days*/

from BOOKSHELF_CHECKOUT
order by Name, CheckoutDate;

spool off

FIGURE 6-3. The activity.sql file

1

2

3

4
5

6
7

8
9

10

11

12

SQL*Plus and SQL
The select statement toward the bottom of Figure 6-3, beginning with the word “select” and
ending with the semicolon (;), is Structured Query Language—the language you use to talk
to the Oracle database. Every other command on the page is a SQL*Plus command, used to
format the results of a SQL query into a report.

The SQL*Plus start command causes SQL*Plus to read the file activity.sql and execute
the instructions you’ve placed in it. Reviewing this start file will show you the basic SQL*Plus
instructions you can use to produce reports or change the way SQL*Plus interacts with you.
Depending on your experience, this may seem formidable or elementary. It is made up of
a series of simple instructions to SQL*Plus.

Figure 6-3 shows the SQL*Plus start file that produced this report (in this case, named
activity.sql). To run this report program in SQL*Plus, type the following:

start activity.sql

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

set headsep
The punctuation that follows set headsep (for heading separator) at Circle 2 in Figure 6-3 tells
SQL*Plus how you will indicate where you want to break a page title or a column heading that
runs longer than one line. When you first activate SQL*Plus, the default headsep character is the
vertical bar (|), but if you want to use vertical bars in your titles, you may find it simpler to use
a different headsep character.

set headsep !

CAUTION
Choosing a character that may otherwise appear in a title or column
heading will cause unexpected splitting.

ttitle and btitle
The line

ttitle 'Checkout Log for 1/1/02-3/31/02'

at Circle 3 in Figure 6-3 instructs SQL*Plus to put this “top title” at the top of each page of the
report. The title you choose must be enclosed in single quotation marks. The line

btitle 'from the Bookshelf'

works similarly to ttitle, except that it goes at the bottom of each page (as the b indicates), and it
also must be in single quotation marks. Because single quotes are used to enclose the entire title,
an apostrophe (the same character on your keyboard) would trick SQL*Plus into believing the
title had ended.

NOTE
Put two single quotation marks right next to each other when you
want to print an apostrophe or a single quotation mark. Because both
SQL and SQL*Plus rely on single quotation marks to enclose strings of
characters, this technique is used throughout SQL and SQL*Plus
whenever an apostrophe needs to be printed or displayed.

When using ttitle this way, SQL*Plus will always center the title you choose based on the
linesize you set (linesize will be discussed later in the chapter), and it will always place the weekday,
month, and the day of the month on which the report was run in the upper-left corner and the
page number in the upper-right corner.

You can use the repheader and repfooter commands to create headers and footers for reports.
See the Alphabetical Reference section of this book for descriptions of repheader and repfooter.

Chapter 6: Basic SQL*Plus Reports and Commands 107

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 6
Blind Folio 6:107

2

3

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

108 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 6
Blind Folio 6:108

column
column allows you to change the heading and format of any column in a select statement. Look
at the report shown earlier in Figure 6-2. The fifth column, Days Out, is not a column in the
database, and it’s called DaysOut in the query shown in Figure 6-3. The line

column DaysOut heading 'Days!Out'

relabels the column and gives it a new heading. This heading breaks into two lines because it has
the headsep character (!) embedded in it. The line

column Name format a20

at Circle 4 sets the width for the Name column’s display at 20. The a tells SQL*Plus that this is an
alphabetic column, as opposed to a numeric column. The width can be set to virtually any value,
irrespective of how the column is defined in the database.

The Name column is defined as 25 characters wide, so it’s possible that some names will
have more than 20 characters. If you did nothing else in defining this column on the report, any
name more than 20 characters long would wrap onto the next line. Looking at Figure 6-2 again,
you can see that four of the titles have wrapped; the Title column is defined as VARCHAR2(100)
but is formatted as a20 (see Circle 5).

Instead of using the word_wrapped format, you could choose truncated, eliminating the display
of any characters that exceed the specified format length for the column.

Circle 6 in Figure 6-3 shows an example of formatting a number:

column DaysOut format 999.99

This defines a column with room for five digits and a decimal point. If you count the spaces in
the report for the DaysOut column, you’ll see seven spaces. Just looking at the column command
might lead you to believe the column would be six spaces wide, but this would leave no room for a
minus sign if the number were negative, so an extra space on the left is always provided for numbers.

Circle 7 in Figure 6-3 refers to a column that didn’t appear in the table when we had SQL*Plus
describe it:

column DaysOut heading 'Days!Out'

What is DaysOut? Look at the select statement at the bottom of Figure 6-3. DaysOut appears
in the following line:

ReturnedDate-CheckoutDate as DaysOut /*Count Days*/

This tells SQL to perform date arithmetic—count the number of days between two dates—and give
the computation a simpler column name. As a consequence, SQL*Plus sees a column named
DaysOut, and all its formatting and other commands will act as if it were a real column in the
table. The column command for DaysOut is an example. “DaysOut” is referred to as a column
alias—another name to use when referring to a column.

4

5

6

7

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:44:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 6: Basic SQL*Plus Reports and Commands 109

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 6
Blind Folio 6:109

break on
Look at Circle 8 in Figure 6-3. Note on the report in Figure 6-2 how the checkout records for each
name are grouped together. This effect was produced by the line

break on Name skip 1 on report

as well as by the line

order by Name, CheckoutDate;

in the select statement near the end of the start file.
SQL*Plus looks at each row as it is brought back from Oracle and keeps track of the value

in Name. For the first four rows, this value is DORAH TALBOT, so SQL*Plus displays the rows it
has gotten. On the fifth row, Name changes to EMILY TALBOT. SQL*Plus remembers your break
instructions, which tell it that when Name changes, it should break away from the normal display
of row after row, and skip one line. You’ll notice one line between the Name sections on the report.
Unless the names were collected together because of the order by clause, it wouldn’t make sense
for break on to skip one line every time Name changed. This is why the break on command and
the order by clause must be coordinated.

You also may notice that the name DORAH TALBOT is only printed on the first line of its section,
as are the rest of the names. This is done to eliminate the duplicate printing of each of these names
for every row in each section, which is visually unattractive. If you want, you can force SQL*Plus
to duplicate the name on each row of its section by altering the break on command to read

break on Name duplicate skip 1

The report output in Figure 6-2 shows an average for DaysOut for the entire report. To be able
to get a grand total for a report, add an additional break using the break on report command. Be
careful when adding breaks because they all need to be created by a single command; entering
two consecutive break on commands will cause the first command’s instructions to be replaced
by the second command. See Circle 8 for the break on command used for the report:

break on Name skip 1 on report

compute avg
The averages calculated for each section on the report were produced by the compute avg command
at Circle 9. This command always works in conjunction with the break on command, and the totals
computed will always be for the section specified by break on. It is probably wise to consider
these two related commands as a single unit:

break on Name skip 1 on report
compute avg of DaysOut on Name
compute avg of DaysOut on report

In other words, this tells SQL*Plus to compute the average of the DaysOut for each Name.
SQL*Plus will do this first for DORAH TALBOT, then for each successive name. Every time SQL*Plus
sees a new name, it calculates and prints an average for the previous DaysOut values. compute avg

8

9

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

also puts a row of asterisks below the column that break on is using, and it prints “avg” underneath.
For reports with many columns that need to be added, a separate compute avg (or compute sum
if you’re calculating sums) statement is used for each calculation. It also is possible to have several
different kinds of breaks on a large report (for Name, Title, and dates, for example), along with
coordinated compute avg commands.

You can use a break on command without a compute sum command, such as for organizing
your report into sections where no totals are needed (addresses with a break on City would be an
example), but the reverse is not true.

NOTE
Every compute avg command must have a break on command to
guide it, and the on portion of both commands must match (such as
on Name in the preceding example: break on Name skip 1 on report
and compute avg of DaysOut on Name).

The following are the basic rules:

■ Every break on must have a related order by.

■ Every compute avg must have a related break on.

This makes sense, of course, but it’s easy to forget one of the pieces. In addition to compute
avg, you can also use compute sum, compute count, compute max, or any other of Oracle’s
grouping functions on the set of records.

set linesize
The four commands at Circle 10 in Figure 6-3 control the gross dimensions of your report. The
command set linesize governs the maximum number of characters that will appear on a single
line. For letter-size paper, this number is usually around 70 or 80, unless your printer uses a very
compressed (narrow) character font.

If you put more columns of information in your SQL query than will fit into the linesize you’ve
allotted, SQL*Plus will wrap the additional columns down onto the next line and stack columns
under each other. You actually can use this to very good effect when a lot of data needs to be
presented.

SQL*Plus also uses linesize to determine where to center the ttitle, and where to place the
date and page number. Both the date and page number appear on the top line, and the distance
between the first letter of the date and the last digit of the page number will always equal the
linesize you set.

set pagesize
The set pagesize command sets the total number of lines SQL*Plus will place on each page,
including the ttitle, btitle, column headings, and any blank lines it prints. On letter- and computer-
size paper, this is usually 66 (six lines per inch times 11 inches [U.S.]). set pagesize is coordinated
with set newpage.

As of Oracle Database 10g, the default pagesize is 14; in prior versions, it is 24.

110 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 6
Blind Folio 6:110

10

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 6: Basic SQL*Plus Reports and Commands 111

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 6
Blind Folio 6:111

set newpage
A better name for set newpage might have been “set blank lines,” because what it really does is
print blank lines before the top line (date, page number) of each page in your report. This is useful
both for adjusting the position of reports coming out on single pages on a laser printer and for
skipping over the perforations between the pages of continuous-form computer paper.

NOTE
set pagesize does not set the size of the body of the report (the
number of printed lines from the date down to the btitle); instead,
it sets the total length of the page, measured in lines.

Therefore, if you type

set pagesize 66
set newpage 9

SQL*Plus produces a report starting with nine blank lines, followed by 57 lines of information
(counting from the date down to the btitle). If you increase the size of newpage, SQL*Plus puts
fewer rows of information on each page, but produces more pages altogether.

That’s understandable, you say, but what has been done at Circle 10 on Figure 6-3?

set pagesize 60
set newpage 0

This is a strange size for a report page. Is SQL*Plus to put zero blank lines between pages? No.
Instead, the 0 after newpage switches on a special property: set newpage 0 produces a top-of-
form character (usually a hex 13) just before the date on each page. Most modern printers respond
to this by moving immediately to the top of the next page, where the printing of the report will
begin. The combination of set pagesize 60 and set newpage 0 produces a report whose body of
information is exactly 60 lines long and which has a top-of-form character at the beginning of each
page. This is a cleaner and simpler way to control page printing than jockeying around with blank
lines and lines per page. You can also use the set newpage none command, which will result in
no blank lines and no form feeds between report pages.

spool
In the early days of computers, most file storage was done on spools of either magnetic wire or
tape. Writing information into a file and spooling a file were virtually synonymous. The term has
survived, and spooling now generally refers to any process of moving information from one place
to another. In SQL*Plus,

spool activity.lst

tells SQL to take all the output from SQL*Plus and write it to the file named activity.lst. Once
you’ve told SQL*Plus to spool, it continues to do so until you tell it to stop, which you do by
inputting the following:

spool off

11

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This means, for instance, that you could type

spool work.fil

and then type a SQL query, such as

select Feature, Section, Page from NEWSPAPER
where Section = 'F';

FEATURE S PAGE
--------------- - ----
Births F 7
Classified F 8
Obituaries F 6
Doctor Is In F 6

or a series of SQL*Plus commands, such as

set pagesize 60
column Section heading 'My Favorites'

or anything else. Whatever prompts SQL*Plus produces, whatever error messages you get, whatever
appears on the computer screen while spooling—it all ends up in the file work.fil. Spooling doesn’t
discriminate. It records everything that happens from the instant you use the spool command until
you use spool off, which brings us back to the report at Circle 11 of Figure 6-3:

spool activity.lst

This phrase is carefully placed as the command just before the select statement, and spool off
immediately follows. Had spool activity.lst appeared any earlier, the SQL*Plus commands you
were issuing would have ended up on the first page of your report file. Instead, they go into the
file activity.lst, which is what you see in Figure 6-2: the results of the SQL query, formatted
according to your instructions, and nothing more. You are now free to print the file, confident
that a clean report will show up on your printer.

This set of commands will print the SQL query on the first page of the output, followed by the
data starting on the second page. To not show the SQL query with the output, you can also change
the order of commands: Type in the SQL query but without the concluding semicolon. Press ENTER
twice, and the command will still be in SQL*Plus’s buffer, unexecuted. You can then start spooling
and execute the command:

(SQL command typed here)

spool activity.lst
/
spool off

As of Oracle Database 10g, you can append data to existing spool files. The default is (as in
prior versions) to create a new output file. You can now use the append or replace option of the

112 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 6
Blind Folio 6:112

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

spool command to either append data to an existing file that matches the name you give, or replace
that existing file with your new output, respectively.

/* */
Circle 12 of Figure 6-3 shows how a comment can be embedded in a SQL statement. This is different
in method and use from the remark statement discussed earlier. remark (or rem) must appear at
the beginning of a line, and it works only for the single line on which it appears. Furthermore, a
multiple-line SQL statement is not permitted to have a remark within it. For example, the following
is wrong:

select Feature, Section, Page
rem this is just a comment
from NEWSPAPER
where Section = 'F';

This will not work, and you’ll get an error message. However, you can embed remarks in SQL
following the method shown at Circle 12, or like this:

select Feature, Section, Page
/* this is just a comment */
from NEWSPAPER

where Section = 'F';

The secret lies in knowing that /* tells SQL*Plus a comment has begun. Everything it sees from
that point forward, even if it continues for many words and lines, is regarded as a comment, until
SQL*Plus sees */, which tells it that the comment has ended. You can also use the characters – – to
begin a comment. The end of the line ends the comment. This kind of comment works just like a
single-line version of /* */, except that you use – – (two dashes) instead.

Some Clarification on Column Headings
It’s possible that the difference between the renaming that occurs in

ReturnedDate-CheckoutDate as DaysOut

and the new heading given the column Item in

column DaysOut heading 'Days!Out'

is not quite clear, particularly if you look at this command:

compute avg of DaysOut on Name

SQL*Plus commands are aware only of columns that actually appear in the select statement.
Every column command refers to a column in the select statement. Both break on and compute refer
only to columns in the select statement. The only reason a column command or a compute command
is aware of the column DaysOut is that it got its name in the select statement itself. The renaming
of “ReturnedDate-CheckoutDate” to “DaysOut” is something done by SQL, not by SQL*Plus.

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 6
Blind Folio 6:113

Chapter 6: Basic SQL*Plus Reports and Commands 113

12

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Other Features
It’s not terribly difficult to look at a start file and the report it produces and see how all the formatting
and computation was accomplished. It’s possible to begin by creating the start file, typing into it
each of the commands you expect to need, and then running it in SQL*Plus to see if it is correct. But
when you’re creating reports for the first time, it is often much simpler to experiment interactively
with SQL*Plus, adjusting column formats, the SQL query, the titles, and the totals, until what you
really want begins to take shape.

Command Line Editor
When you type a SQL statement, SQL*Plus remembers each line as you enter it, storing it in what
is called the SQL buffer (a fancy name for a computer scratchpad where your SQL statements are
kept). Suppose you’ve entered this query:

select Featuer, Section, Page
from NEWSPAPER
where Section = 'F';

SQL*Plus responds with the following:

select Featuer, Section, Page
*

ERROR at line 1:
ORA-00904: "FEATUER": invalid identifier

You now realize you’ve misspelled “Feature.” You do not have to retype the entire query. The
command line editor is already present and waiting for instructions. First, ask it to list your query:

list

SQL*Plus immediately responds with this:

1 select Featuer, Section, Page
2 from NEWSPAPER
3* where Section = 'F'

Notice that SQL*Plus shows all three lines and numbers them. It also places an asterisk next to
line 3, which means it is the line your editing commands are able to affect. But you want to change
line 1, so you type, and SQL*Plus lists, the following:

list 1

1* select Featuer, Section, Page

Line 1 is displayed and is now the current line. You can change it by typing this:

change /Featuer/Feature

1* select Feature, Section, Page

114 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 6
Blind Folio 6:114

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can check the whole query again with this:

list

1 select Feature, Section, Page
2 from NEWSPAPER
3* where Section = 'F'

If you believe this is correct, enter a single slash after the prompt. This slash has nothing to do
with the change command or the editor. Instead, it tells SQL*Plus to execute the SQL in the buffer:

/

FEATURE S PAGE
--------------- - ----
Births F 7
Classified F 8
Obituaries F 6
Doctor Is In F 6

The change command requires that you mark the start and end of the text to be changed with
a slash (/) or some other character. The line

change $Featuer$Feature

would have worked just as well. SQL*Plus looks at the first character after the word “change” and
assumes that is the character you’ve chosen to use to mark the start and end of the incorrect text
(these markers are usually called delimiters). You can also delete the current line, as shown here:

list

1 select Feature, Section, Page
2 from NEWSPAPER
3* where Section = 'F'

del

list

1 select Feature, Section, Page
2 from NEWSPAPER

del will delete just what is on the current line. You can pass the del command a range of line
numbers, to delete multiple lines at once, by specifying the first and last line numbers for the range
of lines to delete. To delete lines 3 through 7, use del 3 7. Note this has a space before the number
of the first line to delete (3) and another space before the number of the last line to delete (7). If you
leave out the space between the 3 and the 7, SQL*Plus will try to delete line 37. To delete from
line 2 to the end of the buffer, use del 2 LAST. You can use the same kind of syntax with the list
command; for example, list 3 7 will list the lines 3 through 7. See the entries for the del and list
commands in the Alphabetical Reference for the full syntax options.

Chapter 6: Basic SQL*Plus Reports and Commands 115

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 6
Blind Folio 6:115

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

116 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 6
Blind Folio 6:116

The word “delete” (spelled out) will erase all the lines and put the word “delete” as line 1.
This will only cause problems, so avoid typing the whole word “delete.” If your goal is to clear
out the select statement completely, type this:

clear buffer

If you’d like to append something to the current line, you can use the append command:

list 1

1* select Feature, Section, Page

append "WhereItIs"

1* select Feature, Section, Page "WhereItIs"

append places its text right up against the end of the current line, with no spaces in between.
To put a space in, as was done here, type two spaces between the word append and the text.

You may also input a whole new line after the current line, as shown here:

list

1 select Feature, Section, Page "WhereItIs"
2* from NEWSPAPER

input where Section = 'A'

list

1 select Feature, Section, Page "WhereItIs"
2 from NEWSPAPER
3* where Section = 'A'

Then you can set the column heading for the WhereItIs column:

column WhereItIs heading "Where It Is"

And then you can run the query:

/

FEATURE S Where It Is
--------------- - -----------
National News A 1
Editorials A 12

To review, the command line editor can list the SQL statement you’ve typed, change or delete
the current line (marked by the asterisk), append something onto the end of the current line, or
input an entire line after the current line. Once your corrections are made, the SQL statement will
execute if you type a slash at the SQL> prompt. Each of these commands can be abbreviated to
its own first letter, except del, which must be exactly the three letters del.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The command line editor can edit only your SQL statement. It cannot edit SQL*Plus commands.
If you’ve typed column Name format a18, for instance, and want to change it to column Name
format a20, you must retype the whole thing (this is in the SQL*Plus interactive mode—if you’ve
got the commands in a file, you obviously can change them with your own editor). Also note that
in interactive mode, once you’ve started to type a SQL statement, you must complete it before you
can enter any additional SQL*Plus commands, such as column formats or ttitle. As soon as SQL*Plus
sees the word select, it assumes everything to follow is part of the select statement until it sees
either a semicolon (;) at the end of the last SQL statement line or a slash (/) at the beginning of the
line after the last SQL statement line.

Either of these is correct:

select * from LEDGER;

select * from LEDGER
/

This, however, is not:

select * from LEDGER/

set pause
During the development of a new report or when using SQL*Plus for quick queries of the database,
it’s usually helpful to set the linesize at 79 or 80, the pagesize at 24 (the default in Oracle Database 10g
is 14), and newpage at 1. You accompany this with two related commands, as shown here:

set pause 'More. . .'
set pause on

The effect of this combination is to produce exactly one full screen of information for each page
of the report that is produced, and to pause at each page for viewing (“More. . .” will appear in the
lower-left corner) until you press ENTER. After the various column headings and titles are worked
out, the pagesize can be readjusted for a page of paper, and the pause eliminated with this:

set pause off

save
If the changes you want to make to your SQL statement are extensive, or if you simply want to
work in your own editor, save the SQL you’ve created so far, in interactive mode, by writing the
SQL to a file, like this:

save fred.sql

SQL*Plus responds with

Created file fred.sql

Your SQL (but not any column, ttitle, or other SQL*Plus commands) is now in a file named
fred.sql (or a name of your choice), which you can edit using your own editor.

Chapter 6: Basic SQL*Plus Reports and Commands 117

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 6
Blind Folio 6:117

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

118 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 6
Blind Folio 6:118

If the file already exists, you must use the replace option (abbreviated rep) of the save command
to save the new query in a file with that name. For this example, the syntax would be

save fred.sql rep

Alternatively, you could append to the fred.sql file with the command save fred.sql app.

store
You can use the store command to save your current SQL*Plus environment settings to a file.
The following will create a file called my_settings.sql and will store the settings in that file:

store set my_settings.sql create

If the my_settings.sql file already exists, you can use the replace option instead of create,
replacing the old file with the new settings. You could also use the append option to append the
new settings to an existing file.

Editing
Everyone has a favorite editor. Word processing programs can be used with SQL*Plus, but only if
you save the files created in them in ASCII format (see your word processor manual for details on
how to do this). Editors are just programs themselves. They are normally invoked simply by typing
their name at the operating system prompt. On UNIX, it usually looks something like this:

> vi fred.sql

In this example, vi is your editor’s name, and fred.sql represents the file you want to edit (the
start file described previously was used here only as an example—you would enter the real name
of whatever file you want to edit). Other kinds of computers won’t necessarily have the > prompt,
but they will have something equivalent. If you can invoke an editor this way on your computer,
it is nearly certain you can do the same from within SQL*Plus, except that you don’t type the name
of your editor, but rather the word edit:

SQL> edit fred.sql

You should first tell SQL*Plus your editor’s name. You do this while in SQL*Plus by defining
the editor, like this:

define _editor = "vi"

(That’s an underscore before the e in editor.) SQL*Plus will then remember the name of your
editor (until you quit SQL*Plus) and allow you to use it anytime you want. See the sidebar “Using
login.sql to Define the Editor” for directions on making this happen automatically.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

host
In the unlikely event that none of the editing commands described in the preceding section work,
but you do have an editor you’d like to use, you can invoke it by typing this:

host vi fred.sql

host tells SQL*Plus that this is a command to simply hand back to the operating system for execution.
It’s the equivalent of typing vi fred.sql at the operating system prompt. Incidentally, this same host
command can be used to execute almost any operating system command from within SQL*Plus,
including dir, copy, move, erase, cls, and others.

Chapter 6: Basic SQL*Plus Reports and Commands 119

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 6
Blind Folio 6:119

Using login.sql to Define the Editor
If you’d like SQL*Plus to define your editor automatically, put the define _editor command
in a file named login.sql. This is a special filename that SQL*Plus always looks for whenever
it starts up. If it finds login.sql, it executes any commands in the file as if you had entered
them by hand. It looks first at the directory you are in when you type SQLPLUS. If it doesn’t
find login.sql there, it then looks in the home directory for Oracle. If it doesn’t find login.sql
there, it stops looking.

You can put virtually any command in login.sql that you can use in SQL*Plus, including
both SQL*Plus commands and SQL statements; all of them will be executed before SQL*Plus
gives you the SQL prompt. This can be a convenient way to set up your own individual
SQL*Plus environment, with all the basic layouts the way you prefer them. Here’s an example
of a typical login.sql file:

prompt Login.sql loaded.
set feedback off
set sqlprompt 'What now, boss? '
set sqlnumber off
set numwidth 5
set pagesize 24
set linesize 79
define _editor="vi"

As of Oracle Database 10g, Oracle provides three new predefined environment
variables: _DATE, _PRIVILEGE (‘AS SYSDBA’, ‘AS SYSOPER’, or blank), and _USER (same
value as show user returns).

Another file, named glogin.sql, is used to establish default SQL*Plus settings for all users
of a database. This file, usually stored in the administrative directory for SQL*Plus, is useful
in enforcing column and environment settings for multiple users.

The meaning of each of these commands can be found in the Alphabetical Reference
section of this book.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Adding SQL*Plus Commands
Once you’ve saved a SQL statement into a file, such as fred.sql, you can add to the file any
SQL*Plus commands you want. Essentially, you can build this file in a similar fashion to activity.sql
in Figure 6-3. When you’ve finished working on it, you can exit your editor and be returned to
SQL*Plus.

start
Once you are back in SQL*Plus, test your editing work by executing the file you’ve just edited:

start fred.sql

All the SQL*Plus and SQL commands in that file will execute, line by line, just as if you’d
entered each one of them by hand. If you’ve included a spool and a spool off command in the
file, you can use your editor to view the results of your work. This is just what was shown in
Figure 6-2—the product of starting activity.sql and spooling its results into activity.lst.

To develop a report, use steps like these, in cycles:

1. Use SQL*Plus to build a SQL query interactively. When it appears close to being satisfactory,
save it under a name such as test.sql. (The extension .sql is usually reserved for start files,
scripts that will execute to produce a report.)

2. Edit the file test.sql using a favorite editor. Add column, break, compute, set, and spool
commands to the file. You usually spool to a file with the extension .lst, such as test.lst.
Exit the editor.

3. Back in SQL*Plus, the file test.sql is started. Its results fly past on the screen, but also
go into the file test.lst. The editor examines this file.

4. Incorporate any necessary changes into test.sql and run it again.

5. Continue this process until the report is correct and polished.

Checking the SQL*Plus Environment
You saw earlier that the command line editor can’t change SQL*Plus commands, because it can
affect only SQL statements—those lines stored in the SQL buffer. You also saw that you can save
SQL statements and store environment settings into files, where they can be modified using your
own editor.

If you’d like to check how a particular column is defined, type

column DaysOut

without anything following the column name. SQL*Plus will then list all the instructions you’ve
given about that column, as shown here:

COLUMN DaysOut ON
HEADING 'Days!Out' headsep '!'
FORMAT 999.99

120 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 6
Blind Folio 6:120

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If you type just the word column, without any column name following it, then all the columns
will be listed. You will see all the columns Oracle sets up by default, plus the ones that you’ve
defined:

COLUMN Title ON
FORMAT a20
word_wrap

COLUMN DaysOut ON
HEADING 'Days!Out' headsep '!'
FORMAT 999.99

COLUMN Name ON
FORMAT a20

ttitle, btitle, break, and compute are displayed simply by typing their names, with nothing
following. SQL*Plus answers back immediately with the current definitions. The first line in each
of the next examples is what you type; the following lines show SQL*Plus’s replies:

ttitle
ttitle ON and is the following 31 characters:
Checkout Log for 1/1/02-3/31/02

btitle
btitle ON and is the following 18 characters:
from the Bookshelf

break
break on report nodup

on Name skip 1 nodup

compute
COMPUTE avg LABEL 'avg' OF DaysOut ON Name
COMPUTE avg LABEL 'avg' OF DaysOut ON report

Looking at those settings (also called parameters) that follow the set command requires the use
of the word show:

show headsep
headsep "!" (hex 21)

show linesize
linesize 80

show pagesize
pagesize 60

show newpage
newpage 0

Chapter 6: Basic SQL*Plus Reports and Commands 121

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 6
Blind Folio 6:121

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

See the Alphabetical Reference section of this book under set and show for a complete list of
parameters.

The ttitle and btitle settings can be disabled by using the btitle off and ttitle off commands. The
following listing shows these commands (note that SQL*Plus does not reply to the commands):

ttitle off

btitle off

The settings for columns, breaks, and computes can be disabled via the clear columns, clear
breaks, and clear computes commands. The first line in each example in the following listing is
what you type; the lines that follow show how SQL*Plus replies:

clear columns
columns cleared

clear breaks
breaks cleared

clear computes
computes cleared

Building Blocks
This has been a fairly dense chapter, particularly if SQL*Plus is new to you; yet on reflection, you’ll
probably agree that what was introduced here is not really difficult. If Figure 6-3 looked daunting
when you began the chapter, look at it again now. Is there any line on it that you don’t understand,
or don’t have a sense for what is being done and why? You could, if you wanted, simply copy this
file (activity.sql) into another file with a different name and then begin to modify it to suit your own
tastes and to query against your own tables. The structure of any reports you produce will, after all,
be very similar.

There is a lot going on in activity.sql, but it is made up of simple building blocks. This will be
the approach used throughout the book. Oracle provides building blocks, and lots of them, but
each separate block is understandable and useful.

In the previous chapters, you learned how to select data out of the database, choosing certain
columns and ignoring others, choosing certain rows based on logical restrictions you set up, and
combining two tables to give you information not available from either one on its own.

In this chapter, you learned how to give orders that SQL*Plus can follow in formatting and
producing the pages and headings of polished reports.

In the next several chapters, you’ll change and format your data, row by row. Your expertise
and confidence should grow chapter by chapter. By the end of Part II of this book, you should
be able to produce very sophisticated reports in short order, to the considerable benefit of your
company and yourself.

122 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 6
Blind Folio 6:122

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 7
Blind Folio 7:123

CHAPTER
7

Getting Text
Information and

Changing It

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

T
his chapter introduces string functions, which are software tools that allow you to
manipulate a string of letters or other characters. To quickly reference individual
functions, look them up by name in the Alphabetical Reference section of this
book. This chapter focuses on the manipulation of text strings; to perform word
searches (including word stem expansions and fuzzy matches), you should use

Oracle Text, as described in Chapter 25.
Functions in Oracle work in one of two ways. Some functions create new objects from old

ones; they produce a result that is a modification of the original information, such as turning
lowercase characters into uppercase. Other functions produce a result that tells you something
about the information, such as how many characters are in a word or sentence.

NOTE
If you are using PL/SQL, you can create your own functions with the
create function statement. See Part IV for details.

Datatypes
Just as people can be classified into different types based on certain characteristics (shy, outgoing,
smart, silly, and so forth), different kinds of data can be classified into datatypes based on certain
characteristics.

Datatypes in Oracle include NUMBER, CHAR (short for CHARACTER), DATE, VARCHAR2,
LONG, RAW, LONG RAW, BLOB, CLOB, and BFILE. The first several are probably obvious.
The rest are special datatypes that you’ll encounter later. A full explanation of each of these can
be found by name or under “Datatypes” in the Alphabetical Reference section of this book. Each
datatype is covered in detail in the chapters ahead. As with people, some of the “types” overlap,
and some are fairly rare.

If the information is of the character (VARCHAR2 or CHAR) type—a mixture of letters,
punctuation marks, numbers, and spaces (also called alphanumeric)—you’ll need string
functions to modify or inform you about it. Oracle’s SQL provides quite a few such tools.

What Is a String?
A string is a simple concept: a bunch of things in a line, such as houses, popcorn, pearls, numbers,
or characters in a sentence.

Strings are frequently encountered in managing information. Names are strings of characters,
as in Juan L’Heureaux. Phone numbers are strings of numbers, dashes, and sometimes parentheses, as
in (415) 555-2676. Even a pure number, such as 5443702, can be considered as either a number
or a string of characters.

NOTE
Datatypes that are restricted to pure numbers (plus a decimal point
and minus sign, if needed) are called NUMBER, and they are not
usually referred to as strings. A number can be used in certain ways
that a string cannot, and vice versa.

124 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 7
Blind Folio 7:124

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Strings that can include any mixture of letters, numbers, spaces, and other symbols (such as
punctuation marks and special characters) are called character strings, or just character for short.

There are two string datatypes in Oracle. CHAR strings are always a fixed length. If you set a
value to a string with a length less than that of a CHAR column, Oracle automatically pads the
string with blanks. When you compare CHAR strings, Oracle compares the strings by padding
them out to equal lengths with blanks. This means that if you compare “character” with “character”
in CHAR columns, Oracle considers the strings to be the same. The VARCHAR2 datatype is a
variable-length string. The VARCHAR datatype is synonymous with VARCHAR2, but this may
change in future versions of Oracle, so you should avoid using VARCHAR. Use CHAR for fixed-
length character string fields and VARCHAR2 for all other character string fields.

The simple Oracle string functions, explained in this chapter, are shown in Table 7-1.

Chapter 7: Getting Text Information and Changing It 125

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 7
Blind Folio 7:125

Function Name Use

| | Glues or concatenates two strings together. The | symbol is called a
vertical bar or pipe.

ASCII Returns the decimal representation in the database character set of the first
character of the string.

CHR Returns the character having the binary equivalent to the string in either
the database character set or the national character set.

CONCAT Concatenates two strings together (same as | |).

INITCAP Initial capital. Capitalizes the first letter of a word or series of words.

INSTR Finds the location of a character in a string.

LENGTH Tells the length of a string.

LOWER Converts every letter in a string to lowercase.

LPAD Left pad. Makes a string a certain length by adding a certain set of
characters to the left.

LTRIM Left trim. Trims all the occurrences of any one of a set of characters off the
left side of a string.

NLS_INITCAP Initcap based on the National Language Support (NLS) value.

NLS_LOWER Lower based on the NLS value.

NLS_UPPER Upper based on the NLS value.

NLSSORT Sort based on the national language selected.

REGEXP_INSTR,
REGEXP_REPLACE,
and REGEXP_
SUBSTR

INSTR, REPLACE, and SUBSTR for regular expressions.

TABLE 7-1. Oracle String Functions

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Notation
Functions are shown with this kind of notation throughout the book:

FUNCTION(string [,option])

The function itself will be in uppercase. The thing it affects (usually a string) will be shown in
lowercase italics. Any time the word string appears, it represents either a literal string of characters
or the name of a character column in a table. When you actually use a string function, any literal
must be in single quotes; any column name must appear without single quotes.

Every function has only one pair of parentheses. The value that function works on, as well as
additional information you can pass to the function, goes between the parentheses.

Some functions have options, parts that are not always required that you can use to make the
function work as you want. Options are always shown in square brackets: []. See the discussion
on LPAD and RPAD in the following section for an example of how options are used.

A simple example of how the LOWER function is printed follows:

LOWER(string)

The word “LOWER” with the two parentheses is the function itself, so it is shown here in
uppercase; string stands for the actual string of characters to be converted to lowercase, and it’s
shown in lowercase italics. Therefore,

LOWER('CAMP DOUGLAS')

would produce

camp douglas

126 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 7
Blind Folio 7:126

Function Name Use

RPAD Right pad. Makes a string a certain length by adding a certain set of
characters to the right.

RTRIM Right trim. Trims all the occurrences of any one of a set of characters off
the right side of a string.

SOUNDEX Finds words that sound like the example specified.

SUBSTR Substring. Clips out a piece of a string.

TREAT Changes the declared type of an expression.

TRIM Trims all occurrences of any one of a set of characters off either or both
sides of a string.

UPPER Converts every letter in a string into uppercase.

TABLE 7-1. Oracle String Functions (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The string ‘CAMP DOUGLAS’ is a literal, meaning that it is literally the string of characters
that the function LOWER is to work on. Oracle uses single quotation marks to denote the beginning
and end of any literal string. The string in LOWER also could have been the name of a column
from a table, in which case the function would have operated on the contents of the column for
every row brought back by a select statement. For example,

select City, LOWER(City), LOWER('City') from WEATHER;

would produce this result:

CITY LOWER(CITY) LOWE
----------- ----------- ----
LIMA lima city
PARIS paris city
MANCHESTER manchester city
ATHENS athens city
CHICAGO chicago city
SYDNEY sydney city
SPARTA sparta city

At the top of the second column, in the LOWER function, CITY is not inside single quotation
marks. This tells Oracle that it is a column name, not a literal.

In the third column’s LOWER function, ‘CITY’ is inside single quotation marks. This means
you literally want the function LOWER to work on the word “CITY” (that is, the string of letters
C-I-T-Y), not the column by the same name.

Concatenation (||)
The following notation tells Oracle to concatenate, or stick together, two strings:

string || string

The strings, of course, can be either column names or literals. Here’s an example:

select City||Country from LOCATION;

CITY || COUNTRY
--
ATHENSGREECE
CHICAGOUNITED STATES
CONAKRYGUINEA
LIMAPERU
MADRASINDIA
MANCHESTERENGLAND
MOSCOWRUSSIA
PARISFRANCE
SHENYANGCHINA
ROMEITALY
TOKYOJAPAN

Chapter 7: Getting Text Information and Changing It 127

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 7
Blind Folio 7:127

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

128 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 7
Blind Folio 7:128

SYDNEYAUSTRALIA
SPARTAGREECE
MADRIDSPAIN

Here, the cities vary in width from 4 to 12 characters. The countries push right up against
them. This is just how the concatenate function is supposed to work: It glues columns or strings
together with no spaces in between.

This isn’t very easy to read, of course. To make this a little more readable, you could list cities
and countries with a comma and a space between them. You’d simply concatenate the City and
Country columns with a literal string of a comma and a space, like this:

select City ||', '||Country from LOCATION;

CITY ||','||COUNTRY
--
ATHENS, GREECE
CHICAGO, UNITED STATES
CONAKRY, GUINEA
LIMA, PERU
MADRAS, INDIA
MANCHESTER, ENGLAND
MOSCOW, RUSSIA
PARIS, FRANCE
SHENYANG, CHINA
ROME, ITALY
TOKYO, JAPAN
SYDNEY, AUSTRALIA
SPARTA, GREECE
MADRID, SPAIN

Notice the column title. See Chapter 6 for a review of column titles.
You could also use the CONCAT function to concatenate strings. For example, the query

select CONCAT(City, Country) from LOCATION;

is equivalent to

select City||Country from LOCATION;

How to Cut and Paste Strings
In this section, you learn about a series of functions that often confuse users: LPAD, RPAD, LTRIM,
RTRIM, TRIM, LENGTH, SUBSTR, and INSTR. These all serve a common purpose: they allow you
to cut and paste.

Each of these functions does some part of cutting and pasting. For example, LENGTH tells
you how many characters are in a string. SUBSTR lets you clip out and use a substring—a portion
of a string—starting at one position in the string and continuing for a given length. INSTR lets you
find the location of a group of characters within another string. LPAD and RPAD allow you to easily
concatenate spaces or other characters on the left or right side of a string. LTRIM and RTRIM clip

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

characters off the ends of strings, and TRIM can clip characters from both ends at once. Most
interesting is that all of these functions can be used in combination with each other, as you’ll
soon see.

RPAD and LPAD
RPAD and LPAD are very similar functions. RPAD allows you to “pad” the right side of a column
with any set of characters. The character set can be almost anything: spaces, periods, commas,
letters or numbers, caret signs (^), or even exclamation marks (!). LPAD does the same thing as
RPAD, but to the left side.

Here are the formats for RPAD and LPAD:

RPAD(string,length [,'set'])

LPAD(string,length [,'set'])

Here, string is the name of a CHAR or VARCHAR2 column from the database (or a literal string),
length is the total number of characters long that the result should be (in other words, its width),
and set is the set of characters that do the padding. The set must be enclosed in single quotation
marks. The square brackets mean that the set (and the comma that precedes it) is optional. If you
leave this off, the function will automatically pad with spaces. This is sometimes called the default;
that is, if you don’t tell the function which set of characters to use, it will use spaces by default.

Many users produce tables with dots to help guide the eye from one side of the page to the
other. Here’s how RPAD does this. In this example, the values are padded to a length of 35:

select RPAD(City,35,'.'), Temperature from WEATHER;

RPAD(CITY,35,'.') TEMPERATURE
----------------------------------- -----------
LIMA............................... 45
PARIS.............................. 81
MANCHESTER......................... 66
ATHENS............................. 97
CHICAGO............................ 66
SYDNEY............................. 69
SPARTA............................. 74

Notice what happened here. RPAD took each city, from Lima through Sparta, and concatenated
dots on the right of it, adding just enough for each city so that the result (City plus dots) is exactly
35 characters long. The concatenate function (||) could not have done this. It would have added
the same number of dots to every city, leaving a ragged edge on the right.

LPAD does the same sort of thing, but on the left. Suppose you want to reformat cities and
temperatures so that the cities are right-justified (that is, they all align at the right). For this example,
the padded length is 11:

select LPAD(City,11), Temperature from WEATHER;

LPAD(CITY,1 TEMPERATURE
----------- -----------

LIMA 45

Chapter 7: Getting Text Information and Changing It 129

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 7
Blind Folio 7:129

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

130 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 7
Blind Folio 7:130

PARIS 81
MANCHESTER 66

ATHENS 97
CHICAGO 66
SYDNEY 69
SPARTA 74

LTRIM, RTRIM, and TRIM
LTRIM and RTRIM are like hedge trimmers. They trim off unwanted characters from the left and
right ends of strings. For example, suppose you have a MAGAZINE table with a column in it that
contains the titles of magazine articles, but the titles were entered by different people. Some people
always put the titles in quotes, whereas others simply entered the words; some used periods, others
didn’t; some started titles with “The,” whereas others did not. How do you trim these?

select Title from MAGAZINE;

TITLE

THE BARBERS WHO SHAVE THEMSELVES.
"HUNTING THOREAU IN NEW HAMPSHIRE"
THE ETHNIC NEIGHBORHOOD
RELATIONAL DESIGN AND ENTHALPY
"INTERCONTINENTAL RELATIONS."

Here are the formats for RTRIM and LTRIM:

RTRIM(string [,'set'])

LTRIM(string [,'set'])

Here, string is the name of the column from the database (or a literal string), and set is the collection
of characters you want to trim off. If no set of characters is specified, the functions trim off spaces.

You can trim off more than one character at a time; to do so, simply make a list (a string) of the
characters you want removed. First, let’s get rid of the quotes and periods on the right, as shown here:

The preceding produces this:

RTRIM(TITLE,'."')

THE BARBERS WHO SHAVE THEMSELVES
"HUNTING THOREAU IN NEW HAMPSHIRE

select RTRIM(Title,'."') from MAGAZINE

Set of characters
being trimmed

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 7: Getting Text Information and Changing It 131

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 7
Blind Folio 7:131

THE ETHNIC NEIGHBORHOOD
RELATIONAL DESIGN AND ENTHALPY
"INTERCONTINENTAL RELATIONS

RTRIM removed both the double quotation marks and the periods from the right side of each
of these titles. The set of characters you want to remove can be as long as you want. Oracle will
check and recheck the right side of each title until every character in your string has been removed—
that is, until it runs into the first character in the string that is not in your set.

Combining Two Functions
Now what? You can use the LTRIM function to get rid of the quotes on the left. The Title column
is buried in the middle of the RTRIM function. In this section, you learn how to combine functions.

You know that when you ran the select statement

select Title from MAGAZINE;

the result you got back was the content of the Title column, as shown next:

THE BARBERS WHO SHAVE THEMSELVES.
"HUNTING THOREAU IN NEW HAMPSHIRE"
THE ETHNIC NEIGHBORHOOD
RELATIONAL DESIGN AND ENTHALPY
"INTERCONTINENTAL RELATIONS."

Remember that the purpose of

RTRIM(Title,'."')

is to take each of these strings and remove the quotes on the right side, effectively producing a
result that is a new column whose contents are shown here:

THE BARBERS WHO SHAVE THEMSELVES
"HUNTING THOREAU IN NEW HAMPSHIRE
THE ETHNIC NEIGHBORHOOD
RELATIONAL DESIGN AND ENTHALPY
"INTERCONTINENTAL RELATIONS

Therefore, if you pretend that RTRIM(Title,'." ') is simply a column name itself, you can substitute
it for string in the following:

LTRIM(string,'set')

So you simply type your select statement to look like this:

select LTRIM(RTRIM(Title,'."'),'"') from MAGAZINE;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Taking this apart for clarity, you see the following:

Is this how you want it? And what is the result of this combined function?

LTRIM(RTRIM(TITLE,'."'),'"')

THE BARBERS WHO SHAVE THEMSELVES
HUNTING THOREAU IN NEW HAMPSHIRE
THE ETHNIC NEIGHBORHOOD
RELATIONAL DESIGN AND ENTHALPY
INTERCONTINENTAL RELATIONS

Your titles are now cleaned up.
Looking at a combination of functions the first (or the thousandth) time can be confusing,

even for an experienced query user. It’s difficult to assess which commas and parentheses go with
which functions, particularly when a query you’ve written isn’t working correctly; discovering
where a comma is missing, or which parenthesis isn’t properly matched with another, can be a
real adventure.

One simple solution to this is to break functions onto separate lines, at least until they’re all
working the way you want. SQLPLUS doesn’t care at all where you break a SQL statement, as
long as it’s not in the middle of a word or a literal string. To better visualize how this RTRIM and
LTRIM combination works, you could type it like this:

select LTRIM(
RTRIM(Title,'."')

,'"')
from MAGAZINE;

This makes what you are trying to do obvious, and it will work even if it is typed on four separate lines
with lots of spaces. SQLPLUS simply ignores extra spaces.

Suppose now you decide to trim off THE from the front of two of the titles, as well as the space
that follows it (and, of course, the double quote you removed before). You might do this:

select LTRIM(RTRIM(Title,'."'),'"THE ')
from MAGAZINE;

which produces the following:

LTRIM(RTRIM(TITLE,'."'),'"THE')

BARBERS WHO SHAVE THEMSELVES

132 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 7
Blind Folio 7:132

select LTRIM(RTRIM(Title,'."'),'"') from MAGAZINE

LTRIM function

Column you‘re trimming (the string)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 7: Getting Text Information and Changing It 133

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 7
Blind Folio 7:133

UNTING THOREAU IN NEW HAMPSHIRE
NIC NEIGHBORHOOD
RELATIONAL DESIGN AND ENTHALPY
INTERCONTINENTAL RELATIONS

What happened? The second and third row got trimmed more than expected. Why? Because
LTRIM was busy looking for and trimming off anything that was a double quote, a T, an H, an E,
or a space. It was not looking for the word THE. It was looking for the letters in it, and LTRIM
didn’t quit the first time it saw any of the letters it was looking for. It quit when it saw a character
that wasn’t in its set.

In other words, all of the following and many other combinations of the letters will have the
same effect when used as the set of an LTRIM or RTRIM:

'"THE'
'HET"'
'E"TH'
'H"TE'
'ET"H'

The order of the letters of the set has no effect on how the function works. Note, however, that
the case of the letters is important. Oracle will check the case of both the letters in the set and
in the string. It will remove only those with an exact match.

LTRIM and RTRIM are designed to remove any characters in a set from the left or right of a
string. They’re not intended to remove words. To do that requires clever use of INSTR, SUBSTR,
and even DECODE, which you will learn about in Chapter 16.

The previous example makes one point clear: It’s better to make certain that data gets cleaned
up or edited before it is stored in the database. It would have been a lot less trouble if the individuals
typing these magazine article titles had simply avoided the use of quotes, periods, and the word THE.

Using the TRIM Function
The preceding example showed how to combine two functions—a useful skill when dealing with
string manipulation. If you are trimming the exact same data from both the beginning and the end
of the string, you can use the TRIM function in place of an LTRIM/RTRIM combination.

THE BARBERS WHO SHAVE THEMSELVES
"H UNTING THOREAU IN NEW HAMPSHIRE
THE ETH NIC NEIGHBORHHOOD

RELATIONAL DESIGN AND ENTHALPY
" INTERCONTINENTAL RELATIONS

What it trimmed: What is left behind:

NOT in the set '"THE'

In the set '"THE'

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TRIM uses a unique syntax. The following example shows the use of the TRIM function with its
associated from clause within the function. In this example, the double quotes are removed from
the beginning and the end of the magazine article titles. Because the double quote is a character
string, it is placed inside two single quotes:

select TRIM('"' from Title) from MAGAZINE;

TRIM('"'FROMTITLE)

THE BARBERS WHO SHAVE THEMSELVES.
HUNTING THOREAU IN NEW HAMPSHIRE
THE ETHNIC NEIGHBORHOOD
RELATIONAL DESIGN AND ENTHALPY
INTERCONTINENTAL RELATIONS.

The quotes have been removed from the beginning and ending of the strings. If you just want to
trim one end of the strings, you could use the leading or trailing clause, as shown in the following
listing:

select TRIM(leading '"' from Title) from MAGAZINE;
select TRIM(trailing '"' from Title) from MAGAZINE;

Using leading makes TRIM act like LTRIM; trailing makes it act like RTRIM. The most powerful
use of TRIM is its ability to act on both ends of the string at once, thus simplifying the code you
have to write—provided the same characters are being removed from both ends of the string.

Adding One More Function
Suppose that you decide to RPAD your trimmed-up titles with dashes and carets, perhaps also
asking for a magazine name and page number. Your query would look like this:

select Name, RPAD(LTRIM(RTRIM(Title,'"'),'."'),47,'-^'), Page
from MAGAZINE;

NAME RPAD(LTRIM(RTRIM(TITLE,'"'),'."'),47,'-^') PAGE
---------------- -- -----
BERTRAND MONTHLY THE BARBERS WHO SHAVE THEMSELVES-^-^-^-^-^ 70
LIVE FREE OR DIE HUNTING THOREAU IN NEW HAMPSHIRE-^-^-^-^-^ 320
PSYCHOLOGICA THE ETHNIC NEIGHBORHOOD-^-^-^-^-^-^-^-^-^- 246
FADED ISSUES RELATIONAL DESIGN AND ENTHALPY-^-^-^-^-^-^ 279
ENTROPY WIT INTERCONTINENTAL RELATIONS-^-^-^-^-^-^-^-^ 20

Each function has parentheses that enclose the column it is going to affect, so the real trick in
understanding combined functions in select statements is to read from the outside to the inside
on both the left and right, watching (and even counting) the pairs of parentheses.

LOWER, UPPER, and INITCAP
These three related and very simple functions often are used together. LOWER takes any string or
column and converts any letters in it to lowercase. UPPER does the opposite, converting any letters

134 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 7
Blind Folio 7:134

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 7: Getting Text Information and Changing It 135

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 7
Blind Folio 7:135

to uppercase. INITCAP takes the initial letter of every word in a string or column and converts just
those letters to uppercase.

Here are the formats for these functions:

LOWER(string)
UPPER(string)
INITCAP(string)

Returning to the WEATHER table, recall that each city is stored in uppercase letters, like this:

LIMA
PARIS
ATHENS
CHICAGO
MANCHESTER
SYDNEY
SPARTA

Therefore,

select City, UPPER(City), LOWER(City), INITCAP(LOWER(City))
from WEATHER;

produces this:

City UPPER(CITY) LOWER(CITY) INITCAP(LOW
----------- ----------- ----------- -----------
LIMA LIMA lima Lima
PARIS PARIS paris Paris
MANCHESTER MANCHESTER manchester Manchester
ATHENS ATHENS athens Athens
CHICAGO CHICAGO chicago Chicago
SYDNEY SYDNEY sydney Sydney
SPARTA SPARTA sparta Sparta

Look carefully at what is produced in each column, and at the functions that produced it in
the SQL statement. The fourth column shows how you can apply INITCAP to LOWER(City) and
have it appear with normal capitalization, even though it is stored as uppercase.

Another example is the Name column as stored in a MAGAZINE table:

NAME

BERTRAND MONTHLY
LIVE FREE OR DIE
PSYCHOLOGICA
FADED ISSUES
ENTROPY WIT

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This is then retrieved with the combined INITCAP and LOWER functions, as shown here:

select INITCAP(LOWER(Name)) from MAGAZINE;

INITCAP(LOWER(NA

Bertrand Monthly
Live Free Or Die
Psychologica
Faded Issues
Entropy Wit

And here it’s applied to the Name, cleaned-up Title, and Page columns (note that you’ll also
rename the columns):

select INITCAP(LOWER(Name)) AS Name,
INITCAP(LOWER(RTRIM(LTRIM(Title,'"'),'."'))) AS Title,
Page

from Magazine;

NAME TITLE PAGE
---------------- ------------------------------------- -----
Bertrand Monthly The Barbers Who Shave Themselves 70
Live Free Or Die Hunting Thoreau In New Hampshire 320
Psychologica The Ethnic Neighborhood 246
Faded Issues Relational Design And Enthalpy 279
Entropy Wit Intercontinental Relations 20

LENGTH
This one is easy. LENGTH tells you how long a string is—how many characters it has in it, including
letters, spaces, and anything else. Here is the format for LENGTH:

LENGTH(string)

And here’s an example:

select Name, LENGTH(Name) from MAGAZINE;

NAME LENGTH(NAME)
---------------- ------------
BERTRAND MONTHLY 16
LIVE FREE OR DIE 16
PSYCHOLOGICA 12
FADED ISSUES 12
ENTROPY WIT 11

This isn’t normally useful by itself, but it can be used as part of another function, for calculating
how much space you’ll need on a report, or as part of a where or an order by clause.

136 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 7
Blind Folio 7:136

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
You cannot perform functions such as LENGTH on a column that uses
a LONG datatype.

SUBSTR
You can use the SUBSTR function to clip out a piece of a string. Here is the format for SUBSTR:

SUBSTR(string,start [,count])

This tells SQL to clip out a subsection of string, beginning at position start and continuing for
count characters. If you don’t specify count, SUBSTR will clip beginning at start and continuing
to the end of the string. For example,

select SUBSTR(Name,6,4) from MAGAZINE;

gives you this:

SUBS

AND
FREE
OLOG
ISS

PY W

You can see how the function works. It clipped out the piece of the magazine name starting
in position 6 (counting from the left) and including a total of four characters.

A more practical use might be in separating out phone numbers from a personal address
book. For example, assume that you have an ADDRESS table that contains, among other things,
last names, first names, and phone numbers, as shown here:

select LastName, FirstName, Phone from ADDRESS;

LASTNAME FIRSTNAME PHONE
------------------------- ------------------------- ------------
BAILEY WILLIAM 213-555-0223
ADAMS JACK 415-555-7530
SEP FELICIA 214-555-8383
DE MEDICI LEFTY 312-555-1166
DEMIURGE FRANK 707-555-8900
CASEY WILLIS 312-555-1414
ZACK JACK 415-555-6842
YARROW MARY 415-555-2178
WERSCHKY ARNY 415-555-7387
BRANT GLEN 415-555-7512
EDGAR THEODORE 415-555-6252
HARDIN HUGGY 617-555-0125
HILD PHIL 603-555-2242

Chapter 7: Getting Text Information and Changing It 137

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 7
Blind Folio 7:137

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

LOEBEL FRANK 202-555-1414
MOORE MARY 718-555-1638
SZEP FELICIA 214-555-8383
ZIMMERMAN FRED 503-555-7491

Suppose you want just those phone numbers in the 415 area code. One solution would be
to have a separate column called AreaCode. Thoughtful planning about tables and columns will
eliminate a good deal of fooling around later with reformatting. However, in this instance, area
codes and phone numbers are combined in a single column, so a way must be found to separate
out the numbers in the 415 area code.

select LastName, FirstName, Phone from ADDRESS
where Phone like '415-%';

LASTNAME FIRSTNAME PHONE
------------------------- ------------------------- ------------
ADAMS JACK 415-555-7530
ZACK JACK 415-555-6842
YARROW MARY 415-555-2178
WERSCHKY ARNY 415-555-7387
BRANT GLEN 415-555-7512
EDGAR THEODORE 415-555-6252

Next, because you do not want to dial your own area code when calling friends in the 415
area code, you can eliminate this from the result by using another SUBSTR:

select LastName, FirstName, SUBSTR(Phone,5) from ADDRESS
where Phone like '415-%';

LASTNAME FIRSTNAME SUBSTR(P
------------------------- ------------------------- --------
ADAMS JACK 555-7530
ZACK JACK 555-6842
YARROW MARY 555-2178
WERSCHKY ARNY 555-7387
BRANT GLEN 555-7512
EDGAR THEODORE 555-6252

Notice that the default version of SUBSTR was used here. SUBSTR(Phone,5) tells SQL to clip
out the substring of the phone number, starting at position 5 and going to the end of the string.
Doing this eliminates the area code.

Of course,

SUBSTR(Phone,5)

has exactly the same effect as the following:

SUBSTR(Phone,5,8)

138 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 7
Blind Folio 7:138

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can combine this with the concatenation and column-renaming techniques discussed in
Chapter 6 to produce a quick listing of local friends’ phone numbers, as shown here:

select LastName ||', '||FirstName AS Name,
SUBSTR(Phone,5) AS Phone

from ADDRESS
where Phone like '415-%';

NAME PHONE
-- --------
ADAMS, JACK 555-7530
ZACK, JACK 555-6842
YARROW, MARY 555-2178
WERSCHKY, ARNY 555-7387
BRANT, GLEN 555-7512
EDGAR, THEODORE 555-6252

To produce a dotted line following the name, add the RPAD function:

select RPAD(LastName ||', '||FirstName,25,'.') AS Name,
SUBSTR(Phone,5) AS Phone

from ADDRESS
where Phone like '415-%';

NAME PHONE
------------------------- --------
ADAMS, JACK.............. 555-7530
ZACK, JACK............... 555-6842
YARROW, MARY............. 555-2178
WERSCHKY, ARNY........... 555-7387
BRANT, GLEN.............. 555-7512
EDGAR, THEODORE.......... 555-6252

The use of negative numbers in the SUBSTR function also works. Normally, the position value
you specify for the starting position is relative to the start of the string. When you use a negative
number for the position value, it is relative to the end of the string. For example,

SUBSTR(Phone,-4)

would use the fourth position from the end of the Phone column’s value as its starting point. Because
no length parameter is specified in this example, the remainder of the string will be returned.

NOTE
Use this feature only for VARCHAR2 datatype columns. Do not use it
with columns that use the CHAR datatype. CHAR columns are fixed-
length columns, so their values are padded with spaces to extend them
to the full length of the column. Using a negative number for the
SUBSTR position value in a CHAR column will determine the starting
position relative to the end of the column, not the end of the string.

Chapter 7: Getting Text Information and Changing It 139

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 7
Blind Folio 7:139

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

140 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 7
Blind Folio 7:140

The following example shows the result of a negative number in the SUBSTR function when it is
used on a VARCHAR2 column:

select SUBSTR(Phone,-4)
from ADDRESS
where Phone like '415-5%';

SUBS

7530
6842
2178
7387
7512
6252

The count value of the SUBSTR function must always be positive or unspecified. Using a negative
count will return a NULL result.

INSTR
The INSTR function allows for simple or sophisticated searching through a string for a set of
characters, not unlike LTRIM and RTRIM, except that INSTR doesn’t clip anything off. It simply
tells you where in the string it found what you were searching for. This is similar to the LIKE
logical operator described in Chapter 5, except that LIKE can only be used in a where or having
clause, and INSTR can be used anywhere except in the from clause. Of course, LIKE can be used
for complex pattern searches that would be quite difficult, if even possible, using INSTR. Here is
the format for INSTR:

INSTR(string,set [,start [,occurrence]])

INSTR searches in the string for a certain set of characters. It has two options, one within the
other. The first option is the default: It will look for the set starting at position 1. If you specify the
location to start, it will skip over all the characters up to that point and begin its search there.

The second option is occurrence. A set of characters may occur more than once in a string,
and you may really be interested only in whether something occurs more than once. By default,
INSTR will look for the first occurrence of the set. By adding the option occurrence and making it
equal to 3, for example, you can force INSTR to skip over the first two occurrences of the set and
give the location of the third.

Some examples will make all this simpler to grasp. Recall the table of magazine articles. Here
is a list of their authors:

select Author from MAGAZINE;

AUTHOR

BONHOEFFER, DIETRICH
CHESTERTON, G.K.
RUTH, GEORGE HERMAN
WHITEHEAD, ALFRED
CROOKES, WILLIAM

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To find the location of the first occurrence of the letter O, INSTR is used without its options and
with set as ‘O’ (note the single quotation marks, since this is a literal), as shown in the following
listing:

select Author, INSTR(Author,'O') from MAGAZINE;

AUTHOR INSTR(AUTHOR,'O')
------------------------- -----------------
BONHOEFFER, DIETRICH 2
CHESTERTON, G.K. 9
RUTH, GEORGE HERMAN 9
WHITEHEAD, ALFRED 0
CROOKES, WILLIAM 3

This is, of course, the same as the following:

select Author, INSTR(Author,'O',1,1) from MAGAZINE;

If INSTR had looked for the second occurrence of the letter O, it would have found

select Author, INSTR(Author,'O',1,2) from MAGAZINE;

AUTHOR INSTR(AUTHOR,'O',1,2)
------------------------- ---------------------
BONHOEFFER, DIETRICH 5
CHESTERTON, G.K. 0
RUTH, GEORGE HERMAN 0
WHITEHEAD, ALFRED 0
CROOKES, WILLIAM 4

INSTR found the second O in Bonhoeffer’s name, at position 5, and in Crookes’ name,
at position 4. Chesterton has only one O, so for him, Ruth, and Whitehead, the result is zero,
meaning no success—no second O was found.

To tell INSTR to look for the second occurrence, you also must tell it where to start looking
(in this case, position 1). The default value of start is 1, which means that’s what it uses if you
don’t specify anything, but the occurrence option requires a start, so you have to specify both.

If set is not just one character but several, INSTR gives the location of the first letter of the
set, as shown here:

select Author, INSTR(Author,'WILLIAM') from MAGAZINE;

AUTHOR INSTR(AUTHOR,'WILLIAM')
------------------------- -----------------------
BONHOEFFER, DIETRICH 0
CHESTERTON, G.K. 0
RUTH, GEORGE HERMAN 0
WHITEHEAD, ALFRED 0
CROOKES, WILLIAM 10

Chapter 7: Getting Text Information and Changing It 141

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 7
Blind Folio 7:141

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This has many useful applications, such as in the MAGAZINE table, for instance:

select Author, INSTR(Author,',') from MAGAZINE;

AUTHOR INSTR(AUTHOR,',')
------------------------- -----------------
BONHOEFFER, DIETRICH 11
CHESTERTON, G.K. 11
RUTH, GEORGE HERMAN 5
WHITEHEAD, ALFRED 10
CROOKES, WILLIAM 8

Here, INSTR searched the strings of author names for a comma and then reported back the position
in each string where it found one.

Suppose you want to reformat the names of the authors from the formal “last name/comma/
first name” approach, and present them as they are normally spoken, as shown here:

To do this using INSTR and SUBSTR, find the location of the comma, and use this location
to tell SUBSTR where to clip. Taking this step by step, you must first find the comma as we did
in the preceding listing.

Two SUBSTRs will be needed—one that clips out the author’s last name up to the position
before the comma, and one that clips out the author’s first name from two positions after the comma
through to the end.

First, look at the one that clips from position 1 to just before the comma:

select Author, SUBSTR(Author,1,INSTR(Author,',')-1)
from MAGAZINE;

AUTHOR SUBSTR(AUTHOR,1,INSTR(AUT
------------------------- -------------------------
BONHOEFFER, DIETRICH BONHOEFFER
CHESTERTON, G.K. CHESTERTON
RUTH, GEORGE HERMAN RUTH
WHITEHEAD, ALFRED WHITEHEAD
CROOKES, WILLIAM CROOKES

Next, look at the one that clips from two positions past the comma to the end of the string:

select Author, SUBSTR(Author,INSTR(Author,',')+2) from MAGAZINE;

142 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 7
Blind Folio 7:142

BONHOEFFER, DIETRICH

DIETRICH BONHOEFFER

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 7: Getting Text Information and Changing It 143

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 7
Blind Folio 7:143

AUTHOR SUBSTR(AUTHOR,INSTR(AUTHO
------------------------- -------------------------
BONHOEFFER, DIETRICH DIETRICH
CHESTERTON, G.K. G.K.
RUTH, GEORGE HERMAN GEORGE HERMAN
WHITEHEAD, ALFRED ALFRED
CROOKES, WILLIAM WILLIAM

Look at the combination of these two, with the concatenate function putting a space between
them, and a quick renaming of the column to ByFirstName:

column ByFirstName heading "By First Name"

select Author, SUBSTR(Author,INSTR(Author,',')+2)
||' '||
SUBSTR(Author,1,INSTR(Author,',')-1)
AS ByFirstName

from MAGAZINE;

AUTHOR By First Name
------------------------- ------------------------
BONHOEFFER, DIETRICH DIETRICH BONHOEFFER
CHESTERTON, G.K. G.K. CHESTERTON
RUTH, GEORGE HERMAN GEORGE HERMAN RUTH
WHITEHEAD, ALFRED ALFRED WHITEHEAD
CROOKES, WILLIAM WILLIAM CROOKES

It is daunting to look at a SQL statement like this one, but it was built using simple logic, and
it can be broken down the same way. Bonhoeffer can provide the example. The first part looks
like this:

SUBSTR(Author,INSTR(Author,',')+2)

This tells SQL to get the SUBSTR of Author starting two positions to the right of the comma and
going to the end. This will clip out DIETRICH—the author’s first name.

The beginning of the author’s first name is found by locating the comma at the end of his last
name (INSTR does this) and then sliding over two steps to the right (where his first name begins).

The following illustration shows how the INSTR function (plus 2) serves as the start for the
SUBSTR function:

SUBSTR(Author, INSTR(Author,',') +2)

BONHOEFFER, DIETRICH

Add 2 to it to
move to the
beginning of the
author‘s first name

Find the
location of
the comma

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

144 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 7
Blind Folio 7:144

Here is the second part of the combined statement:

||' '||

This, of course, simply tells SQL to concatenate a space in the middle.
Here is the third part of the combined statement:

SUBSTR(Author,1,INSTR(Author,',')-1)

This tells SQL to clip out the portion of the author’s name starting at position 1 and ending one
position before the comma, which results in the author’s last name:

The fourth part simply assigns a column alias:

AS ByFirstName

It was only possible to accomplish this transposition because each Author record in the
MAGAZINE table followed the same formatting conventions. In each record, the last name was
always the first word in the string and was immediately followed by a comma. This allowed you
to use the INSTR function to search for the comma. Once the comma’s position was known, you
could determine which part of the string was the last name, and the rest of the string was treated
as the first name.

This is not often the case. Names are difficult to force into standard formats. Last names may
include prefixes (such as von in von Hagel) or suffixes (such as Jr., Sr., and III). Using the previous
example’s SQL, the name Richards, Jr., Bob would have been transformed into Jr., Bob Richards.

Because of the lack of a standard formatting for names, many applications store the first and
last names separately. Titles (such as MD) are usually stored in yet another column. A second
option when storing such data is to force it into a single format and use SUBSTR and INSTR to
manipulate that data when needed.

ASCII and CHR
The ASCII and CHR functions are seldom used during ad hoc queries. CHR converts numeric
values to their ASCII character string equivalents:

select CHR(70)||CHR(83)||CHR(79)||CHR(85)||CHR(71)
as ChrValues

from DUAL;

SUBSTR(Author, 1, INSTR(Author,',') -1)

BONHOEFFER, DIETRICH

Subtract 1 from it to
move to the end of
the author’s last name

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHRVA

FSOUG

Oracle translated CHR(70) to an F, CHR(83) to an S, and so on, based on the database’s
character set.

The ASCII function performs the reverse operation—but if you pass it a string, only the first
character of the string will be acted upon:

select ASCII('FSOUG') from DUAL;

ASCII('FSOUG')

70

To see each ASCII value, you will need to evaluate each of the letters via separate executions of
the ASCII function.

Using order by and where with String Functions
String functions can be used in a where clause, as shown here:

select City
from WEATHER
where LENGTH(City) < 7;

CITY

LIMA
PARIS
ATHENS
SYDNEY
SPARTA

They can also be used in an order by clause, as shown here:

select City
from WEATHER
order by LENGTH(City);

CITY

LIMA
PARIS
ATHENS
SYDNEY
SPARTA
CHICAGO
MANCHESTER

Chapter 7: Getting Text Information and Changing It 145

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 7
Blind Folio 7:145

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

146 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 7
Blind Folio 7:146

These are simple examples; much more complex clauses could be used. For example, you could
find all the authors with more than one O in their names by using INSTR in the where clause:

select Author from MAGAZINE
where INSTR(Author,'O',1,2) > 0;

AUTHOR

BONHOEFFER, DIETRICH
CROOKES, WILLIAM

This works by finding a second occurrence of the letter O in the author names. The > 0 is a
logical technique: Recall that functions generally produce two different kinds of results—one that
creates new objects, and the other that tells you something about existing objects.

The INSTR function tells something about a string, specifically the position of the set it has
been asked to find. Here, it is asked to locate the second O in the Author string. Its result will be
a number that’s greater than zero for those names with at least two O’s, and zero for those with
one or less (when INSTR doesn’t find something, its result is a zero). So, a simple test for a result
greater than zero checks for the success of the INSTR search for a second O.

The where clause using INSTR produces the same result as this:

where Author LIKE '%O%O%'

Remember that the percent sign (%) is a wildcard, meaning it takes the place of anything,
so the like clause here tells SQL to look for two O’s with anything before, between, or after them.
This is probably easier to understand than the previous example of INSTR.

There are often several ways to produce the same result in Oracle. Some will be easier to
understand, some will work more quickly, some will be more appropriate in certain situations,
and some simply will be a matter of personal style.

SOUNDEX
One string function is used almost exclusively in a where clause: SOUNDEX. It has the unusual
ability to find words that sound like other words, virtually regardless of how either is spelled. This
is especially useful when you’re not certain how a word or name is really spelled. Here is the format
for SOUNDEX:

SOUNDEX(string)

And here are a few of examples of its use:

select City, Temperature, Condition from WEATHER
where SOUNDEX(City) = SOUNDEX('menncestr');

CITY TEMPERATURE CONDITION
----------- ----------- ---------
MANCHESTER 66 FOG

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 7: Getting Text Information and Changing It 147

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 7
Blind Folio 7:147

select Author from MAGAZINE
where SOUNDEX(Author) = SOUNDEX('Banheffer');

AUTHOR

BONHOEFFER, DIETRICH

SOUNDEX compares the sound of the entry in the selected column with the sound of the word
in single quotation marks, and it looks for a close match. SOUNDEX makes certain assumptions
about how letters and combinations of letters are usually pronounced in English, and the two words
being compared must begin with the same letter. SOUNDEX will not always find the word you’re
searching for or have misspelled, but it can help.

It is not necessary that one of the two SOUNDEXs in the where clause have a literal in it.
SOUNDEX could be used to compare the data in two columns to find those that sound alike.

One useful purpose for this function is cleaning up mailing lists. Many lists have duplicate
entries with slight differences in the spelling or format of the customers’ names. By using SOUNDEX
to list all the names that sound alike, many of these duplicates can be discovered and eliminated.

Let’s apply this to the ADDRESS table:

select LastName, FirstName, Phone
from ADDRESS;

LASTNAME FIRSTNAME PHONE
------------------------- ------------------------- ------------
BAILEY WILLIAM 213-555-0223
ADAMS JACK 415-555-7530
SEP FELICIA 214-555-8383
DE MEDICI LEFTY 312-555-1166
DEMIURGE FRANK 707-555-8900
CASEY WILLIS 312-555-1414
ZACK JACK 415-555-6842
YARROW MARY 415-555-2178
WERSCHKY ARNY 415-555-7387
BRANT GLEN 415-555-7512
EDGAR THEODORE 415-555-6252
HARDIN HUGGY 617-555-0125
HILD PHIL 603-555-2242
LOEBEL FRANK 202-555-1414
MOORE MARY 718-555-1638
SZEP FELICIA 214-555-8383
ZIMMERMAN FRED 503-555-7491

To find duplicates, you must force Oracle to compare each last name in the table to all the
others in the same table.

Join the ADDRESS table to itself by creating an alias for the table, calling it first a and then b.
Now it is as if there are two tables, a and b, with the common column LastName.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

148 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 7
Blind Folio 7:148

In the where clause, eliminate any row in which the last name in the result set from table a
matches the last name in the result set from table b. This prevents a last name from matching to
itself.

Those that sound alike are then selected:

select a.LastName, a.FirstName, a.Phone
from ADDRESS a, ADDRESS b
where a.LastName != b.LastName
and SOUNDEX(a.LastName) = SOUNDEX(b.LastName);

LASTNAME FIRSTNAME PHONE
------------------------- ------------------------- ------------
SZEP FELICIA 214-555-8383
SEP FELICIA 214-555-8383

You can also perform SOUNDEX searches on individual words within a text entry. For examples
of this and other complex text searches, see Chapter 25.

National Language Support
Oracle doesn’t have to use English characters; it can represent data in any language through its
implementation of National Language Support. By using characters made up of longer pieces of
information than ordinary characters, Oracle can represent Japanese and other such strings. See
NLSSORT, NLS_INITCAP, NLS_LOWER, and NLS_UPPER in the Alphabetical Reference section
of this book. In addition to the SUBSTR function, Oracle supports SUBSTRB (using bytes instead of
characters), SUBSTRC (using Unicode complete characters), SUBSTR2 (using UCS2 codepoints),
and SUBSTR4 (using UCS4 codepoints).

Regular Expression Support
As of Oracle Database 10g, the string functions INSTR, REPLACE, and SUBSTR have been extended
to support regular expressions. Chapter 8 is devoted to the coverage of these advanced text-search
features.

Review
Data comes in several types, primarily DATE, NUMBER, and character. Character data is basically
a string of letters, numbers, or other symbols, and is often called a character string, or just a string.
These strings can be changed or described by string functions. Oracle features two types of
character datatypes: variable-length strings (the VARCHAR2 datatype) and fixed-length strings
(the CHAR datatype). Values in CHAR columns are padded with spaces to the full column length
if they are shorter than the defined length of the column.

Functions such as RPAD, LPAD, LTRIM, RTRIM, TRIM, LOWER, UPPER, INITCAP, and SUBSTR
actually change the contents of a string before displaying it to you.

Functions such as LENGTH, INSTR, and SOUNDEX describe the characteristics of a string,
such as how long it is, where in it a certain character is located, or what it sounds like.

All these functions can be used alone or in combination to select and present information from
an Oracle database. This is a straightforward process, built up from simple logical steps that can
be combined to accomplish very sophisticated tasks.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 8
Blind Folio 8:149

CHAPTER
8

Searching for
Regular Expressions

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

150 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 8
Blind Folio 8:150

A
s of Oracle Database 10g, the SUBSTR, INSTR, LIKE and REPLACE functions have
been enhanced and extended to support searches for regular expressions. Regular
expressions support a wide array of standardized controls and checks—for example,
matching values a specific number of times, searches for punctuation characters,
or searches for digits. You can use these new functions to perform advanced searches

against strings. The new functions are named REGEXP_SUBSTR, REGEXP_INSTR, REGEXP_LIKE,
and REGEXP_REPLACE.

Users who have previously used the UNIX grep command to search for regular expressions
in text files may already be familiar with the concepts and search techniques involved.

Search Strings
Let’s start with an example. Phone numbers in the ADDRESS table are in the format 123-456-7890.
To select all the exchanges (the middle set of numbers), you can select for any string within the phone
number that starts and ends with a hyphen (-) character.

Within the REGEXP_SUBSTR function, we need to tell Oracle where to start the string. In this
case, we are looking for '-'. The regular expression to search for begins thus:

select REGEXP_SUBSTR('123-456-7890', '-

We now need to tell Oracle to continue until it finds another '-' character in the string. To do
this, use the '[^' operator, a bracket expression that says that the acceptable values match any
character except for the expressions represented in the list. The command now looks like this:

select REGEXP_SUBSTR('123-456-7890', '-[^-]+')
"REGEXP_SUBSTR"

from DUAL;

REGE

-456

This command tells Oracle to look for '-', followed by one or more characters that are not '-',
followed by '-'. Note that if you add an extra '-' at the end of the regular expression, you get the
trailing '-' as part of the returned string:

select REGEXP_SUBSTR('123-456-7890', '-[^-]+-')
"REGEXP_SUBSTR"

from DUAL;

REGEX

-456-

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 8: Searching for Regular Expressions 151

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 8
Blind Folio 8:151

Most users (and developers) are not going to be comfortable typing in strings such as

'-[^-]+'

without training and practice. But as you use the REGEXP_ functions, you can quickly see
how much more functionality they give you. Consider that to generate the same result as the
preceding using only SUBSTR and INSTR, and assuming that the length of the string between
the '-' characters is not known, you would need to execute this query:

select SUBSTR('123-456-7890',
INSTR('123-456-7890', '-',1,1),
INSTR('123-456-7890', '-',1,2)-
INSTR('123-456-7890', '-',1,1))

from DUAL;

By comparison, the REGEXP_SUBSTR function is much more concise. As you will see in the
examples later in this chapter, the regular expression searches enable you to encode complex
search patterns within a single function call.

Table 8-1 shows the regular expression operators and their descriptions. Understanding the
operators involved is critical for effective use of the regular expression search capabilities.

Let’s apply some of these operators and character classes, starting with a simple search. First,
select all the strings in the sample string that contain a colon:

select REGEXP_SUBSTR
('MY LEDGER: Debits, Credits, and Invoices 1940',
':') "REGEXP_SUBSTR"

from DUAL;

R
-
:

Now, replace that search with a search for a punctuation character, using the [:punct:]
character class:

select REGEXP_SUBSTR
('MY LEDGER: Debits, Credits, and Invoices 1940',
'[:punct:]') "REGEXP_SUBSTR"

from DUAL;

R
-
:

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

152 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 8
Blind Folio 8:152

Operator Description

\ a The backslash character can have four different meanings, depending on the context.
It can stand for itself, quote the next character, introduce an operator, or do nothing.

* Matches zero or more occurrences.

+ Matches one or more occurrences.

? Matches zero or one occurrence.

| Alternation operator for specifying alternative matches.

^ b Matches the beginning-of-line character.

$ b Matches the end-of-line character.

. c Matches any character in the supported character set except NULL.

[] d Bracket expression for specifying a matching list that should match any one of the
expressions represented in the list. A nonmatching list expression begins with a
caret (^) and specifies a list that matches any character except for the expressions
represented in the list.

() Grouping expression, treated as a single subexpression.

{m} Matches exactly m times.

{m,} Matches at least m times.

{m,n} Matches at least m times but no more than n times.

\n e The backreference expression (n is a digit between 1 and 9) matches the nth
subexpression enclosed between parentheses and preceding \n.

[..] f Specifies one collation element and can be a multicharacter element (for example,
[.ch.] in Spanish).

[: :] g Specifies character classes (for example, [:alpha:]). It matches any character within
the character class.

[==] h Specifies equivalence classes. For example, [=a=] matches all characters having
base letter 'a'.

Notes on the POSIX operators and Oracle enhancements:

a. The backslash operator can be used to make the character following it normal if it is an operator. For example, '*' is
interpreted as the asterisk string literal.

b. The characters '^' and '$' are the POSIX anchoring operators. By default, they match only the beginning or end of an entire
string. Oracle lets you specify '^' and '$' to match the start or end of any line anywhere within the source string. This, in turn,
lets you treat the source string as multiple lines.

c. In the POSIX standard, the “match any character” operator (.) is defined to match any English character except NULL and
the newline character. In the Oracle implementation, the '.' operator can match any character in the database character set,
including the newline character.

TABLE 8-1. Regular Expression Operators

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 8: Searching for Regular Expressions 153

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 8
Blind Folio 8:153

d. In the POSIX standard, a range in a regular expression includes all collation elements between the start and end points of the
range in the linguistic definition of the current locale. Therefore, ranges in regular expressions are linguistic ranges rather than byte
values ranges, and the semantics of the range expression are independent of character set. Oracle implements this independence
by interpreting range expressions according to the linguistic definition determined by the NLS_SORT initialization parameter.

e. The backreference expression '\n' matches the same string of characters as was matched by the nth subexpression. The
character n must be a digit from 1 to 9, designating the nth subexpression, numbered from left to right. The expression is invalid
if the source string contains fewer than n subexpressions preceding the \n. For example, the regular expression ^(.*)\1$ matches
a line consisting of two adjacent appearances of the same string. Oracle supports the backreference expression in the regular
expression pattern and the replacement string of the REGEXP_REPLACE function.

f. A collating element is a unit of collation and is equal to one character in most cases, but may comprise two or more
characters in some languages. Historically, regular expression syntax does not support ranges containing multicharacter
collation elements, such as the range 'a' through 'ch'. The POSIX standard introduces the collation element delimiter '[..]',
which lets you delimit multicharacter collection elements such as '[a-[.ch.]]'. The collation elements supported by Oracle are
determined by the setting of the NLS_SORT initialization parameter. The collation element is valid only inside the bracketed
expression.

g. In English regular expressions, range expressions often indicate a character class. For example, '[a-z]' indicates any lowercase
character. This convention is not useful in multilingual environments where the first and last character of a given character class
may not be the same in all languages. The POSIX standard introduces the portable character class syntax '[::]'.

In addition to the operators, Oracle supports the following character classes based on character class definitions in NLS
classification data:

Character Class Syntax Meaning

[:alnum:] All alphanumeric characters

[:alpha:] All alphabetic characters

[:blank:] All blank space characters

[:cntrl:] All control characters (nonprinting)

[:digit:] All numeric digits

[:graph:] All [:punct:], [:upper:], [:lower:], and [:digit:] characters

[:lower:] All lowercase alphabetic characters

[:print:] All printable characters

[:punct:] All punctuation characters

[:space:] All space characters (nonprinting)

[:upper:] All uppercase alphabetic characters

[:xdigit:] All valid hexadecimal characters

This character class syntax lets you make better use of NLS character definitions to write flexible regular expressions.
These character classes are valid only inside the bracketed expression.

h. Oracle supports the equivalence classes through the POSIX '[==]' syntax. A base letter and all of its accented versions
constitute an equivalence class. For example, the equivalence class '[=a=]' matches ä and â. The equivalence classes are
valid only inside the bracketed expression.

Note this restriction on equivalence classes: Composed and decomposed versions of the same equivalence class do not
match. For example, 'ä' does not match 'a' followed by umlaut.

TABLE 8-1. Regular Expression Operators (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Beginning from that point in the string, search from there to the next comma encountered:

select REGEXP_SUBSTR
('MY LEDGER: Debits, Credits, and Invoices 1940',
'[:punct:][^,]+,') "REGEXP_SUBSTR"

from DUAL;

REGEXP_SU

: Debits,

You can use the [:digit:] character class to find the numbers in the string:

select REGEXP_SUBSTR
('MY LEDGER: Debits, Credits, and Invoices 1940',
'[[:digit:]]+') "REGEXP_SUBSTR"

from DUAL;

REGE

1940

As shown in this example, you can use the character classes to consolidate searches for
multiple values. When you’re working with search strings—particularly if you do not have prior
experience with regular expressions—begin with the simplest version possible and then increase
in complexity.

REGEXP_SUBSTR
The REGEXP_SUBSTR function, as shown in the preceding examples, uses regular expressions to
specify the beginning and ending points of the returned string. The syntax for REGEXP_SUBSTR is
shown in the following listing. REGEXP_SUBSTR returns the string as VARCHAR2 or CLOB data
in the same character set as the source_string.

REGEXP_SUBSTR(source_string, pattern
[, position

[, occurrence
[, match_parameter]

]
]

)

The examples thus far in this chapter have focused on the pattern variable—the regular
expression. The regular expression can contain up to 512 bytes. As shown in the syntax, you can
also specify parameters related to the position, occurrence, and match_parameter conditions.

The position variable tells REGEXP_SUBSTR where to start searching within the source_string.
The default position value is 1 (the first character). The occurrence variable is an integer indicating
which occurrence of pattern in source_string Oracle should search for. The default occurrence
value is 1. The position and occurrence variables are not available in the standard SUBSTR function—

154 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 8
Blind Folio 8:154

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

they allow you to combine the capabilities of SUBSTR with INSTR while also supporting regular
expression searches. These represent significant extensions to the standard SUBSTR functionality.

You can use the match_parameter variable to further customize the search. match_parameter
is a text literal that lets you change the default matching behavior of the function. Its possible values
are as follows:

■ 'i' Used for case-insensitive matching.

■ 'c' Used for case-sensitive matching.

■ 'n' Allows the period (.), which is a wildcard (see Table 8-1), to match the newline
character. If you omit this parameter, the period does not match the newline character.

■ 'm' Treats the source string as multiple lines. Oracle interprets ^ and $ as the start and
end, respectively, of any line anywhere in the source string, rather than only at the start
or end of the entire source string. If you omit this parameter, Oracle treats the source
string as a single line.

If you specify multiple contradictory values for match_parameter, Oracle uses the last value.
For example, if you specify 'ic', Oracle will use case-sensitive matching. If you specify a character
other than those shown here, Oracle will return an error.

If you omit match_parameter, the following happen:

■ The default case sensitivity is determined by the value of the NLS_SORT parameter.

■ A period (.) does not match the newline character.

■ The source string is treated as a single line.

Here is the REGEXP_SUBSTR search performed with case-insensitive matching:

select REGEXP_SUBSTR
('MY LEDGER: Debits, Credits, and Invoices 1940',
'my' ,1,1, 'i') "REGEXP_SUBSTR"

from DUAL;

RE
--
MY

Now, change that to perform a case-sensitive search:

select REGEXP_SUBSTR
('MY LEDGER: Debits, Credits, and Invoices 1940',
'my' ,1,1,'c') "REGEXP_SUBSTR"

from DUAL;

RE
--

Nothing is returned due to the case mismatch. By default, searches are case sensitive.

Chapter 8: Searching for Regular Expressions 155

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 8
Blind Folio 8:155

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can use the pattern and occurrence parameters the same as you use them in INSTR.
In the following example, the second digit is returned:

select REGEXP_SUBSTR
('MY LEDGER: Debits, Credits, and Invoices 1940',
'[[:digit:]]' ,1,2) "REGEXP_SUBSTR"

from DUAL;

R
-
9

Writing the same query using SUBSTR and INSTR (and assuming the two digits may not be
consecutive) would be much more complex.

REGEXP_INSTR
The REGEXP_INSTR function uses regular expressions to return the beginning or ending point
of the search pattern. The syntax for REGEXP_INSTR is shown in the following listing. REGEXP_
INSTR returns an integer indicating the position of the beginning or ending of the search pattern,
or a 0 if no match is found.

REGEXP_INSTR (source_string, pattern
[, position

[, occurrence
[, return_option

[, match_parameter]
]

]
]

)

The REGEXP_SUBSTR function, shown in the preceding section, performs some of the capabilities
normally associated with INSTR. REGEXP_INSTR adds a unique feature that makes it an important
addition to your SQL toolset. Like REGEXP_SUBSTR, it has the variables pattern, position (starting
position), occurrence, and match_parameter; see the prior section for a description of those variables.
The new capability introduced here, return_option, allows you to tell Oracle what to return in relation
to the occurrence of the pattern:

■ If return_option is 0, Oracle returns the position of the first character of the occurrence.
This is the default, and it’s the same as the behavior of INSTR.

■ If return_option is 1, Oracle returns the position of the character following the
occurrence.

For example, the following query returns the location of the first digit found in the string:

select REGEXP_INSTR
('MY LEDGER: Debits, Credits, and Invoices 1940',

156 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 8
Blind Folio 8:156

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

'[[:digit:]]') "REGEXP_INSTR"
from DUAL;

REGEXP_INSTR

42

What is the next position after that string?

select REGEXP_INSTR
('MY LEDGER: Debits, Credits, and Invoices 1940',
'[[:digit:]]',1,1,1) "REGEXP_INSTR"

from DUAL;

REGEXP_INSTR

43

Even for searches that do not have complex patterns, you may decide to use REGEXP_INSTR
in place of INSTR in order to simplify the math and logic involved in your queries that combine
INSTR and SUBSTR capabilities. Be sure to carefully consider the case-sensitivity settings you
specify via the match_parameter setting.

REGEXP_LIKE
In addition to the regular expression functions shown in previous listings, you can use the
REGEXP_LIKE function. REGEXP_LIKE supports the use of regular expressions within where
clauses. For example, which phone numbers start with '415'?

select LastName
from ADDRESS
where REGEXP_LIKE (Phone,'415+');

LASTNAME

ADAMS
ZACK
YARROW
WERSCHKY
BRANT
EDGAR

The format for REGEXP_LIKE is

REGEXP_LIKE(source_string, pattern
[match_parameter]

)

Chapter 8: Searching for Regular Expressions 157

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 8
Blind Folio 8:157

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

158 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 8
Blind Folio 8:158

Within the pattern, you can use all the search features shown earlier in this chapter—including
the character class definitions—as part of a REGEXP_LIKE search. This capability makes it simple to
perform very complex searches.

For example, how can you tell if a column value contains a numeric digit?

select LastName
from ADDRESS
where REGEXP_LIKE (Phone, '[[:digit:]]');

If a TO_NUMBER function fails because a punctuation mark is found in the value, you can
display the rows that caused it to fail:

select LastName
from ADDRESS
where REGEXP_LIKE (Phone, '[[:punct:]]');

REPLACE and REGEXP_REPLACE
The REPLACE function replaces one value in a string with another. For example, you can replace
each occurrence of a letter with a matching number. The format for REPLACE is

REPLACE (char, search_string [,replace_string])

If you do not specify a value for the replace_string variable, the search_string value, when found,
is removed. The input can be any of the character datatypes—CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. Here’s an example:

REPLACE('GEORGE', 'GE', 'EG') = EGOREG
REPLACE('GEORGE', 'GE', NULL) = OR

If the length of the search string is nonzero, you can tell how many times a string was found
in the search string. First, you calculate the original string length:

LENGTH('GEORGE')

Then you calculate the length of the string after the search string values are removed:

LENGTH(REPLACE('GEORGE', 'GE', NULL))

Then you divide the difference by the length of the search string to find out how many
occurrences of the search string were replaced:

select LENGTH('GEORGE')
- LENGTH(REPLACE('GEORGE', 'GE', NULL))
/
LENGTH('GE') AS Counter

from DUAL;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 8: Searching for Regular Expressions 159

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 8
Blind Folio 8:159

COUNTER

2

The REGEXP_REPLACE function extends the capabilities of the REPLACE function in several
ways. It supports the use of regular expressions in the search pattern, and it also supports the
variables described earlier in this chapter—position, occurrence, and match_parameter. You can
thus choose to replace only certain matched values, or make the matching case insensitive. The
syntax for the REGEXP_REPLACE function is shown in the following listing:

REGEXP_REPLACE(source_string, pattern
[, replace_string

[, position
[, occurrence

[, match_parameter]
]

]
]

)

With the exception of replace_string, all these variables have been described in the earlier
parts of this chapter. The replace_string variable tells Oracle what to use to replace the part of
the source_string that matched the pattern. The occurrence variable is a nonnegative integer that
specifies the occurrence of the operation: If it is 0, all occurrences of the match are replaced; if
you specify a positive integer, Oracle replaces the nth occurrence.

Let’s consider the Phone column of the ADDRESS table. First, we will look for numbers that
are in the format ###-###-####. In that format, there are three digits followed by another set of
three digits and then a set of four digits, separated by '-' characters. We can find the rows that
match that criteria by looking for those sets of digits within a REGEXP_SUBSTR function call:

select REGEXP_SUBSTR (Phone,
'([[:digit:]]{3})-([[:digit:]]{3})-([[:digit:]]{4})'
) "REGEXP_SUBSTR"

from ADDRESS;

REGEXP_SUBST

213-555-0223
415-555-7530
214-555-8383
312-555-1166
707-555-8900
312-555-1414
415-555-6842
415-555-2178
415-555-7387
415-555-7512
415-555-6252

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

160 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 8
Blind Folio 8:160

617-555-0125
603-555-2242
202-555-1414
718-555-1638
214-555-8383
503-555-7491

Now, use REGEXP_REPLACE to put parentheses around the first three digits while leaving out
the first '-' character found. To do this, we will refer to that first set of data as \1, the second as \2,
and the third as \3.

select REGEXP_REPLACE (Phone,
'([[:digit:]]{3})-([[:digit:]]{3})-([[:digit:]]{4})'
, '(\1) \2-\3'
) "REGEXP_REPLACE"

from ADDRESS;

REGEXP_REPLACE
--
(213) 555-0223
(415) 555-7530
(214) 555-8383
(312) 555-1166
(707) 555-8900
(312) 555-1414
(415) 555-6842
(415) 555-2178
(415) 555-7387
(415) 555-7512
(415) 555-6252
(617) 555-0125
(603) 555-2242
(202) 555-1414
(718) 555-1638
(214) 555-8383
(503) 555-7491

The output shows the result of the REGEXP_REPLACE function call—the area codes are enclosed
within parentheses and the first '-' has been eliminated.

To show how the occurrence variable works, the following REGEXP_REPLACE function call
replaces with a period the second '5' found in a phone number:

select REGEXP_REPLACE (Phone,
'5', '.',
1, 2
) "REGEXP_REPLACE"

from ADDRESS;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 8: Searching for Regular Expressions 161

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 8
Blind Folio 8:161

REGEXP_REPLACE
--
213-5.5-0223
415-.55-7530
214-5.5-8383
312-5.5-1166
707-5.5-8900
312-5.5-1414
415-.55-6842
415-.55-2178
415-.55-7387
415-.55-7512
415-.55-6252
617-5.5-0125
603-5.5-2242
202-5.5-1414
718-5.5-1638
214-5.5-8383
503-.55-7491

You can modify that query further to exclude the first three digits as possible matches (set the
starting position to 4) and replace the fourth occurrence instead:

select REGEXP_REPLACE (Phone,
'5', '.',
4, 4
) "REGEXP_REPLACE"

from ADDRESS;

REGEXP_REPLACE
--
213-555-0223
415-555-7.30
214-555-8383
312-555-1166
707-555-8900
312-555-1414
415-555-6842
415-555-2178
415-555-7387
415-555-7.12
415-555-62.2
617-555-012.
603-555-2242
202-555-1414
718-555-1638
214-555-8383
503-555-7491

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can limit the rows returned by using REGEXP_INSTR in a where clause. In this case, only
those rows that have at least four instances of '5' in them (beginning at the fourth character) will
be displayed. Because this search pattern is not complex, you could use INSTR here instead:

select REGEXP_REPLACE (Phone,
'5', '.',
4, 4
) "REGEXP_REPLACE"

from ADDRESS
where REGEXP_INSTR(Phone, '5',4,4) > 0;

REGEXP_REPLACE
--
415-555-7.30
415-555-7.12
415-555-62.2
617-555-012.

You can use the ability to search for alternate values to combine multiple search criteria in
a single query. The following replaces either a 5 or a 2; occurrences of both '5' and '2' count
toward the occurrence count:

select REGEXP_REPLACE (Phone,
'(5|2)', '.',
4, 4
) "REGEXP_REPLACE"

from ADDRESS
where REGEXP_INSTR(Phone, '(5|2)',4,4) > 0;

REGEXP_REPLACE
--
213-555-0.23
415-555-7.30
415-555-684.
415-555-.178
415-555-7.12
415-555-6.52
617-555-01.5
603-555-.242

The '|' character shown in this example is an alternation operator, so matches of either of the
values specified will return a row. See Table 8-1 for additional operators supported within your
regular expressions.

Your use of the REGEXP_SUBSTR, REGEXP_INSTR, REGEXP_LIKE, and REGEXP_REPLACE
functions is limited only by your ability to develop regular expressions that reflect your needs.
As shown in the examples in this chapter, you can use these functions to modify the display of
existing data, to find complex patterns, and to return strings within patterns.

162 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 8
Blind Folio 8:162

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 9
Blind Folio 9:163

CHAPTER
9

Playing the Numbers

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

164 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 9
Blind Folio 9:164

V
irtually everything we do, particularly in business, is measured, explained, and often
guided by numbers. Although Oracle cannot correct our obsession with numbers
and the illusion of control they often give us, it will facilitate capable and thorough
analysis of the information in a database. Good mathematical analysis of familiar
numbers will often show trends and facts that were initially not apparent.

The Three Classes of Number Functions
Oracle functions deal with three classes of numbers: single values, groups of values, and lists of
values. As with string functions (discussed in Chapters 7 and 8), some of these functions change
the values they are applied to, whereas others merely report information about the values. The
classes are distinguished as detailed in the following paragraphs.

A single value is one number, such as these:

■ A literal number, such as 544.3702

■ A variable in SQL*Plus or PL/SQL

■ One number from one column and one row of the database

Oracle single-value functions usually change these values through a calculation.
A group of values is all the numbers in one column from a series of rows, such as the closing

stock price for all the rows of stocks in the stock market table from Chapter 4. Oracle group-value
functions tell you something about the whole group, such as average stock price, but not about
the individual members of the group.

A list of values is a series of numbers that can include the following:

■ Literal numbers, such as 1, 7.3, 22, and 86

■ Variables in SQL*Plus or PL/SQL

■ Columns, such as OpeningPrice, ClosingPrice, Bid, and Ask

Oracle list functions choose one member of a list of values.
Table 9-1 shows these functions by class. Some functions fit into more than one class. Other

functions fall somewhere between string and number functions, or are used to convert data from
one to the other. These are covered in Chapter 11.

Notation
Functions will be shown with this kind of notation:

FUNCTION(value [,option])

The function itself will be uppercase. Values and options will be shown in lowercase italics.
Whenever the word value appears this way, it represents one of the following: a literal number,
the name of a number column in a table, the result of a calculation, or a variable. Because
Oracle does not allow numbers to be used as column names, a literal number should not appear
in single quotation marks (as a literal string would be in a string function). Column names also
must not have single quotation marks.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 9: Playing the Numbers 165

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 9
Blind Folio 9:165

Function Definition

Single-Value Functions

value1 + value2 Addition.

value1 – value2 Subtraction.

value1 * value2 Multiplication.

value1 / value2 Division.

ABS(value) Absolute value.

ACOS(value) Arc cosine of value, in radians.

ASIN(value) Arc sine of value, in radians.

ATAN(value) Arc tangent of value, in radians.

ATAN2 (value1, value2) ATAN2 returns the arc tangent of two values. Input values are
unbounded; outputs are expressed in radians.

BITAND (value1, value2) Bitwise AND of value1 and value2, both of which must resolve
to nonnegative integers. Returns an integer.

CEIL(value) Numeric ceiling (the smallest integer larger than or equal to
value).

COS(value) Cosine of value.

COSH(value) Hyperbolic cosine of value.

EXP(value) e raised to value exponent.

FLOOR(value) Largest integer smaller than or equal to value.

LN(value) Natural logarithm of value.

LOG(value) Base 10 logarithm of value.

MOD(value, divisor) Modulus. The remainder left after dividing a value by a divisor.

NANVL(value1,value2) For BINARY_FLOAT and BINARY_DOUBLE numbers, this
function returns value2 if value1 is not a number.

NVL(value, substitute) Substitute for value if value is NULL.

NVL2(expr1 , expr2 , expr3) If expr1 is not NULL, then expr2 is returned; otherwise, expr3
is returned.

POWER(value, exponent) value raised to an exponent power.

REMAINDER(value1,value2) Remainder of value1 divided by value2.

ROUND(value, precision) Rounding of value to precision.

SIGN(value) 1 if value is positive; –1 if value is negative; 0 if value is zero.

TABLE 9-1. Number Functions

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

166 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 9
Blind Folio 9:166

SIN(value) Sine of value.

SINH(value) Hyperbolic sine of value.

SQRT(value) Square root of value.

TAN(value) Tangent of value.

TANH(value) Hyperbolic tangent of value.

TRUNC(value, precision) value truncated to precision.

VSIZE(value) Storage size of value in Oracle.

Aggregate Functions

AVG(value) Average of value for a group of rows.

CORR(value1, value2) Coefficient of correlation of a set of number pairs. CORR_K
and CORR_S support nonparametric or rank correlation.

COUNT(value) Count of rows for a table, or of non-NULL values for a column.

COVAR_POP(value1, value2) Population covariance of a set of number pairs.

COVAR_SAMP(value1, value2) Sample covariance of a set of number pairs.

CUME_DIST(value) Cumulative distribution of a value in a group of values.

DENSE_RANK(value) Rank of a row in an ordered group of rows.

FIRST(value) Analytic function performed on the row ranking first in a set.

GROUP_ID(value) Distinguishes duplicate groups resulting from a GROUP BY
specification.

GROUPING(expression) Used in conjunction with the ROLLUP and CUBE functions to
detect NULLs.

GROUPING_ID Returns a number corresponding to the GROUPING bit vector
associated with a row.

LAST(value) Analytic function performed on the row ranking last in a set.

MAX(value) Maximum of all values for group of rows.

MEDIAN (expr) Returns the median value for a group of rows, ignoring NULLs.

MIN(value) Minimum of all values for group of rows.

PERCENTILE_CONT(value) Calculates the percentile ranking of a value in a set, assuming
a continuous linear model.

PERCENTILE_DISC(value) Calculates the percentile ranking of a value in a set, assuming
a discrete distribution model.

PERCENT_RANK(value) Calculates the percentile ranking of a value in a set.

TABLE 9-1. Number Functions (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Every function has only one pair of parentheses. The value that function works on, as well as
additional information you can pass to the function, goes between the parentheses.

Chapter 9: Playing the Numbers 167

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 9
Blind Folio 9:167

RANK(value) Calculates the rank of a value in a group of values.

REGR functions These functions perform linear regression analysis on a group
of values.

STATS_BINOMIAL_TEST Tests the difference between a sample proportion and a given
proportion.

STATS_CROSSTAB Analyzes two nominal values.

STATS_F_TEST Tests whether two variables are significantly different.

STATS_KS_TEST Tests whether two variables are from the same population.

STATS_MODE Returns the value that occurs with the greatest frequency in a
group.

STATS_MW_TEST Tests two independent samples against a null hypothesis.

STATS_ONE_WAY_ANOVA A one-way analysis of variance.

STATS_T_TEST_* functions These functions measure the significance of a difference of
means.

STATS_WSR_TEST Determines whether the differences between samples are
significantly different from zero.

STDDEV(value) Standard deviation of all values for a group of rows.

STDDEV_POP(value) Population standard deviation.

STDDEV_SAMP(value) Sample standard deviation.

SUM(value) Sum of all values for a group of rows.

VAR_POP(value) Population variance.

VAR_SAMP(value) Sample variance.

VARIANCE(value) Variance of all values for a group of rows.

WIDTH_
BUCKET(expr,min,max,num)

Constructs equal-width histograms.

List Functions

COALESCE(value1, value2, …) Returns the first non-NULL value in the expression list.

GREATEST(value1, value2, …) Greatest value of a list.

LEAST(value1, value2, …) Least value of a list.

TABLE 9-1. Number Functions (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Some functions have options—parts that are not required to make the function work but that
can give you more control if you choose to use them. Options are always shown in square brackets:
[]. The necessary parts of a function always come before the optional parts.

Single-Value Functions
Most single-value functions are pretty straightforward. This section gives short examples of the
major functions, and it shows both the results of the functions and how they correspond to columns,
rows, and lists. After the examples, you’ll see how to combine these functions. The syntax for all
the functions is found in the Alphabetical Reference of this book.

A table named MATH was created to show the calculation effects of the many math functions.
It has only four rows and four columns, as shown here:

select Name, Above, Below, Empty from MATH;

NAME ABOVE BELOW EMPTY
------------ ------- ------- -----
WHOLE NUMBER 11 -22
LOW DECIMAL 33.33 -44.44
MID DECIMAL 55.5 -55.5
HIGH DECIMAL 66.666 -77.777

This table is useful because it has values with a variety of characteristics, which are spelled out by
the names of the rows. WHOLE NUMBER contains no decimal parts. LOW DECIMAL has decimals
that are less than .5, MID DECIMAL has decimals equal to .5, and HIGH DECIMAL has decimals
greater than .5. This range is particularly important when using the ROUND and TRUNC (truncate)
functions, and in understanding how they affect the value of a number.

To the right of the Name column are three other columns: Above, which contains only numbers
above zero (positive numbers); Below, which contains only numbers below zero; and Empty, which
is NULL.

NOTE
In Oracle, a number column may have no value in it at all. When it is
NULL, it is not zero; it is simply empty. This has important implications
in making computations, as you will see.

Not all the rows in this MATH table are needed to demonstrate how most math functions
work, so the examples primarily use the last row, HIGH DECIMAL. In addition, the SQL*Plus
column command has been used to explicitly show the precision of the calculation so that the
results of functions that affect a number’s precision can be clearly seen. To review the SQL and
SQL*Plus commands that produced the results that follow, see the script that accompanies the
create table commands for the sample tables.

Addition (+), Subtraction (–),
Multiplication (*), and Division (/)
The following query shows each of the four basic arithmetic functions, using Above and Below:

168 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 9
Blind Folio 9:168

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select Name, Above, Below, Empty,
Above + Below AS Plus,
Above - Below AS Subtr,
Above * Below AS Times,
Above / Below AS Divided

from MATH
where Name = 'HIGH DECIMAL';

NAME ABOVE BELOW EMPTY PLUS SUBTR TIMES DIVIDED
------------ ------ ------- ----- ------- ------- ---------- ----------
HIGH DECIMAL 66.666 -77.777 -11.111 144.443 -5185.0815 -.85714286

NULL
In the following example, the same four arithmetic operations are now done again, except instead
of using Above and Below, Above and Empty are used. Note that any arithmetic operation that
includes a NULL value has NULL as a result. The calculated columns (columns whose values are
the result of a calculation) Plus, Subtr, Times, and Divided are all empty.

select Name, Above, Below, Empty,
Above + Empty AS Plus,
Above - Empty AS Subtr,
Above * Empty AS Times,
Above / Empty AS Divided

from MATH
where Name = 'HIGH DECIMAL';

NAME ABOVE BELOW EMPTY PLUS SUBTR TIMES DIVIDED
------------- ------ -------- ------ ------- -------- ------- ---------
HIGH DECIMAL 66.666 -77.777

What you see here is evidence that a NULL value cannot be used in a calculation. NULL isn’t
the same as zero; think of NULL as a value that is unknown. For example, suppose you have a
table with the names of your friends and their ages, but the Age column for PAT SMITH is empty,
because you don’t know it. What’s the difference in your ages? It’s clearly not your age minus
zero. Your age minus an unknown age is also unknown, or NULL. You can’t fill in an answer
because you don’t have an answer. Because you can’t make the computation, the answer is NULL.

This is also the reason you cannot use NULL with an equal sign in a where clause (see
Chapter 5). It makes no sense to say x is unknown and y is unknown, therefore x and y are equal.
If Mrs. Wilkins’s and Mr. Adams’s ages are unknown, it doesn’t mean they’re the same age.

There also will be instances where NULL means a value is irrelevant, such as an apartment
number for a house. In some cases, the apartment number might be NULL because it is unknown
(even though it really exists), while in other cases it is NULL because there simply isn’t one. NULLs
will be explored in more detail later in this chapter, under “NULLs in Group-Value Functions.”

NVL: NULL-Value Substitution
The preceding section states the general case about NULLs—that NULL represents an unknown
or irrelevant value. In particular cases, however, although a value is unknown, you may be able

Chapter 9: Playing the Numbers 169

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 9
Blind Folio 9:169

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

170 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 9
Blind Folio 9:170

to make a reasonable guess. If you’re a package carrier, for instance, and 30 percent of the
shippers who call you for pickups can’t tell you the weight or volume of their packages, will you
declare it completely impossible to estimate how many cargo planes you’ll need tonight? Of course
not. You know from experience the average weight and volume of your packages, so you’d plug
in these numbers for those customers who didn’t supply you with the information. Here’s the
information as supplied by your clients:

select Client, Weight from SHIPPING;

CLIENT WEIGHT
------------- ------
JOHNSON TOOL 59
DAGG SOFTWARE 27
TULLY ANDOVER

This is what the NULL-value substitution (NVL) function does:

select Client, NVL(Weight,43) from SHIPPING;

CLIENT NVL(WEIGHT,43)
------------- --------------
JOHNSON TOOL 59
DAGG SOFTWARE 27
TULLY ANDOVER 43

Here, you know that the average package weight is 43 pounds, so you use the NVL function
to plug in 43 anytime a client’s package has an unknown weight—that is, where the value in the
column is NULL. In this case, TULLY ANDOVER didn’t know the weight of their package when
they called it in, but you can still total these package weights and have a fair estimate.

Here is the format for NVL:

NVL(value,substitute)

If value is NULL, this function is equal to substitute. If value is not NULL, this function is equal
to value. Note that substitute can be a literal number, another column, or a computation. If you
really were a package carrier with this problem, you could even have a table join in your select
statement where substitute was from a view that actually averaged the weight of all non-NULL
packages.

NVL is not restricted to numbers. It can be used with CHAR, VARCHAR2, DATE, and other
datatypes as well, but value and substitute must be the same datatype. Also, NVL is really useful
only in cases where the data is unknown, not where it’s irrelevant.

A companion function, NVL2, is slightly more complex. Its format is

NVL2 (expr1 , expr2 , expr3)

In NVL2, expr1 can never be returned; either expr2 or expr3 will be returned. If expr1 is not
NULL, NVL2 returns expr2. If expr1 is NULL, NVL2 returns expr3. The argument expr1 can have

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 9: Playing the Numbers 171

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 9
Blind Folio 9:171

any datatype. The arguments expr2 and expr3 can have any datatypes except LONG. As of Oracle
Database 10g, you can use the NANVL function for the BINARY_FLOAT and BINARY_DOUBLE
datatypes. NANVL takes two variables, and returns the second if the first is not a number.

ABS: Absolute Value
Absolute value is the measure of the magnitude of something. For instance, in a temperature
change or a stock index change, the magnitude of the change has meaning in itself, regardless
of the direction of the change (which is important in its own right). Absolute value is always a
positive number.

Here is the format for ABS:

ABS(value)

Note these examples:

ABS(146) = 146
ABS(-30) = 30

CEIL
CEIL (for ceiling) simply produces the smallest integer (or whole number) that is greater than
or equal to a specific value. Pay special attention to its effect on negative numbers.

The following shows the format for CEIL and some examples:

CEIL(value)

CEIL(2) = 2
CEIL(1.3) = 2
CEIL(-2) = -2
CEIL(-2.3) = -2

FLOOR
FLOOR is the intuitive opposite of CEIL. Here is the format for FLOOR and some examples:

FLOOR(value)

FLOOR(2) = 2
FLOOR(1.3) = 1
FLOOR(-2) = -2
FLOOR(-2.3) = -3

MOD
MOD (modulus) is an odd little function primarily used in data processing for esoteric tasks such
as “check digits,” which help ensure the accurate transmission of a string of numbers. MOD divides
a value by a divisor and tells you the remainder. For example, MOD(23,6) = 5 means divide 23
by 6. The answer is 3 with 5 left over, so 5 is the result of the modulus.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Here is the format for MOD:

MOD(value,divisor)

Both value and divisor can be any real number. The value of MOD is zero if divisor is zero or
negative. Note the following examples:

MOD(100,10) = 0
MOD(22,23) = 22
MOD(10,3) = 1
MOD(-30.23,7) = -2.23
MOD(4.1,.3) = .2

The second example shows what MOD does whenever the divisor is larger than the dividend
(the number being divided). It produces the dividend as a result. Also note this important case
where value is an integer:

MOD(value,1) = 0

The preceding is a good test to see if a number is an integer.
You can use the REMAINDER function in the same way:

REMAINDER(-30.23,7) = -2.23

POWER
POWER simply provides the ability to raise a value to a given positive exponent, as shown here:

POWER(value,exponent)

POWER(3,2) = 9
POWER(3,3) = 27
POWER(-77.777,2) = 6049.26173
POWER(3,1.086) = 3.29726371
POWER(64,.5) = 8

The exponent can be any real number.

SQRT: Square Root
Oracle has a separate square root function that gives results equivalent to POWER(value,.5):

SQRT(value)

SQRT(64) = 8
SQRT(66.666) = 8.16492498
SQRT(4) = 2

The square root of a negative number is an imaginary number. Oracle doesn’t support imaginary
numbers, so it returns an error if you attempt to find the square root of a negative number.

172 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 9
Blind Folio 9:172

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXP, LN, and LOG
The EXP, LN, and LOG functions are rarely used in business calculations but are quite common
in scientific and technical work. EXP is e (2.71828183…) raised to the specified power; LN is the
“natural,” or base e, logarithm of a value. The first two functions are reciprocals of one another;
LN(EXP(i)) = value. The LOG function takes a base and a positive value. LN(value) is the same
as LOG(2.71828183,value).

EXP(value)

EXP(3) = 20.0855369
EXP(5) = 148.413159

LN(value)

LN(3) = 1.09861229
LN(20.0855369) = 3

LOG(value)

LOG(EXP(1),3) = 1.09861229
LOG(10,100) = 2

ROUND and TRUNC
ROUND and TRUNC are two related single-value functions. TRUNC truncates, or chops off, digits
of precision from a number; ROUND rounds numbers to a given number of digits of precision.

Here are the formats for ROUND and TRUNC:

ROUND(value,precision)
TRUNC(value,precision)

There are some properties worth paying close attention to here. First, look at this simple example
of a select from the MATH table. Two digits of precision are called for (counting toward the right from
the decimal point).

select Name, Above, Below,
ROUND(Above,2),
ROUND(Below,2),
TRUNC(Above,2),
TRUNC(Below,2)

from MATH;

ROUND ROUND TRUNC TRUNC
NAME ABOVE BELOW (ABOVE,2) (BELOW,2) (ABOVE,2) (BELOW,2)
------------ ------- ------- --------- --------- --------- ---------
WHOLE NUMBER 11 -22 11 -22 11 -22
LOW DECIMAL 33.33 -44.44 33.33 -44.44 33.33 -44.44
MID DECIMAL 55.5 -55.5 55.5 -55.5 55.5 -55.5
HIGH DECIMAL 66.666 -77.777 66.67 -77.78 66.66 -77.77

Chapter 9: Playing the Numbers 173

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 9
Blind Folio 9:173

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

174 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 9
Blind Folio 9:174

Only the bottom row is affected, because only it has three digits beyond the decimal point.
Both the positive and negative numbers in the bottom row were rounded or truncated: 66.666
was rounded to a higher number (66.67), but –77.777 was rounded to a lower (more negative)
number (–77.78). When rounding is done to zero digits, this is the result:

select Name, Above, Below,
ROUND(Above,0),
ROUND(Below,0),
TRUNC(Above,0),
TRUNC(Below,0)

from MATH;

ROUND ROUND TRUNC TRUNC
NAME ABOVE BELOW (ABOVE,0) (BELOW,0) (ABOVE,0) (BELOW,0)
------------ ------- ------- --------- --------- --------- ---------
WHOLE NUMBER 11 -22 11 -22 11 -22
LOW DECIMAL 33.33 -44.44 33 -44 33 -44
MID DECIMAL 55.5 -55.5 56 -56 55 -55
HIGH DECIMAL 66.666 -77.777 67 -78 66 -77

Note that the decimal value of .5 was rounded up when 55.5 went to 56. This follows the
most common American rounding convention (some rounding conventions round up only if a
number is larger than .5). Compare these results with CEIL and FLOOR. They have significant
differences:

ROUND(55.5) = 56 ROUND(-55.5) = -56
TRUNC(55.5) = 55 TRUNC(-55.5) = -55
CEIL(55.5) = 56 CEIL(-55.5) = -55
FLOOR(55.5) = 55 FLOOR(-55.5) = -56

Finally, note that both ROUND and TRUNC can work with negative precision, moving to
the left of the decimal point:

select Name, Above, Below,
ROUND(Above,-1),
ROUND(Below,-1),
TRUNC(Above,-1),
TRUNC(Below,-1)

from MATH;

ROUND ROUND TRUNC TRUNC
NAME ABOVE BELOW (ABOVE,-1) (BELOW,-1)(ABOVE,-1) (BELOW,-1)
------------ ------ ------- ---------- ---------- --------- ----------
WHOLE NUMBER 11 -22 10 -20 10 -20
LOW DECIMAL 33.33 -44.44 30 -40 30 -40
MID DECIMAL 55.5 -55.5 60 -60 50 -50
HIGH DECIMAL 66.666 -77.777 70 -80 60 -70

Rounding with a negative number can be useful when producing such things as economic
reports, where populations or dollar sums need to be rounded up to the millions, billions, or trillions.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SIGN
SIGN is the flip side of absolute value. Whereas ABS tells you the magnitude of a value but not
its sign, SIGN tells you the sign of a value but not its magnitude.

Here is the format for SIGN:

SIGN(value)

Examples: SIGN(146) = 1 Compare to: ABS(146) = 146
SIGN(-30) = -1 ABS(-30) = 30

The SIGN of 0 is 0:

SIGN(0)=0

The SIGN function is often used in conjunction with the DECODE function. DECODE will
be described in Chapter 16.

SIN, SINH, COS, COSH, TAN,
TANH, ACOS, ATAN, ATAN2, and ASIN
The trigonometric functions sine, cosine, and tangent are scientific and technical functions not
used much in business. SIN, COS, and TAN give you the standard trigonometric function values
for an angle expressed in radians (degrees multiplied by pi divided by 180). SINH, COSH, and
TANH give you the hyperbolic functions for an angle.

SIN(value)

SIN(30*3.141592655/180) = .5

COSH(value)

COSH(0) = 1

The ASIN, ACOS, and ATAN functions return the arc sine, arc cosine, and arc tangent values
(in radians) of the values provided. ATAN2 returns the arc tangent of two values. Input values are
unbounded; outputs are expressed in radians.

Aggregate Functions
Aggregate or “group-value” functions are those statistical functions such as SUM, AVG, COUNT,
and the like that tell you something about a group of values taken as a whole: the average age
of all the friends in the table, for instance, or the oldest member of the group, or the youngest, or
the number of members in the group, and more. Even when one of these functions is supplying
information about a single row—such as the oldest person—it is still information that is defined
by the row’s relation to the group.

You can use a wide array of advanced statistical functions against your data—including
regression testing and sampling. In the following discussions, you will see descriptions of the

Chapter 9: Playing the Numbers 175

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 9
Blind Folio 9:175

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

most commonly used group-value functions; for the others (all are listed in Table 9-1), see the
Alphabetical Reference.

NULLs in Group-Value Functions
Group-value functions treat NULL values differently than single-value functions do. Group functions
ignore NULL values and calculate a result in spite of them.

Take AVG as an example. Suppose you have a list of 100 friends and their ages. If you picked
20 of them at random and averaged their ages, how different would the result be than if you picked
a different list of 20, also at random, and averaged it, or if you averaged all 100? In fact, the
averages of these three groups would be very close. What this means is that AVG is somewhat
insensitive to missing records, even when the missing data represents a high percentage of the
total number of records available.

NOTE
AVG is not immune to missing data, and there can be cases where it
will be significantly off (such as when missing data is not randomly
distributed), but these cases will be less common.

The relative insensitivity of AVG to missing data needs to be contrasted with, for instance,
SUM. How close to correct is the SUM of the ages of only 20 friends to the SUM of all 100
friends? Not close at all. So if you had a table of friends, but only 20 out of 100 supplied their
age, and 80 out of 100 had NULL for their age, which one would be a more reliable statistic
about the whole group and less sensitive to the absence of data—the AVG age of those 20
friends, or the SUM of them? Note that this is an entirely different issue than whether it is
possible to estimate the sum of all 100 based on only 20 (in fact, it is precisely the AVG of the
20, times 100). The point is, if you don’t know how many rows are NULL, you can use the
following to provide a fairly reasonable result:

select AVG(Age) from BIRTHDAY;

You cannot get a reasonable result from this, however:

select SUM(Age) from BIRTHDAY;

This same test of whether or not results are reasonable defines how the other group functions
respond to NULLs. STDDEV and VARIANCE are measures of central tendency; they, too, are
relatively insensitive to missing data. (These will be shown in “STDDEV and VARIANCE,” later in
this chapter.)

MAX and MIN measure the extremes of your data. They can fluctuate wildly while AVG stays
relatively constant: If you add a 100-year-old man to a group of 99 people who are 50 years old,
the average age only goes up to 50.5—but the maximum age has doubled. Add a newborn baby,
and the average goes back to 50, but the minimum age is now 0. It’s clear that missing or unknown
NULL values can profoundly affect MAX, MIN, and SUM, so be cautious when using them,
particularly if a significant percentage of the data is NULL.

Is it possible to create functions that also take into account how sparse the data is and how
many values are NULL, compared to how many have real values, and make good guesses about

176 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 9
Blind Folio 9:176

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

MAX, MIN, and SUM? Yes, but such functions would be statistical projections, which must make
explicit their assumptions about a particular set of data. This is not an appropriate task for a general-
purpose group function. Some statisticians would argue that these functions should return NULL if
they encounter any NULLs because returning any value can be misleading. Oracle returns something
rather than nothing, but leaves it up to you to decide whether the result is reasonable.

COUNT is a special case. It can go either way with NULL values, but it always returns a
number; it will never evaluate to NULL. The format and usage for COUNT will be shown shortly,
but to simply contrast it with the other group functions, it will count all the non-NULL rows of
a column, or it will count all the rows. In other words, if asked to count the ages of 100 friends,
COUNT will return a value of 20 (because only 20 of the 100 gave their age). If asked to count
the rows in the table of friends without specifying a column, it will return 100. An example of
these differences is given in “DISTINCT in Group Functions,” later in this chapter.

Examples of Single- and Group-Value Functions
Neither the group-value functions nor the single-value functions are particularly difficult to
understand, but a practical overview of how each function works is helpful in fleshing out some
of the options and consequences of their use.

The COMFORT table in these examples contains basic temperature data, by city, at noon
and midnight on each of four sample days in one year: the equinoxes (about March 21 and
September 23) and the solstices (about June 22 and December 22). You ought to be able to
characterize cities based on their temperatures on these days in one year.

For the sake of these examples, this table has only eight rows: the data from the four dates in
2003 for San Francisco, California and Keene, New Hampshire. You can use Oracle’s number
functions to analyze these cities, their average temperature, the volatility of the temperature, and
so on, for 2003. With more years and data on more cities, an analysis of temperature patterns
and variability throughout the century could be made.

The table looks like this:

describe COMFORT

Name Null? Type
------------------------------- -------- ------------
CITY NOT NULL VARCHAR2(13)
SAMPLEDATE NOT NULL DATE
NOON NUMBER(3,1)
MIDNIGHT NUMBER(3,1)
PRECIPITATION NUMBER

It contains this temperature data:

select City, SampleDate, Noon, Midnight from COMFORT;

CITY SAMPLEDAT NOON MIDNIGHT
------------- --------- ---- --------
SAN FRANCISCO 21-MAR-03 62.5 42.3
SAN FRANCISCO 22-JUN-03 51.1 71.9
SAN FRANCISCO 23-SEP-03 61.5
SAN FRANCISCO 22-DEC-03 52.6 39.8

Chapter 9: Playing the Numbers 177

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 9
Blind Folio 9:177

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

KEENE 21-MAR-03 39.9 -1.2
KEENE 22-JUN-03 85.1 66.7
KEENE 23-SEP-03 99.8 82.6
KEENE 22-DEC-03 -7.2 -1.2

AVG, COUNT, MAX, MIN, and SUM
Due to a power failure, the noon temperature in San Francisco on September 23 did not get
recorded. The consequences of this can be seen in the following query:

select AVG(Noon), COUNT(Noon), MAX(Noon), MIN(Noon), SUM(Noon)
from COMFORT
where City = 'SAN FRANCISCO';

AVG(NOON) COUNT(NOON) MAX(NOON) MIN(NOON) SUM(NOON)
--------- ----------- --------- --------- ---------

55.4 3 62.5 51.1 166.2

AVG(Noon) is the average of the three temperatures that are known. COUNT(Noon) is the
count of how many rows there are in the Noon column that are not NULL. MAX and MIN are
self-evident. SUM(Noon) is the sum of only three dates because of the NULL for September 23.
Note that

SUM(NOON)

166.2

is by no coincidence exactly three times AVG(Noon).

Combining Group-Value and Single-Value Functions
Suppose you would like to know how much the temperature changes in the course of a day.
This is a measure of volatility. Your first attempt to answer the question might be to subtract
the temperature at midnight from the temperature at noon:

select City, SampleDate, Noon-Midnight
from COMFORT
where City = 'KEENE';

CITY SAMPLEDAT NOON-MIDNIGHT
------------- --------- -------------
KEENE 21-MAR-03 41.1
KEENE 22-JUN-03 18.4
KEENE 23-SEP-03 17.2
KEENE 22-DEC-03 -6

With only four rows to consider in this table, you can quickly convert (or ignore) the pesky
minus sign. Volatility in temperature is really a magnitude—which means it asks by how much
the temperature changed. It doesn’t include a sign, so –6 isn’t really correct. If this goes uncorrected

178 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 9
Blind Folio 9:178

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

and is included in a further calculation, such as the average change in a year, the answer you get
will be absolutely wrong, as shown here:

select AVG(Noon-Midnight)
from COMFORT
where City = 'KEENE';

AVG(NOON-MIDNIGHT)

17.675

The correct answer requires an absolute value, as shown next.

select AVG(ABS(Noon-Midnight))
from COMFORT
where City = 'KEENE';

AVG(ABS(NOON-MIDNIGHT))

20.675

Combining functions this way follows the same technique given in Chapter 7 in the section
on string functions. An entire function such as

ABS(Noon-Midnight)

is simply plugged into another function as its value, like this:

AVG(value)

which produces

AVG(ABS(Noon-Midnight))

This shows both single-value and group-value functions at work. You see that you can place
single-value functions inside group-value functions. The single-value functions will calculate a
result for every row, and the group-value functions will view that result as if it were the actual
value for the row. Single-value functions can be combined (nested inside each other) almost
without limit. Group-value functions can contain single-value functions in place of their value.
They can, in fact, contain many single-value functions in place of their value.

What about combining group functions? First of all, it doesn’t make any sense to nest them
this way:

select SUM(AVG(Noon)) from COMFORT;

The preceding will produce this error:

ERROR at line 1:
ORA-00978: nested group function without GROUP BY

Chapter 9: Playing the Numbers 179

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 9
Blind Folio 9:179

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Besides, if it actually worked, it would produce exactly the same result as

AVG(Noon)

because the result of AVG(Noon) is just a single value. The SUM of a single value is just the
single value, so it is not meaningful to nest group functions. The exception to this rule is in the
use of group by in the select statement, the absence of which is why Oracle produced the error
message here. This is covered in Chapter 12.

It can be meaningful to add, subtract, multiply, or divide the results of two or more group
functions. For example,

select MAX(Noon) - MIN(Noon)
from COMFORT
where City = 'SAN FRANCISCO';

MAX(NOON)-MIN(NOON)

11.4

gives the range of the temperatures in a year. In fact, a quick comparison of San Francisco and
Keene could be done with just a bit more effort:

select City, AVG(Noon), MAX(Noon), MIN(Noon),
MAX(Noon) - MIN(Noon) AS Swing

from COMFORT
group by City;

CITY AVG(NOON) MAX(NOON) MIN(NOON) SWING
------------- --------- --------- --------- -----
KEENE 54.4 99.8 -7.2 107
SAN FRANCISCO 55.4 62.5 51.1 11.4

This query is a good example of discovering information in your data: The average temperatures
in the two cities are nearly identical, but the huge temperature swing in Keene, compared to San
Francisco, says a lot about the yearly temperature volatility of the two cities, and the relative effort
required to dress (or to heat and cool a home) in one city compared to the other. The group by clause
will be explained in detail in Chapter 12. Briefly, in this example it forced the group functions to work
not on the total table, but on the subgroups of temperatures by city.

STDDEV and VARIANCE
Standard deviation and variance have their common statistical meanings, and they use the same
format as all group functions:

select MAX(Noon), AVG(Noon), MIN(Noon), STDDEV(Noon),
VARIANCE(Noon)

from COMFORT
where City = 'KEENE';

180 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 9
Blind Folio 9:180

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 9: Playing the Numbers 181

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 9
Blind Folio 9:181

MAX(NOON) AVG(NOON) MIN(NOON) STDDEV(NOON) VARIANCE(NOON)
--------- --------- --------- ------------ --------------

99.8 54.4 -7.2 48.3337701 2336.15333

See the Alphabetical Reference for the syntax for the statistical functions listed in Table 9-1.

DISTINCT in Group Functions
All group-value functions have a DISTINCT versus ALL option. COUNT provides a good example
of how this works.

Here is the format for COUNT (note that | means “or”):

COUNT([DISTINCT | ALL] value)

Here is an example:

select COUNT(DISTINCT City), COUNT(City), COUNT(*)
from COMFORT;

COUNT(DISTINCTCITY) COUNT(CITY) COUNT(*)
------------------- ----------- --------

2 8 8

This query shows a couple of interesting results. First, DISTINCT forces COUNT to count
only the number of unique city names. If asked to count the DISTINCT midnight temperatures,
it would return 7, because two of the eight temperatures were the same. When COUNT is used
on City but not forced to look at DISTINCT cities, it finds 8.

This also shows that COUNT can work on a character column. It’s not making a computation
on the values in the column, as SUM or AVG must; it is merely counting how many rows have a
value in the specified column.

COUNT has another unique property: value can be an asterisk, meaning that COUNT tells
you how many rows are in the table, regardless of whether any specific columns are NULL. It
will count a row even if all its fields are NULL.

The other group functions do not share COUNT’s ability to use an asterisk, nor its ability to use
a character column for value (although MAX and MIN can). They do all share its use of DISTINCT,
which forces each of them to operate only on unique values. A table with values such as

select FirstName, Age from BIRTHDAY;

FIRSTNAME AGE
--------------- ----
GEORGE 42
ROBERT 52
NANCY 42
VICTORIA 42
FRANK 42

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

182 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 9
Blind Folio 9:182

would produce this result:

select AVG(DISTINCT Age) AS Average,
SUM(DISTINCT Age) AS Total

from BIRTHDAY;

AVERAGE TOTAL
------- ------

47 94

which, if you wanted to know the average age of your friends, is not the right answer. The use of
DISTINCT other than in COUNT is likely to be extremely rare, except perhaps in some statistical
calculations. MAX and MIN produce the same result with or without DISTINCT.

The alternative option to DISTINCT is ALL, which is the default. ALL tells SQL to check every
row, even if the value is a duplicate of the value in another row. You do not need to type ALL; if
you don’t type DISTINCT, ALL is used automatically.

List Functions
Unlike the group-value functions, which work on a group of rows, the list functions work on
a group of columns, either actual or calculated values, within a single row. In other words, list
functions compare the values of each of several columns and pick either the greatest or least
of the list. Consider the COMFORT table, shown here:

select City, SampleDate, Noon, Midnight from COMFORT;

CITY SAMPLEDAT NOON MIDNIGHT
------------- --------- ---- --------
SAN FRANCISCO 21-MAR-03 62.5 42.3
SAN FRANCISCO 22-JUN-03 51.1 71.9
SAN FRANCISCO 23-SEP-03 61.5
SAN FRANCISCO 22-DEC-03 52.6 39.8
KEENE 21-MAR-03 39.9 -1.2
KEENE 22-JUN-03 85.1 66.7
KEENE 23-SEP-03 99.8 82.6
KEENE 22-DEC-03 -7.2 -1.2

Now compare this query result with the following one. Note especially June and September
in San Francisco, and December in Keene:

select City, SampleDate, GREATEST(Midnight,Noon) AS High,
LEAST(Midnight,Noon) AS Low

from COMFORT;

CITY SAMPLEDAT HIGH LOW
------------- --------- ---- ----
SAN FRANCISCO 21-MAR-03 62.5 42.3
SAN FRANCISCO 22-JUN-03 71.9 51.1

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SAN FRANCISCO 23-SEP-03
SAN FRANCISCO 22-DEC-03 52.6 39.8
KEENE 21-MAR-03 39.9 -1.2
KEENE 22-JUN-03 85.1 66.7
KEENE 23-SEP-03 99.8 82.6
KEENE 22-DEC-03 -1.2 -7.2

September in San Francisco has a NULL result because GREATEST and LEAST couldn’t
legitimately compare an actual midnight temperature with an unknown noon temperature. In the
other two instances, the midnight temperature was actually higher than the noon temperature.

Here are the formats for GREATEST and LEAST:

GREATEST(value1,value2,value3. . .)
LEAST(value1,value2,value3. . .)

Both GREATEST and LEAST can be used with many values, and the values can be columns,
literal numbers, calculations, or combinations of other columns. GREATEST and LEAST can also be
used with character columns. For example, they can choose the names that fall last (GREATEST) or
first (LEAST) in alphabetical order:

GREATEST('Bob','George','Andrew','Isaiah') = Isaiah
LEAST('Bob','George','Andrew','Isaiah') = Andrew

You can use the COALESCE function to evaluate multiple values for non-NULL values. Given
a string of values, COALESCE will return the first non-NULL value encountered; if all are NULL,
then a NULL result will be returned.

In the COMFORT table, there is a NULL value for Noon for one of the San Francisco
measurements. The following query returns

select COALESCE(Noon, Midnight) from COMFORT
where City = 'SAN FRANCISCO';

COALESCE(NOON,MIDNIGHT)

62.5
51.1
61.5
52.6

In the first two records of the output, the value displayed is the Noon value. In the third record,
Noon is NULL, so Midnight is returned instead. Oracle’s DECODE and CASE functions provide
similar functionality, as described in Chapter 16.

Finding Rows with MAX or MIN
Which city had the highest temperature ever recorded, and on what date? The answer is easy
with just eight rows to look at, but what if you have data from every city in the country and for

Chapter 9: Playing the Numbers 183

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 9
Blind Folio 9:183

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

every day of every year for the last 50 years? Assume for now that the highest temperature for
the year occurred closer to noon than midnight. The following won’t work:

select City, SampleDate, MAX(Noon)
from COMFORT;

Oracle flags the City column and gives this error message:

select City, SampleDate, MAX(Noon)
*

ERROR at line 1:
ORA-00937: not a single-group group function

This error message is a bit opaque. It means that Oracle has detected a flaw in the logic of
the question. Asking for columns means you want individual rows to appear; asking for MAX,
a group function, means you want a group result for all rows. These are two different kinds of
requests. The first asks for a set of rows, but the second requests just one computed row, so
there is a conflict. Here is how to construct the query:

select City, SampleDate, Noon
from COMFORT
where Noon = (select MAX(Noon) from COMFORT);

CITY SAMPLEDAT NOON
------------ ---------- -----
KEENE 23-SEP-03 99.8

This only produces one row. You might think, therefore, that the combination of a request for
the City and SampleDate columns, along with the MAX of Noon, is not so contradictory as was
just implied. But what if you’d asked for the minimum temperature instead?

select City, SampleDate, Midnight
from COMFORT
where Midnight = (select MIN(Midnight) from COMFORT);

CITY SAMPLEDAT MIDNIGHT
------------- --------- --------
KEENE 21-MAR-03 -1.2
KEENE 22-DEC-03 -1.2

Two rows! More than one satisfied the MIN request, so there is a conflict in trying to combine
a regular column request with a group function.

It is also possible to use two subqueries, each with a group-value function in it (or two subqueries,
where one does and the other doesn’t have a group function). Suppose you want to know the
highest and lowest noon temperatures for the year:

select City, SampleDate, Noon
from COMFORT
where Noon = (select MAX(Noon) from COMFORT)

184 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 9
Blind Folio 9:184

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

or Noon = (select MIN(Noon) from COMFORT);

CITY SAMPLEDAT NOON
------------- --------- -----
KEENE 23-SEP-03 99.8
KEENE 22-DEC-03 -7.2

Precedence and Parentheses
When more than one arithmetic or logical operator is used in a single calculation, which one
is executed first, and does it matter what order they are in? Consider the following query of the
DUAL table (a one-column, one-row table provided by Oracle):

select 2/2/4 from DUAL;

2/2/4

.25

When parentheses are introduced, although the numbers and the operation (division) stay
the same, the answer changes considerably:

select 2/(2/4) from DUAL;

2/(2/4)

4

The reason for this is precedence. Precedence defines the order in which mathematical
computations are made, not just in Oracle but in mathematics in general. The rules are simple:
Operations within parentheses have the highest precedence, then multiplication and division,
then addition and subtraction. When an equation is computed, any calculations inside parentheses
are made first. Multiplication and division are next. Finally, any addition and subtraction are
completed. When operations of equal precedence are to be performed, they are executed from
left to right. Here are a few examples:

2*4/2*3 = 12 (the same as ((2*4)/2)*3)
(2*4)/(2*3) = 1.333
4-2*5 = -6 (the same as 4 - (2*5))
(4-2)*5 = 10

AND and OR also obey precedence rules, with AND having the higher precedence. Observe
the effect of the AND as well as the left-to-right order in these two queries:

select * from NEWSPAPER
where Section = 'B' AND Page = 1 OR Page = 2;

FEATURE S PAGE
--------------- - -----
Weather C 2

Chapter 9: Playing the Numbers 185

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 9
Blind Folio 9:185

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Modern Life B 1
Bridge B 2

3 rows selected.

select * from NEWSPAPER
where Page = 1 OR Page = 2 AND Section = 'B';

FEATURE S PAGE
--------------- - -----
National News A 1
Sports D 1
Business E 1
Modern Life B 1
Bridge B 2

5 rows selected.

If what you really want is page 1 or 2 in Section B, then parentheses are needed to overcome
the precedence of the AND. Parentheses override any other operations.

select * from NEWSPAPER
where Section = 'B' AND (Page = 1 OR Page = 2);

FEATURE S PAGE
--------------- - -----
Modern Life B 1
Bridge B 2

2 rows selected.

The truth is that even experienced programmers and mathematicians have trouble remembering
what will execute first when they write a query or an equation. It is always wise to make explicit
the order you want Oracle to follow. Use parentheses whenever there could be the slightest risk
of confusion.

Review
Single-value functions work on values in a row-by-row fashion. List functions compare columns
and choose just one, again in a row-by-row fashion. Single-value functions almost always change
the value of the column they are applied to. This doesn’t mean, of course, that they have modified
the database from which the value was drawn, but they do make a calculation with that value,
and the result is different from the original value.

List functions don’t change values in this way, but rather they simply choose (or report) the
GREATEST or LEAST of a series of values in a row. Both single-value and list functions will not
produce a result if they encounter a value that is NULL.

Both single-value and list functions can be used anywhere an expression can be used, such
as in the select and where clauses.

186 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 9
Blind Folio 9:186

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The group-value functions tell something about a whole group of numbers—all of the rows in
a set. The group-value functions tell you the average of those numbers, or the largest of them, or
how many there are, or the standard deviation of the values, and so on. Group functions ignore
NULL values, and this fact must be kept firmly in mind when reporting about groups of values;
otherwise, there is considerable risk of misunderstanding the data.

Group-value functions also can report information on subgroups within a table, or they can
be used to create a summary view of information from one or more tables. Chapter 12 gives
details on these additional features.

Finally, mathematical and logical precedence affect the order in which queries are evaluated,
and this can have a dramatic effect on query results. Get into the habit of using parentheses to
make the order you want both explicit and easy to understand.

Chapter 9: Playing the Numbers 187

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 9
Blind Folio 9:187

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 9
Blind Folio 9:188

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:189

CHAPTER
10

Dates: Then, Now,
and the Difference

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

O
ne of Oracle’s strengths is its ability to store and calculate dates, and the number
of seconds, minutes, hours, days, months, and years between dates. In addition
to basic date functions, Oracle supports a wide array of time zone–conversion
functions. It also has the ability to format dates in virtually any manner you can
conceive of, from the simple 01-MAY-04, to May 1st in the 778th Year of the

Reign of Louis IX. You probably won’t use many of these date-formatting and -computing functions,
but the most basic ones will prove to be very important.

Date Arithmetic
DATE is an Oracle datatype, just as VARCHAR2 and NUMBER are, and it has its own unique
properties. The DATE datatype is stored in a special internal Oracle format that includes not just
the month, day, and year, but also the hour, minute, and second. The benefit of all this detail
should be obvious. If you have, for instance, a customer help desk, for each call that is logged in,
Oracle can automatically store the date and time of the call in a single DATE column. You can
format the DATE column on a report to show just the date, or the date and the hour, or the century,
date, hour, and minute, or the date, hour, minute, and second. You can use the TIMESTAMP datatype
to store fractional seconds. See the “Using the TIMESTAMP Datatypes” section later in this chapter
for details.

SQL*Plus and SQL recognize columns that are of the DATE datatype, and they understand
that instructions to do arithmetic with them call for date arithmetic, not regular math. Adding 1
to a date, for instance, will give you another date—the next day. Subtracting one date from another
will give you a number—the count of days between the two dates.

However, because Oracle dates can include hours, minutes, and seconds, doing date arithmetic
can prove to be tricky because Oracle could tell you, for example, that the difference between
today and tomorrow is .516 days! (This will be explained later in this chapter.)

SYSDATE, CURRENT_DATE, and SYSTIMESTAMP
Oracle taps into the computer’s operating system for the current date and time. It makes these
available to you through a special function called SYSDATE. Think of SYSDATE as a function
whose result is always the current date and time, and it can be used anywhere any other Oracle
function can be used. You also can regard it as a hidden column or pseudo-column that is in
every table. Here, SYSDATE shows today’s date:

select SysDate from DUAL;

SYSDATE

23-MAR-04

NOTE
DUAL is a small but useful Oracle table created for testing functions
or doing quick calculations. Later in this chapter, the sidebar “The
DUAL Table for Quick Tests and Calculations” describes DUAL.

190 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:190

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A second function, CURRENT_DATE, reports the system date in the session’s time zone (you
can set the time zone within your local session, which may differ from the database’s time zone).

select Current_Date from DUAL;

CURRENT_D

23-MAR-04

Another function, SYSTIMESTAMP, reports the system date in the TIMESTAMP datatype format:

select SysTimeStamp from DUAL;

SYSTIMESTAMP

23-MAR-04 04.49.31.718000 PM -05:00

See the “Using the TIMESTAMP Datatypes” section later in this chapter for details on the
TIMESTAMP datatype and the time zone format and functions. The following sections focus on
the use of the DATE datatype, because DATE will satisfy most date-processing requirements.

The Difference Between Two Dates
HOLIDAY is a table of some secular holidays in the United States during 2004:

select Holiday, ActualDate, CelebratedDate from HOLIDAY;

HOLIDAY ACTUALDAT CELEBRATE
------------------------- --------- ---------
NEW YEARS DAY 01-JAN-04 01-JAN-04
MARTIN LUTHER KING, JR. 15-JAN-04 19-JAN-04
LINCOLNS BIRTHDAY 12-FEB-04 16-FEB-04
WASHINGTONS BIRTHDAY 22-FEB-04 16-FEB-04
FAST DAY, NEW HAMPSHIRE 22-FEB-04 22-FEB-04
MEMORIAL DAY 30-MAY-04 31-MAY-04
INDEPENDENCE DAY 04-JUL-04 04-JUL-04
LABOR DAY 06-SEP-04 06-SEP-04
COLUMBUS DAY 12-OCT-04 11-OCT-04
THANKSGIVING 25-NOV-04 25-NOV-04

Which holidays are not celebrated on the actual date of their anniversary during 2004? This
can be easily answered by subtracting CelebratedDate from ActualDate. If the answer is not zero,
there is a difference between the two dates:

select Holiday, ActualDate, CelebratedDate
from Holiday
where CelebratedDate - ActualDate != 0;

HOLIDAY ACTUALDAT CELEBRATE
------------------------- --------- ---------
MARTIN LUTHER KING, JR. 15-JAN-04 19-JAN-04

Chapter 10: Dates: Then, Now, and the Difference 191

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:191

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

LINCOLNS BIRTHDAY 12-FEB-04 16-FEB-04
WASHINGTONS BIRTHDAY 22-FEB-04 16-FEB-04
MEMORIAL DAY 30-MAY-04 31-MAY-04
COLUMBUS DAY 12-OCT-04 11-OCT-04

192 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:192

The DUAL Table for Quick Tests and Calculations
DUAL is a tiny table Oracle provides with only one row and one column in it:

describe DUAL

Name Null? Type
------------------------------ ----------- -------------
DUMMY VARCHAR(1)

Because Oracle’s many functions work on both columns and literals, using DUAL lets
you see some functioning using just literals. In these examples, the select statement doesn’t
care which columns are in the table, and a single row is sufficient to demonstrate a point.
For example, suppose you want to quickly calculate POWER(4,3)—that is, four “cubed”:

select POWER(4,3) from DUAL;

POWER(4,3)

64

The actual column in DUAL is irrelevant. This means that you can experiment with date
formatting and arithmetic using the DUAL table and the date functions in order to understand
how they work. Then, those functions can be applied to actual dates in real tables.

Date Functions
The major functions performed on DATE datatype columns are as follows:

■ ADD_MONTHS(date,count) Adds count months to date.

■ CURRENT_DATE Returns the current date in the session’s time zone.

■ CURRENT_TIMESTAMP Returns the current timestamp with the active time zone
information.

■ DBTIMEZONE Returns the current database time zone, in UTC format.

■ EXTRACT(timeunit FROM datetime) Extracts a portion of a date from a date
value—such as extracting the month value from a DATE column’s values.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 10: Dates: Then, Now, and the Difference 193

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:193

■ FROM_TZ(timestamp) Converts a timestamp value to a timestamp with a time
zone value.

■ GREATEST(date1,date2,date3,…) Picks the latest date from a list of dates.

■ LEAST(date1,date2,date3,…) Picks the earliest date from a list of dates.

■ LAST_DAY(date) Gives the date of the last day of the month that date is in.

■ LOCALTIMESTAMP Returns the local timestamp in the active time zone, with no
time zone information shown.

■ MONTHS_BETWEEN(date2,date1) Gives date2 minus date1 in months (can be
fractional months).

■ NEW_TIME(date,’this’,’other ’) Gives the date (and time) in this time zone. this
will be replaced by a three-letter abbreviation for the current time zone. other will
be replaced by a three-letter abbreviation for the other time zone for which you’d
like to know the time and date. The time zones are as follows:

AST/ADT Atlantic standard/daylight time

BST/BDT Bering standard/daylight time

CST/CDT Central standard/daylight time

EST/EDT Eastern standard/daylight time

GMT Greenwich mean time

HST/HDT Alaska-Hawaii standard/daylight time

MST/MDT Mountain standard/daylight time

NST Newfoundland standard time

PST/PDT Pacific standard/daylight time

YST/YDT Yukon standard/daylight time

■ NEXT_DAY(date,’day ’) Gives the date of the next day after date, where ‘day ’ is
‘Monday’, ‘Tuesday’, and so on.

■ NUMTODSINTERVAL(‘value’,’dateunit ’) Converts value to an INTERVAL DAY
TO SECOND literal, where ‘dateunit ’ is ‘DAY’, ‘HOUR’, ‘MINUTE’, or ‘SECOND’.

■ NUMTOYMINTERVAL(‘value’,’dateunit ’) Converts value to an INTERVAL YEAR
TO MONTH literal, where ‘dateunit ’ is ‘YEAR’ or ‘MONTH’.

■ ROUND(date,’format’) Without format specified, this function rounds a date to
12 A.M. (midnight, the beginning of that day) if the time of date is before noon;
otherwise, it rounds up to the next day. For the use of format for rounding, see
ROUND in the Alphabetical Reference.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:45:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

194 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:194

■ SESSIONTIMEZONE Returns the value of the current session’s time zone.

■ SYS_EXTRACT_UTC Extracts the Coordinated Universal Time (UTC) from the
current date.

■ SYSTIMESTAMP Returns the system date, including fractional seconds and the
time zone of the database.

■ SYSDATE Returns the current date and time.

■ TO_CHAR(date,’format ’) Reformats date according to format. (See the sidebar
“Date Formats” later in this chapter.)

■ TO_DATE(string,’format ’) Converts a string in a given format into an Oracle date.
Will also accept a number instead of a string, with certain limits. format is
restricted.

■ TO_DSINTERVAL(‘value’) Converts the value of a CHAR, VARCHAR2, NCHAR,
or NVARCHAR2 datatype to an INTERVAL DAY TO SECOND type.

■ TO_TIMESTAMP(‘value’) Converts the value of a CHAR, VARCHAR2, NCHAR,
or NVARCHAR2 datatype to a value of the TIMESTAMP datatype.

■ TO_TIMESTAMP_TZ(‘value’) Converts the value of a CHAR, VARCHAR2,
NCHAR, or NVARCHAR2 datatype to a value of the TIMESTAMP WITH TIME
ZONE datatype.

■ TO_YMINTERVAL(‘value’) Converts the value of a CHAR, VARCHAR2, NCHAR,
or NVARCHAR2 datatype to a value of the INTERVAL YEAR TO MONTH datatype.

■ TRUNC(date,’format ’) Without format specified, this function sets a date to 12
A.M. (midnight, the beginning of that day). For the use of format for truncating, see
TRUNC in the Alphabetical Reference.

■ TZ_OFFSET(‘value’) Returns the time zone offset corresponding to the value
entered based on the date the statement is executed.

Adding Months
If February 22 is “Fast Day” in New Hampshire, perhaps six months later could be celebrated as
“Feast Day.” If so, what would the date be? Simply use the ADD_MONTHS function, adding a
count of six months, as shown here:

column FeastDay heading "Feast Day"

select ADD_MONTHS(CelebratedDate,6) AS FeastDay
from HOLIDAY
where Holiday like 'FAST%';

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Feast Day

22-AUG-04

Subtracting Months
If picnic area reservations have to be made at least six months before Columbus Day, what’s the
last day you can make them? Take the CelebratedDate for Columbus Day and use ADD_MONTHS,
adding a negative count of six months (this is the same as subtracting months). This will tell you
the date six months before Columbus Day. Then subtract one day.

column LastDay heading "Last Day"

select ADD_MONTHS(CelebratedDate,-6) - 1 AS LastDay
from HOLIDAY
where Holiday = 'COLUMBUS DAY';

Last Day

10-APR-04

GREATEST and LEAST
Which comes first for each of the holidays that were moved to fall on Mondays, the actual or the
celebrated date? The LEAST function chooses the earliest date from a list of dates, whether columns
or literals; GREATEST, on the other hand, chooses the latest date. These GREATEST and LEAST
functions are exactly the same ones used with numbers and character strings:

select Holiday, LEAST(ActualDate, CelebratedDate) AS First,
ActualDate, CelebratedDate

from HOLIDAY
where ActualDate - CelebratedDate != 0;

HOLIDAY FIRST ACTUALDAT CELEBRATE
------------------------- --------- --------- ---------
MARTIN LUTHER KING, JR. 15-JAN-04 15-JAN-04 19-JAN-04
LINCOLNS BIRTHDAY 12-FEB-04 12-FEB-04 16-FEB-04
WASHINGTONS BIRTHDAY 16-FEB-04 22-FEB-04 16-FEB-04
MEMORIAL DAY 30-MAY-04 30-MAY-04 31-MAY-04
COLUMBUS DAY 11-OCT-04 12-OCT-04 11-OCT-04

Here, LEAST worked just fine, because it operated on DATE columns from a table. What about
literals?

select LEAST('20-JAN-04','20-DEC-04') from DUAL;

LEAST('20

20-DEC-04

Chapter 10: Dates: Then, Now, and the Difference 195

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:195

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

196 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:196

This is quite wrong, almost as if you’d said GREATEST instead of LEAST. December 20, 2004
is not earlier than January 20, 2004. Why did this happen? Because LEAST treated these literals
as strings.

It did not know to treat them as dates. The TO_DATE function converts these literals into an
internal DATE format Oracle can use for its date-oriented functions:

select LEAST(TO_DATE('20-JAN-04'), TO_DATE('20-DEC-04'))
from DUAL;

LEAST(TO_

20-JAN-04

NEXT_DAY
NEXT_DAY computes the date of the next named day of the week (that is, Sunday, Monday, Tuesday,
Wednesday, Thursday, Friday, or Saturday) after the given date. For example, suppose payday is
always the first Friday after the 15th of the month. The table PAYDAY contains only the pay cycle
dates, each one being the 15th of the month, with one row for each month of the year:

A Warning about GREATEST and LEAST
Unlike many other Oracle functions and logical operators, the GREATEST and LEAST
functions will not evaluate literal strings that are in date format as dates. The dates are
treated as strings:

select Holiday, CelebratedDate
from HOLIDAY

where CelebratedDate = LEAST('19-JAN-04', '06-SEP-04');

HOLIDAY CELEBRATE
---------------------- ---------
LABOR DAY 02-SEP-02

In order for LEAST and GREATEST to work properly, the function TO_DATE must
be applied to the literal strings:

select Holiday, CelebratedDate
from HOLIDAY

where CelebratedDate = LEAST(TO_DATE('19-JAN-04'),
TO_DATE('06-SEP-04'));

HOLIDAY CELEBRATE
-------------------------- ---------
MARTIN LUTHER KING, JR. 04-JAN-04

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 10: Dates: Then, Now, and the Difference 197

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:197

select CycleDate from PAYDAY;

CYCLEDATE

15-JAN-04
15-FEB-04
15-MAR-04
15-APR-04
15-MAY-04
15-JUN-04
15-JUL-04
15-AUG-04
15-SEP-04
15-OCT-04
15-NOV-04
15-DEC-04

What will be the actual payment dates?

column Payday heading "Pay Day"

select NEXT_DAY(CycleDate,'FRIDAY') AS Payday
from PAYDAY;

Pay Day

16-JAN-04
20-FEB-04
19-MAR-04
16-APR-04
21-MAY-04
18-JUN-04
16-JUL-04
20-AUG-04
17-SEP-04
22-OCT-04
19-NOV-04
17-DEC-04

This is nearly correct, except for October, because NEXT_DAY is the date of the next Friday
after the cycle date. Because October 15, 2004, is a Friday, this (wrongly) gives the following
Friday instead. The correct version is as follows:

column Payday heading "Pay Day"

select NEXT_DAY(CycleDate-1,'FRIDAY') AS PayDay
from PAYDAY;

NEXT_DAY is really a “greater than” kind of function. It asks for the next date greater than the
given date that falls on a specific day of the week. To catch those cycle dates that are already on
Friday, subtract one from the cycle date. This makes every cycle date appear one day earlier to
NEXT_DAY. The paydays are then always the correct Friday.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

198 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:198

LAST_DAY
LAST_DAY produces the date of the last day of the month. Suppose that commissions and
bonuses are always paid on the last day of the month. What are those dates in 2004?

column EndMonth heading "End Month"

select LAST_DAY(CycleDate) AS EndMonth
from PAYDAY;

End Month

31-JAN-04
29-FEB-04
31-MAR-04
30-APR-04
31-MAY-04
30-JUN-04
31-JUL-04
31-AUG-04
30-SEP-04
31-OCT-04
30-NOV-04
31-DEC-04

MONTHS_BETWEEN Two Dates
You recently came across a file containing the birthdates of a group of friends. You load the
information into a table called BIRTHDAY and display it:

select FirstName, LastName, BirthDate from BIRTHDAY;

FIRSTNAME LASTNAME BIRTHDATE
--------------- --------------- ---------
GEORGE SAND 12-MAY-46
ROBERT JAMES 23-AUG-37
NANCY LEE 02-FEB-47
VICTORIA LYNN 20-MAY-49
FRANK PILOT 11-NOV-42

To calculate each person’s age, compute the months between today’s date and their birth dates,
and divide by 12 to get the years. The division will print the age with a decimal component. Because
most people over the age of 7 don’t report their age using portions of years, apply a FLOOR function
to the computation.

select FirstName, LastName, Birthdate,
FLOOR(

MONTHS_BETWEEN(SysDate,Birthdate)/12
) AS Age

from BIRTHDAY;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 10: Dates: Then, Now, and the Difference 199

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:199

FIRSTNAME LASTNAME BIRTHDATE AGE
--------------- --------------- --------- -------
GEORGE SAND 12-MAY-46 57
ROBERT JAMES 23-AUG-37 66
NANCY LEE 02-FEB-47 57
VICTORIA LYNN 20-MAY-49 54
FRANK PILOT 11-NOV-42 61

Combining Date Functions
You are hired on March 23, 2004, at a great new job, with a starting salary that is lower than you
had hoped, but with a promise of a review the first of the month after six months have passed. If
the current date is March 23, 2004, when is your review date?

select SysDate AS Today,
LAST_DAY(ADD_MONTHS(SysDate,6)) + 1 Review

from DUAL;

TODAY REVIEW
--------- ---------
23-MAR-04 01-OCT-04

ADD_MONTHS takes the SysDate and adds six months to it. LAST_DAY takes this result and
figures the last day of that month. You then add 1 to the date to get the first day of the next month.
How many days until that review? You simply subtract today’s date from it. Note the use of
parentheses to ensure the proper order of the calculation:

select (LAST_DAY(ADD_MONTHS(SysDate,6))+ 1)-SysDate Wait
from DUAL;

WAIT

192

ROUND and TRUNC in Date Calculations
Assume that this is today’s SysDate:

SYSDATE

23-MAR-04

In the beginning of the chapter, it was noted that Oracle could subtract one date from another,
such as tomorrow minus today, and come up with an answer other than a whole number. Let’s
look at it:

select TO_DATE('24-MAR-04') - SysDate from DUAL;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

200 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:200

TO_DATE('24-MAR-04')-SYSDATE

.516

The reason for the fractional number of days between today and tomorrow is that Oracle
keeps hours, minutes, and seconds with its dates, and SysDate is always current, up to the second.
It is obviously less than a full day until tomorrow.

To simplify some of the difficulties you might encounter using fractions of days, Oracle makes a
couple of assumptions about dates:

■ A date entered as a literal, such as ‘24-MAR-04’, is given a default time of 12 A.M.
(midnight) at the beginning of that day.

■ A date entered through SQL*Plus, unless a time is specifically assigned to it, is set to
12 A.M. (midnight) at the beginning of that day.

■ SysDate always includes both the date and the time, unless you intentionally round it
off. Using the ROUND function on any date sets it to 12 A.M. for that day if the time is
before exactly noon, and to 12 A.M. the next day if it is after noon. The TRUNC function
acts similarly, except that it sets the time to 12 A.M. for any time up to and including one
second before midnight.

To get the rounded number of days between today and tomorrow, use this:

select TO_DATE('25-MAR-04') - ROUND(SysDate) from DUAL;

TO_DATE('25-MAR-04')-ROUND(SYSDATE)

1

If the current time is after noon, the rounded difference will be 0 days.
ROUND, without a ‘format’ (see the earlier sidebar, “Date Functions”), always rounds a date

to 12 A.M. of the closest day. If dates that you will be working with contain times other than noon,
either use ROUND or accept possible fractional results in your calculations. TRUNC works similarly,
but it sets the time to 12 A.M. of the current day.

TO_DATE and TO_CHAR Formatting
TO_DATE and TO_CHAR are alike insofar as they both have powerful formatting capabilities.
They are opposite insofar as TO_DATE converts a character string or a number into an Oracle
date, whereas TO_CHAR converts an Oracle date into a character string. The formats for these
two functions are as follows:

TO_CHAR(date[,'format'[,'NLSparameters']])

TO_DATE(string[,'format'[,'NLSparameters']])

date must be a column defined as a DATE datatype in Oracle. It cannot be a string, even if
it is in the most common date format of DD-MON-YY. The only way to use a string where date
appears in the TO_CHAR function is to enclose it within a TO_DATE function.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 10: Dates: Then, Now, and the Difference 201

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:201

string is a literal string, a literal number, or a database column containing a string or a number.
In every case but one, the format of string must correspond to that described by format. Only if a
string is in the default format can format be left out. The default starts out as ‘DD-MON-YY’, but
you can change this with

alter session set NLS_DATE_FORMAT = "DD/MON/YYYY";

for a given SQL session or with the NLS_DATE_FORMAT init.ora parameter.
format is a collection of many options that can be combined in virtually an infinite number of

ways. The sidebar “Date Formats” lists these options with explanations. Once you understand the
basic method of using the options, putting them into practice is simple.

NLSparameters is a string that sets the NLS_DATE_LANGUAGE option to a specific language,
as opposed to using the language for the current SQL session. You shouldn’t need to use this option
often. Oracle will return day and month names in the language set for the session with alter session.

NOTE
In many cases, you can use the EXTRACT function in place of TO_
CHAR. See the “Using the EXTRACT Function” section later in this
chapter for examples.

TO_CHAR will be used as an example of how the options work. Defining a column format
for the TO_CHAR function results is the first task, because without it, TO_CHAR will produce
a column in SQL*Plus nearly 100 characters wide. By renaming the column (so its heading is
intelligible) and setting its format to 30 characters, a practical display is produced:

column Formatted format a30 word_wrapped
select BirthDate,

TO_CHAR(BirthDate,'MM/DD/YY') AS Formatted
from BIRTHDAY

where FirstName = 'VICTORIA';

BIRTHDATE FORMATTED
--------- ------------------------------
20-MAY-49 05/20/49

BirthDate shows the default Oracle date format: DD-MON-YY (day of the month, dash, three-
letter abbreviation for the month, dash, the last two digits of the year). The TO_CHAR function in
the select statement is nearly self-evident. MM, DD, and YY in the TO_CHAR statement are key
symbols to Oracle in formatting the date. The slashes (/) are just punctuation, and Oracle will
accept a wide variety of punctuation.

select BirthDate, TO_CHAR(BirthDate,'YYMM>DD') Formatted
from BIRTHDAY
where FirstName = 'VICTORIA';

BIRTHDATE FORMATTED
--------- ------------------------------
20-MAY-49 4905>20

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

202 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:202

Date Formats
Date format models are used in conversion functions. Here are the data model
components:

/ , - : . ; Punctuation to be incorporated in display for TO_CHAR or ignored
in format for TO_DATE.

A.D. or AD AD indicator, with or without periods.

A.M. or AM Displays A.M. or P.M., depending upon time of day, with or without
periods.

B.C. or BC Same as A.D. or AD.

CC Century (for example, 21 for 2004).

SCC Century, with BC dates prefixed with -.

D Number of days in a week: 1 to 7.

DAY The day fully spelled out, padded to nine characters.

DD Number of days in a month: 1 to 31.

DDD Number of days in a year (since Jan 1): 1 to 366.

DL The date in local long format; in the U.S. format this is equivalent to
‘fmDay, Month dd, yyyy’.

DS The date in local short format; in the U.S. format this is equivalent to
‘MM/DD/RRRR’.

DY Three-letter abbreviation of a day (for example, FRI).

E Abbreviated era name (Japanese Imperial, ROC Official, and Thai
Buddha calendars).

EE Full era name version of the E format.

FF [1..9] Fractional seconds. The number following FF specifies the number
of digits in the fractional seconds portion displayed.

FM Suppresses leading and trailing blanks. Without FM, all months and
days are displayed at the same width.

FX Specifies the exact format matching for the character argument and
the date format model.

HH Hour of the day (always 1 to 12).

HH12 Same as HH.

HH24 Hour of the day, 24-hour clock (values 0 to 23).

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 10: Dates: Then, Now, and the Difference 203

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:203

I One-digit year from ISO standard.

IW Weeks in the year from ISO standard (1 to 53).

IY Two-digit year from ISO standard.

IYY Three-digit year from ISO standard.

IYYY Four-digit year from ISO standard.

J “Julian” (days since December 31, 4712 B.C.).

MI Minutes of the hour (values 0 to 59).

MM Number of the month (for example, 12).

MON Three-letter abbreviation of the month (for example, AUG).

MONTH The month fully spelled out (for example, AUGUST).

P.M. Same effect as A.M.

Q Quarter of the year (1 to 4).

RM Roman numeral month.

RR Last two digits of the year relative to the current date.

RRRR Rounded year, accepting either two- or four-digit input.

SS Seconds of the minute (for example, 43).

SSSSS Seconds since midnight, always 0 to 86399 (for example, 43000).

TS Short time format, for use with DL or DS.

TZD Daylight savings time information.

TZH Time zone hour.

TZM Time zone minute.

TZR Time zone region.

W Number of weeks in a month, where Week 1 starts on the first day
of the month.

WW Number of weeks in a year, where Week 1 starts on the first day of
the year.

X Local radix character.

YEAR or SYEAR The year spelled out; ‘S’ marks B.C. dates with a leading minus sign.

YYYY or SYYYY Full four-digit year; ‘S’ marks B.C. dates with a leading minus sign.

Y,YYY Year, with a comma.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

204 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:204

In addition to standard punctuation, Oracle allows you to insert text into the format. This is
done by enclosing the desired text in double quotation marks:

select BirthDate,
TO_CHAR(BirthDate,'Month, DDth "in, um,"

YyyY') AS Formatted
from BIRTHDAY ;

BIRTHDATE FORMATTED
--------- ------------------------------
12-MAY-46 May , 12TH in, um,

1946
23-AUG-37 August , 23RD in, um,

1937
02-FEB-47 February , 02ND in, um,

1947

Y Last one digit of a year.

YY Last two digits of a year.

YYY Last three digits of a year.

Date formats that work only with TO_CHAR, but not TO_DATE, include the following:

“string” string is incorporated in the display for TO_CHAR.

TH Suffix to a number. For example, ddTH or DDTH produces 24th or 24TH,
respectively. Capitalization comes from the case of the number—DD—not
from the case of TH. Works with any number in a date: YYYY, DD, MM,
HH, MI, SS, and so on.

SP Suffix to a number that forces the number to be spelled out. For example,
DDSP, DdSP, or ddSP produces THREE, Three, or three, respectively.
Capitalization comes from the case of the number—DD—not from the
case of SP. Works with any number in a date: YYYY, DD, MM, HH, MI,
SS, and so on.

SPTH Suffix combination of TH and SP that forces a number to be both spelled
out and given an ordinal suffix. For example, Ddspth produces Third.
Capitalization comes from the case of the number—DD—not from the
case of SP. Works with any number in a date: YYYY, DD, MM, HH, MI,
SS, and so on.

THSP Same as SPTH.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 10: Dates: Then, Now, and the Difference 205

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:205

20-MAY-49 May , 20TH in, um,
1949

11-NOV-42 November , 11TH in, um,
1942

Several consequences of the format are worth observing here. The full word “Month” told
Oracle to use the full name of the month in the display. Because it was typed with the first letter
in uppercase and the remainder in lowercase, each month in the result was formatted the same
way. The options for month are as follows:

Format Result

Month August

Month August

Mon Aug

Mon Aug

The day of the month is produced by the DD in the format. A suffix of th on DD tells Oracle
to use ordinal suffixes, such as “TH”, “RD”, and “ND” with the number. In this instance, the
suffixes are also case sensitive, but their case is set by the DD, not the th:

Format Result

DDth or DDTH 11TH

Ddth or DdTH 11Th

Ddth or ddTH 11th

This same approach holds true for all numbers in the format, including century, year, quarter,
month, week, day of the month (DD), Julian day, hours, minutes, and seconds.

The words between double quotation marks are simply inserted where they are found. Spaces
between any of these format requests are reproduced in the result (look at the three spaces before
the word “in” in the preceding example). YyyY is included simply to show that case is irrelevant
unless a suffix such as Th is being used. For simplicity’s sake, consider this format request:

select BirthDate, TO_CHAR(BirthDate,'Month, ddth, YyyY')
AS Formatted

from BIRTHDAY;

BIRTHDATE FORMATTED
--------- ------------------------------
12-MAY-46 May , 12th, 1946
23-AUG-37 August , 23rd, 1937
02-FEB-47 February , 02nd, 1947
20-MAY-49 May , 20th, 1949
11-NOV-42 November , 11th, 1942

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This is a reasonably normal format. The days are all aligned, which makes comparing the rows
easy. This is the default alignment, and Oracle accomplishes it by padding the month names on
the right with spaces up to a width of nine spaces. There will be circumstances when it is more
important for a date to be formatted normally, such as at the top of a letter. The spaces between
the month and the comma would look odd. To eliminate the spaces, fm is used as a prefix for the
words “month” and “day”:

Format Result

Month, ddth August , 20th

fmMonth, ddth August, 20th

Day, ddth Monday , 20th

fmDay, ddth Monday, 20th

This is illustrated in the following example:

select BirthDate, TO_CHAR(BirthDate,'fmMonth, ddth, YyyY')
AS Formatted

from BIRTHDAY;

BIRTHDATE FORMATTED
--------- ------------------------------
12-MAY-46 May, 12th, 1946
23-AUG-37 August, 23rd, 1937
02-FEB-47 February, 2nd, 1947
20-MAY-49 May, 20th, 1949
11-NOV-42 November, 11th, 1942

By combining all these format controls and adding hours and minutes, you can produce a
birth announcement:

select FirstName, Birthdate, TO_CHAR(BirthDate,
'"Baby Girl on" fmMonth ddth, YYYY, "at" HH:MI "in the Morning"')

AS Formatted
from BIRTHDAY

where FirstName = 'VICTORIA';

FIRSTNAME BIRTHDATE FORMATTED
--------------- --------- ------------------------------
VICTORIA 20-MAY-49 Baby Girl on May 20th, 1949,

at 3:27 in the Morning

Suppose that after looking at this, you decide you’d rather spell out the date. Do this with the
sp control:

select FirstName, Birthdate, TO_CHAR(BirthDate,
'"Baby Girl on the" Ddsp "of" fmMonth, YYYY, "at" HH:MI')

AS Formatted

206 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:206

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

from BIRTHDAY
where FirstName = 'VICTORIA';

FIRSTNAME BIRTHDATE FORMATTED
--------------- --------- ------------------------------
VICTORIA 20-MAY-49 Baby Girl on the Twenty of

May, 1949, at 3:27

Well, 20 was spelled out, but it still doesn’t look right. Add the th suffix to sp:

select FirstName, Birthdate, TO_CHAR(BirthDate,
'"Baby Girl on the" Ddspth "of" fmMonth, YYYY, "at" HH:MI')

AS Formatted
from BIRTHDAY

where FirstName = 'VICTORIA';

FIRSTNAME BIRTHDATE FORMATTED
--------------- --------- ------------------------------
VICTORIA 20-MAY-49 Baby Girl on the Twentieth of

May, 1949, at 3:27

But was it 3:27 A.M. or 3:27 P.M.? These could be added inside double quotation marks, but
then the result would always say “A.M.” or “P.M.”, regardless of the actual time of the day (because
double quotation marks enclose a literal). Instead, Oracle lets you add either “A.M.” or “P.M.”
after the time, but not in double quotation marks. Oracle then interprets this as a request to
display whether it is A.M. or P.M. Note how the select has this formatting control entered as P.M.,
but the result shows A.M., because the birth occurred in the morning:

select FirstName, Birthdate, TO_CHAR(BirthDate,
'"Baby Girl on the" Ddspth "of" fmMonth, YYYY, "at" HH:MI P.M.')

AS Formatted
from BIRTHDAY

where FirstName = 'VICTORIA';

FIRSTNAME BIRTHDATE FORMATTED
--------------- --------- ------------------------------
VICTORIA 20-MAY-49 Baby Girl on the Twentieth of

May, 1949, at 3:27 A.M.

Consult the sidebar “Date Formats,” earlier in the chapter, for a list of all the possible date
options. How would you construct a date format for the 778th Year of the Reign of Louis IX? Use
date arithmetic to alter the year from A.D. to A.L. (Louis’s reign began in 1226, so subtract 1,226
years from the current year) and then simply format the result using TO_CHAR.

The Most Common TO_CHAR Error
Always check the date formats when using the TO_CHAR function. The most common error is to
interchange the ‘MM’ (Month) format and the ‘MI’ (Minutes) format when formatting the time portion
of a date.

Chapter 10: Dates: Then, Now, and the Difference 207

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:207

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

For example, to view the current time, use the TO_CHAR function to query the time portion
of SysDate:

select TO_CHAR(SysDate,'HH:MI:SS') Now
from DUAL;

NOW

05:11:48

This example is correct because it uses ‘MI’ to show the minutes. However, users often select
‘MM’ instead—partly because they are also selecting two other pairs of double letters, ‘HH’ and
‘SS’. Selecting ‘MM’ will return the month, not the minutes:

select TO_CHAR(SysDate,'HH:MM:SS') NowWrong
from DUAL;

NOWWRONG

05:03:48

This time is incorrect, because the month was selected in the minutes place. Because Oracle is
so flexible and has so many different supported date formats, it does not prevent you from making
this error.

NEW_TIME: Switching Time Zones
The NEW_TIME function tells you the time and date of a date column or literal date in other time
zones. Here is the format for NEW_TIME:

NEW_TIME(date,'this','other')

date is the date (and time) in this time zone. this will be replaced by a three-letter abbreviation
for the current time zone. other will be replaced by a three-letter abbreviation of the other time
zone for which you’d like to know the time and date. The time zone options are given in the
sidebar “Date Functions,” earlier in this chapter. To compare just the date, without showing the
time, of Victoria’s birth between Eastern standard time and Hawaiian standard time, use this:

select Birthdate, NEW_TIME(Birthdate,'EST','HST')
from BIRTHDAY
where FirstName = 'VICTORIA';

BIRTHDATE NEW_TIME(
--------- ---------
20-MAY-49 19-MAY-49

But how could Victoria have been born on two different days? Because every date stored in
Oracle also contains a time, it is simple enough using TO_CHAR and NEW_TIME to discover
both the date and the time differences between the two zones. This will answer the question:

208 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:208

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 10: Dates: Then, Now, and the Difference 209

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:209

select TO_CHAR(Birthdate,'fmMonth Ddth, YYYY "at" HH:MI AM') AS Birth,
TO_CHAR(NEW_TIME(Birthdate,'EST','HST'),
'fmMonth ddth, YYYY "at" HH:MI AM') AS Birth

from BIRTHDAY
where FirstName = 'VICTORIA';

BIRTH BIRTH
------------------------------ ------------------------------
May 20th, 1949 at 3:27 AM May 19th, 1949 at 10:27 PM

TO_DATE Calculations
TO_DATE follows the same formatting conventions as TO_CHAR, with some restrictions. The
purpose of TO_DATE is to turn a literal string, such as MAY 20, 1949, into an Oracle date format.
This allows the date to be used in date calculations.

Here is the format for TO_DATE:

TO_DATE(string[,'format'])

To put the string 22-MAR-04 into Oracle date format, use this:

select TO_DATE('22-MAR-04','DD-MON-YY') from DUAL;

TO_DATE('

22-MAR-04

Note, however, that the 22-MAR-04 format is already in the default format in which Oracle
displays and accepts dates. When a literal string has a date in this format, the format in TO_DATE
can be left out, with exactly the same result:

select TO_DATE('22-MAR-04') from DUAL;

TO_DATE('

22-MAR-04

Note that the punctuation is ignored. Even if your default date format is 22/MAR/04, the query
will still work, but it will return data in the format 22/MAR/04.

But what century is the date in? Is it 1902 or 2002? If you do not specify the full four-digit
value for the year, then you are relying on the database to default to the proper century value.

If the string is in a familiar format, but not the default Oracle format of DD-MON-YY, TO_
DATE fails:

select TO_DATE('03/22/04') from DUAL;

select TO_DATE('03/22/04') from DUAL;
*

ERROR at line 1:
ORA-01843: not a valid month

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When the format matches the literal string, the string is successfully converted to a date and is
then displayed in the default date format:

select TO_DATE('03/22/04','MM/DD/YY') from DUAL;

TO_DATE('

22-MAR-04

Suppose you need to know the day of the week of March 22. The TO_CHAR function will
not work, even with the literal string in the proper format, because TO_CHAR requires a date
(see its format at the very beginning of the “TO_DATE and TO_CHAR Formatting” section):

select TO_CHAR('22-FEB-02','Day') from DUAL;

ERROR at line 1:
ORA-01722: invalid number

The message is somewhat misleading, but the point is that the query fails. You could use the
EXTRACT function, but this query will also work if you first convert the string to a date. Do this
by combining the two functions TO_CHAR and TO_DATE:

select TO_CHAR(TO_DATE('22-MAR-04'), 'Day') from DUAL;

TO_CHAR(T

Monday

TO_DATE can also accept numbers, without single quotation marks, instead of strings, as long
as they are formatted consistently. Here is an example:

select TO_DATE(11051946,'MMDDYYYY') from DUAL;

TO_DATE(1

05-NOV-46

The punctuation in the format is ignored, but the number must follow the order of the format
controls. The number itself must not have punctuation.

How complex can the format control be in TO_DATE? Suppose you simply reversed the TO_
CHAR select statement shown earlier, put its result into the string portion of TO_DATE, and kept
its format the same as TO_CHAR:

select TO_DATE('Baby Girl on the Twentieth of May, 1949,
at 3:27 A.M.',
'"Baby Girl on the" Ddspth "of" fmMonth, YYYY,
"at" HH:MI P.M.')
AS Formatted

from BIRTHDAY

210 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:210

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

where FirstName = 'VICTORIA';

ERROR at line 1:
ORA-01858: a non-numeric character was found
where a numeric was expected

This failed. As it turns out, only a limited number of the format controls can be used. Here are
the restrictions on format that govern TO_DATE:

■ No literal strings are allowed, such as “Baby Girl on the”.

■ Days cannot be spelled out. They must be numbers.

■ Punctuation is permitted.

■ fm is not necessary. If used, it is ignored.

■ If Month is used, the month in the string must be spelled out. If Mon is used, the month
must be a three-letter abbreviation. Uppercase and lowercase are ignored.

Dates in where Clauses
Early in this chapter, you saw an example of date arithmetic used in a where clause:

select Holiday, ActualDate, CelebratedDate
from Holiday
where CelebratedDate - ActualDate != 0;

HOLIDAY ACTUALDAT CELEBRATE
------------------------- --------- ---------
MARTIN LUTHER KING, JR. 15-JAN-04 19-JAN-04
LINCOLNS BIRTHDAY 12-FEB-04 16-FEB-04
WASHINGTONS BIRTHDAY 22-FEB-04 16-FEB-04
MEMORIAL DAY 30-MAY-04 31-MAY-04
COLUMBUS DAY 12-OCT-04 11-OCT-04

Dates can be used with other Oracle logical operators as well, with some warnings and
restrictions. The BETWEEN operator will do date arithmetic if the column preceding it is a date,
even if the test dates are literal strings:

select Holiday, CelebratedDate
from HOLIDAY
where CelebratedDate BETWEEN

'01-JAN-04' and '22-FEB-04';

HOLIDAY CELEBRATE
------------------------- ---------
NEW YEARS DAY 01-JAN-04
MARTIN LUTHER KING, JR. 19-JAN-04
LINCOLNS BIRTHDAY 16-FEB-04

Chapter 10: Dates: Then, Now, and the Difference 211

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:211

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

WASHINGTONS BIRTHDAY 16-FEB-04
FAST DAY, NEW HAMPSHIRE 22-FEB-04

The logical operator IN works as well with literal strings:

select Holiday, CelebratedDate
from HOLIDAY
where CelebratedDate IN ('01-JAN-04', '22-FEB-04');

HOLIDAY CELEBRATE
------------------------- ---------
NEW YEARS DAY 01-JAN-04
FAST DAY, NEW HAMPSHIRE 22-FEB-04

If you cannot rely on 2000 being the default century value, you can use the TO_DATE function
to specify the century values for the dates within the IN operator:

select Holiday, CelebratedDate
from HOLIDAY
where CelebratedDate IN

(TO_DATE('01-JAN-2004','DD-MON-YYYY'),
TO_DATE('22-FEB-2004','DD-MON-YYYY'));

HOLIDAY CELEBRATE
------------------------- ---------
NEW YEARS DAY 01-JAN-04
FAST DAY, NEW HAMPSHIRE 22-FEB-04

LEAST and GREATEST do not work, because they assume the literal strings are strings, not
dates. Refer to the sidebar “A Warning about GREATEST and LEAST,” earlier in this chapter, for
an explanation of LEAST and GREATEST.

Dealing with Multiple Centuries
If your applications use only two-digit values for years, you may encounter problems related to
the year 2000. If you only specify two digits of a year (such as ‘98’ for ‘1998’), you are relying on
the database to specify the century value (the ‘19’) when the record is inserted. If you are putting
in dates prior to the year 2000 (for example, birth dates), you may encounter problems with the
century values assigned to your data.

In Oracle, all date values have century values. If you only specify the last two digits of the
year value, Oracle will, by default, use the current century as the century value when it inserts
a record. For example, the following listing shows an insert into the BIRTHDAY table:

insert into BIRTHDAY
(FirstName, LastName, BirthDate)
values
('ALICIA', 'ANN', '21-NOV-39');

212 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:212

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 10: Dates: Then, Now, and the Difference 213

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:213

In the preceding example, no century value is specified for the BirthDate column, and no age
is specified. If you use the TO_CHAR function on the BirthDate column, you can see the full birth
date Oracle inserted—it defaulted to the current century:

select TO_CHAR(BirthDate,'DD-MON-YYYY') AS Bday
from BIRTHDAY
where FirstName = 'ALICIA'
and LastName = 'ANN';

BDAY

21-NOV-2039

For dates that can properly default to the current century, using the default does not present
a problem. Alicia’s BirthDate value is 21-NOV-2039—wrong by 100 years! Wherever you insert
date values, you should specify the full four-digit year value.

Using the EXTRACT Function
You can use the EXTRACT function in place of the TO_CHAR function when you are selecting
portions of date values—such as just the month or day from a date. The EXTRACT function’s
syntax is

EXTRACT
({ { YEAR

| MONTH
| DAY
| HOUR
| MINUTE
| SECOND
}

| { TIMEZONE_HOUR
| TIMEZONE_MINUTE
}

| { TIMEZONE_REGION
| TIMEZONE_ABBR
}

}
FROM { datetime_value_expression | interval_value_expression }

)

For instance, to extract the month in which Victoria was born, you could execute the following:

select BirthDate,
EXTRACT(Month from BirthDate) AS Month

from BIRTHDAY
where FirstName = 'VICTORIA';

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

BIRTHDATE MONTH
--------- ----------
20-MAY-49 5

For more complex extractions, you will need to use TO_CHAR, but EXTRACT can support
many common date value queries.

Using the TIMESTAMP Datatypes
The DATE datatype stores the date and time to the second; TIMESTAMP datatypes store the date
to the billionth of a second.

The base datatype for timestamp values is called TIMESTAMP. Like DATE, it stores the year,
month, day, hour, minute, and second. It also includes a fractional_seconds_precision setting that
determines the number of digits in the fractional part of the seconds field. By default, the precision
is 6; valid values are 0 to 9.

In the following example, a table is created with the TIMESTAMP datatype, and it’s populated
via the SYSTIMESTAMP function:

create table X1
(tscol TIMESTAMP(5));

insert into X1 values (SYSTIMESTAMP);

Now select that value from the table:

select * from X1;

TSCOL

23-MAR-04 05.27.32.71800 PM

The output shows the second the row was inserted, down to five places after the decimal.
The SYSTIMESTAMP function returns data in the form of the TIMESTAMP (fractional_seconds_

precision) WITH TIME ZONE datatype. The exact same row, inserted into a column that is defined
with the TIMESTAMP(5) WITH TIME ZONE datatype, returns the data in the following format:

create table X2
(tscol TIMESTAMP(5) WITH TIME ZONE);

insert into X2 values (SYSTIMESTAMP);

select * from X2;

TSCOL

23-MAR-04 05.29.11.64000 PM –05:00

In this output, the time zone is displayed as an offset of Coordinated Universal Time (UTC).
The database is presently set to a time zone that is five hours prior to UTC.

214 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:214

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Oracle also supports the TIMESTAMP (fractional_seconds_ precision) WITH LOCAL TIME
ZONE datatype, which is similar to TIMESTAMP WITH TIME ZONE. It differs in that the data is
normalized to the database time zone when it is stored in the database, and during retrievals the
users see data in the session time zone.

In addition to the TIMESTAMP datatypes, Oracle also supports two interval datatypes: INTERVAL
YEAR (year_precision) TO MONTH and INTERVAL DAY (day_precision) TO SECOND (fractional_
seconds_precision). INTERVAL YEAR TO MONTH stores a period of time in years and months,
where the precision is the number of digits in the YEAR field (ranging from 0 to 9, with the default
being 2). The INTERVAL DAY TO SECOND datatype stores a period of time in days, hours, minutes,
and seconds; the precision for the day and seconds accepts values from 0 to 9. The INTERVAL
datatypes are mostly used during statistical analysis and data mining.

Chapter 10: Dates: Then, Now, and the Difference 215

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:215

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 10
Blind Folio 10:216

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 11
Blind Folio 11:217

CHAPTER
11

Conversion and
Transformation

Functions

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

T
his chapter looks at functions that convert, or transform, one datatype into
another. Four major datatypes and their associated functions have been
covered thus far:

■ CHAR (fixed-length character strings) and VARCHAR2 (variable-length character strings)
include any letter of the alphabet, any number, and any of the symbols on the keyboard.
Character literals must be enclosed in single quotation marks:

'Sault Ste. Marie!'

■ NUMBER includes just the digits 0 through 9, a decimal point, and a minus sign,
if necessary. NUMBER literals are not enclosed in quotation marks:

-246.320

■ DATE is a special type that includes information about the date, time, and time zone.
It has a default format of DD-MON-YY, but can be displayed in many ways using the
TO_CHAR function, as you saw in Chapter 10. DATE literals must be enclosed in single
quotation marks:

'26-AUG-81'

Each of these datatypes has a group of functions designed especially to manipulate data of its
own type, as shown in Chapters 7, 8, 9, and 10. String functions are used with character columns
or literals, arithmetic functions are used with NUMBER columns or literals, and DATE functions are
used with DATE columns or literals. Most group and miscellaneous functions work with any of
these types. Some of these functions change the object they affect (whether CHAR, VARCHAR2,
NUMBER, or DATE), whereas others report information about the object.

In one sense, most of the functions studied so far have been transformation functions, meaning
they changed their objects. However, the functions covered in this chapter change their objects
in an unusual way: They transform them from one datatype into another, or they make a profound
transformation of the data in them. Table 11-1 describes these functions.

218 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 11
Blind Folio 11:218

Function Name Definition

ASCIISTR Translates a string in any character set and returns an ASCII string in the
database character set.

BIN_TO_NUM Converts a binary value to its numerical equivalent.

CAST Casts one built-in or collection type to another; commonly used with nested
tables and varying arrays.

CHARTOROWID Changes a character string to act like an internal Oracle row identifier, or RowID.

TABLE 11-1. Conversion Functions

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 11: Conversion and Transformation Functions 219

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 11
Blind Folio 11:219

Function Name Definition

COMPOSE Translates a string in any datatype to a Unicode string in its fully normalized
form in the same character set as the input.

CONVERT Converts a character string from one national language character set to another.

DECODE Decodes a CHAR, VARCHAR2, or NUMBER into any of several different
character strings or NUMBERs, based on value. This is a very powerful
if-then-else function. Chapter 16 is devoted to DECODE.

DECOMPOSE Translates a string in any datatype to a Unicode string after canonical
decomposition in the same character set as the input.

HEXTORAW Changes a character string of hexadecimal numbers into binary.

NUMTODSINTERVAL Converts a number to an INTERVAL DAY TO SECOND literal.

NUMTOYMINTERVAL Converts a number to an INTERVAL YEAR TO MONTH literal.

RAWTOHEX Changes a string of binary numbers to a character string of hex numbers.

RAWTONHEX Converts raw to an NVARCHAR2 character value containing its hexadecimal
equivalent.

ROWIDTOCHAR Changes an internal Oracle row identifier, or RowID, to a character string.

ROWIDTONCHAR Converts a RowID value to an NVARCHAR2 datatype.

SCN_TO_TIMESTAMP Converts a system change number to an approximate timestamp.

TIMESTAMP_TO_SCN Converts a timestamp to an approximate system change number.

TO_BINARY_DOUBLE Returns a double-precision floating-point number.

TO_BINARY_FLOAT Returns a single-precision floating-point number.

TO_CHAR Converts a NUMBER or DATE to a character string.

TO_CLOB Converts NCLOB values in a LOB column or other character strings
to CLOB values.

TO_DATE Converts a NUMBER, CHAR, or VARCHAR2 to a DATE (an Oracle datatype).

TO_DSINTERVAL Converts a character string of the datatype CHAR, VARCHAR2, NCHAR,
or NVARCHAR2 to an INTERVAL DAY TO SECOND type.

TO_LOB Converts a LONG to a LOB as part of an insert as select.

TO_MULTI_BYTE Converts the single-byte characters in a character string to multibyte characters.

TO_NCHAR Converts a character string, NUMBER, or DATE from the database character set
to the national character set.

TO_NCLOB Converts CLOB values in a LOB column or other character strings to NCLOB
values.

TO_NUMBER Converts a CHAR or VARCHAR2 to a number.

TO_SINGLE_BYTE Converts the multibyte characters in a CHAR or VARCHAR2 to single bytes.

TABLE 11-1. Conversion Functions (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

220 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 11
Blind Folio 11:220

Elementary Conversion Functions
Although Table 11-1 lists many conversion functions, the most commonly used are the following
three, whose purpose is to convert one datatype into another:

■ TO_CHAR Transforms a DATE or NUMBER into a character string.

■ TO_DATE Transforms a NUMBER, CHAR, or VARCHAR2 into a DATE. For working
with timestamps, you can use TO_TIMESTAMP or TO_TIMESTAMP_TZ.

■ TO_NUMBER Transforms a CHAR or VARCHAR2 into a NUMBER.

Why are these transformations important? TO_DATE is obviously necessary to accomplish
date arithmetic. TO_CHAR allows you to manipulate a number as if it were a string, using string
functions. TO_NUMBER allows you to use a string that happens to contain only numbers as if it
were a number; by using it, you can add, subtract, multiply, divide, and so on.

This means that if you stored a nine-digit ZIP code as a number, you could transform it into
a string and then use SUBSTR and concatenation to add a dash (such as when printing addresses
on envelopes):

select SUBSTR(TO_CHAR(948033515),1,5)||'-'||
SUBSTR(TO_CHAR(948033515),6) AS Zip

from DUAL;

ZIP

94803-3515

Here, the TO_CHAR function transforms the pure number 948033515 (notice that it has no
single quotation marks around it, as a CHAR or VARCHAR2 string must) into a character string.
SUBSTR then clips out positions 1 to 5 of this string, producing 94803. A dash is concatenated
on the right end of this string, and then another TO_CHAR creates another string, which another
SUBSTR clips out from position 6 to the end. The second string, 3515, is concatenated after the
dash. The whole rebuilt string is relabeled Zip, and Oracle displays it: 94803-3515. This TO_CHAR
function lets you use string-manipulation functions on numbers (and dates) as if they were actually
strings. Handy? Yes. But watch this:

Function Name Definition

TO_TIMESTAMP Converts a character string to a value of the TIMESTAMP datatype.

TO_TIMESTAMP_TZ Converts a character string to a value of the TIMESTAMP WITH TIME ZONE
datatype.

TO_YMINTERVAL Converts a character string of the datatype CHAR, VARCHAR2, NCHAR,
or NVARCHAR2 to an INTERVAL YEAR TO MONTH type.

TRANSLATE Translates characters in a string into different characters.

UNISTR Converts a string into Unicode in the database Unicode character set.

TABLE 11-1. Conversion Functions (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 11: Conversion and Transformation Functions 221

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 11
Blind Folio 11:221

select SUBSTR(948033515,1,5)||'-'||
SUBSTR(948033515,6) AS Zip

from DUAL;

ZIP

94803-3515

This shouldn’t work, because 948033515 is a NUMBER, not a character string. Yet, the string
function SUBSTR clearly worked anyway. Would it work with an actual NUMBER database
column? Here’s a table with Zip as a NUMBER:

describe ADDRESS

Name Null? Type
------------------------------- -------- ------------
LASTNAME VARCHAR2(25)
FIRSTNAME VARCHAR2(25)
STREET VARCHAR2(50)
CITY VARCHAR2(25)
STATE CHAR(2)
ZIP NUMBER
PHONE VARCHAR2(12)
EXT VARCHAR2(5)

Select just the ZIP code for all the Marys in the table:

select SUBSTR(Zip,1,5)||'-'||
SUBSTR(Zip,6) AS Zip

from ADDRESS
where FirstName = 'MARY';

ZIP

94941-4302
60126-2460

SUBSTR works here just as well as it does with strings, even though Zip is a NUMBER column
from the ADDRESS table. Will other string functions also work?

select Zip, RTRIM(Zip,20)
from ADDRESS
where FirstName = 'MARY';

ZIP RTRIM(ZIP,20)
---------- --
949414302 9494143
601262460 60126246

The column on the left demonstrates that Zip is a NUMBER; it is even right-justified, as numbers
are by default. But the RTRIM column is left-justified, just as strings are, and it has removed zeros

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

and twos from the right side of the ZIP codes. Something else is peculiar here. Recall from Chapter 7
the format for RTRIM, shown here:

RTRIM(string [,'set'])

The set to be removed from the string is enclosed within single quotation marks, yet in this next
example, there are no quotation marks:

RTRIM(Zip,20)

So what is going on?

Automatic Conversion of Datatypes
Oracle is automatically converting these numbers, both Zip and 20, into strings, almost as if they
both had TO_CHAR functions in front of them. In fact, with a few clear exceptions, Oracle will
automatically transform any datatype into any other datatype, based on the function that is going
to affect it. If it’s a string function, Oracle will convert a NUMBER or a DATE instantly into a string,
and the string function will work. If it’s a DATE function and the column or literal is a string in the
format DD-MON-YY, Oracle will convert it into a DATE. If the function is arithmetic and the column
or literal is a character string, Oracle will convert it into a NUMBER and do the calculation.

Will this always work? No. For Oracle to automatically convert one datatype into another, the
first datatype must already “look” like the datatype it is being converted to. The basic guidelines
are as follows:

■ Any NUMBER or DATE can be converted to a character string. Any string function can
be used on a NUMBER or DATE column. Literal NUMBERs do not have to be enclosed
in single quotation marks when used in a string function; literal DATEs do.

■ A CHAR or VARCHAR2 value will be converted to a NUMBER if it contains only
NUMBERs, a decimal point, or a minus sign on the left.

■ A CHAR or VARCHAR2 value will be converted to a DATE only if it is in the default date
format (usually DD-MON-YY). This is true for all functions except GREATEST and LEAST,
which will treat the value as a string, and it’s true for BETWEEN only if the column to
the left after the word BETWEEN is a DATE. Otherwise, TO_DATE must be used, with the
proper format.

These guidelines may be confusing, so favor the use of TO_DATE and other conversion
functions to make sure the values are treated properly. The following examples should help to
clarify the guidelines. The following are the effects of several randomly chosen string functions
on NUMBERs and DATEs:

select INITCAP(LOWER(SysDate)) from DUAL;

INITCAP(LOWER(SYSDATE))

22-Mar-04

222 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 11
Blind Folio 11:222

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 11: Conversion and Transformation Functions 223

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 11
Blind Folio 11:223

Note that the INITCAP function put the first letter of “mar” into uppercase even though “mar”
was buried in the middle of the string “22-mar-04.” This is a feature of INITCAP that is not confined
to dates, although it is illustrated here for the first time. It works because the following works:

select INITCAP('this-is_a.test,of:punctuation;for+initcap')
from DUAL;

INITCAP('THIS-IS_A.TEST,OF:PUNCTUATION;FO

This-Is_A.Test,Of:Punctuation;For+Initcap

INITCAP puts the first letter of every word into uppercase. It determines the beginning of a
word based on its being preceded by any character other than a letter. You can also cut and paste
dates using string functions, just as if they were strings:

select SUBSTR(SysDate,4,3) from DUAL;

SUB

MAR

NOTE
You can also use the TO_CHAR or EXTRACT function to return
the month value from a date.

Here, a DATE is left-padded with 9s for a total length of 20:

select LPAD(SysDate,20,'9') from DUAL;

LPAD(SYSDATE,20,'9')

9999999999922-MAR-04

LPAD, or any other string function, also can be used on NUMBERs, whether literal (as shown
here) or as a column:

select LPAD(9,20,0) from DUAL;

LPAD(9,20,0)

00000000000000000009

These examples show how string functions treat both NUMBERs and DATEs as if they were
character strings. The result of the function (what you see displayed) is itself a character string.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

224 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 11
Blind Folio 11:224

In this next example, a string (note the single quotation marks) is treated as a NUMBER by the NUMBER
function FLOOR:

select FLOOR('-323.78') from DUAL;

FLOOR('-323.78')

-324

Here, two literal character strings are converted to DATEs for the DATE function MONTHS_
BETWEEN. This works only because the literal strings are in the default date format DD-MON-YY:

select MONTHS_BETWEEN('16-MAY-04','01-NOV-04') from DUAL;

MONTHS_BETWEEN('16-MAY-02','01-NOV-02')

-5.516129

One of the guidelines says that a DATE will not be converted to a NUMBER. Yet, here is an
example of addition and subtraction with a DATE. Does this violate the guideline?

select SysDate, SysDate + 1, SysDate - 1 from DUAL;

SYSDATE SYSDATE+1 SYSDATE-1
--------- --------- ---------
22-MAR-04 23-MAR-04 21-MAR-04

It does not, because the addition and subtraction is date arithmetic, not regular arithmetic. Date
arithmetic (covered in Chapter 10) works only with addition and subtraction, and only with DATEs.
Most functions will automatically convert a character string in default date format into a DATE. An
exception is this attempt at date addition with a literal:

select '22-MAR-04' + 1 from DUAL;

ERROR: ORA-01722: invalid number

Date arithmetic, even with actual DATE datatypes, works only with addition and subtraction.
Any other arithmetic function attempted with a date will fail. Dates are not converted to numbers,
as this attempt to divide a date by 2 illustrates:

select SysDate / 2 from DUAL;
*

ERROR at line 1:
ORA-00932: inconsistent datatypes: expected NUMBER got DATE

Finally, a NUMBER will never be automatically converted to a DATE, because a pure number
cannot be in the default format for a DATE, which is DD-MON-YY:

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select NEXT_DAY(032602,'FRIDAY') from DUAL;
*

ERROR at line 1:
ORA-00932: inconsistent data types: expected DATE got NUMBER

To use a NUMBER in a DATE function, TO_DATE is required.

A Warning About Automatic Conversion
The issue of whether it is a good practice to allow SQL to do automatic conversion of datatypes
has arguments on either side. On one hand, this practice considerably simplifies and reduces the
functions necessary to make a select statement work. On the other hand, if your assumption about
what will be in the column is wrong (for example, you assume a particular character column will
always have a number in it, meaning you can use it in a calculation), then, at some point, a query
will stop working, Oracle will produce an error, and time will have to be spent trying to find the
problem. Further, another person reading your select statement may be confused by what appear
to be inappropriate functions at work on characters or numbers. Using TO_NUMBER makes it clear
that a numeric value is always expected, even if the column uses the VARCHAR2 datatype.

A simple rule of thumb might be that it is best to use functions where the risk is low, such as
string-manipulation functions on numbers, rather than arithmetic functions on strings. For your
benefit and that of others using your work, always put a note near the select statement signaling
the use of automatic type conversion.

Specialized Conversion Functions
As shown earlier in Table 11-1, Oracle includes several specialized conversion functions. If you
expect to use SQL*Plus and Oracle simply to produce reports, you probably won’t ever need any
of these functions. On the other hand, if you plan to use SQL*Plus to update the database, if you
expect to build Oracle applications, or if you are using National Language Support, this information
will eventually prove valuable. The functions can be found, by name, in the Alphabetical Reference
section of this book.

NOTE
The CAST function is used with nested tables and varying arrays; see
Chapter 34 for details. The DECODE function is covered in Chapter 16.

The conversion functions generally take a single value as input and return a single converted
value as output. For example, the BIN_TO_NUM function converts binary values to decimal
numeric values. Its input value is a list of the digits of a binary value, separated by commas and
treated as a single input string:

select BIN_TO_NUM(1,1,0,1) from DUAL;

BIN_TO_NUM(1,1,0,1)

13

Chapter 11: Conversion and Transformation Functions 225

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 11
Blind Folio 11:225

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select BIN_TO_NUM(1,1,1,0) from DUAL;

BIN_TO_NUM(1,1,1,0)

14

When working with flashback operations (see Chapters 27 and 28), you can convert system
change numbers (SCNs) to timestamp values via the SCN_TO_TIMESTAMP function; TIMESTAMP_
TO_SCN returns the SCN for a particular timestamp.

As of Oracle Database 10g, you can use the TO_BINARY_DOUBLE and TO_BINARY_FLOAT
functions to convert values into double- and single-precision floating-point numbers, respectively.

Transformation Functions
Although in one sense any function that changes its object could be called a transformation
function, there are two unusual functions that you can use in many interesting ways to control your
output based on your input, instead of simply transforming it. These functions are TRANSLATE
and DECODE.

TRANSLATE
TRANSLATE is a simple function that does an orderly character-by-character substitution in a string.
This is the format for TRANSLATE:

TRANSLATE(string,if,then)

TRANSLATE looks at each character in string and then checks if to see whether that character
is there. If it is, it notes the position in if where it found the character and then looks at the same
position in then. TRANSLATE substitutes whichever character it finds there for the character in
string. Normally, the function is written on a single line, like this:

select TRANSLATE(7671234,234567890,'BCDEFGHIJ')
from DUAL;

TRANSLA

GFG1BCD

But it might be easier to understand if it’s simply broken onto two lines (SQL doesn’t care,
of course):

select TRANSLATE(7671234,234567890,
'BCDEFGHIJ')

from DUAL;

TRANSLA

GFG1BCD

226 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 11
Blind Folio 11:226

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When TRANSLATE sees a 7 in string, it looks for a 7 in if and translates it to the character in the
same position in then (in this case, an uppercase G). If the character is not in if, it is not translated
(observe what TRANSLATE did with the 1).

TRANSLATE is technically a string function, but, as you can see, it will do automatic data
conversion and work with a mix of strings and numbers. The following is an example of a very
simple code cipher, where every letter in the alphabet is shifted one position. Many years ago, spies
used such character-substitution methods to encode messages before sending them. The recipient
simply reversed the process. Do you remember the smooth-talking computer, HAL, in the movie
2001: A Space Odyssey? If you TRANSLATE HAL’s name with a one-character shift in the alphabet,
you get this:

select TRANSLATE('HAL','ABCDEFGHIJKLMNOPQRSTUVWXYZ',
'BCDEFGHIJKLMNOPQRSTUVWXYZA') AS Who

from DUAL;

WHO

IBM

See the discussion of the REGEXP_REPLACE function in Chapter 8 for details on the string
manipulation possible with regular expressions in Oracle Database 10g.

DECODE
If TRANSLATE is a character-by-character substitution, DECODE can be considered a value-by-
value substitution. For every value it sees in a field, DECODE checks for a match in a series of if-
then tests. DECODE is an incredibly powerful function, with a broad range of areas where it can
be useful. Chapter 16 is devoted entirely to the advanced use of DECODE and CASE.

This is the format for DECODE:

DECODE(value,if1,then1,if2,then2,if3,then3,. . . ,else)

Only three if-then combinations are illustrated here, but there is no practical limit. To see how
this function works, recall the NEWSPAPER table you saw in earlier chapters:

select * from NEWSPAPER;

FEATURE S PAGE
--------------- - ----------
National News A 1
Sports D 1
Editorials A 12
Business E 1
Weather C 2
Television B 7
Births F 7
Classified F 8
Modern Life B 1
Comics C 4

Chapter 11: Conversion and Transformation Functions 227

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 11
Blind Folio 11:227

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Movies B 4
Bridge B 2
Obituaries F 6
Doctor Is In F 6

In the next example, the page number is decoded. If the page number is 1, then the words
“Front Page” are substituted. If the page number is anything else, the words “Turn to” are
concatenated with the page number. This illustrates that else can be a function, a literal, or
another column.

select Feature, Section,
DECODE(Page,'1','Front Page','Turn to '||Page)

from NEWSPAPER;

FEATURE S DECODE(PAGE,'1','FRONTPAGE','TURNTO'||PAGE)
--------------- - --
National News A Front Page
Sports D Front Page
Editorials A Turn to 12
Business E Front Page
Weather C Turn to 2
Television B Turn to 7
Births F Turn to 7
Classified F Turn to 8
Modern Life B Front Page
Comics C Turn to 4
Movies B Turn to 4
Bridge B Turn to 2
Obituaries F Turn to 6
Doctor Is In F Turn to 6

There are some restrictions on the datatypes in the list of if and then clauses, which will be
covered in Chapter 16.

Review
Most functions in Oracle, although they are intended for a specific datatype such as CHAR,
VARCHAR2, NUMBER, or DATE, will actually work with other datatypes as well. They do this
by performing an automatic type conversion. With a few logical exceptions, and the hope of future
compatibility, they will do this as long as the data to be converted “looks” like the datatype
required by the function.

Character functions will convert any NUMBER or DATE. NUMBER functions will convert a
CHAR or VARCHAR2 if it contains the digits 0 through 9, a decimal point, or a minus sign on the
left. NUMBER functions will not convert DATEs. DATE functions will convert character strings if
they are in the format DD-MON-YY. However, they will not convert NUMBERs.

Two functions, TRANSLATE and DECODE, will fundamentally change the data they act on.
TRANSLATE will do a character substitution according to any pattern you specify, and DECODE
will do a value substitution for any pattern you specify.

228 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 11
Blind Folio 11:228

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 12
Blind Folio 12:229

CHAPTER
12

Grouping Things
Together

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

230 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 12
Blind Folio 12:230

U
p to this point, you’ve seen how SQL can select rows of information from database
tables, how the where clause can limit the number of rows being returned to only
those that meet certain rules that you define, and how the rows returned can be
sorted in ascending or descending sequence using order by. You’ve also seen
how the values in columns can be modified by character, NUMBER, and DATE

functions, and how group functions can tell you something about the whole set of rows.
Beyond the group functions you’ve seen, there are also two group clauses: having and group

by. These are parallel to the where and order by clauses, except that they act on groups, not on
individual rows. These clauses can provide very powerful insights into your data.

The Use of group by and having
If you want to generate a count of titles on the bookshelf, categorized by the type of book, you
would write a query like this:

select CategoryName, COUNT(*)
from BOOKSHELF
group by CategoryName;

and Oracle would respond with the following:

CATEGORYNAME COUNT(*)
-------------------- ----------
ADULTFIC 6
ADULTNF 10
ADULTREF 6
CHILDRENFIC 5
CHILDRENNF 1
CHILDRENPIC 3

Notice the mix of a column name, CategoryName, and the group function COUNT in the
select clause. This mix is possible only because CategoryName is referenced in the group by clause.
If it were not there, the opaque message first encountered in Chapter 9 would have resulted in this:

select CategoryName, COUNT(*) from BOOKSHELF;

select CategoryName, COUNT(*) from BOOKSHELF
*

ERROR at line 1:
ORA-00937: not a single-group group function

This result occurs because the group functions, such as SUM and COUNT, are designed to tell
you something about a group of rows, not the individual rows of the table. The error is avoided
by using CategoryName in the group by clause, which forces the COUNT function to count all
the rows grouped within each CategoryName.

The having clause works very much like a where clause, except that its logic is only related
to the results of group functions, as opposed to columns or expressions for individual rows, which
can still be selected by a where clause. Here, the rows in the previous example are further restricted
to just those where there are more than five books in a category:

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select CategoryName, COUNT(*)
from BOOKSHELF
group by CategoryName

having COUNT(*) > 5;

CATEGORYNAME COUNT(*)
-------------------- ----------
ADULTFIC 6
ADULTNF 10
ADULTREF 6

To determine the average rating by category, you can use the AVG function, as shown in the
following listing:

select CategoryName, COUNT(*), AVG(Rating)
from BOOKSHELF
group by CategoryName;

CATEGORYNAME COUNT(*) AVG(RATING)
-------------------- ---------- -----------
ADULTFIC 6 3.66666667
ADULTNF 10 4.2
ADULTREF 6 3.16666667
CHILDRENFIC 5 2.8
CHILDRENNF 1 3
CHILDRENPIC 3 1

Rating is a character column, defined as a VARCHAR2, but it contains numeric values, so
Oracle can perform numeric functions on it (see Chapter 11). What is the overall average rating?

select AVG(Rating) from BOOKSHELF;

AVG(RATING)

3.32258065

In this case, there is no group by clause because the entire set of rows in the BOOKSHELF table
is treated as the group. Now you can use this result as part of a larger query: What categories have
average ratings that are greater than the average rating of all books?

select CategoryName, COUNT(*), AVG(Rating)
from BOOKSHELF
group by CategoryName

having AVG(Rating) >
(select AVG(Rating) from BOOKSHELF);

CATEGORYNAME COUNT(*) AVG(RATING)
-------------------- ---------- -----------
ADULTFIC 6 3.66666667
ADULTNF 10 4.2

Chapter 12: Grouping Things Together 231

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 12
Blind Folio 12:231

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

232 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 12
Blind Folio 12:232

Looking back at the earlier listings, this result is correct—only two of the groups have average
rating values greater than the overall average.

Although the results are sorted by the CategoryName column, the purpose of group by is not to
produce a desired sequence but rather to collect “like” things together. The order they appear in
is a byproduct of how group by works; group by is not meant to be used to change the sorting order.

Adding an order by
The solution for creating an alternative order for display is the addition of an order by clause
following the having clause. For example, you could add the following:

order by CategoryName desc

This would reverse the order of the list:

select CategoryName, COUNT(*)
from BOOKSHELF
group by CategoryName
order by CategoryName desc;

CATEGORYNAME COUNT(*)
-------------------- ----------
CHILDRENPIC 3
CHILDRENNF 1
CHILDRENFIC 5
ADULTREF 6
ADULTNF 10
ADULTFIC 6

Or, you could use this instead:

order by COUNT(*) desc

Here’s the result:

CATEGORYNAME COUNT(*)
-------------------- ----------
ADULTNF 10
ADULTFIC 6
ADULTREF 6
CHILDRENFIC 5
CHILDRENPIC 3
CHILDRENNF 1

Although you can use the column alias as part of the order by clause, you can’t use it as
part of the having clause. Giving COUNT(*) an alias of “Counter” and attempting to use having
Counter > 1 as a clause in this query will result in an “invalid column name” error:

select CategoryName, COUNT(*) as Counter
from BOOKSHELF

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 12: Grouping Things Together 233

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 12
Blind Folio 12:233

group by CategoryName
having Counter > 1
order by COUNT(*) desc;

having Counter > 1
*

ERROR at line 4:
ORA-00904: "COUNTER": invalid identifier

Order of Execution
The previous query has quite a collection of competing clauses! Here are the rules Oracle uses to
execute each of them, and the order in which execution takes place:

1. Choose rows based on the where clause.

2. Group those rows together based on the group by clause.

3. Calculate the results of the group functions for each group.

4. Choose and eliminate groups based on the having clause.

5. Order the groups based on the results of the group functions in the order by clause. The
order by clause must use either a group function or a column specified in the group by
clause.

The order of execution is important because it has a direct impact on the performance of your
queries. In general, the more records that can be eliminated via where clauses, the faster the query
will execute. This performance benefit is due to the reduction in the number of rows that must be
processed during the group by operation.

If a query is written to use a having clause to eliminate groups, you should check to see if the
having condition can be rewritten as a where clause. In many cases, this rewrite won’t be possible.
It is usually only available when the having clause is used to eliminate groups based on the grouping
columns.

For example, suppose you have this query:

select CategoryName, COUNT(*), AVG(Rating)
from BOOKSHELF
where Rating > 1
group by CategoryName

having CategoryName like 'A%'
order by COUNT(*) desc;

CATEGORYNAME COUNT(*) AVG(RATING)
-------------------- ---------- -----------
ADULTNF 10 4.2
ADULTFIC 6 3.66666667
ADULTREF 6 3.16666667

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The order of execution would be as follows:

1. Eliminate rows based on

where Rating > 1

2. Group the remaining rows based on

group by CategoryName

3. For each CategoryName, calculate the

COUNT(*)

4. Eliminate groups based on

having CategoryName like 'A%'

5. Order the remaining groups.

This query will run faster if the groups eliminated in Step 4 can be eliminated as rows in Step 1.
If they are eliminated at Step 1, fewer rows will be grouped (Step 2), fewer calculations will be
performed (Step 3), and no groups will be eliminated (Step 4). Thus, each of these steps in the
execution will run faster.

Because the having condition in this example is not based on a calculated column, it is easily
changed into a where condition:

select CategoryName, COUNT(*), AVG(Rating)
from BOOKSHELF
where Rating > 1
and CategoryName like 'A%'

group by CategoryName
order by COUNT(*) desc;

In the modified version, fewer rows will be grouped, resulting in a performance savings. As the
number of rows in your tables increases, the performance savings from early row elimination can
grow dramatically.

This may seem like a trivial tuning example because the table has few rows in it. But even such
a small query can have a significant impact in a production application. There are many examples
of production applications whose performance is severely impacted by high volumes of executions of
seemingly small queries. When those small queries are executed thousands or millions of times per
day, they become the most resource-intensive queries in the database. When planning the SQL
access paths for your application, tune even the small queries.

Views of Groups
In Chapter 5, a view called INVASION, which joined together the WEATHER and LOCATION
tables, was created for the oracle at Delphi. This view appeared to be a table in its own right,
with columns and rows, but each of its rows contained columns that actually came from two
separate tables.

The same process of creating a view can be used with groups. The difference is that each row
will contain information about a group of rows—a kind of subtotal table. For example, consider
this group query:

234 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 12
Blind Folio 12:234

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select CategoryName, COUNT(*)
from BOOKSHELF
group by CategoryName;

You can create a view based on this query, and you can then query the view:

create or replace view CATEGORY_COUNT as
select CategoryName, COUNT(*) AS Counter
from BOOKSHELF
group by CategoryName;

desc CATEGORY_COUNT

Name Null? Type
------------------------------------ -------- ------------
CATEGORYNAME VARCHAR2(20)
COUNTER NUMBER

select * from CATEGORY_COUNT;

CATEGORYNAME COUNTER
-------------------- ----------
ADULTFIC 6
ADULTNF 10
ADULTREF 6
CHILDRENFIC 5
CHILDRENNF 1
CHILDRENPIC 3

NOTE
Because the COUNT(*) column is a function, you have to give it a
column alias (in this case, Counter) when using the query as the basis
for a view.

Renaming Columns with Aliases
Notice the name Counter in the select clause. The AS Counter clause renames the column it
follows. The new names are called aliases, because they are used to disguise the real names of
the underlying columns (which are complicated because they have functions).

When you query the view, you can (and must) now use the new column names:

select CategoryName, Counter from CATEGORY_COUNT;

“Counter” is referred to as a column alias—another name to use when referring to a column. In the
description of the view, and in the query, there is no evidence of the grouping function performed—
just the Counter column name. It is as if the view CATEGORY_COUNT were a real table with rows
of monthly sums. Why?

Chapter 12: Grouping Things Together 235

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 12
Blind Folio 12:235

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Oracle automatically takes a single word, without quotes, and uses it to rename the column
the word follows. When it does this, Oracle forces the word—the alias—into uppercase, regardless
of how it was typed. You can see evidence of this by comparing the column names in the create
view and the describe commands. When creating a view, never put double quotes around your
column aliases. Always leave aliases in create view statements without quotes. This will cause
them to be stored in uppercase, which is required for Oracle to find them. See the sidebar “Aliases
in View Creation” for a warning on aliases.

You now have Category counts collected in a view. A total for the entire bookshelf could also
be created, using BOOKCOUNT as both the view name and the column alias for COUNT(*):

create or replace view BOOKCOUNT as
select COUNT(*) BOOKCOUNT
from BOOKSHELF;

View created.

If you query the view, you’ll discover it has only one record:

select BOOKCOUNT
from BOOKCOUNT;

BOOKCOUNT

31

As new rows are added and committed to the BOOKSHELF table, the BOOKCOUNT and
CATEGORY_COUNT views will reflect the changes to the counts.

The Power of Views of Groups
Now you’ll see the real power of a relational database. You’ve created a view with the count
by Category and a second view displaying the count for the entire table. These views can now be
joined together, just as the tables were in Chapter 5, to reveal information never before apparent.
For instance, what percentage of the books are in each category?

236 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 12
Blind Folio 12:236

Aliases in View Creation
Internally, Oracle works with all column and table names in uppercase. This is how they are
stored in its data dictionary, and this is how it always expects them to be. When aliases are
typed to create a view, they should always be naked—without quotation marks around
them. Putting double quotation marks around an alias can force the column name stored
internally by Oracle to be in mixed case. If you do this, Oracle will not be able to find the
column when you execute a select unless you enclose the column name within quotes
during all your queries.

Never use double quotation marks in creating aliases for a view.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 12: Grouping Things Together 237

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 12
Blind Folio 12:237

select CategoryName, Counter, (Counter/BookCount)*100 as Percent
from CATEGORY_COUNT, BOOKCOUNT
order by CategoryName;

CATEGORYNAME COUNTER PERCENT
-------------------- ---------- ----------
ADULTFIC 6 19.3548387
ADULTNF 10 32.2580645
ADULTREF 6 19.3548387
CHILDRENFIC 5 16.1290323
CHILDRENNF 1 3.22580645
CHILDRENPIC 3 9.67741935

In this query, two views are listed in the from clause, but they are not joined in a where
clause. Why not? In this particular case, no where clause is necessary, because one of the
views, BOOKCOUNT, will only return one row (as shown in the previous listing). The one row
in BOOKCOUNT is joined to each row in CATEGORY_COUNT, yielding one row of output for
each row in CATEGORY_COUNT. The same results could have been obtained by directly joining
the BOOKSHELF table with the BOOKCOUNT view, but as you can see, the query is more
complicated and difficult to understand—and as the number of groups expands, the query will
grow even more cumbersome:

select CategoryName, COUNT(*),
(COUNT(*)/MAX(BookCount))*100 as Percent

from BOOKSHELF, BOOKCOUNT
group by CategoryName
order by CategoryName;

Notice the percentage calculation:

(COUNT(*)/MAX(BookCount))*100 as Percent

Because this result is part of a grouping function, each of the values must be grouped. Therefore,
an initial attempt such as this would fail because BookCount is not grouped:

(COUNT(*)/BookCount)*100 as Percent

Because there is only one row in the BOOKCOUNT view, you can perform a MAX function on it
to return that single row, grouped by itself.

To create queries that compare one grouping of rows with another grouping of rows, at least
one of the groupings must be a view or an “inline view” created in the from clause of the query.
Beyond this technical restriction, however, it is just simpler and easier to understand doing the
queries with views. Compare the last two examples, and the difference in clarity is apparent. Views
hide complexity.

To use the inline view method, put the view’s text within the from clause and give its columns
aliases there:

select CategoryName, Counter, (Counter/BookCount)*100 as Percent
from CATEGORY_COUNT,

(select COUNT(*) as BookCount from BOOKSHELF)
order by CategoryName;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In this example, the BOOKCOUNT view has been removed from the from clause and replaced
by its base query. In that query, the BookCount alias is given to the result of a COUNT(*) performed
against the BOOKSHELF table. In the main query, that BookCount alias is then used as part of a
calculation. Using this coding method, there is no need to create the BOOKCOUNT view. Be
careful when working with multiple grouping levels within the same query—creating views
commonly helps to simplify the creation and maintenance of the code.

Using order by in Views
From a strictly theoretical perspective, there is no reason to have an order by clause stored in a
view—you can issue an order by clause when you query the view. Oracle supports the order by
clause within views, as shown here:

create view BOOKSHELF_SORTED
as select * from BOOKSHELF
order by Title;

Having the data sorted in the view may simplify your application development. For example, if
your code steps through a set of records, having those records presorted may make your processing
and error checking simpler. In your application development, you will know that the data will
always be returned to you in an ordered fashion. The following query selects the Title values, using
the RowNum pseudo-column to limit the output to nine records:

select Title from BOOKSHELF_SORTED
where Rownum < 10;

TITLE

ANNE OF GREEN GABLES
BOX SOCIALS
CHARLOTTE'S WEB
COMPLETE POEMS OF JOHN KEATS
EITHER/OR
EMMA WHO SAVED MY LIFE
GOOD DOG, CARL
GOSPEL
HARRY POTTER AND THE GOBLET OF FIRE

The BOOKSHELF_SORTED view is doing more work than just querying from the BOOKSHELF
table—it is performing a sorting operation to return the rows in a particular order. If you do not
need the rows returned in that order, you are asking the database to do work that does not benefit
your application.

The views also give you more power to use the many character, NUMBER, and DATE datatypes
at will, without worrying about things such as months appearing in alphabetical order.

Logic in the having Clause
In the having clause, the choice of the group function and the column on which it operates might
bear no relation to the columns or group functions in the select clause:

238 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 12
Blind Folio 12:238

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select CategoryName, COUNT(*),
(COUNT(*)/MAX(BookCount))*100 as Percent

from BOOKSHELF, BOOKCOUNT
group by CategoryName

having Avg(Rating) > 4
order by CategoryName;

CATEGORYNAME COUNT(*) PERCENT
-------------------- ---------- ----------
ADULTNF 10 32.2580645

Here, the having clause selected only those categories (the group by collected all the rows into
groups by CategoryName) with an average rating greater than 4. All other groups are eliminated.
For the group that met that criterion, the percentage of the total count was calculated.

The having clause is very effective for determining which rows in a table have duplicate values
in specific columns. For example, if you are trying to establish a new unique index on a column
(or set of columns) in a table, and the index creation fails due to uniqueness problems with the
data, you can easily determine which rows caused the problem.

First, select the columns you want to be unique, followed by a COUNT(*) column. Group by
the columns you want to be unique, and use the having clause to return only those groups having
COUNT(*)>1. The only records returned will be duplicates. The following query shows this check
being performed for the AuthorName column of the AUTHOR table:

select AuthorName, COUNT(*)
from AUTHOR
group by AuthorName

having COUNT(*)>1
order by AuthorName;

no rows selected

Which books have more than one author? Select the titles from BOOKSHELF_AUTHOR for which
the group (by Title) has more than one member:

column Title format a40

select Title, COUNT(*)
from BOOKSHELF_AUTHOR
group by Title
having COUNT(*)>1;

TITLE COUNT(*)
-- ----------
COMPLETE POEMS OF JOHN KEATS 2
JOURNALS OF LEWIS AND CLARK 4
KIERKEGAARD ANTHOLOGY 2
RUNAWAY BUNNY 2

Chapter 12: Grouping Things Together 239

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 12
Blind Folio 12:239

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Who are those ten authors? You could create a view based on this query, or try it as an
inline view:

column Title format a40
column AuthorName format a30

select Title, AuthorName
from BOOKSHELF_AUTHOR,
(select Title as GroupedTitle, COUNT(*) as TitleCounter

from BOOKSHELF_AUTHOR
group by Title

having COUNT(*) > 1)
where Title = GroupedTitle
order by Title, AuthorName;

TITLE AUTHORNAME
-- ---------------------
COMPLETE POEMS OF JOHN KEATS JOHN BARNARD
COMPLETE POEMS OF JOHN KEATS JOHN KEATS
JOURNALS OF LEWIS AND CLARK BERNARD DE VOTO
JOURNALS OF LEWIS AND CLARK MERIWETHER LEWIS
JOURNALS OF LEWIS AND CLARK STEPHEN AMBROSE
JOURNALS OF LEWIS AND CLARK WILLIAM CLARK
KIERKEGAARD ANTHOLOGY ROBERT BRETALL
KIERKEGAARD ANTHOLOGY SOREN KIERKEGAARD
RUNAWAY BUNNY CLEMENT HURD
RUNAWAY BUNNY MARGARET WISE BROWN

This query may look complicated (and using a view would make it simpler to read), but it is
based on the concepts covered in this chapter: An inline view performs a group by function and
uses a having clause to return only those titles with multiple authors. Those titles are then used as
the basis of a query against the BOOKSHELF_AUTHOR table. In a single query, the BOOKSHELF_
AUTHOR table is queried for grouped data and individual row data.

Using order by with Columns and Group Functions
The order by clause is executed after the where, group by, and having clauses. It can employ group
functions, or columns from the group by, or a combination. If it uses a group function, that function
operates on the groups, and then the order by sorts the results of the function in order. If the order
by uses a column from the group by, it sorts the rows that are returned based on that column. Group
functions and single columns (so long as the column is in the group by) can be combined in the
order by.

In the order by clause, you can specify a group function and the column it affects even though
they have nothing at all to do with the group functions or columns in the select, group by, or having
clause. On the other hand, if you specify a column in the order by clause that is not part of a group
function, it must be in the group by clause. Let’s take the last example and modify the order by
clause:

order by TitleCounter desc, Title, AuthorName

240 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 12
Blind Folio 12:240

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The titles and authors will now be ordered based on the number of authors (with the greatest
number first), then by Title and AuthorName:

TITLE AUTHORNAME
-- ----------------------
JOURNALS OF LEWIS AND CLARK BERNARD DE VOTO
JOURNALS OF LEWIS AND CLARK MERIWETHER LEWIS
JOURNALS OF LEWIS AND CLARK STEPHEN AMBROSE
JOURNALS OF LEWIS AND CLARK WILLIAM CLARK
COMPLETE POEMS OF JOHN KEATS JOHN BARNARD
COMPLETE POEMS OF JOHN KEATS JOHN KEATS
KIERKEGAARD ANTHOLOGY ROBERT BRETALL
KIERKEGAARD ANTHOLOGY SOREN KIERKEGAARD
RUNAWAY BUNNY CLEMENT HURD
RUNAWAY BUNNY MARGARET WISE BROWN

Join Columns
As explained in Chapters 4 and 5, joining two tables together requires that they have a relationship
defined by a common column. This is also true in joining views, or tables and views. The only
exception is when one of the tables or views has just a single row, as the BOOKCOUNT table does.
In this case, SQL joins the single row to every row in the other table or view, and no reference to
the joining columns needs to be made in the where clause of the query.

Any attempt to join two tables that both have more than one row without specifying the joined
columns in the where clause will produce what’s known as a Cartesian product, usually a giant
result where every row in one table is joined with every row in the other table. A small 80-row
table joined to a small 100-row table in this way would produce 8,000 rows in your display, and
few of them would be at all meaningful.

More Grouping Possibilities
In addition to the operations shown in this chapter, you can perform complex groupings of rows—
creating crosstab reports, following hierarchies within the data, and more. Those groupings, and
the related functions and clauses (such as connect by, ROLLUP, GROUPING, and CUBE), are
described in Chapter 14.

As you work with groupings within your application-development environment, you will
generally find that using views makes the writing of complex queries simpler. You can use views
to represent logical groupings of rows that are helpful to end users writing reports, while leaving
the underlying table structures unchanged. This benefits the users—the data is presented in a
format they understand—while allowing you to preserve the integrity of your database design.

Chapter 12: Grouping Things Together 241

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 12
Blind Folio 12:241

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 12
Blind Folio 12:242

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 13
Blind Folio 13:243

CHAPTER
13

When One
Query Depends

upon Another

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

T
his chapter and Chapter 14 introduce concepts that are more difficult than we’ve
previously seen. Although many of these concepts are rarely used in the normal
course of running queries or producing reports, there will be occasions that call
for the techniques taught in these chapters. If they seem too challenging as you
study them, read on anyway. The odds are good that by the time you need these

methods, you’ll be able to use them.

Advanced Subqueries
You’ve encountered subqueries—those select statements that are part of a where clause in a
preceding select statement—in earlier chapters. Subqueries also can be used in insert, update,
and delete statements. This use will be covered in Chapter 15.

Often, a subquery will provide an alternative approach to a query. For example, suppose you
want to know what categories of books have been checked out. The following three-way join
provides this information:

select distinct C.ParentCategory, C.SubCategory
from CATEGORY C, BOOKSHELF B, BOOKSHELF_CHECKOUT BC
where C.CategoryName = B.CategoryName
and B.Title = BC.Title;

PARENTCA SUBCATEGORY
-------- --------------------
ADULT FICTION
ADULT NONFICTION
ADULT REFERENCE
CHILDREN FICTION
CHILDREN PICTURE BOOK

Three tables are joined in the same way that two tables are. The common columns are set
equal to each other in the where clause, as shown in the preceding listing. To join three tables
together, you must join two of them to a third. In this example, the CATEGORY table is joined
to the BOOKSHELF table, and the result of that join is joined to the BOOKSHELF_CHECKOUT
table. The distinct clause tells Oracle to return only the distinct combinations of ParentCategory
and SubCategory.

NOTE
Not every table is joined to every other table. In fact, the number of
links between the tables is usually one less than the number of tables
being joined.

Once the tables are joined, as shown in the first two lines of the where clause, you can
determine the count of checkouts by parent category and subcategory.

244 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 13
Blind Folio 13:244

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 13: When One Query Depends upon Another 245

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 13
Blind Folio 13:245

Correlated Subqueries
Is there another way to perform multitable joins? Recall that a where clause can contain a subquery
select. Subquery selects can be nested—that is, a where clause in a subquery also can contain a
where clause with a subquery, which can contain a where clause with a subquery—on down for
more levels than you are ever likely to need. The following shows three selects, each connected
to another through a where clause:

select distinct C.ParentCategory, C.SubCategory
from CATEGORY C
where CategoryName in

(select CategoryName from BOOKSHELF
where Title in

(select Title from BOOKSHELF_CHECKOUT)
);

PARENTCA SUBCATEGORY
-------- --------------------
ADULT FICTION
ADULT NONFICTION
ADULT REFERENCE
CHILDREN FICTION
CHILDREN PICTURE BOOK

This query selects any categories containing books that have been checked out. It does this
simply by requesting a book whose title is in the BOOKSHELF table and whose checkout record
is in the BOOKSHELF_CHECKOUT table. In a subquery, Oracle assumes the columns to be from
the first select statement, the one that contains the subquery in its where clause. This is called a
nested subquery, because for every CategoryName in the main (outer) query, the CategoryName
may be correlated in the second where clause.

Said differently, a subquery may refer to a column in a table used in its main query (the query
that has the subquery in its where clause). Consider the following query:

select Title from BOOKSHELF_AUTHOR
where Title in

(select Title from BOOKSHELF
where AuthorName = 'STEPHEN JAY GOULD');

TITLE

WONDERFUL LIFE
THE MISMEASURE OF MAN

Why does this query work? Taken on its own, the subquery would fail:

select Title from BOOKSHELF
where AuthorName = 'STEPHEN JAY GOULD';

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

where AuthorName = 'STEPHEN JAY GOULD'
*

ERROR at line 2:
ORA-00904: "AUTHORNAME": invalid identifier

When executed as a subquery, it is correlated to the parent query—you can reference columns
of the first select in the subquery. You’ll see additional examples of correlated subqueries in this
chapter and the chapters that follow.

Coordinating Logical Tests
If a reader is looking for more books in a particular category, what authors should he or she read?
Suppose that Fred Fuller, who has checked out two biographies, asks for recommendations. Who
else should you recommend?

select distinct AuthorName from BOOKSHELF_AUTHOR
where Title in
(select Title from BOOKSHELF
where CategoryName in

(select distinct CategoryName from BOOKSHELF
where Title in

(select Title
from BOOKSHELF_CHECKOUT bc

where BC.Name = 'FRED FULLER')));

This may look a bit daunting at first, but it’s easy to follow if you talk through the code. Start
at the innermost query: Get a list of the titles that Fred Fuller has checked out. For those titles,
go to the BOOKSHELF table and get a list of the distinct CategoryName values those books are
assigned to. Now go to BOOKSHELF a second time and get all the titles in those categories. For
those titles, go to the BOOKSHELF_AUTHOR table and generate the list of authors. Here are the
results:

AUTHORNAME

BERNARD DE VOTO
BERYL MARKHAM
DANIEL BOORSTIN
DAVID MCCULLOUGH
DIETRICH BONHOEFFER
G. B. TALBOT
JOHN ALLEN PAULOS
MERIWETHER LEWIS
STEPHEN AMBROSE
STEPHEN JAY GOULD
WILLIAM CLARK

Fred is asking for recommendations for new authors, so let’s exclude the ones he’s already
read. To see who Fred has read, simply query the BOOKSHELF_CHECKOUT and BOOKSHELF_
AUTHOR tables:

246 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 13
Blind Folio 13:246

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 13: When One Query Depends upon Another 247

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 13
Blind Folio 13:247

select distinct AuthorName
from BOOKSHELF_AUTHOR ba, BOOKSHELF_CHECKOUT bc
where ba.Title = bc.Title
and bc.Name = 'FRED FULLER';

AUTHORNAME

DAVID MCCULLOUGH

Now let’s exclude that author from the list we’re going to provide. We’ll do that by adding
an extra and clause to the query:

select distinct AuthorName from BOOKSHELF_AUTHOR
where Title in
(select Title from BOOKSHELF
where CategoryName in

(select distinct CategoryName from BOOKSHELF
where Title in

(select Title
from BOOKSHELF_CHECKOUT bc

where BC.Name = 'FRED FULLER')))
and AuthorName not in
(select AuthorName

from BOOKSHELF_AUTHOR ba, BOOKSHELF_CHECKOUT bc
where ba.Title = bc.Title
and bc.Name = 'FRED FULLER');

AUTHORNAME

BERNARD DE VOTO
BERYL MARKHAM
DANIEL BOORSTIN
DIETRICH BONHOEFFER
G. B. TALBOT
JOHN ALLEN PAULOS
MERIWETHER LEWIS
STEPHEN AMBROSE
STEPHEN JAY GOULD
WILLIAM CLARK

This and is a part of the main query, even though it follows the subquery. Also note that some
of the tables are queried at multiple points within the script; each of those queries is treated as
a separate access of the table.

Using EXISTS and Its Correlated Subquery
EXISTS is a test for existence. It is placed the way IN might be placed with a subquery, but it
differs in that it is a logical test for the return of rows from a query, not for the rows themselves.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

How many authors have written more than one book on the bookshelf?

select AuthorName, COUNT(*)
from BOOKSHELF_AUTHOR
group by AuthorName

having COUNT(*) > 1;

AUTHORNAME COUNT(*)
------------------------------ ----------
DAVID MCCULLOUGH 2
DIETRICH BONHOEFFER 2
E. B. WHITE 2
SOREN KIERKEGAARD 2
STEPHEN JAY GOULD 2
W. P. KINSELLA 2
WILTON BARNHARDT 2

Attempting to find both AuthorName and Title fails, however, because the group by made
necessary by the COUNT(*) is on the primary key of the BOOKSHELF_AUTHOR table (AuthorName,
Title). Because each primary key, by definition, uniquely identifies only one row, the count of
titles for that one row can never be greater than 1, so the having clause always tests false—
it doesn’t find any rows:

select AuthorName, Title, COUNT(*)
from BOOKSHELF_AUTHOR
group by AuthorName, Title

having COUNT(*) > 1;

no rows selected.

EXISTS provides a solution. The following subquery asks, for each AuthorName selected in
the outer query, whether an AuthorName exists in the BOOKSHELF_AUTHOR table with a count
of Titles greater than one. If the answer for a given name is yes, the EXISTS test is true, and the
outer query selects an AuthorName and Title. The author names are correlated by the “BA” alias
given to the first BOOKSHELF_AUTHOR table.

column AuthorName format a25
column Title format a30

select AuthorName, Title
from BOOKSHELF_AUTHOR BA
where EXISTS

(select *
from BOOKSHELF_AUTHOR BA2

where BA.AuthorName = BA2.AuthorName
group by BA2.AuthorName

having COUNT(BA2.Title) > 1)
order by AuthorName, Title;

248 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 13
Blind Folio 13:248

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 13: When One Query Depends upon Another 249

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 13
Blind Folio 13:249

AUTHORNAME TITLE
------------------------- ------------------------------
DAVID MCCULLOUGH JOHN ADAMS
DAVID MCCULLOUGH TRUMAN
DIETRICH BONHOEFFER LETTERS AND PAPERS FROM PRISON
DIETRICH BONHOEFFER THE COST OF DISCIPLESHIP
E. B. WHITE CHARLOTTE'S WEB
E. B. WHITE TRUMPET OF THE SWAN
SOREN KIERKEGAARD EITHER/OR
SOREN KIERKEGAARD KIERKEGAARD ANTHOLOGY
STEPHEN JAY GOULD THE MISMEASURE OF MAN
STEPHEN JAY GOULD WONDERFUL LIFE
W. P. KINSELLA BOX SOCIALS
W. P. KINSELLA SHOELESS JOE
WILTON BARNHARDT EMMA WHO SAVED MY LIFE
WILTON BARNHARDT GOSPEL

The two queries are correlated—note that the subquery references the BA.AuthorName column
even though that column is in the outer query, not the subquery. Within the subquery, the BA2
alias is not required but helps make the code easier to maintain.

This same query could have been built using IN and a test on the column name. No correlated
subquery is necessary here:

select AuthorName, Title
from BOOKSHELF_AUTHOR BA

where AuthorName in
(select AuthorName

from BOOKSHELF_AUTHOR
group by AuthorName

having COUNT(Title) > 1)
order by AuthorName, Title;

Outer Joins
The syntax for outer joins has changed considerably in Oracle9i. In the following examples, you
will see both the Oracle9i syntax and the pre-Oracle9i syntax. The pre-Oracle9i syntax is still
supported in Oracle9i, but its use should be discontinued. New development should use the new
syntax. The new syntax complies with ANSI SQL standards, whereas the old syntax does not. The
old syntax is discussed here because many third-party tools continue to use it.

Pre-Oracle9i Syntax for Outer Joins
What books were checked out during the time period tracked in the BOOKSHELF_CHECKOUT
table?

column Title format a40

select distinct Title
from BOOKSHELF_CHECKOUT;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

250 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 13
Blind Folio 13:250

TITLE
--
ANNE OF GREEN GABLES
EITHER/OR
GOOD DOG, CARL
HARRY POTTER AND THE GOBLET OF FIRE
INNUMERACY
JOHN ADAMS
MIDNIGHT MAGIC
MY LEDGER
POLAR EXPRESS
THE DISCOVERERS
THE MISMEASURE OF MAN
THE SHIPPING NEWS
TO KILL A MOCKINGBIRD
TRUMAN
WEST WITH THE NIGHT
WONDERFUL LIFE

That’s a correct report, but it doesn’t show the 0 counts—the books that were not checked out.
If you need to see the inventory of all books along with the checkout list, you’ll need to join
BOOKSHELF_CHECKOUT to BOOKSHELF:

select distinct B.Title
from BOOKSHELF_CHECKOUT BC, BOOKSHELF B

where BC.Title = B.Title;

But that query will return the exact same records—the only rows in BOOKSHELF that can
meet the join criteria are those that have been checked out. To list the rest of the books, you’ll
need to use an outer join—telling Oracle to return a row even if the join does not produce a
match. Pre-Oracle9i, the syntax for an outer join uses (+) on the side of the join that will be
returning additional rows. In this case, that’s BOOKSHELF_CHECKOUT. The following query
shows the maximum number of days each book was checked out:

select B.Title, MAX(BC.ReturnedDate - BC.CheckoutDate)
"Most Days Out"

from BOOKSHELF_CHECKOUT BC, BOOKSHELF B
where BC.Title (+) = B.Title
group by B.Title;

TITLE Most Days Out
-- -------------
ANNE OF GREEN GABLES 18
BOX SOCIALS
CHARLOTTE'S WEB
COMPLETE POEMS OF JOHN KEATS
EITHER/OR 8
EMMA WHO SAVED MY LIFE
GOOD DOG, CARL 14

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 13: When One Query Depends upon Another 251

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 13
Blind Folio 13:251

GOSPEL
HARRY POTTER AND THE GOBLET OF FIRE 11
INNUMERACY 21
JOHN ADAMS 28
JOURNALS OF LEWIS AND CLARK
KIERKEGAARD ANTHOLOGY
LETTERS AND PAPERS FROM PRISON
MIDNIGHT MAGIC 14
MY LEDGER 16
POLAR EXPRESS 14
PREACHING TO HEAD AND HEART
RUNAWAY BUNNY
SHOELESS JOE
THE COST OF DISCIPLESHIP
THE DISCOVERERS 48
THE GOOD BOOK
THE MISMEASURE OF MAN 31
THE SHIPPING NEWS 59
TO KILL A MOCKINGBIRD 14
TRUMAN 19
TRUMPET OF THE SWAN
UNDER THE EYE OF THE CLOCK
WEST WITH THE NIGHT 48
WONDERFUL LIFE 31

All the titles in BOOKSHELF are returned, even those that do not meet the join criteria. If you
display the BOOKSHELF_CHECKOUT.Title values instead, you will see that those values are NULL.
Think of (+), which must immediately follow the join column of the shorter table, as saying “add
an extra (NULL) row of BC.Title anytime there’s no match for B.Title.”

Current Syntax for Outer Joins
You can use the ANSI SQL standard syntax for outer joins. In the from clause, you can tell Oracle
to perform a left, right, or full outer join. Let’s start with the example from the last section:

select B.Title, MAX(BC.ReturnedDate - BC.CheckoutDate)
"Most Days Out"

from BOOKSHELF_CHECKOUT BC, BOOKSHELF B
where BC.Title (+) = B.Title
group by B.Title;

In this case, the BOOKSHELF_CHECKOUT table is having rows returned from it during the
join, even if no matches are found. This can be rewritten as follows:

select B.Title, MAX(BC.ReturnedDate - BC.CheckoutDate)
"Most Days Out"

from BOOKSHELF_CHECKOUT BC right outer join BOOKSHELF B
on BC.Title = B.Title

group by B.Title;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Note the use of the on clause as part of the outer join syntax. Note that

from BOOKSHELF_CHECKOUT BC right outer join BOOKSHELF B

is equivalent to

from BOOKSHELF B left outer join BOOKSHELF_CHECKOUT BC

You can replace the on clause with a using clause along with the name of the column the
tables have in common—do not qualify the column name with a table name or table alias.

select Title, MAX(BC.ReturnedDate - BC.CheckoutDate)
"Most Days Out"

from BOOKSHELF_CHECKOUT BC right outer join BOOKSHELF B
using (Title)
group by Title;

Note that you cannot specify a table alias for the columns listed in the using clause—even in
the group by and select clauses.

As with the old syntax, the side used as the driving table for the outer join makes a difference;
doing a left outer join will not return all the titles.

select B.Title, MAX(BC.ReturnedDate - BC.CheckoutDate)
"Most Days Out"

from BOOKSHELF_CHECKOUT BC left outer join BOOKSHELF B
on BC.Title = B.Title

group by B.Title;

TITLE Most Days Out
-- -------------
ANNE OF GREEN GABLES 18
EITHER/OR 8
GOOD DOG, CARL 14
HARRY POTTER AND THE GOBLET OF FIRE 11
INNUMERACY 21
JOHN ADAMS 28
MIDNIGHT MAGIC 14
MY LEDGER 16
POLAR EXPRESS 14
THE DISCOVERERS 48
THE MISMEASURE OF MAN 31
THE SHIPPING NEWS 59
TO KILL A MOCKINGBIRD 14
TRUMAN 19
WEST WITH THE NIGHT 48
WONDERFUL LIFE 31

16 rows selected.

252 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 13
Blind Folio 13:252

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A third option, full outer join, returns all rows from both tables. Rows that do not satisfy the
on condition return NULL values. In this example, there are no rows to satisfy this condition, so
the query returns the same 31 rows as the right outer join.

select B.Title, MAX(BC.ReturnedDate - BC.CheckoutDate)
"Most Days Out"

from BOOKSHELF_CHECKOUT BC full outer join BOOKSHELF B
on BC.Title = B.Title

group by B.Title;

Prior to Oracle9i, you can generate the full outer join results by performing two separate
outer joins—using each table as the outer table—and using a union operation to combine the
results in a single query.

Replacing NOT IN with an Outer Join
The various logical tests that can be done in a where clause all have their separate performance
measures. A NOT IN test may force a full read of the table in the subquery select. For example,
what books were not checked out? You could write a query like this:

select Title
from BOOKSHELF
where Title not in

(select Title from BOOKSHELF_CHECKOUT)
order by Title;

TITLE
--
BOX SOCIALS
CHARLOTTE'S WEB
COMPLETE POEMS OF JOHN KEATS
EMMA WHO SAVED MY LIFE
GOSPEL
JOURNALS OF LEWIS AND CLARK
KIERKEGAARD ANTHOLOGY
LETTERS AND PAPERS FROM PRISON
PREACHING TO HEAD AND HEART
RUNAWAY BUNNY
SHOELESS JOE
THE COST OF DISCIPLESHIP
THE GOOD BOOK
TRUMPET OF THE SWAN
UNDER THE EYE OF THE CLOCK

This is typically the way such a query would be written, even though experienced Oracle
users know it may be slow—you may be forcing Oracle to perform a time-intensive full table
scan on the BOOKSHELF_CHECKOUT table. The optimizer may internally transform that NOT
IN to one of the following functionally identical approaches. The following query uses an outer

Chapter 13: When One Query Depends upon Another 253

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 13
Blind Folio 13:253

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

254 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 13
Blind Folio 13:254

join and produces the same result. The difference is that this one will be efficient because the
optimizer can take advantage of indexes on the join columns:

select distinct B.Title
from BOOKSHELF_CHECKOUT BC right outer join BOOKSHELF B
on BC.Title = B.Title

where BC.Title is NULL
order by B.Title;

TITLE
--
BOX SOCIALS
CHARLOTTE'S WEB
COMPLETE POEMS OF JOHN KEATS
EMMA WHO SAVED MY LIFE
GOSPEL
JOURNALS OF LEWIS AND CLARK
KIERKEGAARD ANTHOLOGY
LETTERS AND PAPERS FROM PRISON
PREACHING TO HEAD AND HEART
RUNAWAY BUNNY
SHOELESS JOE
THE COST OF DISCIPLESHIP
THE GOOD BOOK
TRUMPET OF THE SWAN
UNDER THE EYE OF THE CLOCK

Why does it work and give the same results as the NOT IN? The outer join between the two
tables ensures that all rows are available for the test, including those titles for whom no checkout
records are listed in the BOOKSHELF_CHECKOUT table. The line

where BC.Title is NULL

produces only those titles that don’t appear in the BOOKSHELF_CHECKOUT table (and are
therefore returned as NULL titles by Oracle). The logic here is obscure, but it works. The best
way to use this technique is simply to follow the model.

Replacing NOT IN with NOT EXISTS
A more common way of performing this type of query requires using the NOT EXISTS clause.
NOT EXISTS is typically used to determine which values in one table do not have matching
values in another table. In usage, it is identical to the EXISTS clause; in the following example,
you’ll see the difference in the query logic and the records returned.

NOT EXISTS allows you to use a correlated subquery to eliminate from a table all records
that may successfully be joined to another table. For this example, that means you can eliminate
from the BOOKSHELF table all titles that are present in the Title column of the BOOKSHELF_
CHECKOUT table. The following query shows how this is done:

select B.Title
from BOOKSHELF B

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

where not exists
(select 'x' from BOOKSHELF_CHECKOUT BC
where BC.Title = B.Title)

order by B.Title;

TITLE
--
BOX SOCIALS
CHARLOTTE'S WEB
COMPLETE POEMS OF JOHN KEATS
EMMA WHO SAVED MY LIFE
GOSPEL
JOURNALS OF LEWIS AND CLARK
KIERKEGAARD ANTHOLOGY
LETTERS AND PAPERS FROM PRISON
PREACHING TO HEAD AND HEART
RUNAWAY BUNNY
SHOELESS JOE
THE COST OF DISCIPLESHIP
THE GOOD BOOK
TRUMPET OF THE SWAN
UNDER THE EYE OF THE CLOCK

This query shows the books that have not been checked out, as previously shown via the NOT
IN and outer join methods. How does this query work?

For each record in the BOOKSHELF table, the NOT EXISTS subquery is checked. If the join of
that record to the BOOKSHELF_CHECKOUT table returns a row, then the results of the subquery
EXIST. NOT EXISTS tells the query to reverse that return code; therefore, any row in BOOKSHELF
that can be successfully joined to BOOKSHELF_CHECKOUT will not be returned by the outer query.
The only rows left are the BOOKSHELF rows that do not have a matching row in BOOKSHELF_
CHECKOUT.

NOT EXISTS is a very efficient way to perform this type of query, especially when multiple
columns are used for the join. Because it uses a join, NOT EXISTS is frequently able to use
available indexes, whereas NOT IN may not be able to use those indexes. The ability to use
indexes for this type of query can have a dramatic impact on the query’s performance.

Natural and Inner Joins
You can use the natural keyword to indicate that a join should be performed based on all columns
that have the same name in the two tables being joined. For example, what titles in BOOK_ORDER
match those already in BOOKSHELF?

select Title
from BOOK_ORDER natural join BOOKSHELF;

TITLE
--
SHOELESS JOE
GOSPEL

Chapter 13: When One Query Depends upon Another 255

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 13
Blind Folio 13:255

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The natural join returned the results as if you had typed in the following:

select BO.Title
from BOOK_ORDER BO, BOOKSHELF
where BO.Title = BOOKSHELF.Title
and BO.Publisher = BOOKSHELF.Publisher
and BO.CategoryName = BOOKSHELF.CategoryName;

The join was performed based on the columns the two tables had in common.
Support for inner join syntax was introduced in Oracle9i. Inner joins are the default—they

return the rows the two tables have in common, and are the alternative to outer joins. Note that
they support the on and using clauses, so you can specify your join criteria as shown in the following
listing:

select BO.Title
from BOOK_ORDER BO inner join BOOKSHELF B
on BO.Title = B.Title;

TITLE
--
GOSPEL
SHOELESS JOE

UNION, INTERSECT, and MINUS
Sometimes you need to combine information of a similar type from more than one table. A classic
example of this is merging two or more mailing lists prior to a mailing campaign. Depending on the
purpose of a particular mailing, you might want to send letters to any of these combinations of people:

■ Everyone in both lists (while avoiding sending two letters to someone who happens to
be in both lists)

■ Only those people who are in both lists

■ Those people in only one of the lists

These three combinations of lists are known in Oracle as UNION, INTERSECT, and MINUS.
In the following examples, you will see how to use these three clauses to manage the results of
multiple queries. The examples will compare the books on hand (BOOKSHELF) with those on
order (BOOK_ORDER).

To see all the books, UNION the two tables. To reduce the size of the output, only the
BOOKSHELF entries from the first half of the alphabet are selected. The following select returns
14 rows:

select Title from BOOKSHELF
where Title < 'M%';

And this select returns six rows:

256 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 13
Blind Folio 13:256

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select Title from BOOK_ORDER;

If we UNION them together, how many rows are returned?

select Title from BOOKSHELF
where Title < 'M%'

union
select Title from BOOK_ORDER;

TITLE
--
ANNE OF GREEN GABLES
BOX SOCIALS
CHARLOTTE'S WEB
COMPLETE POEMS OF JOHN KEATS
EITHER/OR
EMMA WHO SAVED MY LIFE
GALILEO'S DAUGHTER
GOOD DOG, CARL
GOSPEL
HARRY POTTER AND THE GOBLET OF FIRE
INNUMERACY
JOHN ADAMS
JOURNALS OF LEWIS AND CLARK
KIERKEGAARD ANTHOLOGY
LETTERS AND PAPERS FROM PRISON
LONGITUDE
ONCE REMOVED
SHOELESS JOE
SOMETHING SO STRONG

19 rows selected.

Where did the extra record go? The problem is that one of the Title values in BOOK_ORDER
is already in the BOOKSHELF table. To show the duplicates, use UNION ALL instead of UNION:

select Title from BOOKSHELF
where Title < 'M%'

union all
select Title from BOOK_ORDER
order by Title;

TITLE
--
ANNE OF GREEN GABLES
BOX SOCIALS
CHARLOTTE'S WEB
COMPLETE POEMS OF JOHN KEATS
EITHER/OR
EMMA WHO SAVED MY LIFE

Chapter 13: When One Query Depends upon Another 257

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 13
Blind Folio 13:257

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

258 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 13
Blind Folio 13:258

GALILEO'S DAUGHTER
GOOD DOG, CARL
GOSPEL
GOSPEL
HARRY POTTER AND THE GOBLET OF FIRE
INNUMERACY
JOHN ADAMS
JOURNALS OF LEWIS AND CLARK
KIERKEGAARD ANTHOLOGY
LETTERS AND PAPERS FROM PRISON
LONGITUDE
ONCE REMOVED
SHOELESS JOE
SOMETHING SO STRONG

20 rows selected.

The duplicate title is now listed twice.
In the following, the two lists of books are intersected. This list contains only those names

that are in both underlying tables (note that the restriction on Title < ‘M%’ has been eliminated
for this example):

select Title from BOOKSHELF
intersect
select Title from BOOK_ORDER
order by Title;

TITLE
--
GOSPEL
SHOELESS JOE

Next, the list of new books (in BOOK_ORDER but not already in BOOKSHELF) is generated,
via the MINUS operator:

select Title from BOOK_ORDER
minus
select Title from BOOKSHELF
order by Title;

TITLE
--
GALILEO'S DAUGHTER
LONGITUDE
ONCE REMOVED
SOMETHING SO STRONG

You could have also used MINUS to show which books had not been checked out:

select Title from BOOKSHELF
minus

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select Title from BOOKSHELF_CHECKOUT;

TITLE

BOX SOCIALS
CHARLOTTE'S WEB
COMPLETE POEMS OF JOHN KEATS
EMMA WHO SAVED MY LIFE
GOSPEL
JOURNALS OF LEWIS AND CLARK
KIERKEGAARD ANTHOLOGY
LETTERS AND PAPERS FROM PRISON
PREACHING TO HEAD AND HEART
RUNAWAY BUNNY
SHOELESS JOE
THE COST OF DISCIPLESHIP
THE GOOD BOOK
TRUMPET OF THE SWAN
UNDER THE EYE OF THE CLOCK

15 rows selected.

You’ve just learned the basics of UNION, INTERSECT, and MINUS. Now let’s go into detail.
In combining two tables, Oracle does not concern itself with column names on either side of the
combination operator—that is, Oracle will require that each select statement be valid and have
valid columns for its own table(s), but the column names in the first select statement do not have
to be the same as those in the second. Oracle does have these stipulations:

■ The select statements must have the same number of columns. If the two tables being
queried have differing numbers of columns selected, you can select strings in place of
columns to make the two queries’ column lists match.

■ The corresponding columns in the select statements must be the same datatype (they
needn’t be the same length).

When ordering the output, Oracle uses the column names from the first select statement in
giving the query results. Consequently, only column names from the first select statement can be
used in the order by.

You can use combination operators with two or more tables, but when you do, precedence
becomes an issue, especially if INTERSECT and MINUS appear. Use parentheses to force the order
you want.

IN Subqueries
Combination operators can be used in subqueries, but you must be careful with precedence.
A query of the form

select ColA from TABLE_A
where ColA in

Chapter 13: When One Query Depends upon Another 259

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 13
Blind Folio 13:259

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

(select Col1 from TABLE_1)
union

(select Col2 from TABLE_2);

is poorly written and ambiguous. Which will be performed first, the union of the two queries as
part of a single where clause, or the in clause based on the query of TABLE_1, followed by a union
of that result with TABLE_2? Use parentheses to clarify your meaning and enforce the proper
precedence of operations. The in clause is always given a higher precedence than union, unless
you use parentheses to alter the way the query is executed. If you want the union to have higher
precedence, use parentheses:

select ColA from TABLE_A
where ColA in

(select Col1 from TABLE_1
union
select Col2 from TABLE_2);

Restrictions on UNION, INTERSECT, and MINUS
Queries that use UNION, INTERSECT, or MINUS in their where clause must have the same
number and type of columns in their select list. Note that the equivalent IN construction does
not have that limitation.

The use of combination operators in place of IN, AND, and OR is a matter of personal
style. Most SQL users regard IN, AND, and OR as being clearer and easier to understand than
combination operators.

260 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 13
Blind Folio 13:260

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 14
Blind Folio 14:261

CHAPTER
14

Some Complex
Possibilities

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

T
his chapter continues the study of the more complex Oracle functions and features.
Of particular interest here is the creation of simple and group queries that can be
turned into views, the use of totals in calculations, and the creation of reports
showing tree structure. Like the techniques covered in Chapter 13, these techniques
are not essential for most reporting needs. If they look overly difficult, don’t be

frightened off. If you are new to Oracle and the use of its query facilities, it is enough to know
that these capabilities exist and you can turn to them if needed.

Complex Groupings
Views can build upon each other. In Chapter 12, you saw the concept of creating a view of a
grouping of rows from a table. As shown in Chapter 12, you can easily join views to other views
and tables to produce additional views to simplify the tasks of querying and reporting.

As your groupings grow more complex, you will find that views are invaluable to your coding
efforts; they simplify the representation of data at different grouping levels within your application.
They also make it easier to use the more advanced analytic functions available.

Consider the CATEGORY_COUNT view, first encountered in Chapter 12:

create or replace view CATEGORY_COUNT as
select CategoryName, COUNT(*) as Counter
from BOOKSHELF
group by CategoryName;

select * from CATEGORY_COUNT;

CATEGORYNAME COUNTER
-------------------- ----------
ADULTFIC 6
ADULTNF 10
ADULTREF 6
CHILDRENFIC 5
CHILDRENNF 1
CHILDRENPIC 3

Let’s order the results by their Counter column values, with the highest first:

select * from CATEGORY_COUNT
order by Counter desc;

CATEGORYNAME COUNTER
-------------------- ----------
ADULTNF 10
ADULTFIC 6
ADULTREF 6
CHILDRENFIC 5
CHILDRENPIC 3
CHILDRENNF 1

262 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 14
Blind Folio 14:262

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 14: Some Complex Possibilities 263

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 14
Blind Folio 14:263

The output shows the ranking of the categories; the ADULTNF category ranks first in terms of
the number of books. Without displaying this list, you could determine where a different Counter
value would be in the rankings. To do this, we’ll use the RANK function. As shown in the following
listing, the RANK function takes a value as its input and has additional clauses—the within group
and order by clauses—that tell Oracle how to do the ranking. Where would a Counter value of
3 rank?

select RANK(3) within group
(order by Counter desc)
from CATEGORY_COUNT;

RANK(3)WITHINGROUP(ORDERBYCOUNTERDESC)

5

A Counter value of 3 would be the fifth-highest Counter value. How about a Counter value of 8?

select RANK(8) within group
(order by Counter desc)
from CATEGORY_COUNT;

RANK(8)WITHINGROUP(ORDERBYCOUNTERDESC)

2

Adding those five books to the category would move it up to second place. From a percentile
perspective, what would the ranking for that category be?

select PERCENT_RANK(8) within group
(order by Counter desc)
from CATEGORY_COUNT;

PERCENT_RANK(8)WITHINGROUP(ORDERBYCOUNTERDESC)
--

.166666667

As expected, it would be in the top one-sixth of the categories.
With this technique of using both summary views and analytic functions, you can create

views and reports that include weighted average, effective yield, percentage of total, percentage
of subtotal, and many similar calculations. There is no effective limit to how many views can be
built on top of each other, although even the most complex calculations seldom require more
than three or four levels of views built upon views. Note that you can also create inline views in
the from clause, as shown in Chapter 12.

Using Temporary Tables
You can create a table that exists solely for your session or whose data persists for the duration of
your transaction. You can use temporary tables to support specialized rollups or specific application-
processing requirements.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To create a temporary table, use the create global temporary table command. When you create a
temporary table, you can specify whether it should last for the duration of your session (via the on
commit preserve rows clause) or whether its rows should be deleted when the transaction completes
(via the on commit delete rows clause).

Unlike a permanent table, a temporary table does not automatically allocate space when it is
created. Space will be dynamically allocated for the table as rows are inserted:

create global temporary table YEAR_ROLLUP (
Year NUMBER(4),
Month VARCHAR2(9),
Counter NUMBER)

on commit preserve rows;

You can see the duration of your data in YEAR_ROLLUP by querying the Duration column
of USER_TABLES for this table. In this case, the value of Duration is SYS$SESSION. If on commit
delete rows had been specified instead, the Duration value would be SYS$TRANSACTION.

Now that the YEAR_ROLLUP table exists, you can populate it, such as via an insert as select
command with a complex query. You can then query the YEAR_ROLLUP table as part of a join
with other tables. You may find this method simpler to implement than the methods shown earlier.

Using ROLLUP, GROUPING, and CUBE
How can you perform grouping operations, such as totals, within a single SQL statement rather than
via SQL*Plus commands? You can use the ROLLUP and CUBE functions to enhance the grouping
actions performed within your queries. Let’s see how this enables us to manage the data related to
book returns. The book loaner program has become more popular, so the loan time is now limited
to 14 days, with a $0.20 fee per extra day. The following report shows the late charges by person:

set headsep !
column Name format a20
column Title format a20 word_wrapped
column DaysOut format 999.99 heading 'Days!Out'
column DaysLate format 999.99 heading 'Days!Late'

break on Name skip 1 on report
compute sum of LateFee on Name
set linesize 80
set pagesize 60
set newpage 0

select Name, Title, ReturnedDate,
ReturnedDate-CheckoutDate as DaysOut /*Count days*/,
ReturnedDate-CheckoutDate -14 DaysLate,
(ReturnedDate-CheckoutDate -14)*0.20 LateFee

from BOOKSHELF_CHECKOUT
where ReturnedDate-CheckoutDate > 14
order by Name, CheckoutDate;

264 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 14
Blind Folio 14:264

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 14: Some Complex Possibilities 265

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 14
Blind Folio 14:265

Days Days
NAME TITLE RETURNEDD Out Late LATEFEE
-------------------- -------------------- --------- ------- ------- ----------
DORAH TALBOT MY LEDGER 03-MAR-02 16.00 2.00 .4
******************** ----------
sum .4

EMILY TALBOT ANNE OF GREEN GABLES 20-JAN-02 18.00 4.00 .8
******************** ----------
sum .8

FRED FULLER JOHN ADAMS 01-MAR-02 28.00 14.00 2.8
TRUMAN 20-MAR-02 19.00 5.00 1

******************** ----------
sum 3.8

GERHARDT KENTGEN WONDERFUL LIFE 02-FEB-02 31.00 17.00 3.4
THE MISMEASURE OF 05-MAR-02 20.00 6.00 1.2
MAN

******************** ----------
sum 4.6

JED HOPKINS INNUMERACY 22-JAN-02 21.00 7.00 1.4
******************** ----------
sum 1.4

PAT LAVAY THE MISMEASURE OF 12-FEB-02 31.00 17.00 3.4
MAN

******************** ----------
sum 3.4

ROLAND BRANDT THE SHIPPING NEWS 12-MAR-02 59.00 45.00 9
THE DISCOVERERS 01-MAR-02 48.00 34.00 6.8
WEST WITH THE NIGHT 01-MAR-02 48.00 34.00 6.8

******************** ----------
sum 22.6

We can eliminate the DaysOut display and focus on the late fees, showing the fees due on each
of the return dates:

clear compute
clear break
select ReturnedDate, Name,

SUM((ReturnedDate-CheckoutDate -14)*0.20) LateFee
from BOOKSHELF_CHECKOUT

where ReturnedDate-CheckoutDate > 14
group by ReturnedDate, Name
order by ReturnedDate, Name;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

266 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 14
Blind Folio 14:266

RETURNEDD NAME LATEFEE
--------- -------------------- ----------
20-JAN-02 EMILY TALBOT .8
22-JAN-02 JED HOPKINS 1.4
02-FEB-02 GERHARDT KENTGEN 3.4
12-FEB-02 PAT LAVAY 3.4
01-MAR-02 FRED FULLER 2.8
01-MAR-02 ROLAND BRANDT 13.6
03-MAR-02 DORAH TALBOT .4
05-MAR-02 GERHARDT KENTGEN 1.2
12-MAR-02 ROLAND BRANDT 9
20-MAR-02 FRED FULLER 1

Then we can modify it further to group the late fees by month:

select TO_CHAR(ReturnedDate,'MONTH'), Name,
SUM((ReturnedDate-CheckoutDate -14)*0.20) LateFee

from BOOKSHELF_CHECKOUT
where ReturnedDate-CheckoutDate > 14
group by TO_CHAR(ReturnedDate,'MONTH'), Name;

TO_CHAR(R NAME LATEFEE
--------- -------------------- ----------
FEBRUARY PAT LAVAY 3.4
FEBRUARY GERHARDT KENTGEN 3.4
JANUARY JED HOPKINS 1.4
JANUARY EMILY TALBOT .8
MARCH FRED FULLER 3.8
MARCH DORAH TALBOT .4
MARCH ROLAND BRANDT 22.6
MARCH GERHARDT KENTGEN 1.2

Instead of simply grouping by Month and Name, you can use the ROLLUP function to generate
subtotals and totals. In the following example, the group by clause is modified to include a ROLLUP
function call. Notice the additional rows generated at the end of the result set and after each month:

select TO_CHAR(ReturnedDate,'MONTH'), Name,
SUM((ReturnedDate-CheckoutDate -14)*0.20) LateFee

from BOOKSHELF_CHECKOUT
where ReturnedDate-CheckoutDate > 14
group by ROLLUP(TO_CHAR(ReturnedDate,'MONTH'), Name);

TO_CHAR(R NAME LATEFEE
--------- -------------------- ----------
FEBRUARY PAT LAVAY 3.4
FEBRUARY GERHARDT KENTGEN 3.4
FEBRUARY 6.8
JANUARY JED HOPKINS 1.4
JANUARY EMILY TALBOT .8
JANUARY 2.2

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 14: Some Complex Possibilities 267

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 14
Blind Folio 14:267

MARCH FRED FULLER 3.8
MARCH DORAH TALBOT .4
MARCH ROLAND BRANDT 22.6
MARCH GERHARDT KENTGEN 1.2
MARCH 28

37

For each month, Oracle has calculated the total late fee, and shows it with a NULL name
value. The output shows two separate charges of $3.40 in February, and a monthly total of $6.80.
For the quarter, the total of the late charges is $37.00. You could have calculated these via SQL*Plus
commands (see Chapter 6), but this method allows you to generate these sums via a single SQL
command regardless of the tool used to query the database.

Let’s refine the appearance of the report. You can use the GROUPING function to determine
whether the row is a total or subtotal (generated by ROLLUP) or corresponds to a NULL value in
the database. In the select clause, the Name column will be selected as follows:

select DECODE(GROUPING(Name),1, 'All names',Name),

The GROUPING function will return a value of 1 if the column’s value is generated by a
ROLLUP action. This query uses DECODE (discussed at length in Chapter 16) to evaluate the
result of the GROUPING function. If the GROUPING output is 1, the value was generated by the
ROLLUP function, and Oracle will print the phrase ‘All names’; otherwise, it will print the value
of the Name column. We will apply similar logic to the Date column. The full query is shown in
the following listing, along with its output:

select DECODE(GROUPING(TO_CHAR(ReturnedDate,'MONTH')),1,
'All months',TO_CHAR(ReturnedDate,'MONTH')),

DECODE(GROUPING(Name),1, 'All names',Name),
SUM((ReturnedDate-CheckoutDate -14)*0.20) LateFee

from BOOKSHELF_CHECKOUT
where ReturnedDate-CheckoutDate > 14
group by ROLLUP(TO_CHAR(ReturnedDate, 'MONTH'), Name);

DECODE(GRO DECODE(GROUPING(NAME),1,' LATEFEE
---------- ------------------------- ----------
FEBRUARY PAT LAVAY 3.4
FEBRUARY GERHARDT KENTGEN 3.4
FEBRUARY All names 6.8
JANUARY JED HOPKINS 1.4
JANUARY EMILY TALBOT .8
JANUARY All names 2.2
MARCH FRED FULLER 3.8
MARCH DORAH TALBOT .4
MARCH ROLAND BRANDT 22.6
MARCH GERHARDT KENTGEN 1.2
MARCH All names 28
All months All names 37

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can use the CUBE function to generate subtotals for all combinations of the values in
the group by clause. The following query uses the CUBE function to generate this information:

select DECODE(GROUPING(TO_CHAR(ReturnedDate,'MONTH')),1,
'All months',TO_CHAR(ReturnedDate,'MONTH')),

DECODE(GROUPING(Name),1, 'All names',Name),
SUM((ReturnedDate-CheckoutDate -14)*0.20) LateFee

from BOOKSHELF_CHECKOUT
where ReturnedDate-CheckoutDate > 14
group by CUBE(TO_CHAR(ReturnedDate,'MONTH'), Name);

DECODE(GRO DECODE(GROUPING(NAME),1,' LATEFEE
---------- ------------------------- ----------
All months All names 37
All months PAT LAVAY 3.4
All months FRED FULLER 3.8
All months JED HOPKINS 1.4
All months DORAH TALBOT .4
All months EMILY TALBOT .8
All months ROLAND BRANDT 22.6
All months GERHARDT KENTGEN 4.6
FEBRUARY All names 6.8
FEBRUARY PAT LAVAY 3.4
FEBRUARY GERHARDT KENTGEN 3.4
JANUARY All names 2.2
JANUARY JED HOPKINS 1.4
JANUARY EMILY TALBOT .8
MARCH All names 28
MARCH FRED FULLER 3.8
MARCH DORAH TALBOT .4
MARCH ROLAND BRANDT 22.6
MARCH GERHARDT KENTGEN 1.2

The CUBE function provided the summaries generated by the ROLLUP option, plus it shows
the sums by Name for the ‘All months’ category. Being able to perform these summaries in standard
SQL greatly enhances your ability to pick the best reporting tool for your users.

Family Trees and connect by
One of Oracle’s more interesting but little used or understood facilities is its connect by clause.
Put simply, this method is used to report, in order, the branches of a family tree. Such trees are
encountered often—the genealogy of human families, livestock, horses; corporate management,
company divisions, manufacturing; literature, ideas, evolution, scientific research, theory, and
even views built upon views.

The connect by clause provides a means to report on all of the family members in any of
these many trees. It lets you exclude branches or individual members of a family tree, and allows
you to travel through the tree either up or down, reporting on the family members encountered
during the trip.

268 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 14
Blind Folio 14:268

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 14: Some Complex Possibilities 269

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 14
Blind Folio 14:269

The earliest ancestor in the tree is technically called the root node. In everyday English, this
would be called the trunk. Extending from the trunk are branches, which have other branches,
which have still other branches. The forks where one or more branches split away from a larger
branch are called nodes, and the very end of a branch is called a leaf, or a leaf node. Figure 14-1
(above) shows a picture of such a tree.

The following is a table of cows and bulls born between January 1900 and October 1908. As
each offspring is born, it is entered as a row in the table, along with its sex, parents (the cow and
bull), and birth date. If you compare the cows and offspring in this table with Figure 14-1, you’ll
find they correspond. EVE has no recorded cow or bull parent because she was born on a different
farm, and ADAM and BANDIT are bulls brought in for breeding, again with no parents in the table.

column Cow format a6
column Bull format a6
column Offspring format a10
column Sex format a3

select * from BREEDING
order by Birthdate;

FIGURE 14-1. Eve’s descendants

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

OFFSPRING SEX COW BULL BIRTHDATE
---------- --- ------ ------ ---------
BETSY F EVE ADAM 02-JAN-00
POCO M EVE ADAM 15-JUL-00
GRETA F EVE BANDIT 12-MAR-01
MANDY F EVE POCO 22-AUG-02
CINDY F EVE POCO 09-FEB-03
NOVI F BETSY ADAM 30-MAR-03
GINNY F BETSY BANDIT 04-DEC-03
DUKE M MANDY BANDIT 24-JUL-04
TEDDI F BETSY BANDIT 12-AUG-05
SUZY F GINNY DUKE 03-APR-06
PAULA F MANDY POCO 21-DEC-06
RUTH F GINNY DUKE 25-DEC-06
DELLA F SUZY BANDIT 11-OCT-08
EVE F
ADAM M
BANDIT M

Next, a query is written to illustrate the family relationships visually. This is done using LPAD
and a special column, Level, that comes along with connect by. Level is a number, from 1 for EVE
to 5 for DELLA, that is really the generation. If EVE is the first generation of cattle, then DELLA is
the fifth generation. Whenever the connect by clause is used, the Level column can be used in the
select statement to discover the generation of each row. Level is a pseudo-column like SysDate
and User. It’s not really a part of the table, but it is available under specific circumstances. The next
listing shows an example of using Level.

The results of this query are apparent in the following table, but why did the select statement
produce this? How does it work?

column Offspring format a30
select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,

Sex, Birthdate
from BREEDING

start with Offspring = 'EVE'
connect by Cow = PRIOR Offspring;

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------

EVE F
EVE ADAM BETSY F 02-JAN-00
BETSY ADAM NOVI F 30-MAR-03
BETSY BANDIT GINNY F 04-DEC-03
GINNY DUKE SUZY F 03-APR-06
SUZY BANDIT DELLA F 11-OCT-08
GINNY DUKE RUTH F 25-DEC-06
BETSY BANDIT TEDDI F 12-AUG-05
EVE ADAM POCO M 15-JUL-00
EVE BANDIT GRETA F 12-MAR-01
EVE POCO MANDY F 22-AUG-02
MANDY BANDIT DUKE M 24-JUL-04
MANDY POCO PAULA F 21-DEC-06
EVE POCO CINDY F 09-FEB-03

270 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 14
Blind Folio 14:270

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 14: Some Complex Possibilities 271

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 14
Blind Folio 14:271

Note that this is really Figure 14-1 turned clockwise onto its side. EVE isn’t centered, but she
is the root node (trunk) of this tree. Her children are BETSY, POCO, GRETA, MANDY, and CINDY.
BETSY’s children are NOVI, GINNY, and TEDDI. GINNY’s children are SUZY and RUTH. And
SUZY’s child is DELLA. MANDY also has two children, DUKE and PAULA.

This tree started with EVE as the first “offspring.” If the SQL statement had said start with MANDY,
only MANDY, DUKE, and PAULA would have been selected. start with defines the beginning of
that portion of the tree that will be displayed, and it includes only branches stretching out from
the individual that start with specifies. start with acts just as its name implies.

The LPAD in the select statement is probably somewhat confusing. Recall from Chapter 7 the
format for LPAD:

LPAD(string,length [,'set'])

That is, take the specified string and left-pad it for the specified length with the specified set of
characters. If no set is specified, left-pad the string with blanks.

Compare this syntax to the LPAD in the select statement shown earlier:

LPAD(' ',6*(Level-1))

In this case, the string is a single character (a space, indicated by the literal space enclosed in single
quotation marks). Also, 6*(Level–1) is the length, and because the set is not specified, spaces will
be used. In other words, this tells SQL to take this string of one space and left-pad it to the number
of spaces determined by 6*(Level–1), a calculation made by first subtracting 1 from the Level and
then multiplying this result by 6. For EVE, the Level is 1, so 6*(1–1), or 0 spaces, is used. For BETSY,
the Level (her generation) is 2, so an LPAD of 6 is used. Thus, for each generation after the first,
six additional spaces will be concatenated to the left of the Offspring column. The effect is obvious
in the result just shown. The name of each Offspring is indented by left-padding with the number
of spaces corresponding to its Level or generation.

Why is this done, instead of simply applying the LPAD directly to Offspring? For two reasons.
First, a direct LPAD on Offspring would cause the names of the offspring to be right-justified. The
names at each level would end up having their last letters lined up vertically. Second, if Level–1
is equal to 0, as it is for EVE, the resulting LPAD of EVE will be 0 characters wide, causing EVE
to vanish:

select Cow, Bull, LPAD(Offspring,6*(Level-1),' ') AS Offspring,
Sex, Birthdate from BREEDING

start with Offspring = 'EVE'
connect by Cow = PRIOR Offspring;

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------

F
EVE ADAM BETSY F 02-JAN-00
BETSY ADAM NOVI F 30-MAR-03
BETSY BANDIT GINNY F 04-DEC-03

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

GINNY DUKE SUZY F 03-APR-06
SUZY BANDIT DELLA F 11-OCT-08
GINNY DUKE RUTH F 25-DEC-06
BETSY BANDIT TEDDI F 12-AUG-05
EVE ADAM POCO M 15-JUL-00
EVE BANDIT GRETA F 12-MAR-01
EVE POCO MANDY F 22-AUG-02
MANDY BANDIT DUKE M 24-JUL-04
MANDY POCO PAULA F 21-DEC-06
EVE POCO CINDY F 09-FEB-03

Therefore, to get the proper spacing for each level, to ensure that EVE appears, and to make
the names line up vertically on the left, the LPAD should be used with the concatenation function,
and not directly on the Offspring column.

Now, how does connect by work? Look again at Figure 14-1. Starting with NOVI and traveling
downward, which cows are the offspring prior to NOVI? The first is BETSY, and the offspring just
prior to BETSY is EVE. Even though it is not instantly readable, the clause

connect by Cow = PRIOR Offspring

tells SQL to find the next row in which the value in the Cow column is equal to the value in the
Offspring column in the prior row. Look at the table and you’ll see that this is true.

Excluding Individuals and Branches
There are two methods of excluding cows from a report. One uses the normal where clause
technique, and the other uses the connect by clause itself. The difference is that the exclusion
using the connect by clause will exclude not just the cow mentioned, but all of its children as
well. If you use connect by to exclude BETSY, then NOVI, GINNY, TEDDI, SUZY, RUTH, and
DELLA all vanish. The connect by clause really tracks the tree structure. If BETSY had never been
born, none of her offspring would have been either. In this example, the and clause modifies the
connect by clause:

select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,
Sex, Birthdate

from BREEDING
start with Offspring = 'EVE'

connect by Cow = PRIOR Offspring
and Offspring != 'BETSY';

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------

EVE F
EVE ADAM POCO M 15-JUL-00
EVE BANDIT GRETA F 12-MAR-01
EVE POCO MANDY F 22-AUG-02
MANDY BANDIT DUKE M 24-JUL-04
MANDY POCO PAULA F 21-DEC-06
EVE POCO CINDY F 09-FEB-03

272 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 14
Blind Folio 14:272

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The where clause removes only the cow or cows it mentions. If BETSY dies, she is removed
from the chart, but her offspring are not. In fact, notice that BETSY is still there under the Cow
column as the mother of her children, NOVI, GINNY, and TEDDI:

select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,
Sex, Birthdate

from BREEDING
where Offspring != 'BETSY'
start with Offspring = 'EVE'

connect by Cow = PRIOR Offspring;

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------

EVE F
BETSY ADAM NOVI F 30-MAR-03
BETSY BANDIT GINNY F 04-DEC-03
GINNY DUKE SUZY F 03-APR-06
SUZY BANDIT DELLA F 11-OCT-08
GINNY DUKE RUTH F 25-DEC-06
BETSY BANDIT TEDDI F 12-AUG-05
EVE ADAM POCO M 15-JUL-00
EVE BANDIT GRETA F 12-MAR-01
EVE POCO MANDY F 22-AUG-02
MANDY BANDIT DUKE M 24-JUL-04
MANDY POCO PAULA F 21-DEC-06
EVE POCO CINDY F 09-FEB-03

The order in which the family tree is displayed when using connect by is basically level by
level, left to right, as shown in Figure 14-1, starting with the lowest level, Level 1. For example,
you may want to alter this order to collect the cows and their offspring by birth date:

select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,
Sex, Birthdate from BREEDING

start with Offspring = 'EVE'
connect by Cow = PRIOR Offspring
order by Cow, Birthdate;

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------
BETSY ADAM NOVI F 30-MAR-03
BETSY BANDIT GINNY F 04-DEC-03
BETSY BANDIT TEDDI F 12-AUG-05
EVE ADAM BETSY F 02-JAN-00
EVE ADAM POCO M 15-JUL-00
EVE BANDIT GRETA F 12-MAR-01
EVE POCO MANDY F 22-AUG-02
EVE POCO CINDY F 09-FEB-03
GINNY DUKE SUZY F 03-APR-06
GINNY DUKE RUTH F 25-DEC-06
MANDY BANDIT DUKE M 24-JUL-04

Chapter 14: Some Complex Possibilities 273

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 14
Blind Folio 14:273

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

274 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 14
Blind Folio 14:274

MANDY POCO PAULA F 21-DEC-06
SUZY BANDIT DELLA F 11-OCT-08

EVE F

The generations are still obvious in the display, but siblings are more closely grouped with
each other. Another way to look at the same family tree is by Birthdate, as follows:

select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,
Sex, Birthdate

from BREEDING
start with Offspring = 'EVE'

connect by Cow = PRIOR Offspring
order by Birthdate;

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------
EVE ADAM BETSY F 02-JAN-00
EVE ADAM POCO M 15-JUL-00
EVE BANDIT GRETA F 12-MAR-01
EVE POCO MANDY F 22-AUG-02
EVE POCO CINDY F 09-FEB-03
BETSY ADAM NOVI F 30-MAR-03
BETSY BANDIT GINNY F 04-DEC-03
MANDY BANDIT DUKE M 24-JUL-04
BETSY BANDIT TEDDI F 12-AUG-05
GINNY DUKE SUZY F 03-APR-06
MANDY POCO PAULA F 21-DEC-06
GINNY DUKE RUTH F 25-DEC-06
SUZY BANDIT DELLA F 11-OCT-08

EVE F

Now, the order of the rows no longer shows generations, as in a tree, but the indenting still
preserves this information. You can’t tell what offspring belong to which parents without looking
at the Cow and Bull columns, though. Not knowing Eve’s birth date clearly disrupts the display of
the family tree.

Traveling Toward the Roots
Thus far, the direction of travel in reporting on the family tree has been from parents toward
children. Is it possible to start with a child, and move backward to parent, grandparent, great-
grandparent, and so on? To do so, the word prior is simply moved to the other side of the equal
sign. In the following examples, the Offspring is set equal to the prior Cow value; in the earlier
examples, the Cow was set equal to the prior Offspring value. The following traces DELLA’s
ancestry:

select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,
Sex, Birthdate

from BREEDING
start with Offspring = 'DELLA'

connect by Offspring = PRIOR Cow;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------
SUZY BANDIT DELLA F 11-OCT-08
GINNY DUKE SUZY F 03-APR-06
BETSY BANDIT GINNY F 04-DEC-03
EVE ADAM BETSY F 02-JAN-00

EVE F

This shows DELLA’s own roots, but it’s a bit confusing if compared to the previous displays.
It looks as if DELLA is the ancestor, and EVE the great-great-granddaughter. Adding an order by
for Birthdate helps, but EVE is still further to the right:

select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,
Sex, Birthdate

from BREEDING
start with Offspring = 'DELLA'

connect by Offspring = PRIOR Cow
order by Birthdate;

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------
EVE ADAM BETSY F 02-JAN-00
BETSY BANDIT GINNY F 04-DEC-03
GINNY DUKE SUZY F 03-APR-06
SUZY BANDIT DELLA F 11-OCT-08

EVE F

The solution is simply to change the calculation in the LPAD:

select Cow, Bull, LPAD(' ',6*(5-Level))||Offspring Offspring,
Sex, Birthdate

from BREEDING
start with Offspring = 'DELLA'

connect by Offspring = PRIOR Cow
order by Birthdate;

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------
EVE ADAM BETSY F 02-JAN-00
BETSY BANDIT GINNY F 04-DEC-03
GINNY DUKE SUZY F 03-APR-06
SUZY BANDIT DELLA F 11-OCT-08

EVE F

Finally, look how different this report is when the connect by tracks the parentage of the bull.
Here are ADAM’s offspring:

select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,
Sex, Birthdate

from BREEDING

Chapter 14: Some Complex Possibilities 275

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 14
Blind Folio 14:275

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

start with Offspring = 'ADAM'
connect by PRIOR Offspring = Bull;

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------

ADAM M
EVE ADAM BETSY F 02-JAN-00
EVE ADAM POCO M 15-JUL-00
EVE POCO MANDY F 22-AUG-02
EVE POCO CINDY F 09-FEB-03
MANDY POCO PAULA F 21-DEC-06
BETSY ADAM NOVI F 30-MAR-03

ADAM and BANDIT were the original bulls at the initiation of the herd. To create a single
tree that reports both ADAM’s and BANDIT’s offspring, you would have to invent a “father” for
the two of them, which would be the root of the tree. One of the advantages that these alternative
trees have over the type of tree shown earlier is that many inheritance groups—from families to
projects to divisions within companies—can be accurately portrayed in more than one way:

select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,
Sex, Birthdate

from BREEDING
start with Offspring = 'BANDIT'

connect by PRIOR Offspring = Bull;

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------

BANDIT M
EVE BANDIT GRETA F 12-MAR-01
BETSY BANDIT GINNY F 04-DEC-03
MANDY BANDIT DUKE M 24-JUL-04
GINNY DUKE SUZY F 03-APR-06
GINNY DUKE RUTH F 25-DEC-06
BETSY BANDIT TEDDI F 12-AUG-05
SUZY BANDIT DELLA F 11-OCT-08

The Basic Rules
Using connect by and start with to create tree like reports is not difficult, but certain basic rules
must be followed:

■ The order of the clauses when using connect by is as follows:

1. select

2. from

3. where

4. start with

276 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 14
Blind Folio 14:276

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

5. connect by

6. order by

■ prior forces reporting to be from the root out toward the leaves (if the prior column is
the parent) or from a leaf toward the root (if the prior column is the child).

■ A where clause eliminates individuals from the tree, but not their descendants (or ancestors,
if prior is on the right side of the equal sign).

■ A qualification in the connect by (particularly a not equal) eliminates both an individual
and all of its descendants (or ancestors, depending on how you trace the tree).

■ connect by cannot be used with a table join in the where clause.

This particular set of commands is one that few people are likely to remember correctly.
However, with a basic understanding of trees and inheritance, you should be able to construct
a proper select statement to report on a tree just by referring to this chapter for correct syntax.

Chapter 14: Some Complex Possibilities 277

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 14
Blind Folio 14:277

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 14
Blind Folio 14:278

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 15
Blind Folio 15:279

CHAPTER
15

Changing Data:
insert, update,

merge, and delete

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

U
ntil now, virtually everything you’ve learned about Oracle, SQL, and SQL*Plus
has related to selecting data from tables in the database. This chapter shows how
to change the data in a table—how to insert new rows, update the values of
columns in rows, and delete rows entirely. Although these topics have not been
covered explicitly, nearly everything you already know about SQL, including

datatypes, calculations, string formatting, where clauses, and the like, can be used here, so there
really isn’t much new to learn. Oracle gives you a transparent, distributed database capability
that inserts, updates, and deletes data in remote databases as well (see Chapter 23). As you’ll see
in this chapter, Oracle allows you to combine these commands via multitable inserts and the merge
command (to perform inserts and updates in a single command).

insert
The SQL command insert lets you place a row of information directly into a table (or indirectly,
through a view). The COMFORT table tracks temperatures at noon and midnight as well as daily
precipitation, city by city, for four sample dates throughout the year:

describe COMFORT

Name Null? Type
--- -------- ------------
CITY NOT NULL VARCHAR2(13)
SAMPLEDATE NOT NULL DATE
NOON NUMBER(3,1)
MIDNIGHT NUMBER(3,1)
PRECIPITATION NUMBER

To add a new row to this table, use this:

insert into COMFORT
values ('WALPOLE', '21-MAR-03',

56.7, 43.8, 0);

1 row created.

The word values must precede the list of data to be inserted. A character string must be in
single quotation marks. Numbers can stand by themselves. Each field is separated by commas,
and the fields must be in the same order as the columns are when the table is described.

A date must be in single quotation marks and in the default Oracle date format. To insert a
date not in your default format, use the TO_DATE function, with a formatting mask, as shown
in the following example:

insert into COMFORT
values ('WALPOLE', TO_DATE('06/22/2003','MM/DD/YYYY'),

56.7, 43.8, 0);

1 row created.

280 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 15
Blind Folio 15:280

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Inserting a Time
Inserting dates without time values will produce a default time of midnight, the very beginning
of the day. If you want to insert a date with a time other than midnight, simply use the TO_DATE
function and include a time:

insert into COMFORT
values ('WALPOLE', TO_DATE('06/22/2003 1:35',

'MM/DD/YYYY HH24:MI'), 56.7, 43.8, 0);

1 row created.

NOTE
To store fractional seconds, you can use the TIMESTAMP and
TIMESTAMP WITH TIME ZONE datatypes, as described in Chapter 10.

Columns also can be inserted out of the order in which they appear when described, if you
first (before the word values) list the order the data is in. This doesn’t change the fundamental
order of the columns in the table. It simply allows you to list the data fields in a different order.
(See Part V for information on inserting data into user-defined datatypes.)

You also can “insert” a NULL. This simply means the column will be left empty for this row,
as shown in the following example:

insert into COMFORT
(SampleDate, Precipitation, City, Noon, Midnight)

values ('23-SEP-03', NULL,
'WALPOLE', 86.3, 72.1);

1 row created.

insert with select
You also can insert information that has been selected from a table. Here, a mix of columns
selected from the COMFORT table, together with literal values for SampleDate (22-DEC-03) and
City (WALPOLE), are inserted. Note the where clause in the select statement, which will retrieve
only one row. Had the select retrieved five rows, five new ones would have been inserted; if ten
rows had been retrieved, then ten new rows would have been inserted, and so on.

insert into COMFORT
(SampleDate, Precipitation, City, Noon, Midnight)

select '22-DEC-03', Precipitation,
'WALPOLE', Noon, Midnight

from COMFORT
where City = 'KEENE'
and SampleDate = '22-DEC-03';

1 row created.

Chapter 15: Changing Data: insert, update, merge, and delete 281

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 15
Blind Folio 15:281

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

282 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 15
Blind Folio 15:282

NOTE
You cannot use the insert into…select from syntax with LONG
datatypes unless you are using the TO_LOB function to insert the
LONG data into a LOB column.

Of course, you don’t need to simply insert the value in a selected column. You can modify the
column using any of the appropriate string, date, or number functions within the select statement.
The results of those functions are what will be inserted. You can attempt to insert a value in a
column that exceeds its width (for character datatypes) or its magnitude (for number datatypes).
You have to fit the value within the constraints you defined on your columns. These attempts
will produce a “value too large for column” or “mismatched datatype” error message. If you now
query the COMFORT table for the city of Walpole, the results will be the records you inserted:

select * from COMFORT
where City = 'WALPOLE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
WALPOLE 21-MAR-03 56.7 43.8 0
WALPOLE 22-JUN-03 56.7 43.8 0
WALPOLE 22-JUN-03 56.7 43.8 0
WALPOLE 23-SEP-03 86.3 72.1
WALPOLE 22-DEC-03 -7.2 -1.2 3.9

5 rows selected.

Two records are shown for ‘22-JUN-03’ because one of them has a time component. Use the
TO_CHAR function to see the time:

select City, SampleDate,
TO_CHAR(SampleDate,'HH24:MI:SS') AS TimeofDay, Noon

from COMFORT
where City = 'WALPOLE';

CITY SAMPLEDAT TIMEOFDA NOON
------------- --------- -------- ----------
WALPOLE 21-MAR-03 00:00:00 56.7
WALPOLE 22-JUN-03 00:00:00 56.7
WALPOLE 22-JUN-03 01:35:00 56.7
WALPOLE 23-SEP-03 00:00:00 86.3
WALPOLE 22-DEC-03 00:00:00 -7.2

Using the APPEND Hint to Improve insert Performance
As you will see in Chapter 43, Oracle uses an optimizer to determine the most efficient way to
perform each SQL command. For insert statements, Oracle tries to insert each new record into
an existing block of data already allocated to the table. This execution plan optimizes the use of
space required to store the data. However, it may not provide adequate performance for an insert
with a select command that inserts multiple rows. You can amend the execution plan by using the

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

APPEND hint to improve the performance of large inserts. The APPEND hint will tell the database
to find the last block into which the table’s data has ever been inserted. The new records will be
inserted starting in the next block following the last previously used block. Furthermore, the inserted
data is written directly to the datafiles, bypassing the data block buffer cache. As a result, there is
much less space management work for the database to do during the insert. Therefore, the insert
may complete faster when the APPEND hint is used.

You specify the APPEND hint within the insert command. A hint looks like a comment—it
starts with /* and ends with */. The only difference is that the starting set of characters includes
a plus sign (+) before the name of the hint. The following example shows an insert command
whose data is appended to the table:

insert /*+ APPEND */ into BOOKSHELF (Title)
select Title from BOOK_ORDER
where Title not in (select Title from BOOKSHELF);

The records from the BOOK_ORDER table will be inserted into the BOOKSHELF table. Instead
of attempting to reuse space within the BOOKSHELF table, the new records will be placed at the
end of the table’s physical storage space.

Because the new records will not attempt to reuse available space that the table has already
used, the space requirements for the BOOKSHELF table may increase. In general, you should use
the APPEND hint only when inserting large volumes of data into tables with little reusable space.
The point at which appended records will be inserted is called the table’s high-water mark—and
the only way to reset the high-water mark is to truncate the table. Because truncate will delete
all records and cannot be rolled back, you should make sure you have a backup of the table’s data
prior to performing the truncate. See truncate in the Alphabetical Reference for further details.

rollback, commit, and autocommit
When you insert, update, or delete data from the database, you can reverse, or roll back, the work
you’ve done. This can be very important when an error is discovered. The process of committing
or rolling back work is controlled by two SQL*Plus commands: commit and rollback. Additionally,
SQL*Plus has the facility to automatically commit your work without your explicitly telling it to
do so. This is controlled by the autocommit feature of set. Like other set features, you can show it,
like this:

show autocommit

autocommit OFF

OFF is the default, and in almost all cases it’s the preferred mode. You can also specify
a number for the autocommit value; this value will determine the number of commands after
which Oracle will issue a commit. Having autocommit off means insert, update, and delete
operations are not made final until you commit them:

commit;

commit complete

Chapter 15: Changing Data: insert, update, merge, and delete 283

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 15
Blind Folio 15:283

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

284 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 15
Blind Folio 15:284

Until you commit, only you can see how your work affects the tables. Anyone else with access
to these tables will continue to get the old information. You will see new information whenever
you select from the table. Your work is, in effect, in a “staging” area, which you interact with
until you commit. You can perform quite a large number of insert, update, and delete operations
and still undo the work (return the tables to the way they used to be) by issuing this command:

rollback;

rollback complete

However, the message “rollback complete” can be misleading. It means only that Oracle has
rolled back any work that hasn’t been committed. If you commit a series of transactions, either
explicitly with the word commit or implicitly by another action, the “rollback complete” message
won’t really mean anything.

Using savepoints
You can use savepoints to roll back portions of your current set of transactions. Consider the
following commands:

insert into COMFORT
values ('WALPOLE', '22-APR-03',50.1, 24.8, 0);

savepoint A;

insert into COMFORT
values ('WALPOLE', '27-MAY-03',63.7, 33.8, 0);

savepoint B;

insert into COMFORT
values ('WALPOLE', '07-AUG-03',83.0, 43.8, 0);

Now, select the data from COMFORT for Walpole:

select * from COMFORT
where City = 'WALPOLE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
WALPOLE 21-MAR-03 56.7 43.8 0
WALPOLE 22-JUN-03 56.7 43.8 0
WALPOLE 22-JUN-03 56.7 43.8 0
WALPOLE 23-SEP-03 86.3 72.1
WALPOLE 22-DEC-03 -7.2 -1.2 3.9
WALPOLE 22-APR-03 50.1 24.8 0
WALPOLE 27-MAY-03 63.7 33.8 0
WALPOLE 07-AUG-03 83 43.8 0

The output shows the five former records plus the three new rows we’ve added. Now roll back just
the last insert:

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 15: Changing Data: insert, update, merge, and delete 285

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 15
Blind Folio 15:285

rollback to savepoint B;

If you now query COMFORT, you’ll see that the last insert has been rolled back, but the others
are still there:

select * from COMFORT
where City = 'WALPOLE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
WALPOLE 21-MAR-03 56.7 43.8 0
WALPOLE 22-JUN-03 56.7 43.8 0
WALPOLE 22-JUN-03 56.7 43.8 0
WALPOLE 23-SEP-03 86.3 72.1
WALPOLE 22-DEC-03 -7.2 -1.2 3.9
WALPOLE 22-APR-03 50.1 24.8 0
WALPOLE 27-MAY-03 63.7 33.8 0

The last two records are still not committed; you need to execute a commit command or another
command to force a commit to occur. You can still roll back the second insert (to savepoint A) or roll
back all the inserts (via a rollback command).

Implicit commit
The actions that will force a commit to occur, even without your instructing it to, are quit, exit
(the equivalent of quit), and any Data Definition Language (DDL) command. Using any of these
commands forces a commit.

Auto rollback
If you’ve completed a series of insert, update, or delete operations but have not yet explicitly or
implicitly committed them, and you experience serious difficulties, such as a computer failure,
Oracle will automatically roll back any uncommitted work. If the machine or database goes
down, Oracle does the rollback as cleanup work the next time the database is brought back up.

Multitable Inserts
You can perform multiple inserts in a single command. You can perform all the inserts unconditionally
or you can specify conditions—using a when clause to tell Oracle how to manage the multiple
inserts. If you specify all, then all the when clauses will be evaluated; specifying first tells Oracle
to skip subsequent when clauses after it finds one that is true for the row being evaluated. You can
also use an else clause to tell Oracle what to do if none of the when clauses evaluates to true.

To illustrate this functionality, let’s create a new table with a slightly different structure than
COMFORT:

drop table COMFORT_TEST;
create table COMFORT_TEST (
City VARCHAR2(13) NOT NULL,
SampleDate DATE NOT NULL,

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

286 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 15
Blind Folio 15:286

Measure VARCHAR2(10),
Value NUMBER(3,1)
);

COMFORT_TEST will have multiple records for each record in COMFORT—its Measure column
will have values such as ‘Midnight’, ‘Noon’, and ‘Precip’, allowing us to store a greater number
of measures for each city on each sample date.

Now populate COMFORT_TEST with data from COMFORT, unconditionally:

insert ALL
into COMFORT_TEST (City, SampleDate, Measure, Value)

values (City, SampleDate, 'NOON', Noon)
into COMFORT_TEST (City, SampleDate, Measure, Value)

values (City, SampleDate, 'MIDNIGHT', Midnight)
into COMFORT_TEST (City, SampleDate, Measure, Value)

values (City, SampleDate, 'PRECIP', Precipitation)
select City, SampleDate, Noon, Midnight, Precipitation
from COMFORT
where City = 'KEENE';

12 rows created.

This query tells Oracle to insert multiple rows for each row returned from the COMFORT table.
The query of COMFORT returns four rows. The first into clause inserts the Noon value, along with
a text string of ‘NOON’ in the Measure column. The second into clause inserts the Midnight value,
and the third inserts the Precipitation value, as shown in the query of COMFORT_TEST following
the insert:

select * from COMFORT_TEST;

CITY SAMPLEDAT MEASURE VALUE
------------- --------- ---------- ----------
KEENE 21-MAR-03 NOON 39.9
KEENE 22-JUN-03 NOON 85.1
KEENE 23-SEP-03 NOON 99.8
KEENE 22-DEC-03 NOON -7.2
KEENE 21-MAR-03 MIDNIGHT -1.2
KEENE 22-JUN-03 MIDNIGHT 66.7
KEENE 23-SEP-03 MIDNIGHT 82.6
KEENE 22-DEC-03 MIDNIGHT -1.2
KEENE 21-MAR-03 PRECIP 4.4
KEENE 22-JUN-03 PRECIP 1.3
KEENE 23-SEP-03 PRECIP
KEENE 22-DEC-03 PRECIP 3.9

12 rows selected.

What if you had used the first keyword instead of the all keyword? Unless you use when clauses,
you can’t use the first keyword. The following example shows the use of the when clause to restrict

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:46:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 15: Changing Data: insert, update, merge, and delete 287

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 15
Blind Folio 15:287

which inserts are performed within the multi-insert command. For this example, the all keyword
is used:

delete from COMFORT_TEST;
commit;

insert ALL
when Noon > 80 then
into COMFORT_TEST (City, SampleDate, Measure, Value)

values (City, SampleDate, 'NOON', Noon)
when Midnight > 70 then
into COMFORT_TEST (City, SampleDate, Measure, Value)

values (City, SampleDate, 'MIDNIGHT', Midnight)
when Precipitation is not null then
into COMFORT_TEST (City, SampleDate, Measure, Value)

values (City, SampleDate, 'PRECIP', Precipitation)
select City, SampleDate, Noon, Midnight, Precipitation
from COMFORT
where City = 'KEENE';

6 rows created.

What six rows were inserted? The two Noon values met this condition:

when Noon > 80 then

The one Midnight value met this condition:

when Midnight > 70 then

And the three Precipitation values met this condition:

when Precipitation is not null then

You can see the results in COMFORT_TEST:

select * from COMFORT_TEST;

CITY SAMPLEDAT MEASURE VALUE
------------- --------- ---------- ----------
KEENE 22-JUN-03 NOON 85.1
KEENE 23-SEP-03 NOON 99.8
KEENE 23-SEP-03 MIDNIGHT 82.6
KEENE 21-MAR-03 PRECIP 4.4
KEENE 22-JUN-03 PRECIP 1.3
KEENE 22-DEC-03 PRECIP 3.9

What if you had used first instead?

delete from COMFORT_TEST;
commit;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

insert FIRST
when Noon > 80 then
into COMFORT_TEST (City, SampleDate, Measure, Value)

values (City, SampleDate, 'NOON', Noon)
when Midnight > 70 then
into COMFORT_TEST (City, SampleDate, Measure, Value)

values (City, SampleDate, 'MIDNIGHT', Midnight)
when Precipitation is not null then
into COMFORT_TEST (City, SampleDate, Measure, Value)

values (City, SampleDate, 'PRECIP', Precipitation)
select City, SampleDate, Noon, Midnight, Precipitation
from COMFORT
where City = 'KEENE';

4 rows created.

In this case, four rows are inserted:

select * from COMFORT_TEST;

CITY SAMPLEDAT MEASURE VALUE
------------- --------- ---------- ----------
KEENE 21-MAR-03 PRECIP 4.4
KEENE 22-DEC-03 PRECIP 3.9
KEENE 22-JUN-03 NOON 85.1
KEENE 23-SEP-03 NOON 99.8

What happened to the MIDNIGHT value? Only one record passed the MIDNIGHT when clause:

when Midnight > 70 then

This record also passed the NOON when clause:

when Noon > 80 then

Therefore, its Noon value (99.8) was inserted. Because the first keyword was used, and the condition
that was evaluated first (Noon) was true, Oracle did not check the rest of the conditions for that row.
The same process happened to the PRECIP measures—the other non-NULL Precipitation value was
on the same record as the Noon reading of 85.1.

What if none of the conditions had been met? To show that option, let’s create a third table,
COMFORT2, with the same structure as COMFORT:

create table COMFORT2 (
City VARCHAR2(13) NOT NULL,
SampleDate DATE NOT NULL,
Noon NUMBER(3,1),
Midnight NUMBER(3,1),
Precipitation NUMBER
);

288 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 15
Blind Folio 15:288

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Now, we’ll execute an insert for all cities (using the first clause) along with an else clause
specifying that any rows that fail the conditions will be placed into the COMFORT2 table. For this
example, the when conditions are changed to limit the number of rows that pass the conditions:

delete from COMFORT_TEST;
delete from COMFORT2;
commit;

insert FIRST
when Noon > 80 then
into COMFORT_TEST (City, SampleDate, Measure, Value)

values (City, SampleDate, 'NOON', Noon)
when Midnight > 100 then
into COMFORT_TEST (City, SampleDate, Measure, Value)

values (City, SampleDate, 'MIDNIGHT', Midnight)
when Precipitation > 100 then
into COMFORT_TEST (City, SampleDate, Measure, Value)

values (City, SampleDate, 'PRECIP', Precipitation)
else

into COMFORT2
select City, SampleDate, Noon, Midnight, Precipitation
from COMFORT

where City = 'KEENE';

4 rows created.

The feedback tells you how many rows were created, but not which table they were created in.
The total reported is for all inserts combined. In this case, two records were inserted into COMFORT_
TEST and two were inserted into COMFORT2 because of the else condition:

select * from COMFORT_TEST;

CITY SAMPLEDAT MEASURE VALUE
------------- --------- ---------- ----------
KEENE 22-JUN-03 NOON 85.1
KEENE 23-SEP-03 NOON 99.8

select * from COMFORT2;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
KEENE 21-MAR-03 39.9 -1.2 4.4
KEENE 22-DEC-03 -7.2 -1.2 3.9

delete
Removing a row or rows from a table requires the delete command, as seen in the examples in
the last section. The where clause is essential to removing only the rows you intend. delete without

Chapter 15: Changing Data: insert, update, merge, and delete 289

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 15
Blind Folio 15:289

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

a where clause will empty the table completely. The following command deletes the Walpole
entries from the COMFORT table:

delete from COMFORT where City = 'WALPOLE';

Of course, a where clause in a delete, just as in an update or a select that is part of an insert,
can contain as much logic as any select statement, and may include subqueries, unions, intersects,
and so on. You can always roll back a bad insert, update, or delete, but you really should experiment
with select before actually making the change to the database, to make sure you are doing the
right thing.

Now that you’ve just deleted the rows where City = ‘WALPOLE’, you can test the effect of
that delete with a simple query:

select * from COMFORT
where City = 'WALPOLE';

no rows selected

Now roll back the delete and run the same query:

rollback;
Rollback complete

select * from COMFORT
where City = 'WALPOLE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
WALPOLE 21-MAR-03 56.7 43.8 0
WALPOLE 22-JUN-03 56.7 43.8 0
WALPOLE 22-JUN-03 56.7 43.8 0
WALPOLE 23-SEP-03 86.3 72.1
WALPOLE 22-DEC-03 -7.2 -1.2 3.9
WALPOLE 22-APR-03 50.1 24.8 0
WALPOLE 27-MAY-03 63.7 33.8 0

7 rows selected.

This illustrates that recovery is possible, so long as a commit hasn’t occurred. If the changes have
been committed, you may be able to use flashback queries (see Chapter 27) to retrieve the data.

An additional command for deleting records, truncate, does not behave the same as delete.
Whereas delete allows you to commit or roll back the deletion, truncate automatically deletes all
records from the table. The action of the truncate command cannot be rolled back or committed;
the truncated records are unrecoverable. You cannot perform a flashback query to see data that
has been truncated. See the truncate command in the Alphabetical Reference for further details.

290 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 15
Blind Folio 15:290

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

update
update requires setting specific values for each column you want to change, and specifying which
row or rows you want to affect by using a carefully constructed where clause:

update COMFORT set Precipitation = .5, Midnight = 73.1
where City = 'KEENE'
and SampleDate = '22-DEC-03';

1 row updated.

Here is the effect, shown in the 22-DEC-03 record:

select * from COMFORT
where City = 'KEENE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
KEENE 21-MAR-03 39.9 -1.2 4.4
KEENE 22-JUN-03 85.1 66.7 1.3
KEENE 23-SEP-03 99.8 82.6
KEENE 22-DEC-03 -7.2 73.1 .5

4 rows selected.

What if you later discover that the thermometer used in Keene consistently reports its
temperatures too high by one degree? You also can do calculations, string functions, and almost
any other legitimate function in setting a value for the update (just as you can for an insert, or in
the where clause of a delete). Here, each temperature in Keene is decreased by one degree:

update COMFORT set Midnight = Midnight - 1, Noon = Noon - 1
where City = 'KEENE';

4 rows updated.

Here is the effect of the update:

select * from COMFORT
where City = 'KEENE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
KEENE 21-MAR-03 38.9 -2.2 4.4
KEENE 22-JUN-03 84.1 65.7 1.3
KEENE 23-SEP-03 98.8 81.6
KEENE 22-DEC-03 -8.2 72.1 .5

Chapter 15: Changing Data: insert, update, merge, and delete 291

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 15
Blind Folio 15:291

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

292 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 15
Blind Folio 15:292

NOTE
If your update violates the column definitions or constraints, it will
fail. In this case, setting Noon or Midnight to values of 100 or greater
will violate the numeric scale of the columns.

As with delete, the where clause is critical. Without one, every row in the table will be updated.
With an improperly constructed where clause, the wrong rows will be updated, often in ways
that are hard to discover or fix, especially if your work has been committed. Always set feedback
on when doing updates, and look at the feedback to be sure the number of rows updated is what
you expected it to be. Query the rows after you update to see if the expected change took place.

update with Embedded select
It is possible to set values in an update by embedding a select statement right in the middle of it.
Note that this select has its own where clause, picking out the temperature for the city of Manchester
from the WEATHER table, and the update has its own where clause to affect just the city of Keene
on a certain day:

update COMFORT set Midnight =
(select Temperature

from WEATHER
where City = 'MANCHESTER')

where City = 'KEENE'
and SampleDate = '22-DEC-03';

1 row updated.

Here is the effect of the update:

select * from COMFORT
where City = 'KEENE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
KEENE 21-MAR-03 38.9 -2.2 4.4
KEENE 22-JUN-03 84.1 65.7 1.3
KEENE 23-SEP-03 98.8 81.6
KEENE 22-DEC-03 -8.2 66 .5

4 rows selected.

When using a subquery with an update, you must be certain that the subquery will return no
more than one record for each of the records to be updated; otherwise, the update will fail. See
Chapter 13 for details on correlated queries.

You also can use an embedded select to update multiple columns at once. The columns must
be in parentheses and separated by a comma, as shown here:

update COMFORT set (Noon, Midnight) =
(select Humidity, Temperature

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 15: Changing Data: insert, update, merge, and delete 293

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 15
Blind Folio 15:293

from WEATHER
where City = 'MANCHESTER')

where City = 'KEENE'
and SampleDate = '22-DEC-03';

1 row updated.

Here is the effect:

select * from COMFORT
where City = 'KEENE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
KEENE 21-MAR-03 38.9 -2.2 4.4
KEENE 22-JUN-03 84.1 65.7 1.3
KEENE 23-SEP-03 98.8 81.6
KEENE 22-DEC-03 98 66 .5

4 rows selected.

update with NULL
You also can update a table and set a column equal to NULL. This is the sole instance of using
the equal sign with NULL, instead of the word “is.” For example,

update COMFORT set Noon = NULL
where City = 'KEENE'
and SampleDate = '22-DEC-03';

1 row updated.

will set the noon temperature to NULL for Keene on December 22, 2003.

NOTE
The primary issues with insert, update, and delete are careful
construction of where clauses to affect (or insert) only the rows you
really want, and the normal use of SQL functions within these insert,
update, and delete operations. It is extremely important that you
exercise caution about committing work before you are certain it is
correct. These commands extend the power of Oracle well beyond
simple queries, and they allow direct manipulation of data.

Using the merge Command
You can use the merge command to perform insert and update operations into a single table in a
single command. Based on the conditions you specify, Oracle will take the source data—either
a table, view, or query—and update existing values if the conditions are met. If the conditions are
not met, the row will be inserted.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

For example, we can change the rows in the COMFORT2 table created earlier in this chapter:

delete from COMFORT2;

insert into COMFORT2
values ('KEENE', '21-MAR-03',55, -2.2, 4.4);
insert into COMFORT2
values ('KEENE', '22-DEC-03',55, 66, 0.5);
insert into COMFORT2

values ('KEENE', '16-MAY-03', 55, 55, 1);
commit;

The data in COMFORT2 should now look like this:

select * from COMFORT2;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
KEENE 21-MAR-03 55 -2.2 4.4
KEENE 22-DEC-03 55 66 .5
KEENE 16-MAY-03 55 55 1

The Keene data in COMFORT is

select * from COMFORT where City = 'KEENE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
KEENE 21-MAR-03 38.9 -2.2 4.4
KEENE 22-JUN-03 84.1 65.7 1.3
KEENE 23-SEP-03 98.8 81.6
KEENE 22-DEC-03 66 .5

With COMFORT2 as the data source, we can now perform a merge on the COMFORT table.
For the rows that match (the ‘21-MAR-03’ and ‘22-DEC-03’ entries), we’ll update the Noon values
in COMFORT. The rows that exist only in COMFORT2 (the ‘16-MAY-03’ row) will be inserted into
COMFORT. The following listing shows the command to use:

merge into COMFORT C1
using (select City, SampleDate, Noon, Midnight,

Precipitation from COMFORT2) C2
on (C1.City = C2.City and C1.SampleDate=C2.SampleDate)

when matched then
update set Noon = C2.Noon

when not matched then
insert (C1.City, C1.SampleDate, C1.Noon,

C1.Midnight, C1.Precipitation)
values (C2.City, C2.SampleDate, C2.Noon,

C2.Midnight, C2.Precipitation);

3 rows merged.

294 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 15
Blind Folio 15:294

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 15: Changing Data: insert, update, merge, and delete 295

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 15
Blind Folio 15:295

The output tells you the number of rows processed from the source table, but does not tell
you how many rows were inserted or updated. You can see the changes by querying COMFORT
(note the Noon=55 records):

select * from COMFORT where City = 'KEENE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
KEENE 16-MAY-03 55 55 1
KEENE 21-MAR-03 55 -2.2 4.4
KEENE 22-JUN-03 84.1 65.7 1.3
KEENE 23-SEP-03 98.8 81.6
KEENE 22-DEC-03 55 66 .5

Take a look at the command to see how this was accomplished. In the first line, the target table
is named and given an alias of C1:

merge into COMFORT C1

In the next two lines, the using clause provides the source data for the merge, and the source
is given the alias C2:

using (select City, SampleDate, Noon, Midnight,
Precipitation from COMFORT2) C2

The condition for the merge is then specified in the on clause. If the source data’s City and
SampleDate values match those in the target table, the data will be updated. The when matched
then clause, followed by an update command, tells Oracle what columns to update in the source
table:

on (C1.City = C2.City and C1.SampleDate=C2.SampleDate)
when matched then

update set Noon = C2.Noon

If there is no match, the row should be inserted, as specified in the when not matched clause:

when not matched then
insert (C1.City, C1.SampleDate, C1.Noon,

C1.Midnight, C1.Precipitation)
values (C2.City, C2.SampleDate, C2.Noon,

C2.Midnight, C2.Precipitation);

You can use the merge command to simplify operations in which many rows are inserted and
updated from a single source. As with all update operations, you should be very careful to use the
appropriate where clauses in the using clause of your merge commands.

NOTE
You cannot update a column that is referenced in the on condition
clause.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In the merge command, you can specify either an update clause, an insert clause, or both.
To insert all the source rows into the table, you can use a constant filter predicate in the on

clause condition. An example of a constant filter predicate is on (0=1). Oracle recognizes such a
predicate and makes an unconditional insert of all source rows into the table. No join is performed
during the merge command if a constant filter predicate is provided.

As of Oracle Database 10g, you can include a delete clause within the update portion of the
merge command. The delete clause (with its own where clause) can delete rows in the destination
table that are updated by the merge. The delete…where clause evaluates the updated value, not
the original value in the destination table. If a row of the destination table meets the delete…where
condition but is not included in the set of rows acted on by the merge (as defined by the on condition),
then it is not deleted. Here’s an example:

merge into COMFORT C1
using (select City, SampleDate, Noon, Midnight,

Precipitation from COMFORT2) C2
on (C1.City = C2.City and C1.SampleDate=C2.SampleDate)

when matched then
update set Noon = C2.Noon
delete where (Precipitation is null)

when not matched then
insert (C1.City, C1.SampleDate, C1.Noon,

C1.Midnight, C1.Precipitation)
values (C2.City, C2.SampleDate, C2.Noon,

C2.Midnight, C2.Precipitation);

Clearly, these commands can become very complex very quickly. In this example, we are
performing a conditional update and a conditional delete on the rows that are updated, along
with a conditional insert of other rows. You can incorporate very complex business logic into a
single command, substantially enhancing the capability of the standard insert, update, and delete
commands.

296 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 15
Blind Folio 15:296

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 16
Blind Folio 16:297

CHAPTER
16

DECODE and CASE:
if, then, and
else in SQL

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

298 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 16
Blind Folio 16:298

T
he DECODE function is without doubt one of the most powerful in Oracle’s SQL.
It is one of several extensions Oracle added to the standard SQL language. This
chapter will explore a number of ways that DECODE can be used, including the
generation of “crosstab” reports. You can also use the CASE function and the
COALESCE function to execute complex logical tests within your SQL statements.

This is an advanced and often difficult chapter. Most of what is illustrated here is unnecessary
for the vast majority of reporting; don’t be concerned if it seems beyond your needs. Its real value
is more for sophisticated reporting and programming.

if, then, else
In programming and logic, a common construction of a problem is in the pattern if, then, else.
For example, if this day is a Saturday, then Adah will play at home; if this day is a Sunday, then
Adah will go to her grandparents’ home; if this day is a holiday, then Adah will go over to Aunt
Dora’s; else Adah will go to school. In each case, “this day” was tested, and if it was one of a list
of certain days, then a certain result followed, or else (if it was none of those days) another result
followed. DECODE follows this kind of logic. Chapter 11 provided an introduction that demonstrated
the basic structure and usage of DECODE.

Here is DECODE’s format:

DECODE(value,if1,then1,if2,then2,if3,then3,. . . ,else)

Here, value represents any column in a table (regardless of datatype) or any result of a computation,
such as one date minus another, a SUBSTR of a character column, one number times another,
and so on. value is tested for each row. If value equals if1, then the result of the DECODE is
then1; if value equals if2, then the result of the DECODE is then2. This continues for virtually
as many if-then pairs as you can construct. If value equals none of the ifs, then the result of the
DECODE is else. Each of the ifs and thens as well as the else also can be a column or the result
of a function or computation. You can have up to 255 elements within the parentheses.

Let’s consider the checkout history for the bookshelf, as recorded in the BOOKSHELF_CHECKOUT
table:

column Name format a16
column Title format a24 word_wrapped
set pagesize 60

select * from BOOKSHELF_CHECKOUT;

NAME TITLE CHECKOUTD RETURNEDD
---------------- ------------------------ --------- ---------
JED HOPKINS INNUMERACY 01-JAN-02 22-JAN-02
GERHARDT KENTGEN WONDERFUL LIFE 02-JAN-02 02-FEB-02
DORAH TALBOT EITHER/OR 02-JAN-02 10-JAN-02
EMILY TALBOT ANNE OF GREEN GABLES 02-JAN-02 20-JAN-02
PAT LAVAY THE SHIPPING NEWS 02-JAN-02 12-JAN-02
ROLAND BRANDT THE SHIPPING NEWS 12-JAN-02 12-MAR-02

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ROLAND BRANDT THE DISCOVERERS 12-JAN-02 01-MAR-02
ROLAND BRANDT WEST WITH THE NIGHT 12-JAN-02 01-MAR-02
EMILY TALBOT MIDNIGHT MAGIC 20-JAN-02 03-FEB-02
EMILY TALBOT HARRY POTTER AND THE 03-FEB-02 14-FEB-02

GOBLET OF FIRE
PAT LAVAY THE MISMEASURE OF MAN 12-JAN-02 12-FEB-02
DORAH TALBOT POLAR EXPRESS 01-FEB-02 15-FEB-02
DORAH TALBOT GOOD DOG, CARL 01-FEB-02 15-FEB-02
GERHARDT KENTGEN THE MISMEASURE OF MAN 13-FEB-02 05-MAR-02
FRED FULLER JOHN ADAMS 01-FEB-02 01-MAR-02
FRED FULLER TRUMAN 01-MAR-02 20-MAR-02
JED HOPKINS TO KILL A MOCKINGBIRD 15-FEB-02 01-MAR-02
DORAH TALBOT MY LEDGER 15-FEB-02 03-MAR-02
GERHARDT KENTGEN MIDNIGHT MAGIC 05-FEB-02 10-FEB-02

NOTE
Your output may contain an extra blank line due to word wrapping.
Extra blank lines are not shown here for readability.

As you look through the checkout list, you realize that some of the books were checked out
for a rather long time. You can order this list by the number of days checked out, to highlight the
readers who keep books for the longest time:

select Name, Title, ReturnedDate-CheckOutDate DaysOut
from BOOKSHELF_CHECKOUT
order by DaysOut desc;

NAME TITLE DAYSOUT
---------------- ------------------------ ----------
ROLAND BRANDT THE SHIPPING NEWS 59
ROLAND BRANDT THE DISCOVERERS 48
ROLAND BRANDT WEST WITH THE NIGHT 48
GERHARDT KENTGEN WONDERFUL LIFE 31
PAT LAVAY THE MISMEASURE OF MAN 31
FRED FULLER JOHN ADAMS 28
JED HOPKINS INNUMERACY 21
GERHARDT KENTGEN THE MISMEASURE OF MAN 20
FRED FULLER TRUMAN 19
EMILY TALBOT ANNE OF GREEN GABLES 18
DORAH TALBOT MY LEDGER 16
EMILY TALBOT MIDNIGHT MAGIC 14
DORAH TALBOT POLAR EXPRESS 14
DORAH TALBOT GOOD DOG, CARL 14
JED HOPKINS TO KILL A MOCKINGBIRD 14
EMILY TALBOT HARRY POTTER AND THE 11

GOBLET OF FIRE
PAT LAVAY THE SHIPPING NEWS 10
DORAH TALBOT EITHER/OR 8
GERHARDT KENTGEN MIDNIGHT MAGIC 5

Chapter 16: DECODE and CASE: if, then, and else in SQL 299

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 16
Blind Folio 16:299

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

300 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 16
Blind Folio 16:300

But is it specific readers who are the issue, or is it that there are certain categories of books
that take longer to read? Multiple variables are involved, and looking at them in isolation may lead
to incorrect decisions. What is the average number of days out for the books in each category?

select B.CategoryName,
MIN(BC.ReturnedDate-BC.CheckOutDate) MinOut,
MAX(BC.ReturnedDate-BC.CheckOutDate) MaxOut,
AVG(BC.ReturnedDate-BC.CheckOutDate) AvgOut

from BOOKSHELF_CHECKOUT BC, BOOKSHELF B
where BC.Title = B.Title
group by B.CategoryName;

CATEGORYNAME MINOUT MAXOUT AVGOUT
-------------------- ---------- ---------- ----------
ADULTFIC 10 59 27.6666667
ADULTNF 16 48 29.1111111
ADULTREF 8 8 8
CHILDRENFIC 5 18 12
CHILDRENPIC 14 14 14

This is more useful, but it doesn’t factor in the impact of the different people checking out
books in these categories. To accomplish that, you could use an additional level of grouping, but
the results will be easier to use if you create a crosstab report. The following listing generates a
report that shows the minimum, maximum, and average days out by person, by category. This
query uses the DECODE function to perform the calculations. Three borrowers are used for the
purposes of this example.

column CategoryName format a11

select B.CategoryName,
MAX(DECODE(BC.Name, 'FRED FULLER',

BC.ReturnedDate-BC.CheckOutDate,NULL)) MaxFF,
AVG(DECODE(BC.Name, 'FRED FULLER',

BC.ReturnedDate-BC.CheckOutDate,NULL)) AvgFF,
MAX(DECODE(BC.Name, 'DORAH TALBOT',

BC.ReturnedDate-BC.CheckOutDate,NULL)) MaxDT,
AVG(DECODE(BC.Name, 'DORAH TALBOT',

BC.ReturnedDate-BC.CheckOutDate,NULL)) AvgDT,
MAX(DECODE(BC.Name, 'GERHARDT KENTGEN',

BC.ReturnedDate-BC.CheckOutDate,NULL)) MaxGK,
AVG(DECODE(BC.Name, 'GERHARDT KENTGEN',

BC.ReturnedDate-BC.CheckOutDate,NULL)) AvgGK
from BOOKSHELF_CHECKOUT BC, BOOKSHELF B

where BC.Title = B.Title
group by B.CategoryName;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CATEGORYNAM MAXFF AVGFF MAXDT AVGDT MAXGK AVGGK
----------- ---------- ---------- ---------- ---------- ---------- ----------
ADULTFIC
ADULTNF 28 23.5 16 16 31 25.5
ADULTREF 8 8
CHILDRENFIC 5 5
CHILDRENPIC 14 14

The output now shows the borrowers across the top—Fred Fuller’s maximum checkout time
is the MaxFF column, Dorah Talbot’s is the MaxDT column, and Gerhardt Kentgen’s is the MaxGK
column. The output shows that the AdultNF category has the longest average checkout time for
each of the borrowers shown, and that in Gerhardt Kentgen’s case it is significantly longer than
the average checkout time in the other category he checked out.

How was this report generated? In the query, the grouping is by CategoryName. The MaxFF
column query is shown here:

select B.CategoryName,
MAX(DECODE(BC.Name, 'FRED FULLER',

BC.ReturnedDate-BC.CheckOutDate,NULL)) MaxFF,

DECODE is performing an if-then check on the data: If the BC.Name column value in a row
is ‘FRED FULLER’, then calculate the difference between the ReturnedDate and CheckOutDate;
else, return a NULL. That list of values is then evaluated and the maximum value is returned.
A similar set of operations returns the average checkout time for Fred Fuller:

AVG(DECODE(BC.Name, 'FRED FULLER',
BC.ReturnedDate-BC.CheckOutDate,NULL)) AvgFF,

Replacing Values via DECODE
In the last example, DECODE was used to return values conditionally, depending on the name
of the person who checked out a book. You can also use DECODE to replace values in a list.
For example, selecting the category names from BOOKSHELF yields the following:

select distinct CategoryName from BOOKSHELF;

CATEGORYNAM

ADULTFIC
ADULTNF
ADULTREF
CHILDRENFIC
CHILDRENNF
CHILDRENPIC

To replace these names, you could join BOOKSHELF to CATEGORY and select ParentCategory
and SubCategory from the CATEGORY table. If the list of categories is static, you could avoid the
join to the CATEGORY table and perform the replacement via a DECODE function, as shown in the
following listing (note how DECODE supports multiple if-then combinations within a single call).

Chapter 16: DECODE and CASE: if, then, and else in SQL 301

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 16
Blind Folio 16:301

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select distinct
DECODE(CategoryName,'ADULTFIC','Adult Fiction',

'ADULTNF','Adult Nonfiction',
'ADULTREF','Adult Reference',
'CHILDRENFIC','Children Fiction',
'CHILDRENNF','Children Nonfiction',
'CHILDRENPIC','Children Picturebook',
CategoryName)

from BOOKSHELF;

DECODE(CATEGORYNAME,

Adult Fiction
Adult Nonfiction
Adult Reference
Children Fiction
Children Nonfiction
Children Picturebook

In this case, the data is static; for volatile data, hard-coding the translations into the application
code would not be an acceptable programming practice. The technique shown here is useful for
transaction-processing systems in which you are trying to minimize the number of database calls
performed. In this example, there is no database access required to change ‘ADULTNF’ to ‘Adult
Nonfiction’; the change occurs within the DECODE function call. Note that if any other categories
are found, the else condition in the DECODE function returns the original CategoryName column
value.

DECODE Within DECODE
You can place DECODE function calls within other DECODE function calls. Let’s say you want to
charge late fees, with different late-fee rates for different categories of books. Adult category books
may be kept later, but the penalty for late days will be higher.

Start with a basic flat rate charge of $0.20 per day for books checked out for more than 14 days:

column Name format a16
column Title format a20 word_wrapped
column DaysOut format 999.99 heading 'Days Out'
column DaysLate format 999.99 heading 'Days Late'
set pagesize 60
break on Name

select Name, Title, ReturnedDate,
ReturnedDate-CheckoutDate as DaysOut /*Count days*/,
ReturnedDate-CheckoutDate -14 DaysLate,
(ReturnedDate-CheckoutDate -14)*0.20 LateFee

from BOOKSHELF_CHECKOUT
where ReturnedDate-CheckoutDate > 14
order by Name, CheckoutDate;

302 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 16
Blind Folio 16:302

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NAME TITLE RETURNEDD Days Out Days Late LATEFEE
---------------- -------------------- --------- -------- --------- ----------
DORAH TALBOT MY LEDGER 03-MAR-02 16.00 2.00 .4
EMILY TALBOT ANNE OF GREEN GABLES 20-JAN-02 18.00 4.00 .8
FRED FULLER JOHN ADAMS 01-MAR-02 28.00 14.00 2.8

TRUMAN 20-MAR-02 19.00 5.00 1
GERHARDT KENTGEN WONDERFUL LIFE 02-FEB-02 31.00 17.00 3.4

THE MISMEASURE OF 05-MAR-02 20.00 6.00 1.2
MAN

JED HOPKINS INNUMERACY 22-JAN-02 21.00 7.00 1.4
PAT LAVAY THE MISMEASURE OF 12-FEB-02 31.00 17.00 3.4

MAN
ROLAND BRANDT THE SHIPPING NEWS 12-MAR-02 59.00 45.00 9

THE DISCOVERERS 01-MAR-02 48.00 34.00 6.8
WEST WITH THE NIGHT 01-MAR-02 48.00 34.00 6.8

For books in the Adult categories, increase the allowed days late to 21 days. This won’t change
the number of days out, but it will change the DaysLate column calculation. Because CategoryName
is not a column in BOOKSHELF_CHECKOUT, this modification also requires the addition of the
BOOKSHELF table to the from clause:

select BC.Name, BC.Title, BC.ReturnedDate,
BC.ReturnedDate-BC.CheckoutDate as DaysOut /*Count days*/,
DECODE(SUBSTR(CategoryName,1,5), 'ADULT',

BC.ReturnedDate-BC.CheckoutDate -21,
BC.ReturnedDate-BC.CheckoutDate -14) DaysLate,

DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
(BC.ReturnedDate-BC.CheckoutDate -21)*0.30,
(BC.ReturnedDate-BC.CheckoutDate -14)*0.20) LateFee

from BOOKSHELF_CHECKOUT BC, BOOKSHELF B
where BC.Title = B.Title
and BC.ReturnedDate-BC.CheckoutDate >

DECODE(SUBSTR(CategoryName,1,5), 'ADULT',21,14)
order by BC.Name, BC.CheckoutDate;

NAME TITLE RETURNEDD Days Out Days Late LATEFEE
---------------- -------------------- --------- -------- --------- ----------
EMILY TALBOT ANNE OF GREEN GABLES 20-JAN-02 18.00 4.00 .8
FRED FULLER JOHN ADAMS 01-MAR-02 28.00 7.00 2.1
GERHARDT KENTGEN WONDERFUL LIFE 02-FEB-02 31.00 10.00 3
PAT LAVAY THE MISMEASURE OF 12-FEB-02 31.00 10.00 3

MAN
ROLAND BRANDY THE DISCOVERERS 01-MAR-02 48.00 27.00 8.1

THE SHIPPING NEWS 12-MAR-02 59.00 38.00 11.4
WEST WITH THE NIGHT 01-MAR-02 48.00 27.00 8.1

In the select clause, the query logic for the DaysLate column is

DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
BC.ReturnedDate-BC.CheckoutDate -21,
BC.ReturnedDate-BC.CheckoutDate -14) DaysLate

Chapter 16: DECODE and CASE: if, then, and else in SQL 303

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 16
Blind Folio 16:303

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

304 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 16
Blind Folio 16:304

In DECODE’s if-then-else format, this says, “If the first five characters of the CategoryName
column match the string ‘ADULT’, then subtract 21 from the number of days late; otherwise,
subtract 14 days.” The LateFee calculation uses similar logic. The where clause uses DECODE to
determine the limiting value for the rows returned—for ADULT category books, allow 21 days;
otherwise, allow 14:

and BC.ReturnedDate-BC.CheckoutDate >
DECODE(SUBSTR(CategoryName,1,5), 'ADULT',21,14)

Now add an additional rule: For Adult fiction category books, the late fee will be double the
late fee for other Adult books. From the last query, the calculation for LateFee is

DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
(BC.ReturnedDate-BC.CheckoutDate –21)*0.30,
(BC.ReturnedDate-BC.CheckoutDate -14)*0.20) LateFee

The new rule requires an additional category check within the DECODE function already
performed. The new LateFee calculation is shown here:

DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
DECODE(SUBSTR(CategoryName,6,3),'FIC',
(BC.ReturnedDate-BC.CheckoutDate –21)*0.60,
(BC.ReturnedDate-BC.CheckoutDate –21)*0.30),
(BC.ReturnedDate-BC.CheckoutDate -14)*0.20) LateFee

Reading through the preceding listing, the first DECODE function tells Oracle that if the first
five letters of the CategoryName are ‘ADULT’, then perform the second DECODE function. The
second DECODE tells Oracle that if letters 6, 7, and 8 of the CategoryName are ‘FIC’, then the
late fee is $0.60 per day after the twenty-first day; otherwise, it is $0.30 per day after the twenty-
first day. At that point, the inner DECODE function completes. For the first DECODE function,
the else clause (for non-ADULT category books) then specifies the late-fee calculation. The query
and result are shown in the following listing; you can see the impact by comparing the LateFee
column for ‘THE SHIPPING NEWS’ in this report and the last report:

select BC.Name, BC.Title, BC.ReturnedDate,
BC.ReturnedDate-BC.CheckoutDate as DaysOut /*Count days*/,
DECODE(SUBSTR(CategoryName,1,5), 'ADULT',

BC.ReturnedDate-BC.CheckoutDate -21,
BC.ReturnedDate-BC.CheckoutDate -14) DaysLate,

DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
DECODE(SUBSTR(CategoryName,6,3),'FIC',
(BC.ReturnedDate-BC.CheckoutDate -21)*0.60,
(BC.ReturnedDate-BC.CheckoutDate -21)*0.30),
(BC.ReturnedDate-BC.CheckoutDate -14)*0.20) LateFee

from BOOKSHELF_CHECKOUT BC, BOOKSHELF B
where BC.Title = B.Title
and BC.ReturnedDate-BC.CheckoutDate >

DECODE(SUBSTR(CategoryName,1,5), 'ADULT',21,14)
order by BC.Name, BC.CheckoutDate;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NAME TITLE RETURNEDD Days Out Days Late LATEFEE
---------------- -------------------- --------- -------- --------- ----------
EMILY TALBOT ANNE OF GREEN GABLES 20-JAN-02 18.00 4.00 .8
FRED FULLER JOHN ADAMS 01-MAR-02 28.00 7.00 2.1
GERHARDT KENTGEN WONDERFUL LIFE 02-FEB-02 31.00 10.00 3
PAT LAVAY THE MISMEASURE OF 12-FEB-02 31.00 10.00 3

MAN
ROLAND BRANDT THE DISCOVERERS 01-MAR-02 48.00 27.00 8.1

THE SHIPPING NEWS 12-MAR-02 59.00 38.00 22.8
WEST WITH THE NIGHT 01-MAR-02 48.00 27.00 8.1

You can nest DECODEs within other DECODEs to support complex logic within your data
processing. For example, you may choose to print one column if it has a non-NULL value, and
a second column if the first is NULL. With DECODE, that is a simple function call:

DECODE(Column1, NULL, Column2, Column1)

If Column1 is NULL, Column2 will be returned; otherwise, Column1’s non-NULL value will be
returned. You could also use NVL or the COALESCE and NULLIF functions to perform similar logic.

COALESCE will return the first non-NULL value encountered in a list of values. The preceding
DECODE example could be rewritten as

COALESCE(Column1, Column2)

NOTE
COALESCE can take more than two arguments, but NVL cannot.

Because COALESCE’s name does not clearly convey its usage, be sure to provide comments
within your code to explain the logical tests performed.

Greater Than and Less Than in DECODE
DECODE supports logic checks, but how do you do numeric comparisons in this format? The
simplest solution is often to use the SIGN function. SIGN returns a 1 if the number is positive,
0 if the number is 0, and –1 if the number is negative. Because SIGN operates on numbers, you
can evaluate any function that returns a number, including date arithmetic.

Let’s modify the LateFee business rule again. Using the same base calculation, we’ll modify
the outcome so that we will not collect late fees that are less than or equal to $4.00. Here is the
original LateFee calculation:

DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
DECODE(SUBSTR(CategoryName,6,3),'FIC',
(BC.ReturnedDate-BC.CheckoutDate –21)*0.60,
(BC.ReturnedDate-BC.CheckoutDate –21)*0.30),
(BC.ReturnedDate-BC.CheckoutDate -14)*0.20) LateFee

Chapter 16: DECODE and CASE: if, then, and else in SQL 305

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 16
Blind Folio 16:305

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If that value is less than 4, we will return a 0; otherwise, we will return the calculated value.
To implement this requirement, subtract 4 from the LateFee value; if the result is positive (its SIGN
value is 1), return that result; otherwise, return a 0.

DECODE(SIGN(
DECODE(SUBSTR(CategoryName,1,5), 'ADULT',

DECODE(SUBSTR(CategoryName,6,3),'FIC',
(BC.ReturnedDate-BC.CheckoutDate –21)*0.60,
(BC.ReturnedDate-BC.CheckoutDate –21)*0.30),
(BC.ReturnedDate-BC.CheckoutDate -14)*0.20) –4),

1,
DECODE(SUBSTR(CategoryName,1,5), 'ADULT',

DECODE(SUBSTR(CategoryName,6,3),'FIC',
(BC.ReturnedDate-BC.CheckoutDate –21)*0.60,
(BC.ReturnedDate-BC.CheckoutDate –21)*0.30),
(BC.ReturnedDate-BC.CheckoutDate -14)*0.20),

0) LateFee

Building from a simple foundation, this series of DECODE function calls allows you to perform
very complex logic on the LateFee calculations. The first DECODE evaluates the SIGN of the next
DECODE function result when 4 is subtracted from it. If that number is positive, the calculated late
fee is returned; otherwise, a 0 is returned. The following listing shows this calculation and the output
that results:

select BC.Name, BC.Title, BC.ReturnedDate,
BC.ReturnedDate-BC.CheckoutDate as DaysOut /*Count days*/,
DECODE(SUBSTR(CategoryName,1,5), 'ADULT',

BC.ReturnedDate-BC.CheckoutDate -21,
BC.ReturnedDate-BC.CheckoutDate -14) DaysLate,

DECODE(SIGN(
DECODE(SUBSTR(CategoryName,1,5), 'ADULT',

DECODE(SUBSTR(CategoryName,6,3),'FIC',
(BC.ReturnedDate-BC.CheckoutDate -21)*0.60,
(BC.ReturnedDate-BC.CheckoutDate -21)*0.30),
(BC.ReturnedDate-BC.CheckoutDate -14)*0.20) -4),

1,
DECODE(SUBSTR(CategoryName,1,5), 'ADULT',

DECODE(SUBSTR(CategoryName,6,3),'FIC',
(BC.ReturnedDate-BC.CheckoutDate -21)*0.60,
(BC.ReturnedDate-BC.CheckoutDate -21)*0.30),
(BC.ReturnedDate-BC.CheckoutDate -14)*0.20),

0) LateFee
from BOOKSHELF_CHECKOUT BC, BOOKSHELF B

where BC.Title = B.Title
and BC.ReturnedDate-BC.CheckoutDate >

DECODE(SUBSTR(CategoryName,1,5), 'ADULT',21,14)
order by BC.Name, BC.CheckoutDate;

306 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 16
Blind Folio 16:306

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NAME TITLE RETURNEDD Days Out Days Late LATEFEE
---------------- -------------------- --------- -------- --------- ----------
EMILY TALBOT ANNE OF GREEN GABLES 20-JAN-02 18.00 4.00 0
FRED FULLER JOHN ADAMS 01-MAR-02 28.00 7.00 0
GERHARDT KENTGEN WONDERFUL LIFE 02-FEB-02 31.00 10.00 0
PAT LAVAY THE MISMEASURE OF 12-FEB-02 31.00 10.00 0

MAN
ROLAND BRANDT THE DISCOVERERS 01-MAR-02 48.00 27.00 8.1

THE SHIPPING NEWS 12-MAR-02 59.00 38.00 22.8
WEST WITH THE NIGHT 01-MAR-02 48.00 27.00 8.1

You can eliminate the display of the first four rows (with $0 late fees) by making a similar
modification to the where clause.

Using CASE
You can use the CASE function in place of DECODE. The CASE function uses the keywords when,
then, else, and end to indicate the logic path followed. In general, SQL using the CASE function is
wordier than the equivalent DECODE but may be easier to read and maintain.

Consider this simple DECODE example from earlier in this chapter:

select distinct
DECODE(CategoryName,'ADULTFIC','Adult Fiction',

'ADULTNF','Adult Nonfiction',
'ADULTREF','Adult Reference',
'CHILDRENFIC','Children Fiction',
'CHILDRENNF','Children Nonfiction',
'CHILDRENPIC','Children Picturebook',
CategoryName)

from BOOKSHELF;

The equivalent CASE function is

select distinct
CASE CategoryName
when 'ADULTFIC' then 'Adult Fiction'
when 'ADULTNF' then 'Adult Nonfiction'
when 'ADULTREF' then 'Adult Reference'
when 'CHILDRENFIC' then 'Children Fiction'
when 'CHILDRENNF' then 'Children Nonfiction'
when 'CHILDRENPIC' then 'Children Picturebook'
else CategoryName

end
from BOOKSHELF;

CASECATEGORYNAMEWHEN

Adult Fiction
Adult Nonfiction
Adult Reference

Chapter 16: DECODE and CASE: if, then, and else in SQL 307

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 16
Blind Folio 16:307

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Children Fiction
Children Nonfiction
Children Picturebook

CASE evaluates the first when clause and returns a match if the limiting condition is met. As with
DECODE, you can nest CASE function calls. How would you perform the LateFee column calculations
using CASE?

The DECODE function began by calculating a higher rate for ADULT category books:

DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
(BC.ReturnedDate-BC.CheckoutDate –21)*0.30,
(BC.ReturnedDate-BC.CheckoutDate -14)*0.20) LateFee

The CASE equivalent is

CASE SUBSTR(CategoryName,1,5)
when 'ADULT' then (BC.ReturnedDate-BC.CheckoutDate –21)*0.30
else (BC.ReturnedDate-BC.CheckoutDate -14)*0.20

end

The second rule (ADULTFIC books have doubled late fees) requires a nested CASE command:

CASE SUBSTR(CategoryName,1,5)
when 'ADULT' then

CASE SUBSTR(CategoryName,6,3)
when 'FIC' then (BC.ReturnedDate-BC.CheckoutDate –21)*0.60
else (BC.ReturnedDate-BC.CheckoutDate –21)*0.30
end

else (BC.ReturnedDate-BC.CheckoutDate -14)*0.20
end

This is more complex, but the logic is very easy to follow and will usually be simpler to maintain
than the equivalent DECODE clause. Now consider the final condition: If the calculated late fee
is less than or equal to $4, return a 0. Because we are using the CASE function, we do not need
to use a SIGN function—we can just use a “<” comparison as part of the command processing.
The following example shows how to add this check: An additional CASE function is added, and
the inner CASE function call is enclosed in parentheses. The result is compared to $4:

CASE when
(CASE SUBSTR(CategoryName,1,5)
when 'ADULT' then

CASE SUBSTR(CategoryName,6,3)
when 'FIC' then (BC.ReturnedDate-BC.CheckoutDate –21)*0.60
else (BC.ReturnedDate-BC.CheckoutDate –21)*0.30
end

else (BC.ReturnedDate-BC.CheckoutDate -14)*0.20
end)
< 4 then 0

308 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 16
Blind Folio 16:308

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 16: DECODE and CASE: if, then, and else in SQL 309

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 16
Blind Folio 16:309

The else clause for this CASE function call is the same as the inner CASE execution—it calculates
the late fee:

else
CASE SUBSTR(CategoryName,1,5)
when 'ADULT' then

CASE SUBSTR(CategoryName,6,3)
when 'FIC' then (BC.ReturnedDate-BC.CheckoutDate –21)*0.60
else (BC.ReturnedDate-BC.CheckoutDate –21)*0.30
end

else (BC.ReturnedDate-BC.CheckoutDate -14)*0.20
end

end

The full query is shown in the following listing, along with its output:

column LateFee format 999.99

select BC.Name, BC.Title, BC.ReturnedDate,
BC.ReturnedDate-BC.CheckoutDate as DaysOut /*Count days*/,
DECODE(SUBSTR(CategoryName,1,5), 'ADULT',

BC.ReturnedDate-BC.CheckoutDate -21,
BC.ReturnedDate-BC.CheckoutDate -14) DaysLate,

CASE when
(CASE SUBSTR(CategoryName,1,5)
when 'ADULT' then

CASE SUBSTR(CategoryName,6,3)
when 'FIC' then (BC.ReturnedDate-BC.CheckoutDate -21)*0.60
else (BC.ReturnedDate-BC.CheckoutDate -21)*0.30
end

else (BC.ReturnedDate-BC.CheckoutDate -14)*0.20
end)
< 4 then 0 else
CASE SUBSTR(CategoryName,1,5)
when 'ADULT' then

CASE SUBSTR(CategoryName,6,3)
when 'FIC' then (BC.ReturnedDate-BC.CheckoutDate -21)*0.60
else (BC.ReturnedDate-BC.CheckoutDate -21)*0.30
end

else (BC.ReturnedDate-BC.CheckoutDate -14)*0.20
end

end AS LateFee
from BOOKSHELF_CHECKOUT BC, BOOKSHELF B

where BC.Title = B.Title
and BC.ReturnedDate-BC.CheckoutDate >

DECODE(SUBSTR(CategoryName,1,5), 'ADULT',21,14)
order by BC.Name, BC.CheckoutDate;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NAME TITLE RETURNEDD Days Out Days Late LATEFEE
---------------- -------------------- --------- -------- --------- -------
EMILY TALBOT ANNE OF GREEN GABLES 20-JAN-02 18.00 4.00 .00
FRED FULLER JOHN ADAMS 01-MAR-02 28.00 7.00 .00
GERHARDT KENTGEN WONDERFUL LIFE 02-FEB-02 31.00 10.00 .00
PAT LAVAY THE MISMEASURE OF 12-FEB-02 31.00 10.00 .00

MAN
ROLAND BRANDT THE DISCOVERERS 01-MAR-02 48.00 27.00 8.10

THE SHIPPING NEWS 12-MAR-02 59.00 38.00 22.80
WEST WITH THE NIGHT 01-MAR-02 48.00 27.00 8.10

Comparing the CASE version to the DECODE version earlier in this chapter, you can see that
the CASE command is six lines longer, but it’s simpler to read and maintain. CASE offers a powerful
alternative to DECODE—and both CASE and DECODE provide solid solutions when you need to
perform logic within your queries.

310 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 16
Blind Folio 16:310

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:311

CHAPTER
17

Creating and Managing
Tables, Views, Indexes,

Clusters, and Sequences

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

U
ntil now, the emphasis of this book has been on using tables. This chapter looks
at creating, dropping, and changing tables, creating views, and using options
such as index-organized and partitioned tables. You’ve seen numerous create
table commands to this point; this chapter will reinforce those examples and
show how to use the latest options. You will also see the commands for creating

and managing views, indexes, clusters, and sequences.

Creating a Table
Consider the TROUBLE table. This is similar to the COMFORT table discussed earlier in the book,
but it is used to track cities with unusual weather patterns.

describe TROUBLE

Name Null? Type
------------------------------- -------- ------------
CITY NOT NULL VARCHAR2(13)
SAMPLEDATE NOT NULL DATE
NOON NUMBER(3,1)
MIDNIGHT NUMBER(3,1)
PRECIPITATION NUMBER

The columns in the TROUBLE table represent three major datatypes in Oracle—VARCHAR2,
DATE, and NUMBER. Here is the SQL that created this Oracle table:

create table TROUBLE (
City VARCHAR2(13) NOT NULL,
SampleDate DATE NOT NULL,
Noon NUMBER(3,1),
Midnight NUMBER(3,1),
Precipitation NUMBER
);

These are the basic elements of this command:

■ The words create table

■ The name of the table

■ An opening parenthesis

■ Column definitions

■ A closing parenthesis

■ A SQL terminator

The individual column definitions are separated by commas. There is no comma after the last
column definition. The table and column names must start with a letter of the alphabet, but may
include letters, numbers, and underscores. Names may be 1 to 30 characters in length, must be

312 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:312

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 313

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:313

unique within the table, and cannot be an Oracle reserved word (see “Reserved Words” in the
Alphabetical Reference of this book).

If the names are not within double quotes, case does not matter in naming a table. There are
no options for DATE datatypes. Varying-length character datatypes must have their maximum
length specified. NUMBERs may be either high precision (up to 38 digits) or specified precision,
based on the maximum number of digits and the number of places allowed to the right of the
decimal (an Amount field for U.S. currency, for instance, would have only two decimal places).

NOTE
Do not enclose table and column names within double quotes;
otherwise, case will matter. This can be disastrous for your users
or developers.

See Part V of this book for additional create table options for object-relational features.

Character Width and NUMBER Precision
Specifying the maximum length for character (CHAR and VARCHAR2) columns and the precision
for NUMBER columns has consequences that must be considered during the design of the table.
Improper decisions can be corrected later, using the alter table command, but the process can be
difficult.

Deciding on a Proper Width
A character column that is not wide enough for the data you want to put in it will cause an insert
to fail and result in an error message:

ERROR at line 1:
ORA-12899: value too large for column "PRACTICE"."TROUBLE"."CITY"
(actual: 16, maximum: 13)

The maximum width for CHAR (fixed-length) columns is 2,000 characters. VARCHAR2 (varying-
length character) columns can have up to 4,000 characters. In assigning width to a column, allot
enough space to allow for all future possibilities. A CHAR(15) for a city name, for instance, is just
going to get you in trouble later on. You’ll have to either alter the table or truncate or distort the names
of some cities.

NOTE
There is no penalty in Oracle for defining a wide VARCHAR2 column.
Oracle is clever enough not to store blank spaces at the end of
VARCHAR2 columns. The city name SAN FRANCISCO, for example,
will be stored in 13 spaces, even if you’ve defined the column as
VARCHAR2(50). And if a column has nothing in it (NULL), Oracle
will store nothing in the column, not even a blank space (it does store
a couple of bytes of internal database control information, but this is
unaffected by the size you specify for the column). The only effect
that choosing a higher number will have is in the default SQL*Plus
column formatting. SQL*Plus will create a default heading the same
width as the VARCHAR2 definition.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Choosing NUMBER Precision
A NUMBER column with incorrect precision will have one of two consequences. Oracle will
either reject the attempt to insert the row of data, or will drop some of the data’s precision.
Here are four rows of data about to be entered into Oracle:

insert into TROUBLE values
('PLEASANT LAKE','21-MAR-03',
39.99, -1.31, 3.6);

insert into TROUBLE values
('PLEASANT LAKE','22-JUN-03',
101.44, 86.2, 1.63);

insert into TROUBLE values
('PLEASANT LAKE','23-SEP-03',
92.85, 79.6, 1.00003);

insert into TROUBLE values
('PLEASANT LAKE','22-DEC-03',
-17.445, -10.4, 2.4);

These are the results of this attempt:

insert into TROUBLE values
('PLEASANT LAKE','21-MAR-03',
39.99, -1.31, 3.6);

1 row created.

insert into TROUBLE values
('PLEASANT LAKE','22-JUN-03',
101.44, 86.2, 1.63);
*

ERROR at line 3:
ORA-01438: value larger than specified precision allows for this column

insert into TROUBLE values
('PLEASANT LAKE','23-SEP-03',
92.85, 79.6, 1.00003);

1 row created.

insert into TROUBLE values
('PLEASANT LAKE','22-DEC-03',
-17.445, -10.4, 2.4);

1 row created.

The first, third, and fourth rows were inserted, but the second insert failed because 101.44
exceeded the precision set in the create table statement, where Noon was defined as NUMBER(3,1).

314 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:314

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 315

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:315

The 3 here indicates the maximum number of digits Oracle will store. The 1 means that one of
those three digits is reserved for a position to the right of the decimal point. Therefore, 12.3 would
be a legitimate number, but 123.4 would not be.

Note that the error here is caused by the 101, not the .44, because NUMBER(3,1) leaves only
two positions available to the left of the decimal point. The .44 will not cause the “value larger
than specified precision” error. It would simply be rounded to one decimal place. This will be
demonstrated shortly, but first, let’s look at the results of a query of the four rows we’ve attempted
to insert:

select * from TROUBLE;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- -------- -------- -------------
PLEASANT LAKE 21-MAR-03 40 -1.3 3.6
PLEASANT LAKE 23-SEP-03 92.9 79.6 1.00003
PLEASANT LAKE 22-DEC-03 -17.4 -10.4 2.4

The three rows were successfully inserted; only the problematic row is missing. Oracle never
inserted the single row for the insert statement that failed.

Rounding During Insertion
Suppose you correct the create table statement and increase the number of digits available for
Noon and Midnight, as shown here:

drop table TROUBLE;
create table TROUBLE (
City VARCHAR2(13) NOT NULL,
SampleDate DATE NOT NULL,
Noon NUMBER(4,1),
Midnight NUMBER(4,1),
Precipitation NUMBER
);

Now the four insert statements will all be successful. A query now will reveal this:

insert into TROUBLE values
('PLEASANT LAKE','21-MAR-03',
39.99, -1.31, 3.6);

insert into TROUBLE values
('PLEASANT LAKE','22-JUN-03',
101.44, 86.2, 1.63);

insert into TROUBLE values
('PLEASANT LAKE','23-SEP-03',
92.85, 79.6, 1.00003);

insert into TROUBLE values
('PLEASANT LAKE','22-DEC-03',
-17.445, -10.4, 2.4);

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select * from TROUBLE;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- -------- -------- -------------
PLEASANT LAKE 21-MAR-03 40 -1.3 3.6
PLEASANT LAKE 22-JUN-03 101.4 86.2 1.63
PLEASANT LAKE 23-SEP-03 92.9 79.6 1.00003
PLEASANT LAKE 22-DEC-03 -17.4 -10.4 2.4

Look at the first insert statement. The value for Noon is 39.99. In the query, it is rounded to 40.
Midnight in the insert is –1.31. In the query it is –1.3. Oracle rounds the number based on the digit
just to the right of the allowed precision. Table 17-1 shows the effects of precision in several
examples. See Chapter 9 for examples of the ROUND function.

316 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:316

Value in insert Statement Actual Value in Table

For precision of NUMBER(4,1)

123.4 123.4

123.44 123.4

123.45 123.5

123.445 123.4

1234.5 insert fails

For precision of NUMBER(4)

123.4 123

123.44 123

123.45 123

123.445 123

1234.5 1235

12345 insert fails

For precision of NUMBER(4,-1)

123.4 120

123.44 120

123.45 120

123.445 120

125 130

TABLE 17-1. Effect of Precision on inserts

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Constraints in create table
You can use the create table statement to enforce several different kinds of constraints on a table:
candidate keys, primary keys, foreign keys, and check conditions. A constraint clause can constrain
a single column or group of columns in a table. The point of these constraints is to get Oracle to
do most of the work in maintaining the integrity of your database. The more constraints you add
to a table definition, the less work you have to do in applications to maintain the data. On the
other hand, the more constraints there are in a table, the longer it takes to update the data.

You can specify constraints in one of two ways: as part of the column definition (known as a
column constraint) or at the end of the create table statement (known as a table constraint). Clauses
that constrain several columns must be table constraints.

The Candidate Key
A candidate key is a combination of one or more columns, the values of which uniquely identify
each row of a table. The following listing shows the creation of a UNIQUE constraint for the
TROUBLE table:

drop table TROUBLE;

create table TROUBLE (
City VARCHAR2(13) NOT NULL,
SampleDate DATE NOT NULL,
Noon NUMBER(4,1),
Midnight NUMBER(4,1),
Precipitation NUMBER,
constraint TROUBLE_UQ UNIQUE (City, SampleDate)
);

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 317

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:317

Value in insert Statement Actual Value in Table

1234.5 1230

12345 insert fails

For precision of NUMBER

123.4 123.4

123.44 123.44

123.45 123.45

123.445 123.445

125 125

1234.5 1234.5

12345.6789012345678 12345.6789012345678

TABLE 17-1. Effect of Precision on inserts (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The key of this table is the combination of City and SampleDate. Notice that both columns
are also declared to be NOT NULL. This feature requires you to specify values for certain columns
in order for rows to be inserted. Clearly, temperature and precipitation information is not useful
without knowing where or when it was collected. This technique is common for columns that are
the primary key of a table, but it’s also useful if certain columns are critical for the row of data to
be meaningful. If NOT NULL isn’t specified, the column can have NULL values.

When you create a UNIQUE constraint, Oracle will create a unique index to enforce the
uniqueness of the values.

The Primary Key
The primary key of a table is one of the candidate keys that you give some special characteristics.
You can have only one primary key, and a primary key column cannot contain NULLs.

The following create table statement has the same effect as the previous one, except that you
can have several UNIQUE constraints but only one PRIMARY KEY constraint:

drop table TROUBLE;
create table TROUBLE (
City VARCHAR2(13),
SampleDate DATE,
Noon NUMBER(4,1),
Midnight NUMBER(4,1),
Precipitation NUMBER,
constraint TROUBLE_PK PRIMARY KEY (City, SampleDate)
);

For single-column primary or candidate keys, you can define the key on the column with a
column constraint instead of a table constraint:

create table AUTHOR
(AuthorName VARCHAR2(50) primary key,
Comments VARCHAR2(100));

In this case, the AuthorName column is the primary key, and Oracle will generate a name for the
PRIMARY KEY constraint. This is not recommended if you want to enforce a common naming
standard for keys, as discussed later in “Naming Constraints.”

Designating Index Tablespaces
UNIQUE and PRIMARY KEY constraints create indexes. Unless you tell Oracle differently, those
indexes will be placed in your default tablespace (tablespaces are described fully in Chapter 20).
To specify a different tablespace, use the using index tablespace clause of the create table command,
as shown in the following listing:

create table AUTHOR2
(AuthorName VARCHAR2(50),
Comments VARCHAR2(100),
constraint AUTHOR_PK primary key (AuthorName)

using index tablespace USERS);

318 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:318

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The index associated with the AUTHOR_PK primary key constraint will be placed in the USERS
tablespace. See Chapter 20 for details on the management of tablespaces.

NOTE
In most default installations, the USERS tablespace is created and is
the default tablespace.

The Foreign Key
A foreign key is a combination of columns with values based on the primary key values from
another table. A foreign key constraint, also known as a referential integrity constraint, specifies
that the values of the foreign key correspond to actual values of the primary key in the other
table. In the BOOKSHELF table, for example, the CategoryName column refers to values for
the CategoryName column in the CATEGORY table:

create table BOOKSHELF
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK foreign key (CategoryName)
references CATEGORY(CategoryName));

You can refer to a primary or unique key, even in the same table. However, you can’t refer to
a table in a remote database in the references clause. You can use the table form (which is used
earlier to create a PRIMARY KEY on the TROUBLE table) instead of the column form to specify
foreign keys with multiple columns.

Sometimes you may want to delete these dependent rows when you delete the row they
depend on. In the case of BOOKSHELF and CATEGORY, if you delete a CategoryName from
CATEGORY, you may want to make the matching BOOKSHELF CategoryName column values
NULL. In another case, you might want to delete the whole row. The clause on delete cascade
added to the references clause tells Oracle to delete the dependent row when you delete the
corresponding row in the parent table. This action automatically maintains referential integrity.
For more information on the clauses on delete cascade and references, consult “Integrity Constraint”
in the Alphabetical Reference of this book.

The CHECK Constraint
Many columns must have values that are within a certain range or that satisfy certain conditions.
With a CHECK constraint, you can specify an expression that must always be true for every row
in the table. For example, the RATING table stores the valid ratings; to limit the available values
beyond the limits enforced by the column definition, you can use a CHECK constraint, as shown
in the following listing:

create table RATING_WITH_CHECK
(Rating VARCHAR2(2) CHECK (Rating <= 9),
RatingDescription VARCHAR2(50));

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 319

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:319

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

320 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:320

A column-level CHECK constraint can’t refer to values in other rows; it can’t use the pseudo-
columns such as SysDate, User, CurrVal, NextVal, Level, and RowNum. You can use the table
constraint form (as opposed to the column constraint form) to refer to multiple columns in a
CHECK constraint.

Naming Constraints
You can name your constraints. If you use an effective naming scheme for your constraint names,
you will be better able to identify and manage the constraints. The name of a constraint should
identify the table it acts upon and the type of constraint it represents. For example, the primary
key on the TROUBLE table could be named TROUBLE_PK.

You can specify a name for a constraint when you create the constraint. If you do not specify
a name for the constraint, Oracle will generate a name. Most of Oracle’s generated constraint
names are of the form SYS_C###### (for example, SYS_C000145). Because the system-generated
constraint name does not tell you anything about the table or the constraint, you should name
your constraints.

In the following example, the PRIMARY KEY constraint is created, and named, as part of the
create table command for the TROUBLE table (notice the constraint clause):

create table TROUBLE (
City VARCHAR2(13),
SampleDate DATE,
Noon NUMBER(4,1),
Midnight NUMBER(4,1),
Precipitation NUMBER,
constraint TROUBLE_PK PRIMARY KEY (City, SampleDate)
);

The constraint clause of the create table command names the constraint (in this case,
TROUBLE_PK). You may use this constraint name later when enabling or disabling constraints.

Dropping Tables
Dropping tables is very simple. You use the words drop table and the table name, as shown here:

drop table TROUBLE;

You drop a table only when you no longer need it. In Oracle, the truncate command lets you
remove all the rows in the table and reclaim the space for other uses without removing the table
definition from the database.

As of Oracle Database 10g, dropped tables retain their space—they are accessed via the
“recycle bin.” To drop a table and remove it from the recycle bin at the same time, use the purge
clause of the drop table command:

drop table TROUBLE purge;

If the table has already been dropped, you can purge it from the recycle bin:

purge table TROUBLE;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can purge all contents of your recycle bin:

purge recyclebin;

Truncating is also very simple:

truncate table TROUBLE;

Table truncated.

Truncating can’t be rolled back. If there are triggers that delete rows that depend on rows in
the table, truncating does not execute those triggers. You should be sure you really want to truncate
before doing it. You can choose to release the table’s storage (via the drop storage clause, the
default) or to retain it (via reuse storage).

Altering Tables
Table definitions can be altered in several ways: by adding a column to an existing table, by
changing a column’s definition, or by dropping a column. DBAs commonly alter tables in other
ways to manage space and memory usage. Adding a column is straightforward, and this process
is similar to creating a table. Suppose you decide to add two new columns to the TROUBLE table:
Condition, which you believe should be NOT NULL, and Wind, for the wind speed. The first
attempt starts by creating the table and populating it with a few records:

drop table TROUBLE;

create table TROUBLE (
City VARCHAR2(13),
SampleDate DATE,
Noon NUMBER(4,1),
Midnight NUMBER(4,1),
Precipitation NUMBER);

insert into TROUBLE values
('PLEASANT LAKE','21-MAR-03',
39.99, -1.31, 3.6);

insert into TROUBLE values
('PLEASANT LAKE','22-JUN-03',
101.44, 86.2, 1.63);

insert into TROUBLE values
('PLEASANT LAKE','23-SEP-03',
92.85, 79.6, 1.00003);

insert into TROUBLE values
('PLEASANT LAKE','22-DEC-03',
-17.445, -10.4, 2.4);

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 321

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:321

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

322 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:322

The first attempt at adding the new columns looks like this:

alter table TROUBLE add (
Condition VARCHAR2(9) NOT NULL,
Wind NUMBER(3)
);

alter table TROUBLE add (
*

ERROR at line 1: ORA-01758: table must be empty to add
mandatory (NOT NULL) column

You get an error message because you cannot add a column defined as NOT NULL—when
you try to add it, the column won’t have anything in it. Each row in the table would have a new
empty column defined as NOT NULL.

The alter table command’s add clause will work with a NOT NULL column if the table is empty,
but usually it is impractical to empty a table of all its rows just to add a NOT NULL column.

The alternative is to first alter the table by adding the column without the NOT NULL restriction:

alter table TROUBLE add (
Condition VARCHAR2(9),
Wind NUMBER(3)
);

Table altered.

Then, you fill the column with data for every row (either with legitimate data or a placeholder
until legitimate data can be obtained):

update TROUBLE set Condition = 'SUNNY';

Finally, you alter the table again and modify the column definition to NOT NULL:

alter table TROUBLE modify (
Condition VARCHAR2(9) NOT NULL,
City VARCHAR2(17)
);

Table altered.

Note that the City column was also modified to enlarge it to 17 characters (just to show how
this is done). When the table is described, it shows this:

describe TROUBLE

Name Null? Type
------------------------------- -------- ------------
CITY VARCHAR2(17)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 323

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:323

SAMPLEDATE DATE
NOON NUMBER(4,1)
MIDNIGHT NUMBER(4,1)
PRECIPITATION NUMBER
CONDITION NOT NULL VARCHAR2(9)
WIND NUMBER(3)

The table contains the following:

select * from TROUBLE;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION CONDITION WIND
--------------- --------- ------ -------- ------------- --------- ----
PLEASANT LAKE 21-MAR-03 40 -1.3 3.6 SUNNY
PLEASANT LAKE 22-JUN-03 101.4 86.2 1.63 SUNNY
PLEASANT LAKE 23-SEP-03 92.9 79.6 1.00003 SUNNY
PLEASANT LAKE 22-DEC-03 -17.4 -10.4 2.4 SUNNY

Here, you see the effect of the changes. City is now 17 characters wide instead of 13. Condition
has been added to the table as NOT NULL and is SUNNY (temporarily). Wind has been added
and is NULL.

To make a NOT NULL column nullable, use the alter table command with the NULL clause,
as follows:

alter table TROUBLE modify
(Condition NULL);

The Rules for Adding or Modifying a Column
These are the rules for adding a column to a table:

■ You may add a column at any time if NOT NULL isn’t specified.

■ You may add a NOT NULL column in three steps:

1. Add the column without NOT NULL specified.

2. Fill that column with data for every row.

3. Modify the column to be NOT NULL.

NOTE
If you use the default clause when adding a column, Oracle will
update each row with that default value when it adds the column;
these updates fire any AFTER UPDATE triggers defined on the table
(see Chapter 30).

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

324 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:324

These are the rules for modifying a column:

■ You can increase a character column’s width at any time.

■ You can increase the number of digits in a NUMBER column at any time.

■ You can increase or decrease the number of decimal places in a NUMBER column at
any time.

In addition, if a column is NULL for every row of the table, you can make any of these changes:

■ You can change the column’s datatype.

■ You can decrease a character column’s width.

■ You can decrease the number of digits in a NUMBER column.

You can only change the datatype of a column if the column is empty (NULL) in all rows of
the table.

Exceptions for LONG-LOB Column Changes
There is one notable exception to the restrictions on datatype changes. Oracle supports the
changing of LONG datatype columns to the LOB datatype, even if there is data already in the
LONG column. The following listing illustrates this functionality:

create table LONGTEST
(Col1 NUMBER,
Longcol LONG);

Table created.

insert into LONGTEST values (1,'This is a LONG value');

1 row created.

alter table LONGTEST modify (Longcol CLOB);

Table altered.

desc LONGTEST

Name Null? Type
--- -------- --------
COL1 NUMBER
LONGCOL CLOB

select Longcol from LONGTEST;

LONGCOL

This is a LONG value

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 325

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:325

Dropping a Column
You can drop a column from a table. Dropping a column is more complicated than adding or
modifying a column because of the additional work that Oracle has to do. Just removing the
column from the list of columns in the table—so it doesn’t show up when you select * from the
table—is easy. It’s recovering the space that was actually taken up by the column values that is
more complex, and potentially very time-consuming for the database. For this reason, you can
drop a column immediately or you can mark it as “unused,” to be dropped at a later time. If the
column is dropped immediately, the action may impact performance. If the column is marked as
unused, there will be no impact on performance. The column can actually be dropped at a later
time when the database is less heavily used.

To drop a column, use either the set unused clause or the drop clause of the alter table
command. You cannot drop a pseudo-column, a column of a nested table, or a partition key
column.

In the following example, column Wind is dropped from the TROUBLE table:

alter table TROUBLE drop column Wind;

Alternatively, you can mark the Wind column as unused:

alter table TROUBLE set unused column Wind;

Marking a column as “unused” does not release the space previously used by the column,
until you drop the unused columns:

alter table TROUBLE drop unused columns;

You can query USER_UNUSED_COL_TABS, ALL_UNUSED_COL_TABS, and DBA_UNUSED_
COL_TABS to see all tables with columns marked as unused.

NOTE
Once you have marked a column as “unused,” you cannot access
that column.

You can drop multiple columns in a single command, as shown in the following listing:

alter table TROUBLE drop (Condition, Wind);

NOTE
When dropping multiple columns, you should not use the column
keyword of the alter table command; it causes a syntax error. The
multiple column names must be enclosed in parentheses, as shown
in the preceding listing.

If the dropped columns are part of primary keys or unique constraints, you will need to also
use the cascade constraints clause as part of your alter table command. If you drop a column
that belongs to a primary key, Oracle will drop both the column and the primary key index.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Creating a Table from a Table
Oracle lets you create a new table on-the-fly, based on a select statement on an existing table:

create table RAIN_TABLE as
select City, Precipitation
from TROUBLE;

Table created.

NOTE
The create table … as select … command will not work if one of the
selected columns uses the LONG datatype.

When the new table is described, it reveals that it has “inherited” its column definitions from
the TROUBLE table. A table created in this fashion can include all columns, using an asterisk
if you like, or a subset of columns from another table. It also can include “invented” columns,
which are the product of functions or the combination of other columns, just as in a view. The
character column definitions will adjust to the size necessary to contain the data in the invented
columns. NUMBER columns that had specified precision in the source table but undergo computation
in inventing a new column, will simply be NUMBER columns, with no specified precision, in the
new table. When the table RAIN is described, it shows its column definitions:

describe RAIN_TABLE

Name Null? Type
------------------------------- -------- ------------
CITY VARCHAR2(17)
PRECIPITATION NUMBER

When RAIN_TABLE is queried, it contains just the columns and data selected from the TROUBLE
table as it existed when RAIN_TABLE was created:

select * from RAIN_TABLE;

CITY PRECIPITATION
------------- -------------
PLEASANT LAKE 3.6
PLEASANT LAKE 1.63
PLEASANT LAKE 1.00003
PLEASANT LAKE 2.4

NOTE
If one of the columns in the query is generated via a formula, you
must specify a column alias that Oracle will use as the column name
during the table creation.

326 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:326

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:327

You also can use this technique to create a table with column definitions like those of the source
table, but with no rows in it, by building a where clause that will select no rows from the old table:

create table RAIN_EMPTY as
select City, Precipitation
from TROUBLE
where 1=2;

Table created.

Querying this table will show there is nothing in it:

select * from RAIN_EMPTY;

no rows selected.

You can create a table based on a query without generating redo log entries (chronological
records of database actions used during database recoveries). Avoiding the generation of these
entries is accomplished by using the nologging keyword in the create table command. When the
redo log entries are circumvented in this way, the performance of the create table command will
improve because less work is being done; the larger the table, the greater the impact. However,
because the new table’s creation is not being written to the redo log files (which record the redo
log entries), the table will not be re-created if, following a database failure, those redo log files
are used to recover the database. Therefore, you should consider performing a backup of the
database soon after using the nologging option if you want to be able to recover the new table.

The following example shows how to use the nologging keyword during table creations based
on queries (by default, table creations based on queries generate redo log entries):

create table RAIN_NOLOG
nologging
as
select * from TROUBLE;

Table created.

Note that you can specify nologging at the partition level and at the LOB level. The use of
nologging will improve the performance of the operations that load the data in the table.

Creating an Index-Organized Table
An index-organized table keeps its data sorted according to the primary key column values for
the table. An index-organized table stores its data as if the entire table was stored in an index.
Indexes serve two main purposes:

■ To enforce uniqueness When a PRIMARY KEY or UNIQUE constraint is created,
Oracle creates an index to enforce the uniqueness of the indexed columns.

■ To improve performance When a query can use an index, the performance of the
query may dramatically improve. See Chapter 43 for details on the conditions under
which a query may use an index.

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 327

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

328 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:328

An index-organized table allows you to store its entire data in an index. A normal index only
stores the indexed columns; an index-organized table stores all its columns in the index.

To create an index-organized table, use the organization index clause of the create table
command, as shown in the following example:

create table TROUBLE_IOT (
City VARCHAR2(13),
SampleDate DATE,
Noon NUMBER(4,1),
Midnight NUMBER(4,1),
Precipitation NUMBER,
constraint TROUBLE_IOT_PK PRIMARY KEY (City, SampleDate))
organization index;

To create TROUBLE as an index-organized table, you must create a PRIMARY KEY constraint
on it.

An index-organized table is appropriate if you will always be accessing the TROUBLE data
by the City and SampleDate columns (in the where clauses of your queries). To minimize the
amount of active management of the index required, you should use an index-organized table
only if the table’s data is very static. If the table’s data changes frequently, you should use a regular
table with indexes as appropriate.

In general, an index-organized table is most effective when the primary key constitutes a large
part of the table’s columns. If the table contains many frequently accessed columns that are not part
of the primary key, the index-organized table will need to repeatedly access its overflow area. Despite
this drawback, you may choose to use index-organized tables to take advantage of a key feature
that is not available with standard tables: the ability to use the move online option of the alter table
command. You can use that option to move a table from one tablespace to another while it is being
accessed by insert, update, and delete operations. You cannot use the move online option for
partitioned index-organized tables. Partitioning is described in the next section.

Using Partitioned Tables
You can divide the rows of a single table into multiple parts. Dividing a table’s data in this manner
is called partitioning the table; the table that is partitioned is called a partitioned table, and the
parts are called partitions.

Partitioning is useful for very large tables. By splitting a large table’s rows across multiple
smaller partitions, you accomplish several important goals:

■ The performance of queries against the tables may improve because Oracle may have
to search only one partition (one part of the table) instead of the entire table to resolve
a query.

■ The table may be easier to manage. Because the partitioned table’s data is stored in multiple
parts, it may be easier to load and delete data in the partitions than in the large table.

■ Backup and recovery operations may perform better. Because the partitions are smaller
than the partitioned table, you may have more options for backing up and recovering
the partitions than you would have for a single large table.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The Oracle optimizer will know that the table has been partitioned; as shown later in this
section, you can also specify the partition to use as part of the from clause of your queries.

Creating a Partitioned Table
To create a partitioned table, you specify how to set up the partitions of the table’s data as part of
the create table command. Typically, tables are partitioned by ranges of values (known as range
partitioning).

Consider the BOOKSHELF table:

create table BOOKSHELF
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK foreign key (CategoryName)
references CATEGORY(CategoryName));

If you will be storing a large number of records in the BOOKSHELF table, you may want to
separate the rows across multiple partitions. To partition the table’s records, use the partition by
range clause of the create table command, as shown next. The ranges will determine the values
stored in each partition.

create table BOOKSHELF_RANGE_PART
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK2 foreign key (CategoryName)
references CATEGORY(CategoryName)
)
partition by range (CategoryName)
(partition PART1 values less than ('B')

tablespace PART1_TS,
partition PART2 values less than (MAXVALUE)

tablespace PART2_TS);

The BOOKSHELF table will be partitioned based on the values in the CategoryName column:

partition by range (CategoryName)

For any Category values less than ‘B’ (the ADULT categories), the records will be stored in the
partition named PART1. The PART1 partition will be stored in the PART1_TS tablespace (see
Chapter 20 for details on tablespaces). Any other categories will be stored in the PART2 partition.
Note that in the PART2 partition definition, the range clause is

partition PART2 values less than (MAXVALUE)

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 329

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:329

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You do not need to specify a maximum value for the last partition; the maxvalue keyword tells
Oracle to use the partition to store any data that could not be stored in the earlier partitions.

You can create multiple partitions, each with its own upper value defined. For each partition,
you only specify the maximum value for the range. The minimum value for the range is implicitly
determined by Oracle from the definition of the preceding partition.

In addition to range partitions, Oracle supports hash partitions. A hash partition determines
the physical placement of data by performing a hash function on the values of the partition key.
In range partitioning, consecutive values of the partition key are usually stored in the same
partition. In hash partitioning, consecutive values of the partition key are not generally stored in
the same partition. Hash partitioning distributes a set of records over a greater set of partitions
than range partitioning does, potentially decreasing the likelihood for I/O contention.

To create a hash partition, use the partition by hash clause in place of the partition by range
clause, as shown in the following listing:

create table BOOKSHELF_HASH_PART
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK_HASH foreign key (CategoryName)
references CATEGORY(CategoryName)
)
partition by hash (CategoryName)
partitions 10;

You can name each partition and specify its tablespace, just as you would for range partitioning,
as shown here:

create table BOOKSHELF_HASH_PART
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK_HASH foreign key (CategoryName)
references CATEGORY(CategoryName)
)
partition by hash (CategoryName)
partitions 2
store in (PART1_TS, PART2_TS);

Following the partition by hash (CategoryName) line, you have two choices for format:

■ As shown in the preceding listing, you can specify the number of partitions and the
tablespaces to use:

partitions 2

store in (PART1_TS, PART2_TS);

This method will create partitions with system-generated names in the format SYS_Pnnn.
The number of tablespaces specified in the store in clause does not have to equal the

330 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:330

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

number of partitions. If more partitions than tablespaces are specified, the partitions will
be assigned to the tablespaces in a round-robin fashion.

■ You can specify named partitions:

partition by hash (CategoryName)

(partition PART1 tablespace PART1_TS,

partition PART2 tablespace PART2_TS);

In this method, each partition is given a name and a tablespace, with the option of using
an additional lob or varray storage clause (see Chapters 34 and 35). This method gives
you more control over the location of the partitions, with the added benefit of letting you
specify meaningful names for the partitions.

List Partitioning
You can use list partitions in place of range and hash partitioning. In list partitioning, you tell
Oracle all the possible values and designate the partitions into which the corresponding rows
should be inserted. The following example shows the BOOKSHELF entries list-partitioned by
CategoryName:

create table BOOKSHELF_LIST_PART
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK4 foreign key (CategoryName)
references CATEGORY(CategoryName)
)
partition by list (CategoryName)
(partition PART1 values ('ADULTFIC', 'ADULTNF', 'ADULTREF')

tablespace PART1_TS,
partition PART2 values

('CHILDRENFIC', 'CHILDRENNF', 'CHILDRENPIC')
tablespace PART2_TS);

Creating Subpartitions
You can create subpartitions—that is, partitions of partitions. You can use subpartitions to combine
the two types of partitions: range partitions and hash partitions. You can use hash partitions in
combination with range partitions, creating hash partitions of the range partitions. For very large
tables, this composite partitioning may be an effective way of separating the data into manageable
and tunable divisions.

The following example range-partitions the BOOKSHELF table by the Title column, and it
hash-partitions the Title partitions by CategoryName values:

create table BOOKSHELF_RANGE_HASH_PART
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 331

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:331

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

constraint CATFK3 foreign key (CategoryName)
references CATEGORY(CategoryName)
)
partition by range (Title)
subpartition by hash (CategoryName)
subpartitions 6
(partition PART1 values less than ('M')

tablespace PART1_TS,
partition PART2 values less than (MAXVALUE)

tablespace PART2_TS);

The BOOKSHELF table will be range-partitioned into two partitions, using the Title value
ranges specified for the named partitions. Each of those partitions will be hash-partitioned on the
CategoryName column.

Indexing Partitions
When you create a partitioned table, you should create an index on the table. The index may be
partitioned according to the same range values that were used to partition the table. In the following
listing, the create index command for the BOOKSHELF_LIST_PART (list-partitioned) table is shown.
The index partitions are placed in the PART1_NDX_TS and PART2_NDX_TS tablespaces.

create index BOOKSHELF__LIST_CATEGORY
on BOOKSHELF_LIST_PART(CategoryName)
local
(partition PART1
tablespace PART1_NDX_TS,

partition PART2
tablespace PART2_NDX_TS);

Notice the local keyword. In this create index command, no ranges are specified. Instead, the
local keyword tells Oracle to create a separate index for each partition of the BOOKSHELF_LIST_
PART table. Two partitions were created on BOOKSHELF_LIST_PART. This index will create two
separate index partitions—one for each table partition. Because there is one index per partition,
the index partitions are “local” to the partitions.

You can also create “global” indexes. A global index may contain values from multiple
partitions.

create index BOOKSHELF_LIST_CATEGORY_G
on BOOKSHELF_LIST_PART(Publisher)
global;

The global clause in this create index command allows you to create a nonpartitioned index
(as shown here) or to specify ranges for the index values that are different from the ranges for the
table partitions. Local indexes may be easier to manage than global indexes; however, global
indexes may perform uniqueness checks faster than local (partitioned) indexes perform them.

332 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:332

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
You cannot create global indexes for hash partitions or subpartitions.

Managing Partitioned Tables
You can use the alter table command to add, drop, exchange, move, modify, rename, split, and
truncate partitions. These alter table command options allow you to alter the existing partition
structure, as may be required after a partitioned table has been used heavily. For example, the
distribution of the CategoryName values within the partitioned table may have changed, or the
maximum value may have increased. See the “ALTER TABLE” entry in the Alphabetical
Reference for information on these options.

During an insert into the partitioned table, Oracle uses the partitions’ definitions to determine
which partition the record should be inserted into. Thus, you can use a partitioned table as if it were
a single table, and rely on Oracle to manage the internal separation of the data.

Creating a View
Since you’ve already seen the techniques for creating a view in prior chapters, they will not be
reviewed extensively here. However, this section gives several additional points about views that
will prove useful.

If a view is based on a single underlying table, you can insert, update, or delete rows in the
view. This will actually insert, update, or delete rows in the underlying table. There are restrictions
on your ability to do this, although the restrictions are quite sensible:

■ You cannot insert if the underlying table has any NOT NULL columns that don’t appear
in the view.

■ You cannot insert or update if any one of the view’s columns referenced in the insert or
update contains functions or calculations.

■ You cannot insert, update, or delete if the view contains group by, distinct, or a reference
to the pseudo-column RowNum.

You can insert into a view based on multiple tables if Oracle can determine the proper rows
to insert. In a multitable view, Oracle determines which of the tables are key-preserved. If a view
contains enough columns from a table to identify the primary key for that table, the key is preserved
and Oracle may be able to insert rows into the table via the view.

Stability of a View
Remember that the results of querying a view are built instantly from a table (or tables) when
you execute the query. Until that moment, the view has no data of its own, as a table does. It is
merely a description (a SQL statement) of what information to pull out of other tables and how to
organize it. As a consequence, if a table is dropped, the validity of a view is destroyed. Attempting
to query a view where the underlying table has been dropped will produce an error message
about the view.

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 333

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:333

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
The sole exception to this rule is the use of materialized views. In fact,
a materialized view is actually a table that stores data one would
normally query via a view. Materialized views are described in detail
in Chapter 24.

In the following sequence, a view is created on an existing table, the table is dropped, and the
view then is queried.

First, the view is created:

create view RAIN_VIEW as
select City, Precipitation
from TROUBLE;

View created.

The underlying table is dropped:

drop table TROUBLE;

Table dropped.

The view is queried:

select * from RAIN_VIEW;
*

ERROR at line 1:
ORA-04063: view "PRACTICE.RAIN_VIEW" has errors

Similarly, a view is created using the asterisk in the view creation:

create or replace view RAIN_VIEW as
select * from TROUBLE;

View created.

But then the underlying table is altered:

alter table TROUBLE add (
Warning VARCHAR2(20)
);

Table altered.

Despite the change to the view’s base table, the view is still valid, but the Warning column is
not visible through it. After altering the table, replace the view to enable the Warning column to
be seen. To re-create a view while keeping in place all the privileges that have been granted for
it, use the create or replace view command, as shown in the following listing. This command

334 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:334

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

will replace the view text of an existing view with the new view text, while the old grants on the
view will not be affected.

create or replace view RAIN_VIEW as
select * from TROUBLE;

Using order by in Views
You can use an order by in a create view statement, as shown in the following listing based
on the re-created TROUBLE table (note that queries against this view may incur a performance
penalty because of the additional sort activity they perform):

create view TROUBLE_SORTED
as select * from TROUBLE

order by City, SampleDate;

View created.

select * from TROUBLE_SORTED;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
PLEASANT LAKE 21-MAR-03 40 -1.3 3.6
PLEASANT LAKE 22-JUN-03 101.4 86.2 1.63
PLEASANT LAKE 23-SEP-03 92.9 79.6 1.00003
PLEASANT LAKE 22-DEC-03 -17.4 -10.4 2.4

Creating a Read-Only View
You can use the with read only clause of the create view command to prevent users from
manipulating records via the view. Consider the RAIN_VIEW view created in the previous
section:

create or replace view RAIN_VIEW as
select * from TROUBLE;

If a user has the ability to delete records from the TROUBLE table, the user could delete the
TROUBLE records via the RAIN_VIEW view:

delete from RAIN;

The user could also insert or update the records in the TROUBLE table by performing those
operations against the RAIN_VIEW view. If the view is based on a join of multiple tables, the
user’s ability to update the view’s records is limited; a view’s base tables cannot be updated
unless only one table is involved in the update and the updated table’s full primary key is included
in the view’s columns.

To prevent modifications to the base tables via a view, you can use the with read only clause
of the create view command. If you use the with read only clause when creating a view, users

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 335

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:335

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

will only be able to select records from the view. Users will be unable to manipulate the records
obtained from the view even if the view is based on a single table:

create or replace view RAIN_READ_ONLY as
select * from TROUBLE
with read only;

You can also use INSTEAD OF triggers to manage the data-manipulation commands executed
against views. See Chapter 33 for details on INSTEAD OF triggers.

Indexes
An index is a simple concept. It is typically a listing of keywords accompanied by the location
of information on a subject. To find information on indexes, for instance, you look up the word
“indexes” in the index at the back of this book. It will give the number of the page you are reading
now. The word “indexes” is the key, and the page numbers given point you to the location of
discussions about indexes in this book.

Although you could find the information on indexes simply by reading through this book until
you encountered the page with the information on it, this would be slow and time-consuming.
Because the index at the back of the book is in alphabetical order, you can quickly go to the
appropriate spot in the index (without reading every entry) where “index” is found. If the word
is not common, this is quicker than reading through the book from front to back. These same
principles apply to Oracle indexes. For example, if you are searching for a particular book, you
can query with a limiting condition on the Title column:

select * from BOOKSHELF
where Publisher = 'SCHOLASTIC';

If BOOKSHELF does not have an index on the Publisher column, Oracle has to read every
row in the table until it finds all publishers that match the where clause of your query. If the table
is small, that may not cause a performance problem. As the table grows in size, the time required
to return all the matching rows to the user may impact the performance of the application and
the business process it supports.

To speed the data retrieval, you can create an index on the Publisher column. Then, when
you execute the same query, Oracle first looks in the index, which is sorted, thus finding the
publisher named ‘SCHOLASTIC’ very quickly (Oracle doesn’t read every entry, but jumps directly
within close vicinity of the name, much as you would in looking through the index of a book).
The index entry then gives Oracle the exact location in the table (and on disk) of the row(s) for
that publisher. The standard type of index in Oracle is called a B*-tree index, matching column
values to their related RowIDs.

Indexing an important column (one that’s likely to appear in a where clause) will generally
speed up Oracle’s response to a query. Indexing will likewise speed up queries where two tables
are joined, if the columns that are related (by the where clause) are indexed. These are the basics
of indexing; the rest of this section shows a number of additional features and issues related to
indexing that will affect how quickly it works. For the impact of indexes on the optimization of
your queries, see Chapter 43.

336 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:336

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 337

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:337

Creating an Index
You create an index via the create index command. When you designate a primary key or a
unique column during table creation or maintenance, Oracle will automatically create a unique
index to support that constraint. The full command syntax for create index is shown in the
Alphabetical Reference. Its most commonly used format is as follows:

create [bitmap | unique] index index
on table(column [,column]. . .) [reverse];

index must be a unique name and follow the naming conventions of Oracle columns. table is
simply the name of the table on which the index will be established, and column is the name
of the column being indexed.

Bitmap indexes allow you to create useful indexes on columns with very few distinct values;
see “Creating a Bitmap Index,” later in this chapter. The reverse keyword tells Oracle to reverse
the bytes of the indexed value, which may improve the I/O distribution during the insert of many
sequential data values.

You can establish a single index on multiple columns by listing the columns one after the
other, separated by commas. For the following examples, the BOOKSHELF_AUTHOR table was
created without a primary key:

create table BOOKSHELF_AUTHOR
(Title VARCHAR2(100),
AuthorName VARCHAR2(50),
constraint TitleFK Foreign key (Title) references BOOKSHELF(Title),
constraint AuthorNameFK Foreign key (AuthorName)
references AUTHOR(AuthorName));

Enforcing Uniqueness
Recall from Part I that a set of tables is said to be in Third Normal Form if all the columns in each
table’s rows are dependent only on the primary key. In the BOOKSHELF_AUTHOR table, the
primary key is the combination of the columns Title and AuthorName. In other tables, a primary
key might be an employee ID, a client ID, an account number, or, in a bank, a combination of
branch number and account number.

In each of these cases, the uniqueness of the primary key is critical. A bank with duplicate
account numbers, or a billing system with duplicate client IDs, would wreak havoc as transactions
were posted to accounts belonging to different people but having the same primary key (this is
why names usually are not commonly used as primary keys—there are too many duplicates).
To avoid this danger, have your database help prevent the creation of duplicate primary keys.
Oracle offers two facilities that help:

■ You can guarantee the uniqueness of a key through either indexing or constraints.

■ You can use the sequence generators (discussed later in this chapter).

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

338 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:338

Creating a Unique Index
You can create a unique index on the combination of Title and AuthorName in the BOOKSHELF_
AUTHOR table in one of three ways: by creating a primary key constraint, by creating a unique
constraint, or by creating a unique index. If you create a constraint, you will be able to create
foreign keys that refer to it. If you create the unique index first, you will still be able to create a
primary key on the table—Oracle will use the existing index as the primary key index.

The following listing shows the create index command for this multicolumn index:

create unique index BA$TITLE_AUTHOR
on BOOKSHELF_AUTHOR(Title, AuthorName);

The primary key method is shown here:

alter table BOOKSHELF_AUTHOR
add constraint BA_PK primary key (Title, AuthorName);

To create a unique constraint, just replace the primary key clause with unique. When you
attempt to create a unique index on a table that already has data in it, the command will fail if
any duplicates exist. If the create unique index statement succeeds, any future attempt to insert
(or update) a row that would create a duplicate key will fail and result in this error message:

ERROR at line 1:
ORA-00001: unique constraint (BOOKSHELF_AUTHOR.BA_PK) violated

When you create an index, it requires storage space. See “Placing an Index in the Database,”
later in this chapter, for details concerning the location of the created indexes.

Creating a Bitmap Index
To help tune queries that use nonselective columns in their limiting conditions, you can use bitmap
indexes. Bitmap indexes should only be used if the data is infrequently updated, because they
add to the cost of all data-manipulation transactions against the tables they index.

NOTE
Bitmap indexes should not be used for tables involved in online
transaction-processing applications due to the internal mechanisms
Oracle uses to maintain them. Restrict their usage to tables involved
in batch transactions.

Bitmap indexes are appropriate when nonselective columns are used as limiting conditions
in a query. For example, if there are very few distinct Rating values in a very large BOOKSHELF
table, you would not usually create a traditional B*-tree index on Rating, even if it is commonly
used in where clauses. However, Rating may be able to take advantage of a bitmap index.

Internally, a bitmap index maps the distinct values for the columns to each record. For this
example, assume there are five Rating values (1, 2, 3, 4, and 5) in a very large BOOKSHELF table.
Because there are five Rating values, there are five separate bitmap entries for the Rating bitmap
index. If the first five rows in the table have a Rating value of 1, and the next five have a Rating
value of 2, then the Rating bitmap entries would resemble those shown in the following listing:

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 339

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:339

Rating bitmaps:
1: 1 1 1 1 1 0 0 0 0 0
2: 0 0 0 0 0 1 1 1 1 1
3: 0 0 0 0 0 0 0 0 0 0
4: 0 0 0 0 0 0 0 0 0 0
5: 0 0 0 0 0 0 0 0 0 0

In the preceding listing, each column of 0’s and 1’s represents a row in the BOOKSHELF
table. Because ten rows are considered, ten bitmap values are shown. Reading the bitmap for
Rating, the first five records have a Rating value of 1 (the ‘1’ values), and the next five do not
(the ‘0’ values). There is a separate bitmap entry for each possible value.

The Oracle optimizer can dynamically convert bitmap index entries to RowIDs during query
processing. This conversion capability allows the optimizer to use indexes on columns that have
many distinct values (via B*-tree indexes) and on those that have few distinct values (via bitmap
indexes).

To create a bitmap index, use the bitmap clause of the create index command, as shown in
the following listing. You should indicate its nature as a bitmap index within the index name so
that it will be easy to detect during tuning operations.

create bitmap index BOOKSHELF$BITMAP_RATING
on BOOKSHELF(Rating);

If you choose to use bitmap indexes, you will need to weigh the performance benefit during
queries against the performance cost during data-manipulation commands. The more bitmap
indexes there are on a table, the greater the cost will be during each transaction. You should not
use bitmap indexes on a column that frequently has new values added to it. Each addition of a
new value to the Rating column will require that a corresponding new bitmap be created.

When to Create an Index
Indexes are most useful on larger tables, on columns that are likely to appear in where clauses
either as a simple equality, such as

where AuthorName = 'STEPHEN JAY GOULD'
and Rating = '5'

or in joins, such as this:

where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title

In addition to supporting where clauses and joins, indexes also support order by clauses
and the MAX and MIN functions. In some circumstances, Oracle may choose to scan an index
instead of performing a full scan on the table. See Chapter 43 for details on the usage of indexes
by the optimizer.

Variety in Indexed Columns
Traditional (B*-tree) indexes are most useful on columns with a significant amount of variety in
their data. For instance, a column that indicates whether a company is a current client with a Y
or N value would be a poor choice for a traditional index, and could actually slow down a query;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

a bitmap index would be a much better choice for that example. A telephone number column
would be a good candidate for a B*-tree index. An area code column would be marginal, depending
on the distribution of unique area code values in the table.

In a multicolumn index, put the column likely to be accessed most often first. You can use
the optimizer’s skip-scan feature to use multicolumn indexes even if the leading column is not
mentioned in the query. See Chapter 43 for examples of index usage.

Small tables may be better left unindexed, except to enforce uniqueness in the primary key. A
small table is one that takes so few database blocks that Oracle can read all its data with one physical
read; beyond that, indexing will nearly always be productive. The number of blocks read during a
physical read is set via the DB_FILE_MULTIBLOCK_READ_COUNT initialization parameter.

Bitmap indexes present a viable indexing alternative for columns that have very few distinct
values. Bitmap indexes are commonly used for “flag” columns that are restricted to values such
as Y and N. Bitmap indexes are particularly effective when multiple bitmap indexes are used in
a query; the optimizer can quickly evaluate the bitmaps and determine which rows meet all the
criteria for which bitmap indexes are available.

How Many Indexes to Use on a Table
You can create many indexes on a single table, with many columns in each index. The tradeoff for
indexing too many columns is the lessened speed of inserting new rows: Every index also must have
a new entry made in it when an insert is done. If your table will be used primarily for queries, the
only cost of indexing as many columns as you can (that have variety and will be used in where
clauses, of course) is the extra disk space used. Strictly from a data-loading performance perspective,
it is better to have a small number of indexes with many columns than to have many indexes with
a small number of columns in each.

Except in cluster indexes (discussed later in this chapter), columns that are NULL will not
appear in an index. Indexes based on more than one column will have an entry if any of the
columns are not NULL. If all indexed columns are NULL for a given row, no entry will appear
for this row in the index.

Placing an Index in the Database
You can specify where the index to a table is placed by assigning it to a specific tablespace.
As will be described in detail in Chapter 20, a tablespace is a logical division of the database,
corresponding to one or more datafiles. Datafiles provide the physical storage for the database—
sections of disk where tables and indexes are stored. Databases have several tablespaces, each
with its own name. To enhance availability and management options, an index for a table should
be placed in a tablespace that is on a physically separate disk drive from its corresponding table.

To specify the tablespace in which to locate an index, the normal create index statement is
simply followed by the word tablespace and the tablespace name, as shown here:

create unique index BA$TITLE_AUTHOR
on BOOKSHELF_AUTHOR(Title, AuthorName)

tablespace BA_INDEXES;

In this example, BA_INDEXES is the name given to a tablespace previously created by the database
administrator. The use of the tablespace option in a create index statement lets you physically
separate your tables from their associated indexes.

340 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:340

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:341

When you create a primary key or unique constraint, Oracle will automatically create an
index to enforce uniqueness. Unless you specify otherwise, that index will be created in the same
tablespace as the table that the constraint modifies, and it will use the default storage parameters
for that tablespace. Because that storage location is typically undesirable, you should take advantage
of the using index clause when creating primary key and unique constraints.

The using index clause allows you to specify the storage parameters and tablespace location
for an index created by a constraint. In the following example, a primary key is created on the
BOOKSHELF_AUTHOR table and is placed in the BA_INDEXES tablespace. This example assumes
that there is not an existing index on the specified columns.

alter table BOOKSHELF_AUTHOR
add constraint BA_PK primary key (Title, AuthorName)

using index tablespace BA_INDEXES;

See “Integrity Constraint” in the Alphabetical Reference for further options for the using index
clause, and see create index in the Alphabetical Reference for performance-related index-creation
options.

Rebuilding an Index
Oracle provides a fast index rebuild capability that allows you to re-create an index without
having to drop the existing index. The currently available index is used as the data source for
the index, instead of the table’s being used as the data source. During the index rebuild, you can
change its storage parameters and tablespace assignment.

In the following example, the BA_PK index is rebuilt (via the rebuild clause). Its storage
parameters are changed to use an initial extent size of 8MB and a next extent size of 4MB,
in the BA_INDEXES tablespace.

alter index BA_PK rebuild
storage (initial 8M next 4M pctincrease 0)
tablespace BA_INDEXES;

NOTE
When the BA_PK index is rebuilt, there must be enough space for
both the old index and the new index to exist simultaneously. After
the new index has been created, the old index will be dropped.

When you create an index that is based on previously indexed columns, Oracle may be able
to use the existing indexes as data sources for the new index. The Oracle optimizer may use parts
of existing composite indexes as needed for queries, so you may not need to create many indexes
to support the most common queries.

You can rebuild indexes while they are being accessed via the rebuild online clause of the
alter index command.

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 341

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

342 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:342

Function-Based Indexes
You can create function-based indexes. Any query that performs a function on a column generally
does not use that column’s index. Therefore, this query could not use an index on the Title column:

select * from BOOKSHELF
where UPPER(Title) = 'MY LEDGER';

However, this query could because it does not perform the UPPER function on the Title column:

select * from BOOKSHELF
where Title = 'MY LEDGER';

You can create indexes that allow function-based accesses to be supported by index accesses.
Instead of creating an index on the column Title, you can create an index on the column expression
UPPER(Title), as shown in the following listing:

create index BOOKSHELF$UPPER_TITLE on
BOOKSHELF(UPPER(Title));

Although function-based indexes can be useful, be sure to consider the following questions
when creating them:

■ Can you restrict the functions that will be used on the column? If so, can you restrict all
functions from being performed on the column?

■ Do you have adequate storage space for the additional indexes?

■ When you drop the table, will you be dropping more indexes (and therefore more
extents) than before? How will that impact the time required to drop the table?

Function-based indexes are useful, but you should implement them sparingly. The more
indexes you create on a table, the longer all insert, update, and delete operations will take.

Clusters
Clustering is a method of storing tables that are intimately related and often joined together into
the same area on disk. For example, instead of the BOOKSHELF table being in one section of the
disk and the BOOKSHELF_AUTHOR table being somewhere else, their rows could be interleaved
together in a single area, called a cluster. The cluster key is the column or columns by which the
tables are usually joined in a query (for example, Title for the BOOKSHELF and BOOKSHELF_
AUTHOR tables). To cluster tables, you must own the tables you are going to cluster together.

The following is the basic format of the create cluster command:

create cluster cluster
(column datatype [,column datatype]. . .) [other options];

The cluster name follows the table-naming conventions, and column datatype is the name
and datatype you will use as the cluster key. The column name may be the same as one of the
columns of a table you will put in this cluster, or it may be any other valid name. Here’s an example:

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

create cluster BOOKandAUTHOR (Col1 VARCHAR2(100));

Cluster created.

This creates a cluster (a space is set aside, as it would be for a table) with nothing in it. The use of
Col1 for the cluster key is irrelevant; you’ll never use it again. However, its definition should match
the primary key of the table to be added. Next, tables are created to be included in this cluster:

create table BOOKSHELF
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK foreign key (CategoryName)
references CATEGORY(CategoryName)
)
cluster BOOKandAUTHOR (Title);

Prior to inserting rows into BOOKSHELF, you must create a cluster index:

create index BOOKandAUTHORndx
on cluster BOOKandAUTHOR;

Recall that the presence of a cluster clause here precludes the use of a tablespace or storage
clause. Note how this structure differs from a standard create table statement:

create table BOOKSHELF
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK foreign key (CategoryName)
references CATEGORY(CategoryName)
);

In the first create table statement, the cluster BOOKandAUTHOR (Title) clause follows the
closing parenthesis of the list of columns being created in the table. BOOKandAUTHOR is the
name of the cluster previously created. Title is the column in this table that will be stored in the
cluster key Col1. It is possible to have multiple cluster keys in the create cluster statement, and
to have multiple columns stored in those keys in the create table statement. Notice that nowhere
does either statement say explicitly that the Title column goes into the Col1 cluster key. The match-
up is done by position only: Col1 and Title were both the first objects mentioned in their respective
cluster statements. Multiple columns and cluster keys are matched first to first, second to second,
third to third, and so on. Now a second table is added to the cluster:

create table BOOKSHELF_AUTHOR
(Title VARCHAR2(100),
AuthorName VARCHAR2(50),
constraint TitleFK Foreign key (Title) references BOOKSHELF(Title),

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 343

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:343

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

constraint AuthorNameFK Foreign key (AuthorName)
references AUTHOR(AuthorName)
)
cluster BOOKandAUTHOR (Title);

When these two tables are clustered, each unique title is actually stored only once, in the cluster
key. To each title are attached the columns from both of these tables.

The data from both of these tables is actually stored in a single location, almost as if the cluster
were a big table containing data drawn from both of the tables that make it up.

An additional cluster option, a hash cluster, uses the cluster column values to determine the
physical location in which the row is stored. See the entry for the create cluster command in the
Alphabetical Reference.

Sequences
You can assign unique numbers, such as customer IDs, to columns in your database by using a
sequence; you don’t need to create a special table and code to keep track of the unique numbers
in use. This is done by using the create sequence command, as shown here:

create sequence CustomerID increment by 1 start with 1000;

This will create a sequence that can be accessed during insert and update commands (also
select, although this is rare). Typically, the unique sequence value is created with a statement
like the following:

insert into CUSTOMER_DEMO /*pseudocode example */
(Name, Contact, ID)

values
('COLE CONSTRUCTION','VERONICA',CustomerID.NextVal);

The NextVal attached to CustomerID tells Oracle you want the next available sequence
number from the CustomerID sequence. This is guaranteed to be unique; Oracle will not give
it to anyone else. To use the same number more than once (such as in a series of inserts into
related tables), CurrVal is used instead of NextVal, after the first use. That is, using NextVal
ensures that the sequence table gets incremented and that you get a unique number, so you have
to use NextVal first. Once you’ve used NextVal, that number is stored in CurrVal for your use
anywhere, until you use NextVal again, at which point both NextVal and CurrVal change to the
new sequence number.

If you use both NextVal and CurrVal in a single SQL statement, both will contain the value
retrieved by NextVal. Neither of these can be used in subqueries, as columns in the select clause
of a view, with DISTINCT, UNION, INTERSECT, or MINUS, or in the order by, group by, or having
clause of a select statement.

You can also cache sequence values in memory for faster access, and you can make the
sequence cycle back to its starting value once a maximum value is reached. See create sequence
in the Alphabetical Reference.

344 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 17
Blind Folio 17:344

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 18
Blind Folio 18:345

CHAPTER
18

Basic Oracle Security

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

I
nformation is vital to success, but when damaged or in the wrong hands, it can threaten
success. Oracle provides extensive security features to safeguard your information
from both unauthorized viewing and intentional or inadvertent damage. This security
is provided by granting or revoking privileges on a person-by-person and privilege-
by-privilege basis, and is in addition to (and independent of) any security your computer

system already has. Oracle uses the create user, create role, and grant commands to control data
access.

In this chapter, you will see the basic security features available in Oracle. See Chapter 19 for
coverage of advanced Oracle security features such as virtual private databases.

Users, Roles, and Privileges
Every Oracle user has a name and password and owns any tables, views, and other resources that
he or she creates. An Oracle role is a set of privileges (or the type of access that each user needs,
depending on his or her status and responsibilities). You can grant or bestow specific privileges
to roles and then assign roles to the appropriate users. A user can also grant privileges directly to
other users.

Database system privileges let you execute specific sets of commands. The CREATE TABLE
privilege, for example, lets you create tables. The privilege GRANT ANY PRIVILEGE allows you
to grant any system privilege.

Database object privileges give you the ability to perform some operation on various objects.
The DELETE privilege, for example, lets you delete rows from tables and views. The SELECT privilege
allows you to query with a select from tables, views, sequences, and snapshots (materialized views).

See “Privilege” in the Alphabetical Reference at the end of this book for a complete list of
system and object privileges.

Creating a User
The Oracle system comes with many users already created, including SYSTEM and SYS. The SYS
user owns the core internal tables Oracle uses to manage the database; SYSTEM owns additional
tables and views. You can log onto the SYSTEM user to create other users because SYSTEM has
that privilege.

When installing Oracle, you (or a system administrator) first create a user for yourself. This is
the simplest format for the create user command:

create user user identified
{by password | externally | globally as 'extnm'};

Many other account characteristics can be set via this command; see the create user
command in the Alphabetical Reference for details.

To connect your computer system’s userid and password into Oracle’s security so that only
one logon is required for host-based users, use externally instead of giving a password. A system
administrator (who has a great many privileges) may want the extra security of having a separate
password. Let’s call the system administrator Dora in the following examples:

create user Dora identified by avocado;

Dora’s account now exists and is secured by a password.

346 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 18
Blind Folio 18:346

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 18: Basic Oracle Security 347

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 18
Blind Folio 18:347

You also can set up the user with specific tablespaces and quotas (limits) for space and resource
usage. See create user in the Alphabetical Reference and Chapters 17 and 20 for a discussion of
tablespaces and resources.

To change a password, use the alter user command:

alter user Dora identified by psyche;

Now Dora has the password “psyche” instead of “avocado.” However, Dora cannot log into her
account until she first has the CREATE SESSION system privilege:

grant CREATE SESSION to Dora;

You’ll see additional examples of system privilege grants later in this chapter.

Password Management
Passwords can expire, and accounts may be locked due to repeated failed attempts to connect.
When you change your password, a password history may be maintained to prevent reuse of
previous passwords.

The expiration characteristics of your account’s password are determined by the profile
assigned to your account. Profiles, which are created by the create profile command, are
managed by the DBA (database administrator, discussed later in the chapter). See the CREATE
PROFILE entry in the Alphabetical Reference for full details on the create profile command.

Relative to passwords and account access, profiles can enforce the following:

■ The “lifetime” of your password, which determines how frequently you must change it

■ The grace period following your password’s “expiration date” during which you can
change the password

■ The number of consecutive failed connect attempts allowed before the account is
automatically “locked”

■ The number of days the account will remain locked

■ The number of days that must pass before you can reuse a password

■ The number of password changes that must take place before you can reuse a password

Additional password management features allow the minimum length and complexity of passwords
to be enforced.

In addition to the alter user command, you can use the password command in SQL*Plus to
change your password. If you use the password command, your new password will not be displayed
on the screen as you type. Database administrators can change any user’s password via the password
command; other users can change only their own password.

When you enter the password command, you will be prompted for the old and new passwords,
as shown in the following listing:

connect dora/psyche
password

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Changing password for dora
Old password:
New password:
Retype new password:

When the password has been successfully changed, you will receive the feedback:

Password changed

You can set another user’s password from a DBA account. Simply append the username to
the password command. You will not be asked for the old password:

password dora
Changing password for dora
New password:
Retype new password:

Enforcing Password Expiration
You can use profiles to manage the expiration, reuse, and complexity of passwords. You can limit
the lifetime of a password, and lock an account whose password is too old. You can also force a
password to be at least moderately complex, and lock any account that has repeated failed login
attempts.

For example, if you set the FAILED_LOGIN_ATTEMPTS resource of the user’s profile to 5,
then four consecutive failed login attempts will be allowed for the account; the fifth will cause
the account to be locked.

NOTE
If the correct password is supplied on the fifth attempt, the “failed
login attempt count” is reset to 0, allowing for five more consecutive
unsuccessful login attempts before the account is locked.

In the following listing, the LIMITED_PROFILE profile is created for use by the user JANE:

create profile LIMITED_PROFILE limit
FAILED_LOGIN_ATTEMPTS 5;

create user JANE identified by EYRE
profile LIMITED_PROFILE;

grant CREATE SESSION to JANE;

If there are five consecutive failed connection attempts to the JANE account, the account will
be automatically locked by Oracle. When you then use the correct password for the JANE account,
you will receive an error.

connect jane/eyre
ERROR:
ORA-28000: the account is locked

348 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 18
Blind Folio 18:348

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To unlock the account, use the account unlock clause of the alter user command (from a
DBA account), as shown in the following listing:

alter user JANE account unlock;

Following the unlocking of the account, connections to the JANE account will once again be
allowed. You can manually lock an account via the account lock clause of the alter user command.

alter user JANE account lock;

NOTE
You can specify account lock as part of the create user command.

If an account becomes locked due to repeated connection failures, it will automatically
become unlocked when its profile’s PASSWORD_LOCK_TIME value is exceeded. For example,
if PASSWORD_LOCK_TIME is set to 1, the JANE account in the previous example would be
locked for one day, after which the account would be unlocked again.

You can establish a maximum lifetime for a password via the PASSWORD_LIFE_TIME resource
within profiles. For example, you could force users of the LIMITED_PROFILE profile to change their
passwords every 30 days:

alter profile LIMITED_PROFILE limit
PASSWORD_LIFE_TIME 30;

In this example, the alter profile command is used to modify the LIMITED_PROFILE profile.
The PASSWORD_LIFE_TIME value is set to 30, so each account that uses that profile will have
its password expire after 30 days. If your password has expired, you must change it the next
time you log in, unless the profile has a specified grace period for expired passwords. The grace
period parameter is called PASSWORD_GRACE_TIME. If the password is not changed within the
grace period, the account expires.

NOTE
If you are going to use the PASSWORD_LIFE_TIME parameter,
you need to give the users a way to change their passwords easily.

An “expired” account is different from a “locked” account. A locked account, as discussed
earlier in this section, may be automatically unlocked by the passage of time. An expired account,
however, requires manual intervention by the DBA to be reenabled.

NOTE
If you use the password expiration features, make sure the accounts
that own your applications have different profile settings; otherwise,
the accounts may become locked and the application may become
unusable.

Chapter 18: Basic Oracle Security 349

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 18
Blind Folio 18:349

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To reenable an expired account, execute the alter user command. In this example, the DBA
manually expires JANE’s password:

alter user jane password expire;

User altered.

Next, JANE attempts to connect to her account. When she provides her password, she is
immediately prompted for a new password for the account.

connect jane/eyre
ERROR:
ORA-28001: the password has expired

Changing password for jane
New password:
Retype new password:
Password changed
Connected.

You can also force users to change their passwords when they first access their accounts, via
the password expire clause of the create user command. The create user command does not,
however, allow you to set an expiration date for the new password set by the user; to do that,
you must use the PASSWORD_LIFE_TIME profile parameter shown in the previous examples.

To see the password expiration date of any account, query the Expiry_Date column of the
DBA_USERS data dictionary view. Users who want to see the password expiration date for their
accounts can query the Expiry_Date column of the USER_USERS data dictionary view (via either
SQL*Plus or a client-based query tool).

Enforcing Password Reuse Limitations
To prevent a password from being reused, you can use one of two profile parameters: PASSWORD_
REUSE_MAX or PASSWORD_REUSE_TIME. These two parameters are mutually exclusive; if you
set a value for one of them, the other must be set to UNLIMITED.

The PASSWORD_REUSE_TIME parameter specifies the number of days that must pass before
a password can be reused. For example, if you set PASSWORD_REUSE_TIME to 60, you cannot
reuse the same password within 60 days.

The PASSWORD_REUSE_MAX parameter specifies the number of password changes that must
occur before a password can be reused. If you attempt to reuse the password before the limit is
reached, Oracle will reject your password change.

For example, you can set PASSWORD_REUSE_MAX for the LIMITED_PROFILE profile created
earlier in this chapter:

alter profile LIMITED_PROFILE limit
PASSWORD_REUSE_MAX 3
PASSWORD_REUSE_TIME UNLIMITED;

If the user JANE now attempts to reuse a recent password, the password change attempt will
fail. For example, suppose she changes her password, as in the following line:

350 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 18
Blind Folio 18:350

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

alter user JANE identified by austen;

And then she changes it again:

alter user JANE identified by whitley;

During her next password change, she attempts to reuse a recent password, and the attempt
fails:

alter user jane identified by austen;
alter user jane identified by austen
*
ERROR at line 1:
ORA-28007: the password cannot be reused

She cannot reuse any of her recent passwords; she will need to come up with a new password.

Standard Roles
At the beginning of this chapter, we created a user named Dora. Now that Dora has an account,
what can she do in Oracle? At this point, nothing—Dora has no system privileges other than
CREATE SESSION. In many cases, application users receive privileges via roles. You can group
system privileges and object accesses into roles specific to your application users’ needs. You can
create your own roles for application access, and you can use Oracle’s default roles for some system
access requirements. The most important standard roles created during database creation are

CONNECT, RESOURCE, and DBA Provided for compatibility with previous versions of
Oracle database software.

DELETE_CATALOG_ROLE,
EXECUTE_CATALOG_ROLE,
SELECT_CATALOG_ROLE

These roles are provided for accessing data dictionary
views and packages.

EXP_FULL_DATABASE,
IMP_FULL_DATABASE

These roles are provided for convenience in using the
Import and Export utilities.

AQ_USER_ROLE,
AQ_ADMINISTRATOR_ROLE

These roles are needed for Oracle Advanced Queuing.

SNMPAGENT This role is used by the Enterprise Manager Intelligent Agent.

RECOVERY_CATALOG_OWNER This role is required for the creation of a recovery catalog
schema owner.

SCHEDULER_ADMIN This role allows the grantee to execute the DBMS_
SCHEDULER package’s procedures; should be restricted
to DBAs.

CONNECT, RESOURCE, and DBA are provided for backward compatibility and should no
longer be used. CONNECT gives users the ability to log in and perform basic functions. Users
with CONNECT may create tables, views, sequences, clusters, synonyms, and database links.
Users with RESOURCE can create their own tables, sequences, procedures, triggers, datatypes,

Chapter 18: Basic Oracle Security 351

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 18
Blind Folio 18:351

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

operators, indextypes, indexes, and clusters. Users with the RESOURCE role also receive the
UNLIMITED TABLESPACE system privilege, allowing them to bypass quotas on all tablespaces.
Users with the DBA role can perform database administration functions, including creating and
altering users, tablespaces, and objects.

In place of CONNECT, RESOURCE, and DBA, you should create your own roles that have
privileges to execute specific system privileges. In the following sections you will see how to
grant privileges to users and roles.

Format for the grant Command
Here is the format for the grant command for system privileges (see the Alphabetical Reference
for the full syntax diagram):

grant {system privilege | role | all [privileges] }
[, {system privilege | role | all [privileges] }. . .]
to {user | role} [, {user | role}]. . .
[identified by password]
[with admin option]

You can grant any system privilege or role to another user, to another role, or to public. The
with admin option clause permits the grantee to bestow the privilege or role on other users or
roles. The all clause grants the user or role all privileges except the SELECT ANY DICTIONARY
system privilege.

The grantor can revoke a role from a user as well.

Revoking Privileges
Privileges granted can be taken away. The revoke command is similar to the grant command:

revoke {system privilege | role | all [privileges] }
[, {system privilege | role | all [privileges] }. . .]
from {user | role} [, {user | role}]. . .

An individual with the DBA role can revoke CONNECT, RESOURCE, DBA, or any other
privilege or role from anyone, including another DBA. This, of course, is dangerous, and is
why DBA privileges should be given neither lightly nor to more than a tiny minority who really
need them.

NOTE
Revoking everything from a given user does not eliminate that user
from Oracle, nor does it destroy any tables that user had created; it
simply prohibits that user’s access to them. Other users with access to
the tables will still have exactly the same access they’ve always had.

To remove a user and all the resources owned by that user, use the drop user command,
like this:

drop user username [cascade];

352 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 18
Blind Folio 18:352

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The cascade option drops the user along with all the objects owned by the user, including
referential integrity constraints. The cascade option invalidates views, synonyms, stored procedures,
functions, or packages that refer to objects in the dropped user’s schema. If you don’t use the
cascade option and there are still objects owned by the user, Oracle does not drop the user and
instead returns an error message.

What Users Can Grant
A user can grant privileges on any object he or she owns. The database administrator can grant
any system privilege.

Suppose that user Dora owns the COMFORT table and is a database administrator. Create two
new users, Bob and Judy, with these privileges:

create user Judy identified by sarah;

User created.

grant CREATE SESSION to Judy;

Grant succeeded.

create user Bob identified by carolyn;

User created.

grant CREATE SESSION, CREATE TABLE, CREATE VIEW,
CREATE SYNONYM to bob;

Grant succeeded.

alter user bob
default tablespace users
quota 5m on users;

User altered.

This sequence of commands gives both Judy and Bob the ability to connect to Oracle, and
gives Bob some extra capabilities. But can either do anything with Dora’s tables? Not without
explicit access.

To give others access to your tables, use a second form of the grant command:

grant { object privilege | all [privileges] }
[(column [, column] . . .)]
[, { object privilege | all [privileges] }
[(column [, column] . . .)]] . . .
on object to {user | role}
[with grant option]
[with hierarchy option];

Chapter 18: Basic Oracle Security 353

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 18
Blind Folio 18:353

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

354 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 18
Blind Folio 18:354

The privileges a user can grant include these:

■ On the user’s tables, views, and materialized views:

FLASHBACK

INSERT

UPDATE (all or specific columns)
DELETE

SELECT

The INSERT, UPDATE, and DELETE privileges can only be granted on materialized views
if they are updateable. See Chapter 24 for details on the creation of materialized views.

■ On tables, you can also grant:

ALTER (table—all or specific columns)
DEBUG

REFERENCES

INDEX (columns in a table)
ON COMMIT REFRESH

QUERY REWRITE

ALL (of the items previously listed)

■ On procedures, functions, packages, abstract datatypes, libraries, indextypes, and operators:

EXECUTE

DEBUG

■ On sequences:

SELECT

ALTER

■ On directories (for BFILE LOB datatypes and external tables):

READ

WRITE

■ On abstract datatypes and views:

UNDER (for the ability to create subviews under a view, or subtypes under a type)

When you execute another user’s procedure or function, it is typically executed using the
privileges of its owner. This means you don’t need explicit access to the data the procedure or
function uses; you see only the result of the execution, not the underlying data. You can also
create stored procedures that execute under the privileges of the invoking user instead of the
procedure owner; see Chapter 31 for details.

Dora gives Bob SELECT access to the COMFORT table:

grant select on COMFORT to Bob;

Grant succeeded.

The with grant option clause of the grant command allows the recipient of that grant to pass
along the privileges he or she has received to other users. If the user Dora grants privileges on her

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

tables to the user Bob using with grant option, Bob can make grants on Dora’s tables to other
users (Bob can only pass along those privileges—such as SELECT—that he has been granted).
If you intend to create views based on another user’s tables and grant access to those views to
other users, you first must be granted access with grant option to the base tables.

Moving to Another User with connect
To test the success of her grant, Dora connects to Bob’s username with the connect command.
This command may be used via one of the following methods:

■ By entering both the username and password on the same line as the command

■ By entering the command alone and then responding to prompts

■ By entering the command and username and responding to the prompt for the password

The latter two methods suppress the display of the password and are therefore inherently more
secure. The following listing shows a sample connection to the database:

connect Bob/carolyn

Connected.

Once connected, Dora selects from the table to which Bob has been given SELECT access.

NOTE
Unless a synonym is used, the table name must be preceded by the
username of the table’s owner. Without this, Oracle will say the table
does not exist.

select * from Dora.COMFORT;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ----- -------- -------------
SAN FRANCISCO 21-MAR-03 62.5 42.3 .5
SAN FRANCISCO 22-JUN-03 51.1 71.9 .1
SAN FRANCISCO 23-SEP-03 61.5 .1
SAN FRANCISCO 22-DEC-03 52.6 39.8 2.3
KEENE 21-MAR-03 39.9 -1.2 4.4
KEENE 22-JUN-03 85.1 66.7 1.3
KEENE 23-SEP-03 99.8 82.6
KEENE 22-DEC-03 -7.2 -1.2 3.9

A view named COMFORT is created, which is simply a straight select from the table
Dora.COMFORT:

create view COMFORT as select * from Dora.COMFORT;

View created.

Chapter 18: Basic Oracle Security 355

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 18
Blind Folio 18:355

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Selecting from this view will produce exactly the same results as selecting from Dora.COMFORT:

select * from COMFORT;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ----- -------- -------------
SAN FRANCISCO 21-MAR-03 62.5 42.3 .5
SAN FRANCISCO 22-JUN-03 51.1 71.9 .1
SAN FRANCISCO 23-SEP-03 61.5 .1
SAN FRANCISCO 22-DEC-03 52.6 39.8 2.3
KEENE 21-MAR-03 39.9 -1.2 4.4
KEENE 22-JUN-03 85.1 66.7 1.3
KEENE 23-SEP-03 99.8 82.6
KEENE 22-DEC-03 -7.2 -1.2 3.9

Now Dora returns to her own username and creates a view that selects only a part of the
COMFORT table:

connect Dora/psyche
Connected.

create view SOMECOMFORT as
select * from COMFORT
where City = 'KEENE';

View created.

She then grants both SELECT and UPDATE privileges to Bob on this view, and revokes all
privileges from Bob (via the revoke command) for the whole COMFORT table:

grant select, update on SOMECOMFORT to Bob;

Grant succeeded.

revoke all on COMFORT from Bob;

Revoke succeeded.

Dora then reconnects to Bob’s username to test the effects of this change:

connect Bob/carolyn
Connected.

select * from COMFORT;
*

ERROR at line 1:
ORA-04063: view "BOB.COMFORT" has errors

Attempting to select from his COMFORT view fails because the underlying table named in Bob’s
view was the Dora.COMFORT table. Not surprisingly, attempting to select from Dora.COMFORT

356 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 18
Blind Folio 18:356

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

would produce exactly the same message. Next, an attempt to select from Dora.SOMECOMFORT
is made:

select * from Dora.SOMECOMFORT;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ----- -------- -------------
KEENE 21-MAR-03 39.9 -1.2 4.4
KEENE 22-JUN-03 85.1 66.7 1.3
KEENE 23-SEP-03 99.8 82.6
KEENE 22-DEC-03 -7.2 -1.2 3.9

This works perfectly well, even though direct access to the COMFORT table had been revoked,
because Dora gave Bob access to a portion of COMFORT through the SOMECOMFORT view. It is
just that portion of the table related to KEENE.

This shows a powerful security feature of Oracle: You can create a view using virtually any
restrictions you like or any computations in the columns, and then give access to the view, rather
than to the underlying tables, to other users. They will see only the information the view presents.
This can even be extended to be user specific. The “Security by User” section later in this chapter
gives complete details on this feature.

Now, the view LITTLECOMFORT is created under Bob’s username, on top of the view
SOMECOMFORT:

create view LITTLECOMFORT as select * from Dora.SOMECOMFORT;

View created.

And the row for September 23, 2003, is updated:

update LITTLECOMFORT set Noon = 88
where SampleDate = '23-SEP-03';

1 row updated.

When the view LITTLECOMFORT is queried, it shows the effect of the update:

select * from LITTLECOMFORT;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ----- -------- -------------
KEENE 21-MAR-03 39.9 -1.2 4.4
KEENE 22-JUN-03 85.1 66.7 1.3
KEENE 23-SEP-03 88 82.6
KEENE 22-DEC-03 -7.2 -1.2 3.9

A query of Dora.SOMECOMFORT would show the same results, as would a query of COMFORT
itself if Dora made it on her own username. The update was successful against the underlying table,
even though it went through two views (LITTLECOMFORT and SOMECOMFORT) to reach it.

Chapter 18: Basic Oracle Security 357

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 18
Blind Folio 18:357

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

358 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 18
Blind Folio 18:358

NOTE
You need to grant users SELECT access to any table in which they can
update or delete records. This is in keeping with the evolving ANSI
standard and reflects the fact that a user who only has the UPDATE
or DELETE privilege on a table could use the database’s feedback
comments to discover information about the underlying data.

create synonym
An alternative method to creating a view that includes an entire table or view from another user
is to create a synonym:

create synonym BOBCOMFORT for Dora.SOMECOMFORT;

This synonym can be treated exactly like a view. See the create synonym command in the
Alphabetical Reference.

Using Ungranted Privileges
Let’s say an attempt is made to delete the row just updated:

delete from LITTLECOMFORT where SampleDate = '23-SEP-03';
*

ERROR at line 1:
ORA-01031: insufficient privileges

Bob has not been given DELETE privileges by Dora, so the attempt fails.

Passing Privileges
Bob can grant authority for other users to access his tables, but he cannot bestow on other users
access to tables that don’t belong to him. Here, he attempts to give INSERT authority to Judy:

grant insert on Dora.SOMECOMFORT to Judy;
*

ERROR at line 1:
ORA-01031: insufficient privileges

Because Bob does not have this authority, he fails to give it to Judy. Next, Bob tries to pass
on a privilege he does have, SELECT:

grant select on Dora.SOMECOMFORT to Judy;
*

ERROR at line 1:
ORA-01031: insufficient privileges

He cannot grant this privilege, either, because the view SOMECOMFORT does not belong to
him. If he had been granted access to SOMECOMFORT with grant option, then the preceding
grant command would have succeeded. The view LITTLECOMFORT does belong to him, though,
so he can try to pass authority to that view on to Judy:

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

grant select on LITTLECOMFORT to Judy;

ERROR at line 1:
ORA-01720: grant option does not exist for 'DORA.SOMECOMFORT'

Because the LITTLECOMFORT view relies on one of Dora’s views, and Bob was not granted
SELECT with grant option on that view, Bob’s grant fails.

In addition, a new table, owned by Bob, is created and loaded with the current information
from his view LITTLECOMFORT:

create table NOCOMFORT as
select * from LITTLECOMFORT;

Table created.

The SELECT privilege on the NOCOMFORT table is granted to Judy:

grant select on NOCOMFORT to Judy;

Grant succeeded.

Queries are made from Judy’s account against the table for which Bob granted the SELECT
privilege to Judy:

connect Judy/sarah
select * from Bob.NOCOMFORT;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ----- -------- -------------
KEENE 21-MAR-03 39.9 -1.2 4.4
KEENE 22-JUN-03 85.1 66.7 1.3
KEENE 23-SEP-03 88 82.6
KEENE 22-DEC-03 -7.2 -1.2 3.9

This grant was successful. The NOCOMFORT table was created, and is owned, by Bob’s
username. He was able to successfully give access to this table.

If Dora wants Bob to be able to pass on his privileges to others, she can add another clause
to the grant statement:

connect Dora/psyche
grant select, update on SOMECOMFORT to Bob with grant option;

Grant succeeded.

The with grant option clause enables Bob to pass on access to SOMECOMFORT to Judy through
his LITTLECOMFORT view. Note that attempts to access a table to which a user does not have
the SELECT privilege always result in the following message:

ERROR at line 1:
ORA-00942: table or view does not exist

Chapter 18: Basic Oracle Security 359

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 18
Blind Folio 18:359

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This message appears (rather than a message about not having access privilege) so that a person
without permission to query a table doesn’t know that it even exists.

Creating a Role
In addition to the default roles shown earlier in this chapter, you can create your own roles
within Oracle. The roles you create can comprise table or system privileges or a combination
of both. In the following sections, you will see how to create and administer roles.

To create a role, you need to have the CREATE ROLE system privilege. The syntax for role
creation is shown in the following listing:

create role role_name
[not identified
|identified {by password | using [schema.]package
|externally | globally }];

When a role is first created, it has no privileges associated with it. Password options for roles
are discussed in “Adding a Password to a Role,” later in this chapter.

Two sample create role commands are shown in the following example:

create role CLERK;
create role MANAGER;

The first command creates a role called CLERK, which will be used in the examples in the
following sections of this chapter. The second command creates a role called MANAGER, which
will also be featured in those examples.

Granting Privileges to a Role
Once a role has been created, you may grant privileges to it. The syntax for the grant command
is the same for roles as it is for users. When granting privileges to roles, you use the role name in
the to clause of the grant command, as shown in the following listing:

grant select on COMFORT to CLERK;

As shown in this example, the role name takes the place of the username in the grant command.
The privilege to select from the COMFORT table will now be available to any user of the CLERK role.

If you are a DBA, or have been granted the GRANT ANY PRIVILEGE system role, you may
grant system privileges—such as CREATE SESSION, CREATE SYNONYM, and CREATE VIEW—
to roles. These privileges will then be available to any user of your role.

The ability to log into the database is given via the CREATE SESSION system privilege. In the
following example, this privilege is granted to the CLERK role. This privilege is also granted to the
MANAGER role, along with the CREATE VIEW system privilege.

grant CREATE SESSION to CLERK;
grant CREATE SESSION, CREATE VIEW to MANAGER;

360 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 18
Blind Folio 18:360

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Granting a Role to Another Role
Roles can be granted to other roles. You can do this via the grant command, as shown in the
following example:

grant CLERK to MANAGER;

NOTE
You can’t have circular grants, so you cannot now grant MANAGER
to CLERK.

In this example, the CLERK role is granted to the MANAGER role. Even though you have
not directly granted any table privileges to the MANAGER role, it will now inherit any privileges
that have been granted to the CLERK role. Organizing roles in this way is a common design for
hierarchical organizations.

When granting a role to another role (or to a user, as in the following section), you may grant
the role using the with admin option clause, as shown in the following listing:

grant CLERK to MANAGER with admin option;

If the with admin option clause is used, the grantee has the authority to grant the role to other
users or roles. The grantee can also alter or drop the role.

Granting a Role to Users
Roles can be granted to users. When granted to users, roles can be thought of as named sets of
privileges. Instead of granting each privilege to each user, you grant the privileges to the role and
then grant the role to each user. This greatly simplifies the administrative tasks involved in the
management of privileges.

NOTE
Privileges that are granted to users via roles cannot be used as the
basis for views, procedures, functions, packages, or foreign keys.
When creating these types of database objects, you must rely on
direct grants of the necessary privileges.

You can grant a role to a user via the grant command, as shown in the following example:

grant CLERK to Bob;

The user Bob in this example will have all the privileges that were granted to the CLERK role
(CREATE SESSION and SELECT privileges on COMFORT).

When granting a role to a user, you may grant the role using the with admin option clause,
as shown in the following listing:

grant MANAGER to Dora with admin option;

Chapter 18: Basic Oracle Security 361

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 18
Blind Folio 18:361

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Dora now has the authority to grant the MANAGER role to other users or roles, or to alter or
drop the role.

Adding a Password to a Role
You can use the alter role command for only one purpose: to change the authority needed to
enable it. By default, roles do not have passwords associated with them. To enable security for
a role, use the identified keyword in the alter role command. There are two ways to implement
this security.

First, you can use the identified by clause of the alter role command to specify a password,
as shown in the following listing:

alter role MANAGER identified by cygnusxi;

Anytime a user tries to activate that role, the password will be required. If, however, that role
is set up as a default role for the user, no password will be required for that role when the user
logs in. See the upcoming “Enabling and Disabling Roles” section of this chapter for more details
on these topics.

Roles can be tied to operating system privileges as well. If this capability is available on your
operating system, you use the identified externally clause of the alter role command. When the
role is enabled, Oracle will check the operating system to verify your access. Altering a role to
use this security feature is shown in the following example:

alter role MANAGER identified externally;

In most UNIX systems, the verification process uses the /etc/group file. To use this file for any
operating system, the OS_ROLES database startup parameter in the init.ora file must be set to TRUE.

The following example of this verification process is for a database instance called “Local” on
a UNIX system. The server’s /etc/group file may contain the following entry:

ora_local_manager_d:NONE:1:dora

This entry grants the MANAGER role to the account named Dora. The _d suffix indicates that
this role is to be granted by default when Dora logs in. An _a suffix would indicate that this role
is to be enabled with admin option. If this role were also the user’s default role, the suffix would
be _ad. If more than one user were granted this role, the additional usernames would be appended
to the /etc/group entry, as shown in the following listing:

ora_local_manager_d:NONE:1:dora,judy

If you use this option, roles in the database will be enabled via the operating system.

Removing a Password from a Role
To remove a password from a role, use the not identified clause of the alter role command,
as shown in the following listing. By default, roles do not have passwords.

alter role MANAGER not identified;

362 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 18
Blind Folio 18:362

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:47:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Enabling and Disabling Roles
When a user’s account is altered, a list of default roles for that user can be created via the default
role clause of the alter user command. The default action of this command sets all of a user’s roles
as default roles, enabling all of them every time the user logs in.

NOTE
The maximum number of roles a user can have enabled at any time is
set via the MAX_ENABLED_ROLES database initialization parameter.

The syntax for this portion of the alter user command is as follows:

alter user username
default role {[role1, role2]
[all | all except role1, role2][NONE]};

As shown by this syntax, a user can be altered to have, by default, specific roles enabled, all
roles enabled, all except specific roles enabled, or no roles enabled. For example, the following
alter user command will enable the CLERK role whenever Bob logs in:

alter user Bob
default role CLERK;

To enable a nondefault role, use the set role command, as shown in this example:

set role CLERK;

To see what roles are enabled within your current session, select from the SESSION_ROLES
data dictionary view. Query SESSION_PRIVS to see the currently enabled system privileges.

You may also use the all and all except clauses that were available in the alter user command:

set role all;
set role all except CLERK;

If a role has a password associated with it, that password must be specified via an identified
by clause:

set role MANAGER identified by cygnusxi;

To disable a role in your session, use the set role none command, as shown in the following
listing. This will disable all roles in your current session. Once all the roles have been disabled,
reenable the ones you want.

set role none;

Because you may find it necessary to execute a set role none command from time to time,
you may want to grant the CREATE SESSION privilege to users directly rather than via roles.

Chapter 18: Basic Oracle Security 363

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 18
Blind Folio 18:363

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

364 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 18
Blind Folio 18:364

Revoking Privileges from a Role
To revoke a privilege from a role, use the revoke command, described earlier in this chapter.
Specify the privilege, object name (if it is an object privilege), and role name, as shown in the
following example:

revoke SELECT on COMFORT from CLERK;

Users of the CLERK role will then be unable to query the COMFORT table.

Dropping a Role
To drop a role, use the drop role command, as shown in the following example:

drop role MANAGER;
drop role CLERK;

The roles you specify, and their associated privileges, will be removed from the database
entirely. Grants and revokes of system and object privileges take effect immediately. Grants and
revokes of roles are only observed when a current user issues a set role command or a new user
session is started.

Granting UPDATE to Specific Columns
You may want to grant users the SELECT privilege to more columns than you want to grant them
the UPDATE privilege. Because SELECT columns can be restricted through a view, to further
restrict the columns that can be updated requires a special form of the user’s grant command.
Here is an example for two columns in the COMFORT table:

grant update (Noon, Midnight) on COMFORT to Judy;

Revoking Object Privileges
If object privileges can be granted, they can also be taken away. This is similar to the grant command:

revoke { object privilege | all [privileges]}
[(column [, column]. . .)]

[, { object privilege | all [privileges]}
[(column [, column]. . .)]]. . .]

on object
from {user | role} [,{user | role}]
[cascade constraints] [force];

revoke all removes any of the privileges listed previously, from SELECT through INDEX;
revoking individual privileges will leave intact others that had also been granted. The with grant
option is revoked along with the privilege to which it was attached; the revoke then cascades so
users who received their access via the with grant option user also have their privileges revoked.

If a user defines referential integrity constraints on the object, Oracle drops these constraints if
you revoke privileges on the object using the cascade constraints option. The force option applies

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

to user-defined datatypes (see Chapter 33). The force option revokes the EXECUTE privilege on
user-defined datatype objects with table or type dependencies; all dependent objects will be
marked as invalid and the data in dependent tables will become inaccessible until the necessary
privilege is regranted.

Security by User
Access to tables can be granted specifically, table by table and view by view, to each user or role.
There is, however, an additional technique that will simplify this process in some cases. Recall the
BOOKSHELF_CHECKOUT records:

select Name, SUBSTR(Title,1,30) from BOOKSHELF_CHECKOUT;

NAME SUBSTR(TITLE,1,30)
------------------------- ------------------------------
JED HOPKINS INNUMERACY
GERHARDT KENTGEN WONDERFUL LIFE
DORAH TALBOT EITHER/OR
EMILY TALBOT ANNE OF GREEN GABLES
PAT LAVAY THE SHIPPING NEWS
ROLAND BRANDT THE SHIPPING NEWS
ROLAND BRANDT THE DISCOVERERS
ROLAND BRANDT WEST WITH THE NIGHT
EMILY TALBOT MIDNIGHT MAGIC
EMILY TALBOT HARRY POTTER AND THE GOBLET OF
PAT LAVAY THE MISMEASURE OF MAN
DORAH TALBOT POLAR EXPRESS
DORAH TALBOT GOOD DOG, CARL
GERHARDT KENTGEN THE MISMEASURE OF MAN
FRED FULLER JOHN ADAMS
FRED FULLER TRUMAN
JED HOPKINS TO KILL A MOCKINGBIRD
DORAH TALBOT MY LEDGER
GERHARDT KENTGEN MIDNIGHT MAGIC

To enable each borrower to access this table, but restrict the access given to a view of only
each borrower’s own single row, you could create 19 separate views, each with a different name
in the where clause, and you could make separate grants to each of these views for each borrower.
Alternatively, you could create a view whose where clause contains User, the pseudo-column,
like this:

create or replace view MY_CHECKOUT as
select * from BOOKSHELF_CHECKOUT
where SUBSTR(Name,1,INSTR(Name,' ')-1) = User;

The owner of the BOOKSHELF_CHECKOUT table can create this view and grant SELECT on
it to users. A user can then query the BOOKSHELF_CHECKOUT table through the MY_CHECKOUT
view. The where clause will find his or her username in the Name column (see the where clause)
and return just that user’s records.

Chapter 18: Basic Oracle Security 365

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 18
Blind Folio 18:365

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In the following example, a user name Jed is created and granted access to the MY_CHECKOUT
view. Selecting from that view yields just those books checked out by him. This example assumes
that the schema owning the BOOKSHELF_CHECKOUT table is named PRACTICE and is a database
administrator:

create user jed identified by hop;

User created.

grant CREATE SESSION to jed;

Grant succeeded.

grant select on MY_CHECKOUT to jed;

Grant succeeded.

connect jed/hop

Connected.

select * from Practice.MY_CHECKOUT;

NAME

TITLE

CHECKOUTD RETURNEDD
--------- ---------
JED HOPKINS
INNUMERACY
01-JAN-02 22-JAN-02

JED HOPKINS
TO KILL A MOCKINGBIRD
15-FEB-02 01-MAR-02

Whenever MY_CHECKOUT is queried, it will return records depending on the pseudo-column
User—the user of SQL*Plus at the moment the view is queried.

Granting Access to the Public
Rather than grant access to every worker, the grant command can be generalized to the public:

grant select on MY_CHECKOUT to public;

This gives everyone access, including users created after this grant was made. However, each
user will still have to access the table using the owner’s username as a prefix. To avoid this, a
DBA may create a public synonym (which creates a name accessible to all users that stands for
Practice.MY_CHECKOUT):

366 Part II: SQL and SQL*Plus

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 18
Blind Folio 18:366

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

create public synonym MY_CHECKOUT for Practice.MY_CHECKOUT;

From this point forward, anyone can access MY_CHECKOUT without prefixing it with the
schema owner (Practice in this case). This approach gives tremendous flexibility for security.
Workers could see only their own salaries, for instance, in a table that contains salaries for everyone.
If, however, a user creates a table or view with the same name as a public synonym, any future
SQL statements by this user will act on this new table or view, and not on the one by the same
name to which the public has access.

NOTE
All these accesses—and all attempts at system-level operations, such
as logins—may be audited. See AUDIT in the Alphabetical Reference
for an introduction to Oracle’s security-auditing capabilities.

Granting Limited Resources
When granting resource quotas in an Oracle database, you use the quota parameter of the create
user or alter user command, as shown in the following listing. In this example, Bob is granted a
quota of 100MB in the USERS tablespace:

alter user Bob
quota 100M on USERS;

A user’s space quota may be set when the user is created, via the create user command. If you
want to remove limits on a user’s space quota, you can grant that user the UNLIMITED TABLESPACE
system privilege. See the create user and alter user commands in the Alphabetical Reference for
further details on these commands.

Profiles can also be used to enforce other resource limits, such as the amount of CPU time or
idle time a user’s requests to Oracle can take. A profile detailing these resource limits is created
and then assigned to one or more users. See the create profile and alter user command entries in
the Alphabetical Reference for full details.

Chapter 18: Basic Oracle Security 367

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 18
Blind Folio 18:367

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 18
Blind Folio 18:368

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 19
Blind Folio 19:369

PART
III

Beyond the Basics

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 19
Blind Folio 19:370

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 19
Blind Folio 19:371

CHAPTER
19

Advanced Security—
Virtual Private

Databases

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

I
n prior chapters, you have seen how to use views to enhance security by displaying
only the rows that meet specified criteria. In this chapter, you will see how to use a
Virtual Private Database (VPD) to provide that type of record-level security across
your application tables. In VPD, you attach security policies directly to tables, views,
and synonyms so there is no way for users to bypass your security settings.

In a VPD, any SQL used to access a table, view, or synonym protected by a VPD policy
is dynamically modified to include a limiting condition—a where clause or an and clause.
The modification occurs transparently, and the user sees only the data that passes the limiting
condition in the where clause. This fine-grained access allows a great deal of control over all
accesses of your application tables. VPD policies can be applied to select, insert, update, index,
and delete commands. You can create different security policies for each type of access—one for
selects, another for inserts, and so on.

As of Oracle Database 10g, VPD has been extended to include column-level VPD, in which
security policies are applied only when a particular column or columns are accessed. Oracle
Database 10g also supports column masking, in which protected columns may be displayed with
NULL values if their rows are returned. Additionally, auditing has been enhanced so DBAs can
perform fine-grained auditing of select, insert, update, and delete commands.

NOTE
Implementing VPD requires the use of some advanced features—
procedures, triggers, and PL/SQL. These features are covered in Part IV
of this book. If you are not already familiar with those features, you
may wish to review Part IV before proceeding with the advanced
material in this chapter.

Initial Configuration
VPD allows you to customize the ways different users see the same table. To go through the full
example shown in this chapter, you will need access to a SYSDBA-privileged account.

VPD requires the use of a package named DBMS_RLS. From the SYSDBA-privileged account,
grant EXECUTE privilege on the DBMS_RLS package to all users. Also, create the users that will be
used during the examples: PRACTICE (which will own the tables), ADAMS, and BURLINGTON, as
shown in the following listing:

connect system/password as SYSDBA

grant execute on DBMS_RLS to public;

create user ADAMS identified by john7;
create user BURLINGTON identified by newj2;
grant CREATE SESSION to ADAMS, BURLINGTON;

From the SYSDBA-privileged account, create the PRACTICE user (if it does not already exist)
and give it the CREATE ANY CONTEXT and CREATE PUBLIC SYNONYM system privileges:

grant CREATE ANY CONTEXT, CREATE PUBLIC SYNONYM to PRACTICE;

372 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 19
Blind Folio 19:372

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Within the PRACTICE user, you should now create two tables: the STOCK_ACCOUNT table
and the STOCK_TRX table. The STOCK_ACCOUNT table contains one row for each account that
can perform stock trades. The STOCK_TRX table contains one row for each stock bought or sold
by that account holder.

connect practice/practice

create table STOCK_ACCOUNT
(Account NUMBER(10),
AccountLongName VARCHAR2(50));

insert into STOCK_ACCOUNT values (
1234, 'ADAMS');
insert into STOCK_ACCOUNT values (
7777, 'BURLINGTON');

create table STOCK_TRX (
Account NUMBER(10),
Symbol VARCHAR2(20),
Price NUMBER(6,2),
Quantity NUMBER(6),
Trx_Flag VARCHAR2(1));

insert into STOCK_TRX values (
1234, 'ADSP', 31.75, 100, 'B');

insert into STOCK_TRX values (
7777, 'ADSP', 31.50, 300, 'S');

insert into STOCK_TRX values (
1234, 'ADSP', 31.55, 100, 'B');

insert into STOCK_TRX values (
7777, 'OCKS', 21.75, 1000, 'B');

commit;

Once those tables are created, grant the ADAMS and BURLINGTON users access to them:

grant SELECT, INSERT on STOCK_TRX to ADAMS, BURLINGTON;
grant SELECT on STOCK_ACCOUNT to ADAMS, BURLINGTON;

You now have the application configuration set—the PRACTICE schema owns the data table
(STOCK_TRX) and has a table that you can use to map usernames to account numbers (STOCK_
ACCOUNT). With this configuration in place, you can create an application context, as described
in the next section.

Create an Application Context
The next step in the VPD configuration is to create an application context. The purpose of the
context is to define the rules you will use to separate users. The context will be part of each
session’s characteristics.

Chapter 19: Advanced Security—Virtual Private Databases 373

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 19
Blind Folio 19:373

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

First, use the create context command to specify the name of the package you will use to set
the rules:

connect PRACTICE/PRACTICE

create context PRACTICE using PRACTICE.CONTEXT_PACKAGE;

Next, create the package with that same name (CONTEXT_PACKAGE). See Chapter 31 for
details on the use of packages. The package consists of a single procedure call:

create or replace package CONTEXT_PACKAGE AS
procedure SET_CONTEXT;

end;
/

Now that the package header has been created, the package body may be created. The following
listing shows the package body that will set the context for each session.

create or replace package body CONTEXT_PACKAGE is
procedure Set_Context IS
v_user VARCHAR2(30);
v_id NUMBER;

begin
DBMS_SESSION.SET_CONTEXT('PRACTICE','SETUP','TRUE');
v_user := SYS_CONTEXT('USERENV','SESSION_USER');
begin
select Account
into v_id
from STOCK_ACCOUNT

where AccountLongName = v_user;
DBMS_SESSION.SET_CONTEXT('PRACTICE','USER_ID', v_id);

exception
WHEN NO_DATA_FOUND then
DBMS_SESSION.SET_CONTEXT('PRACTICE','USER_ID', 0);

end;
DBMS_SESSION.SET_CONTEXT('PRACTICE','SETUP','FALSE');

end SET_CONTEXT;
end CONTEXT_PACKAGE;
/

The core of this package body is a single query:

select Account
into v_id
from STOCK_ACCOUNT

where AccountLongName = v_user;

The STOCK_ACCOUNT table will contain a row for each user (Adams, Burlington, and so on).
This query takes the name of the user who logged in and compares it to the AccountLongName
values in the STOCK_ACCOUNT table. If there is a match, then the Account value is returned.

374 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 19
Blind Folio 19:374

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If there is no match, then another part of the package returns a 0 as the account number. The Account
value is set as the User_ID variable for the session:

DBMS_SESSION.SET_CONTEXT('PRACTICE','USER_ID', v_id);

You will be able to reference this context value in your programs, and VPD restrictions will
be based on the context setting.

Now that the package has been created, grant public access to it:

grant EXECUTE on PRACTICE.CONTEXT_PACKAGE to public;
create public synonym CONTEXT_PACKAGE for PRACTICE.CONTEXT_PACKAGE;

The rules for establishing the context for sessions are now ready to be activated, as described
in the next section.

Create a Logon Trigger
In order for the context to be set within each user’s session, you must create a trigger that will be
executed each time a user logs into the database (see Chapter 30 for full details on triggers).

rem NOTE: connect to a SYSDBA account before running this
rem
create or replace trigger PRACTICE.SET_SECURITY_CONTEXT
after logon on database
begin
PRACTICE.CONTEXT_PACKAGE.SET_CONTEXT;

end;
/

Each time a user logs in, Oracle will execute the SET_CONTEXT procedure within the PRACTICE
user’s CONTEXT_PACKAGE package. That procedure will query the STOCK_ACCOUNT table and
see if there is a matching account name; if there is a match, then the session’s context will be altered
to reflect the Account value.

You should test the context setting before going past this point in the implementation of a VPD.
You can use the SYS_CONTEXT function to determine whether the configuration is working properly,
as shown in the following listing:

connect adams/john7

select SYS_CONTEXT('USERENV', 'SESSION_USER') Username,
SYS_CONTEXT('PRACTICE', 'USER_ID') ID

from DUAL;

USERNAME
--
ID
--
ADAMS
1234

Chapter 19: Advanced Security—Virtual Private Databases 375

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 19
Blind Folio 19:375

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The SYS_CONTEXT function output shows the power of the VPD configuration. For each
user who logs in, Oracle will check the STOCK_ACCOUNT table and will use the matching
Account value to set a value for the session’s User_ID. In this case, Oracle looked up the ADAMS
user in the STOCK_ACCOUNT table, found its Account value (1234), and set its session’s User_
ID variable to that value. If you have that information, you can restrict access to rows in other
tables based on the Account data in the STOCK_ACCOUNT table. VPD allows you to restrict
that access automatically with no need to create views. Every time a user attempts to access a
table, access can be restricted regardless of the tool used.

If you log in as a user not listed in the STOCK_ACCOUNT table (triggering a NO_DATA_
FOUND exception), your User_ID value will be 0, as the procedure dictates:

WHEN NO_DATA_FOUND then
DBMS_SESSION.SET_CONTEXT('PRACTICE','USER_ID', 0);

Create a Security Policy
At this point, the context and the logon triggers have been created. For the context package to
have an effect on the users’ interaction with the database, you need to create a security package
that acts on the output of the context package.

First, define the package header. In this example, there are two types of actions supported
against the STOCK_TRX table (inserts and selects), so two functions will be created within the
package:

connect PRACTICE/PRACTICE

create or replace package SECURITY_PACKAGE as
function STOCK_TRX_INSERT_SECURITY(Owner VARCHAR2, Objname VARCHAR2)
return VARCHAR2;

function STOCK_TRX_SELECT_SECURITY(Owner VARCHAR2, Objname VARCHAR2)
return VARCHAR2;

end SECURITY_PACKAGE;
/

Next, create the package body. Both functions follow the same pattern, geared toward generating
a predicate that will be applied every time a user queries the STOCK_TRX table. If the session
username is the owner of the table, then the predicate is NULL. For all other users, the User_ID
context variable is evaluated, and is passed as a limiting condition to any query. The object of
these functions is to generate a predicate such as where Account=1234 to be applied each time
the table is queried by a user.

create or replace package body SECURITY_PACKAGE is
function STOCK_TRX_SELECT_SECURITY(Owner VARCHAR2, Objname VARCHAR2)
return VARCHAR2 is
Predicate VARCHAR2(2000);

begin
Predicate := '1=2';
if (SYS_CONTEXT('USERENV','SESSION_USER') = 'PRACTICE') then
Predicate := NULL;

376 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 19
Blind Folio 19:376

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

else
Predicate := 'ACCOUNT = SYS_CONTEXT(''PRACTICE'',''USER_ID'')';

end if;
return Predicate;

END STOCK_TRX_SELECT_SECURITY;

function STOCK_TRX_INSERT_SECURITY(Owner VARCHAR2, Objname VARCHAR2)
return VARCHAR2 is
Predicate VARCHAR2(2000);

begin
Predicate := '1=2';
if (SYS_CONTEXT('USERENV','SESSION_USER') = 'PRACTICE') then
Predicate := NULL;

else
Predicate := 'ACCOUNT = SYS_CONTEXT(''PRACTICE'',''USER_ID'')';

end if;
return Predicate;

end STOCK_TRX_INSERT_SECURITY;
end SECURITY_PACKAGE;
/

Since this package will be executed by all users who access the STOCK_TRX table, grant users
the privilege to execute it, and create a public synonym.

grant EXECUTE ON PRACTICE.SECURITY_PACKAGE to public;
create public synonym SECURITY_PACKAGE for PRACTICE.SECURITY_PACKAGE;

Apply the Security Policy to Tables
Now that the security package exists, you can relate it to tables. To add a policy to a table, use
the ADD_POLICY procedure of the DBMS_RLS package, as shown in the following listing:

begin
DBMS_RLS.ADD_POLICY('PRACTICE', 'STOCK_TRX', 'STOCK_TRX_INSERT_POLICY',

'PRACTICE', 'SECURITY_PACKAGE.STOCK_TRX_INSERT_SECURITY',
'INSERT', TRUE);

DBMS_RLS.ADD_POLICY('PRACTICE', 'STOCK_TRX', 'STOCK_TRX_SELECT_POLICY',
'PRACTICE', 'SECURITY_PACKAGE.STOCK_TRX_SELECT_SECURITY',
'SELECT');

end;
/

The ADD_POLICY procedure is executed two times. In the first execution, the STOCK_TRX_
INSERT_SECURITY function is specified for execution during attempts to insert rows into the
STOCK_TRX table. In the second execution, the STOCK_TRX_SELECT_SECURITY function is
applied to queries of the STOCK_TRX tables. You can have distinct rules for security for different
operations against the table. The variables passed to the ADD_POLICY procedure are the schema
name, table name, and policy name, the schema name and function name for the security function,
and the operation affected.

Chapter 19: Advanced Security—Virtual Private Databases 377

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 19
Blind Folio 19:377

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

378 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 19
Blind Folio 19:378

Test VPD
To see the results of the security policy, query the table. The STOCK_TRX table has four rows,
two from the ADAMS account (1234) and two from the BURLINGTON account (7777). Log in
as one of those users and query the table:

connect adams/john7

select * from PRACTICE.STOCK_TRX;

ACCOUNT SYMBOL PRICE QUANTITY T
---------- -------------------- ---------- ---------- -

1234 ADSP 31.75 100 B
1234 ADSP 31.55 100 B

Although the ADAMS user did not provide a where clause in his query, Oracle applied a
predicate to his query, limiting the results to rows with the Account value of 1234. What if the
BURLINGTON user attempts the same query?

connect burlington/newj2

select * from PRACTICE.STOCK_TRX;

ACCOUNT SYMBOL PRICE QUANTITY T
---------- -------------------- ---------- ---------- -

7777 ADSP 31.5 300 S
7777 OCKS 21.75 1000 B

The BURLINGTON user only sees the rows with the Account value of 7777, based on his row
in the STOCK_ACCOUNT table.

NOTE
Because the STOCK_ACCOUNT table will be queried for each logon,
make sure the query to retrieve the user context data is properly
tuned. See Chapter 43 for an overview of tuning.

What about other users? If they are not in the STOCK_ACCOUNT table, they cannot retrieve
rows from the STOCK_TRX table:

connect system/manager

select * from PRACTICE.STOCK_TRX;

no rows selected

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In addition to selects, inserts were limited by the security policy; a user can only insert rows
into STOCK_TRX if the Account value matches the user’s context settings. Attempts to insert other
rows fail:

connect PRACTICE/PRACTICE
grant INSERT on STOCK_TRX to ADAMS;

connect adams/john7

insert into PRACTICE.STOCK_TRX
values
(7777, 'ADSP',31.5,100, 'B');

ERROR at line 1:
ORAC-28115: policy with check option violation

The ORA-28115 error indicates that the user attempted to insert a row that the user would
not be able to select due to the VPD settings.

How to Implement Column-Level VPD
As of Oracle Database 10g, you can implement VPD at the column level. If a column with secure
data is referenced by a query, you can use column-level VPD to apply a security policy or display
the column with NULL values. This approach is different from the row-based VPD shown in the
prior examples; in column-level VPD all rows may be displayed, but the columns may be shielded
from the user. You can apply column-level VPD to a table or a view.

To use column-level VPD, specify a value for the sec_relevant_cols input parameters for the
ADD_POLICY procedure of DBMS_RLS. If the STOCK_TRX_SELECT_POLICY did not already exist,
you could use the following command:

begin
DBMS_RLS.ADD_POLICY

(object_schema=>'PRACTICE',
object_name=>'STOCK_TRX',
policy_name=>'STOCK_TRX_SELECT_POLICY',

function_schema=>'PRACTICE',
policy_function=>'SECURITY_PACKAGE.STOCK_TRX_SELECT_SECURITY',

sec_relevant_cols=>'Price');
end;
/

By default, the rows will be returned based on the security policy function when the Price
column is referenced by a query. To use the column masking option, tell Oracle to return all
rows by setting the sec_relevant_cols_opt parameter to DBMS_RLS.ALL_ROWS, following the
sec_relevant_cols parameter setting.

When this version of the policy is used, all rows will be returned by the query. For the rows
that the user would not normally be able to see, the secure column (Price) will display NULL values.
The Price values will be displayed for rows that the user can normally see.

Chapter 19: Advanced Security—Virtual Private Databases 379

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 19
Blind Folio 19:379

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Column masking applies only to queries, not to DML operations. Note that your applications
must support the display of NULL values if you use column masking.

How to Disable VPD
To remove a VPD functionality, reverse the steps shown in this chapter: Remove the policy from
the table (via the DROP_POLICY procedure of the DBMS_RLS package), drop the logon trigger,
and optionally drop the other packages.

Table 19-1 lists the procedures within the DBMS_RLS package.
To drop a policy, execute the DROP_POLICY procedure. Its three input variables are the

schema name, the object name, and the policy. The following example drops the STOCK_TRX_
INSERT_POLICY:

DBMS_RLS.DROP_POLICY('PRACTICE', 'STOCK_TRX', 'STOCK_TRX_INSERT_POLICY');

Similarly, you can drop the STOCK_TRX_SELECT_POLICY:

DBMS_RLS.DROP_POLICY('PRACTICE', 'STOCK_TRX', 'STOCK_TRX_SELECT_POLICY');

380 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 19
Blind Folio 19:380

Procedure Purpose

ADD_POLICY Add a policy to a table, view, or synonym

DROP_POLICY Drop a policy from a table, view, or synonym

REFRESH_POLICY Invalidate cursors associated with nonstatic policies

ENABLE_POLICY Enable (or disable) a policy you previously added to a table,
view, or synonym

CREATE_POLICY_GROUP Create a policy group

ADD_GROUPED_POLICY Add a policy to the specified policy group

ADD_POLICY_CONTEXT Add the context for the active application

DELETE_POLICY_GROUP Drop a policy group

DROP_GROUPED_POLICY Drop a policy that is a member of the specified group

DROP_POLICY_CONTEXT Drop the context for the application

ENABLE_GROUPED_POLICY Enable a policy within a group

DISABLE_GROUPED_POLICY Disable a policy within a group

REFRESH_GROUPED_POLICY Reparse the SQL statements associated with a refreshed policy

TABLE 19-1. DBMS_RLS Procedures

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 19: Advanced Security—Virtual Private Databases 381

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 19
Blind Folio 19:381

At this point, the policy will be dropped, but the login trigger will still be executing during
each login. Remember to drop the trigger (in this case, PRACTICE.SET_SECURITY_CONTEXT) so
the database does not perform unnecessary work. If the VPD restrictions are no longer needed,
you can then drop the packages that set the application context.

How to Use Policy Groups
As shown in Table 19-1, a number of the available procedures within DBMS_RLS deal with policy
groups. You can create policy groups, add policies to a policy group, and enable policies within
a group.

You can create groups that integrate policies affecting the same tables. If multiple applications
use the same tables, you can use groups to manage the table-level policies that should be enabled
during application usage. All policies in a policy group can be applied at application run time.

By default, all policies belong to the SYS_DEFAULT policy group. Policies in the SYS_DEFAULT
policy group will always be executed along with the policy group specified by the driving context.
You cannot drop the SYS_DEFAULT policy group.

To add a new policy group, use the CREATE_POLICY_GROUP procedure. The syntax is

DBMS_RLS.CREATE_POLICY_GROUP (
object_schema VARCHAR2,
object_name VARCHAR2,
policy_group VARCHAR2);

You can then add a policy to the group via the ADD_GROUPED_POLICY procedure. Its
syntax is

DBMS_RLS.ADD_GROUPED_POLICY(
object_schema VARCHAR2,
object_name VARCHAR2,
policy_group VARCHAR2,
policy_name VARCHAR2,
function_schema VARCHAR2,
policy_function VARCHAR2,
statement_types VARCHAR2,
update_check BOOLEAN,
enabled BOOLEAN,
static_policy IN BOOLEAN FALSE,
policy_type IN BINARY_INTEGER NULL,
long_predicate IN BOOLEAN FALSE,
sec_relevant_cols IN VARCHAR2);

For example, you can create a policy group named TRXAUDIT, then add the STOCK_TRX_
SELECT_POLICY to it:

begin
DBMS_RLS.CREATE_POLICY_GROUP('PRACTICE','STOCK_TRX','TRXAUDIT');
DBMS_RLS.ADD_GROUPED_POLICY('PRACTICE','STOCK_TRX','TRXAUDIT',
'STOCK_TRX_SELECT_POLICY','PRACTICE', 'SECURITY_PACKAGE.STOCK_TRX_SELECT_SECURITY');
end;
/

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When the database is accessed, the application initializes the driving context to specify the
policy group to use. In the create context command, specify the name of the procedure to use
(in the examples in this chapter, the context is set via PRACTICE.CONTEXT_PACKAGE).

create context PRACTICE using PRACTICE.CONTEXT_PACKAGE;

PRACTICE.CONTEXT_PACKAGE executed the SET_CONTEXT procedure to set the
application context:

DBMS_SESSION.SET_CONTEXT('PRACTICE','SETUP','TRUE');

For policy groups, the third parameter passed to SET_CONTEXT will be the policy group
name. For the application to invoke a specific context group, rewrite CONTEXT_PACKAGE
to support a third input variable (policy group) and add that to the SET_CONTEXT execution:

DBMS_SESSION.SET_CONTEXT('PRACTICE','SETUP', policy_group);

Within your application, execute CONTEXT_PACKAGE and set the policy group value to
TRXAUDIT. When the user queries the STOCK_TRX table, the VPD restrictions in SYS_DEFAULT
and the TRXAUDIT policy group will then be applied.

You can remove a policy from a policy group via DROP_GROUPED_POLICY, disable it via
DISABLE_GROUPED_POLICY, or re-enable it via ENABLE_GROUPED_POLICY. Use DELETE_
POLICY_GROUP to drop the policy group entirely. See the Oracle Database Security Guide for
additional information on the procedures available within the DBMS_RLS package.

382 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 19
Blind Folio 19:382

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 20
Blind Folio 20:383

CHAPTER
20

Working with
Tablespaces

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

I
n this chapter, you will see an overview of the use of tablespaces, along with the
commands needed to create and alter tablespaces. The commands needed to create
and maintain tablespaces require you to have database administrator privileges. The
creation and maintenance of tablespaces is described in greater detail in Chapter 46.
The goals of this chapter are to introduce the concepts, review new features, and

provide developers with the information needed to make informed design decisions relative to
their usage of tablespaces.

Tablespaces and the Structure of the Database
People who have worked with computers for any period of time are familiar with the concept of
a file; it’s a place on disk where information is stored, and it has a name. Its size is usually not
fixed: If you add information to the file, it can grow larger and take up more disk space, up to the
maximum available. This process is managed by the operating system, and often involves distributing
the information in the file over several smaller sections of the disk that are not physically near each
other. The operating system handles the logical connection of these smaller sections without your
being aware of it at all. To you, the file looks like a single whole.

Oracle uses files as a part of its organizational scheme, but its logical structure goes beyond
the concept of a file. A datafile is an operating system file used to store Oracle data. Each datafile
is assigned to a tablespace—a logical division within the database. Tablespaces commonly include
SYSTEM (for Oracle’s internal data dictionary), SYSAUX (for auxiliary internal objects), USERS
(for user objects), and others for application tables, indexes, and additional database structures.

The datafiles can have a fixed size or can be allowed to extend themselves automatically
when they are filled, up to a defined limit. To add more space to a tablespace, you can manually
extend your datafiles or add new datafiles. New rows can then be added to existing tables, and
those tables may then have rows in multiple datafiles.

Each table has a single area of disk space, called a segment, set aside for it in the tablespace.
Each segment, in turn, has an initial area of disk space, called the initial extent, set aside for it in
the tablespace. Once the segment has used up this space, the next extent, another single area of
disk space, is set aside for it. When it has used this up as well, yet another next extent is set aside.
This process continues with every table until the whole tablespace is full. At that point, someone
has to add a new file to the tablespace or extend the tablespace’s files before any more growth in
the tables can take place.

Every database also contains a SYSTEM tablespace, which contains the data dictionary as well
as the names and locations of all the tablespaces, tables, indexes, and clusters for this database.
The objects within the SYSTEM tablespace are owned by the SYS and SYSTEM users; no other
users should own objects in this tablespace because they may impact the rest of the database.

NOTE
As of Oracle Database 10g, you can rename a tablespace via the alter
tablespace command.

384 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 20
Blind Folio 20:384

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Tablespace Contents
You can query the USER_TABLESPACES data dictionary view to see the tablespaces available in
the database. Tablespaces are created by privileged users, via the create tablespace command.
The simplest syntax is

create tablespace tablespace_name
datafile datafile_name filesize;

Database administrators specify the tablespace space-allocation method when creating the
tablespace. The following example creates a tablespace whose initial space allocation is a single
100MB file, but that file can automatically extend itself as needed:

create tablespace USERS_2
datafile '/u01/oradata/users_2_01.dbf'

size 100M autoextend on;

In this chapter, the focus is on the developer’s use of tablespaces. Database administrators
should see Chapter 46 and the Alphabetical Reference for the detailed commands and options
involved in creating tablespaces.

The Contents column of USER_TABLESPACES shows the type of objects supported in each
tablespace. The following shows a sample listing from an Oracle Database 10g installation:

select Tablespace_Name, Contents from USER_TABLESPACES;

TABLESPACE_NAME CONTENTS
------------------------------ ---------
SYSTEM PERMANENT
UNDOTBS1 UNDO
SYSAUX PERMANENT
TEMP TEMPORARY
USERS PERMANENT

The SYSTEM, SYSAUX, and USERS tablespaces support permanent objects—tables, indexes,
and other user objects. The TEMP tablespace supports only temporary segments—segments
created and managed by Oracle to support sorting operations. The UNDOTBS1 tablespace
supports undo segment management (see Chapters 27 and 28).

When you create a table without specifying a tablespace, the table will be stored in your default
tablespace. You can see that setting via the USER_USERS data dictionary view:

select Default_Tablespace, Temporary_Tablespace
from USER_USERS;

DEFAULT_TABLESPACE TEMPORARY_TABLESPACE
------------------------------ ------------------------------
USERS TEMP

Chapter 20: Working with Tablespaces 385

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 20
Blind Folio 20:385

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In this example, the default tablespace is USERS and the temporary tablespace is TEMP. Those
settings can be changed via the alter user command.

Although USERS is your default tablespace, you may not have any quota on the tablespace.
To see how much space you have been granted in a tablespace, query USER_TS_QUOTAS,
as shown in the following listing:

select * from USER_TS_QUOTAS;

TABLESPACE_NAME BYTES MAX_BYTES BLOCKS MAX_BLOCKS
------------------ ---------- ---------- ---------- ----------
USERS 131072 -1 16 -1

In this case, the MAX_BYTES and MAX_BLOCKS values—the maximum space you can use—
are both –1. If the value is negative, you have unlimited quota in that tablespace. In this example,
the user has only used 16 database blocks in 131,072 bytes. Because there are 1,024 bytes in a
kilobyte, the user has 128KB allocated in the USERS tablespace.

The space in tablespaces can be locally managed. As an alternative, the space management
can be dictionary managed (the space management records are maintained in the data dictionary).
In general, locally managed tablespaces are simpler to administer. You can display the extent
management setting via the Extent_Management column of USER_TABLESPACES:

select Tablespace_Name, Extent_Management from USER_TABLESPACES;

TABLESPACE_NAME EXTENT_MAN
------------------------------ ----------
SYSTEM LOCAL
UNDOTBS1 LOCAL
SYSAUX LOCAL
TEMP LOCAL
USERS LOCAL

In a locally managed tablespace, the space map for the tablespace is maintained in the
headers of the tablespace’s datafiles. To see the datafiles allocated to a tablespace, database
administrators can query the DBA_DATA_FILES data dictionary view; there is no equivalent
view for nonprivileged users.

The default values for storage are operating system specific. You can query USER_TABLESPACES
to see the block size and the defaults for the initial extent size, next extent size, minimum number
of extents, maximum number of extents, and pctincrease settings for objects:

select Tablespace_Name,
Block_Size,
Initial_Extent,
Next_Extent,
Min_Extents,
Max_Extents,
Pct_Increase

from USER_TABLESPACES;

386 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 20
Blind Folio 20:386

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 20: Working with Tablespaces 387

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 20
Blind Folio 20:387

To override the default settings, you can use the storage clause when creating a table or
index. See the entry for the storage clause in the Alphabetical Reference for the full syntax. In
general, you should work with the database administrators to establish appropriate defaults for
the locally managed tablespaces and then rely on that sizing for your objects. Unless there are
objects with extraordinary space requirements, you should avoid setting custom sizes for each of
your tables and indexes. If you do not specify a storage clause when you create an object, it will
use the default for its tablespace. If you do not specify a tablespace clause, the object will be
stored in your default tablespace.

You can query the free space in a tablespace via the USER_FREE_SPACE data dictionary view.
USER_FREE_SPACE will display one row for each contiguous free extent within a tablespace, as
well as its exact location and length.

RECYCLEBIN Space in Tablespaces
As of Oracle Database 10g, dropped objects do not release their allocated space unless you specify
the purge clause when dropping them. By default, the objects maintain their space, allowing you
to later recover them via the flashback table to before drop command (see Chapter 28).

The space currently used by dropped objects is recorded in each user’s RECYCLEBIN view
(or, for the DBA, the DBA_RECYCLEBIN view). You can see how many bytes you are presently
using in each tablespace, and you can use the purge command to purge old entries from the
RECYCLEBIN. Here’s an example:

select Space --number of blocks still allocated
from RECYCLEBIN

where Ts_Name = 'USERS';

See the purge command in the Alphabetical Reference and Chapter 28 for further details.

Read-Only Tablespaces
DBAs can alter a tablespace via the alter tablespace command. Tablespaces may be altered to be
read-only:

alter tablespace USERS read only;

Or they can be changed from read-only to writable:

alter tablespace USERS read write;

The data in a read-only tablespace cannot be altered. Although nonprivileged users cannot
execute these commands, you should be aware of them because they may alter how you physically
store your data. If you can move the unchanging data to its own tablespace, you may be able to
designate the entire tablespace as read-only. Using read-only tablespaces may simplify backup
and recovery efforts.

NOTE
You can drop objects from read-only tablespaces.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

388 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 20
Blind Folio 20:388

The read-only status for tablespaces is displayed via the Status column of the USER_
TABLESPACES data dictionary view, as shown in the following example:

alter tablespace USERS read only;

Tablespace altered.

select Status from USER_TABLESPACES
where Tablespace_Name = 'USERS';

STATUS

READ ONLY

alter tablespace USERS read write;

Tablespace altered.

select Status from USER_TABLESPACES
where Tablespace_Name = 'USERS';

STATUS

ONLINE

nologging Tablespaces
You can disable the creation of redo log entries for specific objects. By default, Oracle generates
log entries for all transactions. If you wish to bypass that functionality—for instance, if you are
loading data and you can completely re-create all the transactions—you can specify that the loaded
object or the tablespace be maintained in nologging mode.

You can see the current logging status for tablespaces by querying the Logging column of
USER_TABLESPACES.

Temporary Tablespaces
When you execute a command that performs a sorting or grouping operation, Oracle may create a
temporary segment to manage the data. The temporary segment is created in a temporary tablespace,
and the user executing the command does not have to manage that data. Oracle will dynamically
create the temporary segment and will release its space when the instance is shut down and restarted.
If there is not enough temporary space available and the temporary tablespace datafiles cannot auto-
extend, the command will fail. Each user in the database has an associated temporary tablespace—
there may be just one such tablespace for all users to share. A default temporary tablespace is set
at the database level so all new users will have the same temporary tablespace unless a different
one is specified during the create user or alter user command.

As of Oracle Database 10g, you can create multiple temporary tablespaces and group them.
Assign the temporary tablespaces to tablespace groups via the tablespace group clause of the
create temporary tablespace or alter tablespace command. You can then specify the group as a
user’s default tablespace. Tablespace groups can help to support parallel operations involving sorts.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Tablespaces for System-Managed Undo
You can use Automatic Undo Management (AUM) to place all undo data in a single tablespace.
When you create an undo tablespace, Oracle manages the storage, retention, and space utilization
for your rollback data via system-managed undo (SMU). When a retention time is set (in the
database’s initialization parameter file), Oracle will make a best effort to retain all committed
undo data in the database for the specified number of seconds. With that setting, any query
taking less than the retention time should not result in an error as long as the undo tablespace has
been sized properly. While the database is running, DBAs can change the UNDO_RETENTION
parameter value via the alter system command.

As of Oracle Database 10g, you can guarantee undo data is retained, even at the expense
of current transactions in the database. When you create the undo tablespace, specify retention
guarantee as part of your create database or create undo tablespace command. Use care with
this setting, because it may force transactions to fail in order to guarantee the retention of old
undo data in the undo tablespace.

Supporting Flashback Database
As of Oracle Database 10g, you can use the flashback database command to revert an entire
database to a prior point in time. DBAs can configure tablespaces to be excluded from this
option—the alter tablespace flashback off command tells Oracle to exclude that tablespace’s
transaction from the data written to the flashback database area. See Chapter 28 for details on
flashback database command usage.

Transporting Tablespaces
A transportable tablespace is a tablespace that can be “unplugged” from one database and “plugged
into” another. To be transportable, a tablespace—or a set of tablespaces—must be self-contained.
The tablespace set cannot contain any objects that refer to objects in other tablespaces. Therefore, if
you transport a tablespace containing indexes, you must move the tablespace containing the indexes’
base tables as part of the same transportable tablespace set. The better you have organized and
distributed your objects among tablespaces, the easier it is to generate a self-contained set of
tablespaces to transport.

To transport tablespaces, you need to generate a tablespace set, copy or move that tablespace
set to the new database, and plug the set into the new database. Because these are privileged
operations, you must have database administration privileges to execute them. As a developer,
you should be aware of this capability, because it can significantly reduce the time required to
migrate self-contained data among databases. For instance, you may create and populate a read-
only tablespace of historical data in a test environment and then transport it to a production database,
even across platforms. See Chapter 46 for details on transporting tablespaces.

Planning Your Tablespace Usage
With all these options, Oracle can support very complex environments. You can maintain a read-
only set of historical data tables alongside active transaction tables. You can place the most
actively used tables in datafiles that are located on the fastest disks. You can partition tables (see
Chapter 17) and store each partition in a separate tablespace. With all these options available,
you should establish a basic set of guidelines for your tablespace architecture. This plan should

Chapter 20: Working with Tablespaces 389

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 20
Blind Folio 20:389

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

be part of your early design efforts so you can take the best advantage of the available features.
The following guidelines should be a starting point for your plan.

Separate Active and Static Tables
Tables actively used by transactions have space considerations that differ significantly from static
lookup tables. The static tables may never need to be altered or moved; the active tables may
need to be actively managed, moved, or reorganized. To simplify the management of the static
tables, isolate them in a dedicated tablespace. Within the most active tables, there may be further
divisions—some of them may be extremely critical to the performance of the application, and
you may decide to move them to yet another tablespace.

Taking this approach a step further, separate the active and static partitions of tables and
indexes. Ideally, this separation will allow you to focus your tuning efforts on the objects that
have the most direct impact on performance while eliminating the impact of other object usage
on the immediate environment.

Separate Indexes and Tables
Indexes may be managed separately from tables—you may create or drop indexes while the base
table stays unchanged. Because their space is managed separately, indexes should be stored in
dedicated tablespaces. You will then be able to create and rebuild indexes without worrying about
the impact of that operation on the space available to your tables.

Separate Large and Small Objects
In general, small tables tend to be fairly static lookup tables—such as a list of countries, for example.
Oracle provides tuning options for small tables (such as caching) that are not appropriate for
large tables (which have their own set of tuning options). Because the administration of these
types of tables may be dissimilar, you should try to keep them separate. In general, separating
active and static tables will take care of this objective as well.

Separate Application Tables from Core Objects
The two sets of core objects to be aware of are the Oracle core objects and the enterprise objects.
Oracle’s core objects are stored in its default tablespaces—SYSTEM, SYSAUX, the temporary
tablespace, and the undo tablespace. Do not create any application objects in these tablespaces
or under any of the schemas provided by Oracle.

Within your application, you may have some objects that are core to the enterprise and could
be reused by multiple applications. Because these objects may need to be indexed and managed
to account for the needs of multiple applications, they should be maintained apart from the other
objects your application needs.

Grouping the objects in the database according to the categories described here may seem fairly
simplistic, but it is a critical part of successfully deploying an enterprise-scale database application.
The better you plan the distribution of I/O and space, the easier it will be to implement, tune, and
manage the application’s database structures. Furthermore, database administrators can manage
the tablespace separately—taking them offline, backing them up, or isolating their I/O activity. In
later chapters, you will see details on other types of objects (such as materialized views) as well
as the commands needed to create and alter tablespaces.

390 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 20
Blind Folio 20:390

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 21
Blind Folio 21:391

CHAPTER
21

Using SQL*Loader
to Load Data

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

I
n the scripts provided for the practice tables, a large number of insert commands are
executed. In place of those inserts, you could create a file containing the data to be
loaded and then use Oracle’s SQL*Loader utility to load the data. This chapter provides
you with an overview of the use of SQL*Loader and its major capabilities. Two additional
data-movement utilities, Data Pump Export and Data Pump Import, are covered in

Chapter 22. SQL*Loader, Data Pump Export, and Data Pump Import are described in great detail
in the Oracle Database Utilities provided with the standard Oracle documentation set.

SQL*Loader loads data from external files into tables in the Oracle database. SQL*Loader
uses two primary files: the datafile, which contains the information to be loaded, and the control
file, which contains information on the format of the data, the records and fields within the file,
the order in which they are to be loaded, and even, when needed, the names of the multiple files
that will be used for data. You can combine the control file information into the datafile itself,
although the two are usually separated to make it easier to reuse the control file.

When executed, SQL*Loader will automatically create a log file and a “bad” file. The log file
records the status of the load, such as the number of rows processed and the number of rows
committed. The “bad” file will contain all the rows that were rejected during the load due to data
errors, such as nonunique values in primary key columns.

Within the control file, you can specify additional commands to govern the load criteria. If these
criteria are not met by a row, the row will be written to a “discard” file. The log, bad, and discard
files will by default have the extensions .log, .bad, and .dsc, respectively. Control files are typically
given the extension .ctl.

SQL*Loader is a powerful utility for loading data, for several reasons:

■ It is highly flexible, allowing you to manipulate the data as it is being loaded.

■ You can use SQL*Loader to break a single large data set into multiple sets of data during
commit processing, significantly reducing the size of the transactions processed by the load.

■ You can use its Direct Path loading option to perform loads very quickly.

To start using SQL*Loader, you should first become familiar with the control file, as described
in the next section.

The Control File
The control file tells Oracle how to read and load the data. The control file tells SQL*Loader where
to find the source data for the load and the tables into which to load the data, along with any other
rules that must be applied during the load processing. These rules can include restrictions for
discards (similar to where clauses for queries) and instructions for combining multiple physical
rows in an input file into a single row during an insert. SQL*Loader will use the control file to
create the insert commands executed for the data load.

The control file is created at the operating-system level, using any text editor that enables you
to save plain text files. Within the control file, commands do not have to obey any rigid formatting
requirements, but standardizing your command syntax will make later maintenance of the control
file simpler.

The following listing shows a sample control file for loading data into the BOOKSHELF table:

392 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 21
Blind Folio 21:392

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

LOAD DATA
INFILE 'bookshelf.dat'
INTO TABLE BOOKSHELF
(Title POSITION(01:100) CHAR,
Publisher POSITION(101:120) CHAR,
CategoryName POSITION(121:140) CHAR,
Rating POSITION(141:142) CHAR)

In this example, data will be loaded from the file bookshelf.dat into the BOOKSHELF table. The
bookshelf.dat file will contain the data for all four of the BOOKSHELF columns, with whitespace
padding out the unused characters in those fields. Thus, the Publisher column value always begins
at space 101 in the file, even if the Title value is less than 100 characters. Although this formatting
makes the input file larger, it may simplify the loading process. No length needs to be given for
the fields, since the starting and ending positions within the input data stream effectively give the
field length.

The infile clause names the input file, and the into table clause specifies the table into which
the data will be loaded. Each of the columns is listed, along with the position where its data resides
in each physical record in the file. This format allows you to load data even if the source data’s
column order does not match the order of columns in your table.

To perform this load, the user executing the load must have INSERT privilege on the BOOKSHELF
table.

Loading Variable-Length Data
If the columns in your input file have variable lengths, you can use SQL*Loader commands to tell
Oracle how to determine when a value ends. In the following example, commas separate the
input values:

LOAD DATA
INFILE 'bookshelf.dat'
BADFILE '/user/load/bookshelf.bad'
TRUNCATE
INTO TABLE BOOKSHELF
FIELDS TERMINATED BY ","
(Title, Publisher, CategoryName, Rating)

NOTE
Be sure to select a delimiter that is not present within the values being
loaded. In this example, a comma is the delimiter, so any comma
present within any text string being loaded will be interpreted as an
end-of-field character.

The fields terminated by "," clause tells SQL*Loader that during the load, each column value will
be terminated by a comma. Thus, the input file does not have to be 142 characters wide for each
row, as was the case in the first load example. The lengths of the columns are not specified in the
control file, since they will be determined during the load.

In this example, the name of the bad file is specified by the badfile clause. In general, the name
of the bad file is only given when you want to redirect the file to a different directory.

Chapter 21: Using SQL*Loader to Load Data 393

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 21
Blind Folio 21:393

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This example also shows the use of the truncate clause within a control file. When this control
file is executed by SQL*Loader, the BOOKSHELF table will be truncated before the start of the
load. Since truncate commands cannot be rolled back, you should use care when using this option.
In addition to truncate, you can use the following options:

■ append Adds rows to the table.

■ insert Adds rows to an empty table. If the table is not empty, the load will abort with
an error.

■ replace Empties the table and then adds the new rows. The user must have DELETE
privilege on the table.

Starting the Load
To execute the commands in the control file, you need to run SQL*Loader with the appropriate
parameters. SQL*Loader is started via the SQLLDR command at the operating-system prompt (in
UNIX, use sqlldr).

NOTE
The SQL*Loader executable may consist of the name SQLLDR
followed by a version number. Consult your platform-specific Oracle
documentation for the exact name. For Oracle Database 10g, the
executable file should be named SQLLDR.

When you execute SQLLDR, you need to specify the control file, username/password, and
other critical load information, as shown in Table 21-1.

Each load must have a control file, since none of the input parameters specify critical information
for the load—the input file and the table being loaded.

You can separate the arguments to SQLLDR with commas. Enter them with the keywords
(such as userid or log), followed by the parameter value. Keywords are always followed by an
equal sign (=) and the appropriate argument.

394 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 21
Blind Folio 21:394

SQLLDR Keyword Description

Userid Username and password for the load, separated by a slash.

Control Name of the control file.

Log Name of the log file.

Bad Name of the bad file.

Discard Name of the discard file.

TABLE 21-1. SQL*Loader Options

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 21: Using SQL*Loader to Load Data 395

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 21
Blind Folio 21:395

SQLLDR Keyword Description

Discardmax Maximum number of rows to discard before stopping the load.
The default is to allow all discards.

Skip Number of logical rows in the input file to skip before starting to
load data. Usually used during reloads from the same input file
following a partial load. The default is 0.

Load Number of logical rows to load. The default is all.

Errors Number of errors to allow. The default is 50.

Rows Number of rows to commit at a time. Use this parameter to break
up the transaction size during the load. The default for conventional
path loads is 64; the default for Direct Path loads is all rows.

Bindsize Size of conventional path bind array, in bytes. The default is
operating-system–dependent.

Silent Suppress messages during the load.

Direct Use Direct Path loading. The default is FALSE.

Parfile Name of the parameter file that contains additional load parameter
specifications.

Parallel Perform parallel loading. The default is FALSE.

File File to allocate extents from (for parallel loading).

Skip_Unusable_Indexes Allows loads into tables that have indexes in unusable states.
The default is FALSE.

Skip_Index_Maintenance Stops index maintenance for Direct Path loads, leaving them in
unusable states. The default is FALSE.

Readsize Size of the read buffer; default is 1MB.

External_table Use external table for load; default is NOT_USED; other valid
values are GENERATE_ONLY and EXECUTE.

Columnarrayrows Number of rows for Direct Path column array; default is 5,000.

Streamsize Size in bytes of the Direct Path stream buffer; default is 256,000.

Multithreading A flag to indicate if multithreading should be used during a direct
path load.

Resumable A TRUE/FALSE flag to enable or disable resumable operations for
the current session; default is FALSE.

Resumable_name Text identifier for the resumable operation.

Resumable_timeout Wait time for resumable operation; default is 7200 seconds.

TABLE 21-1. SQL*Loader Options (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If the userid keyword is omitted and no username/password is provided as the first argument,
you will be asked for it. If a slash is given after the equal sign, an externally identified account
will be used. You also can use an Oracle Net database specification string to log into a remote
database and load the data into it. For example, your command may start

sqlldr userid=usernm/mypass@dev

The direct keyword, which invokes the Direct Path load option, is described in “Direct Path
Loading” later in this chapter.

The silent keyword tells SQLLDR to suppress certain informative data:

■ HEADER suppresses the SQL*LOADER header.

■ FEEDBACK suppresses the feedback at each commit point.

■ ERRORS suppresses the logging (in the log file) of each record that caused an Oracle
error, although the count is still logged.

■ DISCARDS suppresses the logging (in the log file) of each record that was discarded,
although the count is still logged.

■ PARTITIONS disables the writing of the per-partition statistics to the log file.

■ ALL suppresses all of the preceding.

If more than one of these is entered, separate each with a comma and enclose the list in
parentheses. For example, you can suppress the header and errors information via the following
keyword setting:

silent=(HEADER,ERRORS)

NOTE
Commands in the control file override any in the calling command
line.

Let’s load a sample set of data into the BOOKSHELF table, which has four columns (Title, Publisher,
CategoryName, and Rating). Create a plain text file named bookshelf.txt. The data to be loaded
should be the only two lines in the file:

Good Record,Some Publisher,ADULTNF,3
Another Title,Some Publisher,ADULTPIC,4

NOTE
Each line is ended by a carriage return. Even though the first line’s last
value is not as long as the column it is being loaded into, the row will
stop at the carriage return.

The data is separated by commas, and we don’t want to delete the data previously loaded
into BOOKSHELF, so the control file will look like this:

396 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 21
Blind Folio 21:396

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 21: Using SQL*Loader to Load Data 397

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 21
Blind Folio 21:397

LOAD DATA
INFILE 'bookshelf.txt'
APPEND
INTO TABLE BOOKSHELF
FIELDS TERMINATED BY ","
(Title, Publisher, CategoryName, Rating)

Save that file as bookshelf.ctl, in the same directory as the input data file. Next, run SQLLDR and
tell it to use the control file. This example assumes that the BOOKSHELF table exists under the
PRACTICE schema:

sqlldr practice/practice control=bookshelf.ctl log=bookshelf.log

When the load completes, you should have one successfully loaded record and one failure.
The successfully loaded record will be in the BOOKSHELF table:

select Title
from BOOKSHELF
where Publisher like '%Publisher';

TITLE
--
Good Record

A file named bookshelf.bad will be created, and will contain one record:

Another Title,Some Publisher,ADULTPIC,4

Why was that record rejected? Check the log file, bookshelf.log, which will say, in part:

Record 2: Rejected - Error on table BOOKSHELF.
ORA-02291: integrity constraint (PRACTICE.CATFK) violated -
parent key not found

Table BOOKSHELF:
1 Row successfully loaded.
1 Row not loaded due to data errors.

Row 2, the “Another Title” row, was rejected because the value for the CategoryName column
violated the foreign key constraint—ADULTPIC is not listed as a category in the CATEGORY table.

Because the rows that failed are isolated into the bad file, you can use that file as the input
for a later load once the data has been corrected.

Logical and Physical Records
In Table 21-1, several of the keywords refer to “logical” rows. A logical row is a row that is inserted
into the database. Depending on the structure of the input file, multiple physical rows may be
combined to make a single logical row.

For example, the input file may look like this:

Good Record,Some Publisher,ADULTNF,3

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

in which case there would be a one-to-one relationship between that physical record and the
logical record it creates. But the datafile may look like this instead:

Good Record,
Some Publisher,
ADULTNF,
3

To combine the data, you need to specify continuation rules. In this case, the column values
are split one to a line, so there is a set number of physical records for each logical record. To
combine them, use the concatenate clause within the control file. In this case, you would specify
concatenate 4 to create a single logical row from the four physical rows.

The logic for creating a single logical record from multiple physical records can be much
more complex than a simple concatenation. You can use the continueif clause to specify the
conditions that cause logical records to be continued. You can further manipulate the input data
to create multiple logical records from a single physical record (via the use of multiple into table
clauses). See the control file syntax in the “SQLLDR” entry of the Alphabetical Reference in this
book, and the notes in the following section.

You can use SQL*Loader to generate multiple inserts from a single physical row (similar to
the multitable insert capability described in Chapter 15). For example, suppose the input data is
denormalized, with fields City and Rainfall, while the input data is in the format City, Rainfall1,
Rainfall2, Rainfall3. The control file would resemble the following (depending on the actual physical
stop and start positions of the data in the file):

into table RAINFALL
when City != ' '
(City POSITION(1:5) CHAR,
Rainfall POSITION(6:10) INTEGER EXTERNAL) -- 1st row

--
into table RAINFALL
when City != ' '
(City POSITION(1:5) CHAR,
Rainfall POSITION(11:16) INTEGER EXTERNAL) -- 2nd row

--
into table RAINFALL
when City != ' '
(City POSITION(1:5) CHAR,
Rainfall POSITION(16:21) INTEGER EXTERNAL) -- 3rd row

Note that separate into table clauses operate on each physical row. In this example, they generate
separate rows in the RAINFALL table; they could also be used to insert rows into multiple tables.

Control File Syntax Notes
The full syntax for SQL*Loader control files is shown in the “SQLLDR” entry in the Alphabetical
Reference, so it is not repeated here.

Within the load clause, you can specify that the load is recoverable or unrecoverable. The
unrecoverable clause only applies to Direct Path loading, and is described in “Tuning Data Loads”
later in this chapter.

398 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 21
Blind Folio 21:398

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In addition to using the concatenate clause, you can use the continueif clause to control the
manner in which physical records are assembled into logical records. The this clause refers to the
current physical record, while the next clause refers to the next physical record. For example, you
could create a two-character continuation character at the start of each physical record. If that
record should be concatenated to the preceding record, set that value equal to '**'. You could
then use the continueif next (1:2)= '**' clause to create a single logical record from the multiple
physical records. The '**' continuation character will not be part of the merged record.

The syntax for the into table clause includes a when clause. The when clause, shown in the
following listing, serves as a filter applied to rows prior to their insertion into the table. For example,
you can specify

when Rating>'3'

to load only books with ratings greater than 3 into the table. Any row that does not pass the when
condition will be written to the discard file. Thus, the discard file contains rows that can be used
for later loads, but that did not pass the current set of when conditions. You can use multiple when
conditions, connected with and clauses.

Use the trailing nullcols clause if you are loading variable-length records for which the last
column does not always have a value. With this clause in effect, SQL*Loader will generate NULL
values for those columns.

As shown in an example earlier in this chapter, you can use the fields terminated by clause to
load variable-length data. Rather than being terminated by a character, the fields can be terminated
by whitespace or enclosed by characters or optionally enclosed by other characters.

For example, the following entry loads AuthorName values and sets the values to uppercase
during the insert. If the value is blank, a NULL is inserted:

AuthorName POSITION(10:34) CHAR TERMINATED BY WHITESPACE
NULLIF AuthorName=BLANKS "UPPER(:AuthorName)"

When you load DATE datatype values, you can specify a date mask. For example, if you had a
column named ReturnDate and the incoming data is in the format Mon-DD-YYYY in the first 11
places of the record, you could specify the ReturnDate portion of the load as follows:

ReturnDate POSITION (1:11) DATE "Mon-DD-YYYY"

Within the into table clause, you can use the recnum keyword to assign a record number to each
logical record as it is read from the datafile, and that value will be inserted into the assigned column
of the table. The constant keyword allows you to assign a constant value to a column during the
load. For character columns, enclose the constant value within single quotes. If you use the sysdate
keyword, the selected column will be populated with the current system date and time.

CheckOutDate SYSDATE

If you use the sequence option, SQL*Loader will maintain a sequence of values during the load.
As records are processed, the sequence value will be increased by the increment you specify. If
the rows fail during insert (and are sent to the bad file), those sequence values will not be reused.
If you use the max keyword within the sequence option, the sequence values will use the current

Chapter 21: Using SQL*Loader to Load Data 399

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 21
Blind Folio 21:399

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

maximum value of the column as the starting point for the sequence. The following listing shows
the use of the sequence option:

Seqnum_col SEQUENCE(MAX,1)

You can also specify the starting value and increment for a sequence to use when inserting. The
following example inserts values starting with a value of 100, incrementing by 2. If a row is rejected
during the insert, its sequence value is skipped.

Seqnum_col SEQUENCE(100,2)

If you store numbers in VARCHAR2 columns, avoid using the sequence option for those columns.
For example, if your table already contains the values 1 through 10 in a VARCHAR2 column,
then the maximum value within that column is 9—the greatest character string. Using that as the
basis for a sequence option will cause SQL*Loader to attempt to insert a record using 10 as the
newly created value—and that may conflict with the existing record. This behavior illustrates
why storing numbers in character columns is a poor practice in general.

SQL*Loader control files can support complex logic and business rules. For example, your
input data for a column holding monetary values may have an implied decimal; 9990 would be
inserted as 99.90. In SQL*Loader, you could insert this by performing the calculation during the
data load:

money_amount position (20:28) external decimal(9) ":tax_amount/100"

See the “SQL*Loader Case Studies” of the Oracle Utilities Guide for additional SQL*Loader
examples and sample control files.

Managing Data Loads
Loading large data volumes is a batch operation. Batch operations should not be performed
concurrently with the small transactions prevalent in many database applications. If you have
many concurrent users executing small transactions against a table, you should schedule your
batch operations against that table to occur at a time when very few users are accessing the table.

Oracle maintains read consistency for users’ queries. If you execute the SQL*Loader job
against the table at the same time that other users are querying the table, Oracle will internally
maintain undo entries to enable those users to see their data as it existed when they first queried
the data. To minimize the amount of work Oracle must perform to maintain read consistency
(and to minimize the associated performance degradation caused by this overhead), schedule
your long-running data load jobs to be performed when few other actions are occurring in the
database. In particular, avoid contention with other accesses of the same table.

Design your data load processing to be easy to maintain and reuse. Establish guidelines
for the structure and format of the input datafiles. The more standardized the input data formats
are, the simpler it will be to reuse old control files for the data loads. For repeated scheduled
loads into the same table, your goal should be to reuse the same control file each time. Following
each load, you will need to review and move the log, bad, data, and discard files so they do not
accidentally get overwritten.

400 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 21
Blind Folio 21:400

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Within the control file, use comments to indicate any special processing functions being
performed. To create a comment within the control file, begin the line with two dashes, as shown
in the following example:

-- Limit the load to LA employees:
when Location='LA'

If you have properly commented your control file, you will increase the chance that it can be
reused during future loads. You will also simplify the maintenance of the data load process itself,
as described in the next section.

Repeating Data Loads
Data loads do not always work exactly as planned. Many variables are involved in a data load,
and not all of them will always be under your control. For example, the owner of the source data
may change its data formatting, invalidating part of your control file. Business rules may change,
forcing additional changes. Database structures and space availability may change, further affecting
your ability to load the data.

In an ideal case, a data load will either fully succeed or fully fail. However, in many cases, a
data load will partially succeed, making the recovery process more difficult. If some of the records
have been inserted into the table, then attempting to reinsert those records should result in a primary
key violation. If you are generating the primary key value during the insert (via the sequence option),
then those rows may not fail the second time—and will be inserted twice.

To determine where a load failed, use the log file. The log file will record the commit points
as well as the errors encountered. All of the rejected records should be in either the bad file or
the discard file. You can minimize the recovery effort by forcing the load to fail if many errors are
encountered. To force the load to abort before a large number of errors is encountered, use the
errors keyword of the SQLLDR command. You can also use the discardmax keyword to limit the
number of discarded records permitted before the load aborts.

If you set errors to 0, the first error will cause the load to fail. What if that load fails after 100
records have been inserted? You will have two options: Identify and delete the inserted records
and reapply the whole load, or skip the successfully inserted records. You can use the skip keyword
of SQLLDR to skip the first 100 records during its load processing. The load will then continue
with record 101 (which, we hope, has been fixed prior to the reload attempt). If you cannot identify
the rows that have just been loaded into the table, you will need to use the skip option during the
restart process.

The proper settings for errors and discardmax depend on the load. If you have full control
over the data load process, and the data is properly “cleaned” before being extracted to a load
file, you may have very little tolerance for errors and discards. On the other hand, if you do not
have control over the source for the input datafile, you need to set errors and discardmax high
enough to allow the load to complete. After the load has completed, you need to review the log
file, correct the data in the bad file, and reload the data using the original bad file as the new
input file. If rows have been incorrectly discarded, you need to do an additional load using the
original discard file as the new input file.

After modifying the errant CategoryName value, you can rerun the BOOKSHELF table load
example using the original bookshelf.dat file. During the reload, you have two options when using
the original input datafile.

Chapter 21: Using SQL*Loader to Load Data 401

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 21
Blind Folio 21:401

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

402 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 21
Blind Folio 21:402

■ Skip the first row by specifying skip=1 in the SQLLDR command line.

■ Attempt to load both rows, whereby the first row fails because it has already been loaded
(and thus causes a primary key violation).

Alternatively, you can use the bad file as the new input datafile and not worry about errors and
skipped rows.

Tuning Data Loads
In addition to running the data load processes at off-peak hours, you can take other steps to improve
the load performance. The following steps all impact your overall database environment and
must be coordinated with the database administrator. The tuning of a data load should not be
allowed to have a negative impact on the database or on the business processes it supports.

First, batch data loads may be timed to occur while the database is in NOARCHIVELOG mode.
While in NOARCHIVELOG mode, the database does not keep an archive of its online redo log
files prior to overwriting them. Eliminating the archiving process improves the performance of
transactions. Since the data is being loaded from a file, you can re-create the loaded data at a
later time by reloading the datafile rather than recovering it from an archived redo log file.

However, there are significant potential issues with disabling ARCHIVELOG mode. You will
not be able to perform a point-in-time recovery of the database unless archiving is enabled. If
non-batch transactions are performed in the database, you will probably need to run the database
in ARCHIVELOG mode all the time, including during your loads. Furthermore, switching between
ARCHIVELOG and NOARCHIVELOG modes requires you to shut down the instance. If you switch
the instance to NOARCHIVELOG mode, perform your data load, and then switch the instance back
to ARCHIVELOG mode, you should perform a backup of the database (see Chapter 46) immediately
following the restart.

Instead of running the entire database in NOARCHIVELOG mode, you can disable archiving for
your data load process by using the unrecoverable keyword within SQL*Loader. The unrecoverable
option disables the writing of redo log entries for the transactions within the data load. You should
only use this option if you will be able to re-create the transactions from the input files during a
recovery. If you follow this strategy, you must have adequate space to store old input files in case
they are needed for future recoveries. The unrecoverable option is only available for Direct Path
loads, as described in the next section.

Rather than control the redo log activity at the load process level, you can control it at the
table or partition level. If you define an object as nologging, then block-level inserts performed
by SQL*Loader Direct Path loading and the insert /*+ APPEND */ command will not generate
redo log entries. The block-level inserts will require additional space, as they will not reuse
existing blocks below the table’s high-water mark.

If your operating environment has multiple processors, you can take advantage of the CPUs
by parallelizing the data load. The parallel option of SQLLDR, as described in the next section,
uses multiple concurrent data load processes to reduce the overall time required to load the data.

In addition to these approaches, you should work with your database administrator to make
sure the database environment and structures are properly tuned for data loads. Tuning efforts
should include the following:

■ Preallocate space for the table, to minimize dynamic extensions during the loads.

■ Allocate sufficient memory resources to the shared memory areas.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Streamline the data-writing process by creating multiple database writer (DBWR)
processes for the database.

■ Remove any unnecessary triggers during the data loads. If possible, disable or remove
the triggers prior to the load, and perform the trigger operations on the loaded data
manually after it has been loaded.

■ Remove or disable any unnecessary constraints on the table. You can use SQL*Loader
to dynamically disable and reenable constraints.

■ Remove any indexes on the tables. If the data has been properly cleaned prior to the data
load, then uniqueness checks and foreign key validations will not be necessary during the
loads. Dropping indexes prior to data loads significantly improves performance.

Direct Path Loading
SQL*Loader generates a large number of insert statements. To avoid the overhead associated with
using a large number of inserts, you may use the Direct Path option in SQL*Loader. The Direct
Path option creates preformatted data blocks and inserts those blocks into the table. As a result,
the performance of your load can dramatically improve. To use the Direct Path option, you must
not be performing any functions on the values being read from the input file.

Any indexes on the table being loaded will be placed into a temporary DIRECT LOAD state
(you can query the index status from USER_INDEXES). Oracle will move the old index values to a
temporary index it creates and manages. Once the load has completed, the old index values will
be merged with the new values to create the new index, and Oracle will drop the temporary index
it created. When the index is once again valid, its status will change to VALID. To minimize the
amount of space necessary for the temporary index, presort the data by the indexed columns. The
name of the index for which the data is presorted should be specified via a sorted indexes clause
in the control file.

To use the Direct Path option, specify

DIRECT=TRUE

as a keyword on the SQLLDR command line or include this option in the control file.
If you use the Direct Path option, you can use the unrecoverable keyword to improve your

data load performance. This instructs Oracle not to generate redo log entries for the load. If you
need to recover the database at a later point, you will need to reexecute the data load in order
to recover the table’s data. All conventional path loads are recoverable, and all Direct Path loads
are recoverable by default.

Direct Path loads are faster than conventional loads, and unrecoverable Direct Path loads are
faster still. Since performing unrecoverable loads impacts your recovery operations, you need to
weigh the costs of that impact against the performance benefit you will realize. If your hardware
environment has additional resources available during the load, you can use the parallel Direct
Path load option to divide the data load work among multiple processes. The parallel Direct Path
operations may complete the load job faster than a single Direct Path load.

Instead of using the parallel option, you could partition the table being loaded (see Chapter 17).
Since SQL*Loader allows you to load a single partition, you could execute multiple concurrent
SQL*Loader jobs to populate the separate partitions of a partitioned table. This method requires

Chapter 21: Using SQL*Loader to Load Data 403

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 21
Blind Folio 21:403

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

more database administration work (to configure and manage the partitions), but it gives you more
flexibility in the parallelization and scheduling of the load jobs.

You can take advantage of multithreaded loading functionality for Direct Path loads to convert
column arrays to stream buffers and perform stream buffer loading in parallel. Use the streamsize
parameter and multithreading flag to enable this feature.

Direct Path loading may impact the space required for the table’s data. Since Direct Path loading
inserts blocks of data, it does not follow the usual methods for allocating space within a table.
The blocks are inserted at the end of the table, after its high-water mark, which is the highest
block into which the table’s data has ever been written. If you insert 100 blocks worth of data
into a table and then delete all of the rows, the high-water mark for the table will still be set at
100. If you then perform a conventional SQL*Loader data load, the rows will be inserted into the
already allocated blocks. If you instead perform a Direct Path load, Oracle will insert new blocks
of data following block 100, potentially increasing the space allocation for the table. The only
way to lower the high-water mark for a table is to truncate it (which deletes all rows and cannot
be rolled back) or to drop and re-create it. You should work with your database administrator to
identify space issues prior to starting your load.

NOTE
As shown earlier in this chapter, you can issue a truncate command
as part of the control file syntax. The table will be truncated prior to
the data’s being loaded.

Additional Features
In addition to features noted earlier in this chapter, SQL*Loader features support for Unicode and
expanded datatypes. SQL*Loader can load integer and zoned/packed decimal datatypes across
platforms with different byte ordering and accept EBCDIC-based zoned or packed decimal data
encoded in IBM format. SQL*Loader also offers support for loading XML columns, loading object
types with subtypes (see Chapter 33), and Unicode (UTF16 character set). SQL*Loader also provides
native support for the date, time, and interval-related datatypes (see Chapter 10).

If a SQL*Loader job fails, you may be able to resume it where it failed using the resumable,
resumable_name, and resumable_timeout options. For example, if the segment to which the
loader job was writing could not extend, you can disable the load job, fix the space allocation
problem, and resume the job. Your ability to perform these actions depends on the configuration
of the database; work with your DBA to make sure the resumable features are enabled and that
adequate undo history is maintained for your purposes.

You can access external files as if they are tables inside the database. This external table feature,
described in Chapter 26, allows you to potentially avoid loading large volumes of data into the
database. See Chapter 26 for implementation details.

404 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 21
Blind Folio 21:404

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 22
Blind Folio 22:405

CHAPTER
22

Using Data Pump
Export and Import

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

I
ntroduced with Oracle Database 10g, Data Pump provides a server-based data
extraction and import utility. Its features include significant architectural and
functional enhancements over the original Import and Export utilities. Data Pump
allows you to stop and restart jobs, see the status of running jobs, and restrict the
data that is exported and imported.

NOTE
Data Pump can use files generated via the original Export utility, but
the original Import utility cannot use the files generated from Data
Pump Export.

Data Pump runs as a server process, benefiting users in multiple ways. The client process
that starts the job can disconnect and later reattach to the job. Performance is enhanced (as
compared to Export/Import) because the data no longer has to be processed by a client program.
Data Pump extractions and loads can be parallelized, further enhancing performance.

In this chapter, you will see how to use Data Pump, along with descriptions and examples
of its major options.

Creating a Directory
Data Pump requires you to create directories for the datafiles and log files it will create and
read. Use the create directory command to create the directory pointer within Oracle to the
external directory you will use. Users who will access the Data Pump files must have the READ
and WRITE privileges on the directory.

NOTE
Before you start, verify that the external directory exists and that the
user who will be issuing the create directory command has the
CREATE ANY DIRECTORY system privilege.

The following example creates a directory named DTPUMP and grants READ and WRITE
access to the PRACTICE schema:

create directory dtpump as 'e:\dtpump';
grant read on directory DTPUMP to practice, system;
grant write on directory DTPUMP to practice, system;

The PRACTICE and SYSTEM schemas can now use the DTPUMP directory for Data Pump jobs.

Data Pump Export Options
Oracle provides a utility, expdp, that serves as the interface to Data Pump. If you have previous
experience with the Export utility, some of the options will be familiar. However, there are
significant features available only via Data Pump. Table 22-1 shows the command-line input
parameters for expdp when a job is created.

406 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 22
Blind Folio 22:406

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 22: Using Data Pump Export and Import 407

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 22
Blind Folio 22:407

Parameter Description

ATTACH Connects a client session to a currently running Data Pump Export job.

CONTENT Filters what is exported: DATA_ONLY, METADATA_ONLY, or ALL.

DIRECTORY Specifies the destination directory for the log file and the dump file set.

DUMPFILE Specifies the names and directories for dump files.

ESTIMATE Determines the method used to estimate the dump file size (BLOCKS or
STATISTICS).

ESTIMATE_ONLY Y/N flag is used to instruct Data Pump whether the data should be exported
or just estimated.

EXCLUDE Specifies the criteria for excluding objects and data from being exported.

FILESIZE Specifies the maximum file size of each export dump file.

FLASHBACK_SCN SCN for the database to flash back to during the export (see Chapter 27).

FLASHBACK_TIME Timestamp for the database to flash back to during the export (see
Chapter 27).

FULL Tells Data Pump to export all data and metadata in a Full mode export.

HELP Displays a list of available commands and options.

INCLUDE Specifies the criteria for which objects and data will be exported.

JOB_NAME Specifies a name for the job; the default is system generated.

LOGFILE Name and optional directory name for the export log.

NETWORK_LINK Specifies the source database link for a Data Pump job exporting a remote
database.

NOLOGFILE Y/N flag is used to suppress log file creation.

PARALLEL Sets the number of workers for the Data Pump Export job.

PARFILE Names the parameter file to use, if any.

QUERY Filters rows from tables during the export.

SCHEMAS Names the schemas to be exported for a Schema mode export.

STATUS Displays detailed status of the Data Pump job.

TABLES Lists the tables and partitions to be exported for a Table mode export.

TABLESPACES Lists the tablespaces to be exported.

TRANSPORT_
FULL_CHECK

Specifies whether the tablespaces being exported should first be verified
as a self-contained set.

TABLE 22-1. Command-Line Input Parameters for expdp

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

As shown in Table 22-1, five modes of Data Pump exports are supported. Full exports extract
all the database’s data and metadata. Schema exports extract the data and metadata for specific
user schemas. Tablespace exports extract the data and metadata for tablespaces, and Table exports
extract data and metadata for tables and their partitions. Transportable Tablespace exports extract
metadata for specific tablespaces.

NOTE
You must have the EXP_FULL_DATABASE system privilege in order
to perform a Full export or a Transportable Tablespace export.

When you submit a job, Oracle will give the job a system-generated name. If you specify
a name for the job via the JOB_NAME parameter, you must be certain the job name will not
conflict with the name of any table or view in your schema. During Data Pump jobs, Oracle
will create and maintain a master table for the duration of the job. The master table will have
the same name as the Data Pump job, so its name cannot conflict with existing objects.

While a job is running, you can execute the commands listed in Table 22-2 via Data Pump’s
interface.

408 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 22
Blind Folio 22:408

Parameter Description

TRANSPORT_
TABLESPACES

Specifies a Transportable Tablespace mode export.

VERSION Specifies the version of database objects to be created so the dump
file set can be compatible with earlier releases of Oracle. Options are
COMPATIBLE, LATEST, and database version numbers (not lower
than 10.0.0).

TABLE 22-1. Command-Line Input Parameters for expdp (continued)

Parameter Description

ADD_FILE Add dump files

CONTINUE_CLIENT Exit the interactive mode and enter logging mode

EXIT_CLIENT Exit the client session, but leave the server Data Pump Export job running

HELP Display online help for the import

KILL_JOB Kill the current job and detach related client sessions

PARALLEL Alter the number of workers for the Data Pump Export job

TABLE 22-2. Parameters for Interactive Mode Data Pump Export

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

As the entries in Table 22-2 imply, you can change many features of a running Data Pump
Export job via the interactive command mode. If the dump area runs out of space, you can attach
to the job, add files, and restart the job at that point; there is no need to kill the job or reexecute
it from the start. You can display the job status at any time, either via the STATUS parameter or
via the USER_DATAPUMP_JOBS and DBA_DATAPUMP_JOBS data dictionary views or the
V$SESSION_LONGOPS view.

Starting a Data Pump Export Job
You can store your job parameters in a parameter file, referenced via the PARFILE parameter of
expdp. For example, you can create a file name dp1.par with the following entries:

DIRECTORY=dtpump
DUMPFILE=metadataonly.dmp
CONTENT=METADATA_ONLY

You can then start the Data Pump Export job:

expdp practice/practice PARFILE=dp1.par

Oracle will then pass the dp1.par entries to the Data Pump Export job. A Schema-type Data Pump
Export (the default type) will be executed, and the output (the metadata listings, but no data) will
be written to a file in the dtpump directory previously defined. When you execute the expdp
command, the output will be in the following format (there will be separate lines for each major
object type—tables, grants, indexes, and so on):

Export: Release 10.1.0.1.0 on Wednesday, 26 May, 2004 17:29
Copyright (c) 2003, Oracle. All rights reserved.

Connected to: Oracle10i Enterprise Edition Release 10.1.0.1.0
With the Partitioning, OLAP and Data Mining options
FLASHBACK automatically enabled to preserve database integrity.
Starting "PRACTICE"."SYS_EXPORT_SCHEMA_01": practice/******** parfile=dp1.par
Processing object type SCHEMA_EXPORT/SE_PRE_SCHEMA_PROCOBJACT/PROCACT_SCHEMA
Processing object type SCHEMA_EXPORT/TYPE/TYPE_SPEC
Processing object type SCHEMA_EXPORT/TABLE/TABLE
Processing object type SCHEMA_EXPORT/TABLE/GRANT/OBJECT_GRANT

Chapter 22: Using Data Pump Export and Import 409

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 22
Blind Folio 22:409

Parameter Description

START_JOB Restart the attached job

STATUS Display a detailed status of the Data Pump job

STOP_JOB Stop the job for later restart

TABLE 22-2. Parameters for Interactive Mode Data Pump Export (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Processing object type SCHEMA_EXPORT/TABLE/INDEX/INDEX
Processing object type SCHEMA_EXPORT/TABLE/CONSTRAINT/CONSTRAINT
Processing object type SCHEMA_EXPORT/TABLE/COMMENT
Processing object type SCHEMA_EXPORT/VIEW/VIEW
Processing object type SCHEMA_EXPORT/PACKAGE/PACKAGE_SPEC
Processing object type SCHEMA_EXPORT/PACKAGE/PACKAGE_BODY
Processing object type SCHEMA_EXPORT/PACKAGE/GRANT/OBJECT_GRANT
Processing object type SCHEMA_EXPORT/TABLE/CONSTRAINT/REF_CONSTRAINT
Processing object type SCHEMA_EXPORT/SE_EV_TRIGGER/TRIGGER
Master table "PRACTICE"."SYS_EXPORT_SCHEMA_01" successfully loaded/unloaded
**
Dump file set for PRACTICE.SYS_EXPORT_SCHEMA_01 is:
E:\DTPUMP\METADATAONLY.DMP

Job "PRACTICE"."SYS_EXPORT_SCHEMA_01" successfully completed at 17:30

The output file, as shown in the listing, is named metadataonly.dmp. The output dump file
contains XML entries for re-creating the structures for the Practice schema. During the export,
Data Pump created and used an external table named SYS_EXPORT_SCHEMA_01.

NOTE
Dump files will not overwrite previously existing dump files in the
same directory.

You can use multiple directories and dump files for a single Data Pump Export. Within the
DUMPFILE parameter setting, list the directory along with the filename, in this format:

DUMPFILE=directory1:file1.dmp,
directory2:file2.dmp

Stopping and Restarting Running Jobs
After you have started a Data Pump Export job, you can close the client window you used to start
the job. Because it is server based, the export will continue to run. You can then attach to the job,
check its status, and alter it. For example, you can start the job via expdp:

expdp practice/practice PARFILE=dp1.par

Press CTRL-C to leave the log display, and Data Pump will return you to the Export prompt:

Export>

Exit to the operating system via the EXIT_CLIENT command:

Export> EXIT_CLIENT

You can then restart the client and attach to the currently running job under your schema:

expdp practice/practice attach

410 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 22
Blind Folio 22:410

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
This sample export finishes quickly, so the job may finish before you
reattach to it.

If you gave a name to your Data Pump Export job, specify the name as part of the ATTACH
parameter call. For example, if you had named the job PRACTICE_JOB, attach to the job by name:

expdp practice/practice attach=PRACTICE_JOB

When you attach to a running job, Data Pump will display the status of the job—its basic
configuration parameters and its current status. You can then issue the CONTINUE_CLIENT
command to see the log entries as they are generated, or you can alter the running job:

Export> CONTINUE_CLIENT

You can stop a job via the STOP_JOB option:

Export> STOP_JOB

With the job stopped, you can then add additional dump files in new directories, via the
ADD_FILE option. You can then restart the job:

Export> START_JOB

You can specify a log file location for the export log via the LOGFILE parameter. If you do
not specify a LOGFILE value, the log file will be written to the same directory as the dump file.

Exporting from Another Database
You can use the NETWORK_LINK parameter to export data from a different database. If you are
logged into the HQ database and you have a database link to a separate database, Data Pump
can use that link to connect to the database and extract its data.

NOTE
If the source database is read-only, the user on the source database
must have a locally managed tablespace assigned as the temporary
tablespace; otherwise, the job will fail.

In your parameter file (or on the expdp command line), set the NETWORK_LINK parameter
equal to the name of your database link. The Data Pump Export will write the data from the
remote database to the directory defined in your local database.

Using EXCLUDE, INCLUDE, and QUERY
You can exclude or include sets of tables from the Data Pump Export via the EXCLUDE and INCLUDE
options. You can exclude objects by type and by name. If an object is excluded, all its dependent
objects are also excluded. The format for the EXCLUDE option is

EXCLUDE=object_type[:name_clause] [, ...]

Chapter 22: Using Data Pump Export and Import 411

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 22
Blind Folio 22:411

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
You cannot specify EXCLUDE if you specify CONTENT=DATA_ONLY.

For example, to exclude the PRACTICE schema from a full export, the format for the EXCLUDE
option would be

EXCLUDE=SCHEMA:"='PRACTICE'"

NOTE
You can specify more than one EXCLUDE option within the same
Data Pump Export job.

The EXCLUDE option in the preceding listing contains a limiting condition (=‘PRACTICE’)
within a set of double quotes. The object_type variable can be any Oracle object type, including
grant, index, and table. The name_clause variable restricts the values returned. For example, to
exclude from the export all tables whose names contain begin with ‘TEMP’, you could specify
the following:

EXCLUDE=TABLE:"LIKE 'TEMP%'"

When you enter this at the command line, you may need to use escape characters so the quotation
marks and other special characters are properly passed to Oracle. Your expdp command will be in
the format

expdp practice/practice EXCLUDE=TABLE:\"LIKE \'TEMP%\'\"

NOTE
This example shows part of the syntax, not the full syntax for the
command.

If no name_clause value is provided, all objects of the specified type are excluded. To exclude all
indexes, for example, you would specify the following:

expdp practice/practice EXCLUDE=INDEX

For a listing of the objects you can filter, query the DATABASE_EXPORT_OBJECTS, SCHEMA_
EXPORT_OBJECTS, and TABLE_EXPORT_OBJECTS data dictionary views. If the object_type
value is CONSTRAINT, NOT NULL constraints will not be excluded. Additionally, constraints
needed for a table to be created successfully (such as primary key constraints for index-organized
tables) cannot be excluded. If the object_type value is USER, the user definitions are excluded,
but the objects within the user schemas will still be exported. Use the SCHEMA object_type, as
shown in the previous example, to exclude a user and all of the user’s objects. If the object_type
value is GRANT, all object grants and system privilege grants are excluded.

412 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 22
Blind Folio 22:412

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 22: Using Data Pump Export and Import 413

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 22
Blind Folio 22:413

A second option, INCLUDE, is also available. When you use INCLUDE, only those objects
that pass the criteria are exported; all others are excluded. INCLUDE and EXCLUDE are mutually
exclusive. The format for INCLUDE is

INCLUDE = object_type[:name_clause] [, ...]

NOTE
You cannot specify INCLUDE if you specify CONTENT=DATA_ONLY.

For example, to export two tables and all procedures, your parameter file may include these
two lines:

INCLUDE=TABLE:"IN ('BOOKSHELF','BOOKSHELF_AUTHOR')"
INCLUDE=PROCEDURE

What rows will be exported for the objects that meet the EXCLUDE or INCLUDE criteria?
By default, all rows are exported for each table. You can use the QUERY option to limit the rows
that are returned. The format for the QUERY option is

QUERY = [schema.][table_name:] query_clause

If you do not specify values for the schema and table_name variables, the query_clause will
be applied to all the exported tables. Because query_clause will usually include specific column
names, you should be very careful when selecting the tables to include in the export.

You can specify a QUERY value for a single table, as shown in the following listing:

QUERY=BOOKSHELF:'"WHERE Rating > 2"'

As a result, the dump file will only contain rows that meet the QUERY criteria as well as the
INCLUDE or EXCLUDE criteria. You can also apply these restrictions during the subsequent Data
Pump Import, as described in the next section of this chapter.

Data Pump Import Options
To import a dump file exported via Data Pump Export, use Data Pump Import. As with the export
process, the import process runs as a server-based job you can manage as it executes. You can
interact with Data Pump Import via the command-line interface, a parameter file, and an interactive
interface. Table 22-3 lists the parameters for the command-line interface.

NOTE
The directory for the dump file and log file must already exist; see the
prior section on the create directory command.

As with Data Pump Export, five modes are supported: Full, Schema, Table, Tablespace, and
Transportable Tablespace. If no mode is specified, Oracle attempts to load the entire dump file.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

414 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 22
Blind Folio 22:414

Parameter Description

ATTACH Attaches the client to a server session and places you in interactive mode.

CONTENT Filters what is imported: ALL, DATA_ONLY, or METADATA_ONLY.

DIRECTORY Specifies the location of the dump file set and the destination directory for
the log and SQL files.

DUMPFILE Specifies the names and, optionally, the directories for the dump file set.

ESTIMATE Determines the method used to estimate the dump file size (BLOCKS or
STATISTICS).

EXCLUDE Excludes objects and data from being imported.

FLASHBACK_SCN SCN for the database to flash back to during the import (see Chapter 27).

FLASHBACK_TIME Timestamp for the database to flash back to during the import (see
Chapter 27).

FULL Y/N flag is used to specify that you want to import the full dump file.

HELP Displays online help for the import.

INCLUDE Specifies the criteria for objects to be imported.

JOB_NAME Specifies a name for the job; the default is system generated.

LOGFILE Name and optional directory name for the import log.

NETWORK_LINK Specifies the source database link for a Data Pump job importing a remote
database.

NOLOGFILE Y/N flag is used to suppress log file creation.

PARALLEL Sets the number of workers for the Data Pump Import job.

PARFILE Names the parameter file to use, if any.

QUERY Filters rows from tables during the import.

REMAP_DATAFILE Changes the name of the source datafile to the target datafile in create
library, create tablespace, and create directory commands during the
import.

REMAP_SCHEMA Imports data exported from the source schema into the target schema.

REMAP_
TABLESPACE

Imports data exported from the source tablespace into the target
tablespace.

REUSE_DATAFILES Specifies whether existing datafiles should be reused by create tablespace
commands during Full mode imports.

SCHEMAS Names the schemas to be imported for a Schema mode import.

TABLE 22-3. Data Pump Import Command-Line Parameters

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Table 22-4 lists the parameters that are valid in the interactive mode of Data Pump Import.

Chapter 22: Using Data Pump Export and Import 415

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 22
Blind Folio 22:415

Parameter Description

SKIP_UNUSABLE_
INDEXES

Y/N flag. If set to Y, the import does not load data into tables whose indexes
are set to the Index Unusable state.

SQLFILE Names the file to which the DDL for the import will be written. The data
and metadata will not be loaded into the target database.

STATUS Displays detailed status of the Data Pump job.

STREAMS_
CONFIGURATION

Y/N flag is used to specify whether Streams configuration information
should be imported.

TABLE_EXISTS_
ACTION

Instructs Import how to proceed if the table being imported already exists.
Values include SKIP, APPEND, TRUNCATE, and REPLACE. The default is
APPEND if CONTENT=DATA_ONLY; otherwise, the default is SKIP.

TABLES Lists tables for a Table mode import.

TABLESPACES Lists tablespaces for a Tablespace mode import.

TRANSFORM Directs changes to the segment attributes or storage during import.

TRANSPORT_
DATAFILES

Lists the datafiles to be imported during a Transportable Tablespace mode
import.

TRANSPORT_
FULL_CHECK

Specifies whether the tablespaces being imported should first be verified
as a self-contained set.

TRANSPORT_
TABLESPACES

Lists the tablespaces to be imported during a Transportable Tablespace
mode import.

VERSION Specifies the version of database objects to be created so the dump
file set can be compatible with earlier releases of Oracle. Options are
COMPATIBLE, LATEST, and database version numbers (not lower than
10.0.0). Only valid for NETWORK_LINK and SQLFILE.

TABLE 22-3. Data Pump Import Command-Line Parameters (continued)

Parameter Description

CONTINUE_CLIENT Exit the interactive mode and enter logging mode. The job will be
restarted if idle.

EXIT_CLIENT Exit the client session, but leave the server Data Pump Import job running.

HELP Display online help for the import.

TABLE 22-4. Interactive Parameters for Data Pump Import

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Many of the Data Pump Import parameters are the same as those available for Data Pump
Export. In the following sections, you will see how to start an import job, along with descriptions
of the major options unique to Data Pump Import.

Starting a Data Pump Import Job
You can start a Data Pump Import job via the impdp executable provided with Oracle Database 10g.
Use the command-line parameters to specify the import mode and the locations for all the files.
You can store the parameter values in a parameter file and then reference the file via the PARFILE
option.

In the first export example of this chapter, the parameter file named dp1.par contained the
following entries:

DIRECTORY=dtpump
DUMPFILE=metadataonly.dmp
CONTENT=METADATA_ONLY

The import will create the PRACTICE schema’s objects in a different schema. The REMAP_
SCHEMA option allows you to import objects into a different schema than was used for the
export. If you want to change the tablespace assignments for the objects at the same time, use
the REMAP_TABLESPACE option. The format for REMAP_SCHEMA is

REMAP_SCHEMA=source_schema:target_schema

Create a new user account to hold the objects:

create user Newpractice identified by newp;
grant CREATE SESSION to Newpractice;
grant CONNECT, RESOURCE to Newpractice;
grant CREATE TABLE to Newpractice;
grant CREATE INDEX to Newpractice;

You can now add the REMAP_SCHEMA line to the dp1.par parameter file:

416 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 22
Blind Folio 22:416

Parameter Description

KILL_JOB Kill the current job and detach related client sessions.

PARALLEL Alter the number of workers for the Data Pump Import job.

START_JOB Restart the attached job.

STATUS Display detailed status of the Data Pump job.

STOP_JOB Stop the job for later restart.

TABLE 22-4. Interactive Parameters for Data Pump Import (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DIRECTORY=dtpump
DUMPFILE=metadataonly.dmp
CONTENT=METADATA_ONLY
REMAP_SCHEMA=Practice:Newpractice

You can now start the import job. Because you are changing the owning schema for the data,
you must have the IMP_FULL_DATABASE system privilege. Data Pump Import jobs are started
via the impdp executable. The following listing shows the creation of a Data Pump Import job
using the dp1.par parameter file.

impdp system/passwd parfile=dp1.par

NOTE
All dump files must be specified at the time the job is started.

Oracle will then perform the import and display its progress. Because the NOLOGFILE option
was not specified, the log file for the import will be placed in the same directory as the dump file
and will be given the name import.log. You can verify the success of the import by logging into
the NEWPRACTICE schema. The NEWPRACTICE schema should have a copy of all the valid
objects that have previously been created in the PRACTICE schema.

What if a table being imported already existed? In this example, with the CONTENT option
set to METADATA_ONLY, the table would be skipped by default. If the CONTENT option was set
to DATA_ONLY, the new data would be appended to the existing table data. To alter this behavior,
use the TABLE_EXISTS_ACTION option. Valid values for TABLE_EXISTS_OPTION are SKIP, APPEND,
TRUNCATE, and REPLACE.

Stopping and Restarting Running Jobs
After you have started a Data Pump Import job, you can close the client window you used to start
the job. Because it is server based, the import will continue to run. You can then attach to the
job, check its status, and alter it:

impdp system/passwd PARFILE=dp1.par

Press CTRL-C to leave the log display, and Data Pump will return you to the Import prompt:

Import>

Exit to the operating system via the EXIT_CLIENT command:

Import> EXIT_CLIENT

You can then restart the client and attach to the currently running job under your schema:

impdp system/passwd attach

If you gave a name to your Data Pump Import job, specify the name as part of the ATTACH
parameter call. When you attach to a running job, Data Pump will display the status of the

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 22
Blind Folio 22:417

Chapter 22: Using Data Pump Export and Import 417

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

job—its basic configuration parameters and its current status. You can then issue the CONTINUE_
CLIENT command to see the log entries as they are generated, or you can alter the running job:

Import> CONTINUE_CLIENT

You can stop a job via the STOP_JOB option:

Import> STOP_JOB

While the job is stopped, you can increase its parallelism via the PARALLEL option. You can
then restart the job:

Import> START_JOB

EXCLUDE, INCLUDE, and QUERY
Data Pump Import, like Data Pump Export, allows you to restrict the data processed via the use of
the EXCLUDE, INCLUDE, and QUERY options, as described earlier in this chapter. Because you
can use these options on both the export and the import, you can be very flexible in your imports.
For example, you may choose to export an entire table but only import part of it—the rows that
match your QUERY criteria. You could choose to export an entire schema but when recovering
the database via import include only the most necessary tables so the application downtime can
be minimized. EXCLUDE, INCLUDE, and QUERY provide powerful capabilities to developers
and database administrators during both export and import jobs.

Transforming Imported Objects
In addition to changing or selecting schemas, tablespaces, datafiles, and rows during the import,
you can change the segment attributes and storage requirements during import via the TRANSFORM
option. The format for TRANSFORM is

TRANSFORM = transform_name:value[:object_type]

The transform_name variable can have a value of SEGMENT_ATTRIBUTES or STORAGE. You
can use the value variable to include or exclude segment attributes (physical attributes, storage
attributes, tablespaces, and logging). The object_type variable is optional and, if specified, must
be either TABLE or INDEX.

For example, object storage requirements may change during an export/import—you may be
using the QUERY option to limit the rows imported, or you may be importing only the metadata
without the table data. To eliminate the exported storage clauses from the imported tables, add
the following to the parameter file:

TRANSFORM=STORAGE:n:table

To eliminate the exported tablespace and storage clauses from all tables and indexes, use the
following:

TRANSFORM=SEGMENT_ATTRIBUTES:n

418 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 22
Blind Folio 22:418

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 22: Using Data Pump Export and Import 419

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 22
Blind Folio 22:419

When the objects are imported, they will be assigned to the user’s default tablespace and will
have used that tablespace’s default storage parameters.

Generating SQL
Instead of importing the data and objects, you can generate the SQL for the objects (not the data)
and store it in a file on your operating system. The file will be written to the directory and file
specified via the SQLFILE option. The SQLFILE option format is

SQLFILE=[directory_object:]file_name

NOTE
If you do not specify a value for the directory_object variable, the file
will be created in the dump file directory.

The following listing shows a sample parameter file for an import using the SQLFILE option. Note
that the CONTENT option is not specified. The output will be written to the dtpump directory.

DIRECTORY=dtpump
DUMPFILE=metadataonly.dmp
SQLFILE=sql.txt

You can then run the import to populate the sql.txt file:

impdp practice/practice parfile=dp1.par

In the sql.txt file the import creates, you will see entries for each of the object types within the schema.
The format for the output file will be similar to the following listing, although the object IDs and SCNs
will be specific to your environment. For brevity, not all entries in the file are shown here.

-- CONNECT PRACTICE
-- new object type path is: SCHEMA_EXPORT/
SE_PRE_SCHEMA_PROCOBJACT/PROCACT_SCHEMA

BEGIN
sys.dbms_logrep_imp.instantiate_schema(schema_name=>'PRACTICE',
export_db_name=>'ORCL', inst_scn=>'3377908');
COMMIT;
END;
/

-- new object type path is: SCHEMA_EXPORT/TYPE/TYPE_SPEC
CREATE TYPE "PRACTICE"."ADDRESS_TY"
OID '48D49FA5EB6D447C8D4C1417D849D63A' as object

(Street VARCHAR2(50),
City VARCHAR2(25),
State CHAR(2),
Zip NUMBER);

/

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CREATE TYPE "PRACTICE"."CUSTOMER_TY"
OID '8C429A2DD41042228170643EF24BE75A' as object

(Customer_ID NUMBER,
Name VARCHAR2(25),
Street VARCHAR2(50),
City VARCHAR2(25),
State CHAR(2),
Zip NUMBER);

/

CREATE TYPE "PRACTICE"."PERSON_TY"
OID '76270312D764478FAFDD47BF4533A5F8' as object

(Name VARCHAR2(25),
Address ADDRESS_TY);

/

-- new object type path is: SCHEMA_EXPORT/TABLE/TABLE
CREATE TABLE "PRACTICE"."CUSTOMER"

("CUSTOMER_ID" NUMBER,
"NAME" VARCHAR2(25),
"STREET" VARCHAR2(50),
"CITY" VARCHAR2(25),
"STATE" CHAR(2),
"ZIP" NUMBER

) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
TABLESPACE "USERS" ;

CREATE TABLE "PRACTICE"."CUSTOMER_CALL"
("CUSTOMER_ID" NUMBER,

"CALL_NUMBER" NUMBER,
"CALL_DATE" DATE

) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
TABLESPACE "USERS" ;

CREATE TABLE "PRACTICE"."STOCK_TRX"
("ACCOUNT" NUMBER(10,0),

"SYMBOL" VARCHAR2(20),
"PRICE" NUMBER(6,2),
"QUANTITY" NUMBER(6,0),
"TRX_FLAG" VARCHAR2(1)

) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
TABLESPACE "USERS" ;

CREATE TABLE "PRACTICE"."STOCK_ACCOUNT"

420 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 22
Blind Folio 22:420

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

("ACCOUNT" NUMBER(10,0),
"ACCOUNTLONGNAME" VARCHAR2(50)

) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
TABLESPACE "USERS" ;

-- new object type path is: SCHEMA_EXPORT/TABLE/GRANT/OBJECT_GRANT
GRANT SELECT ON "PRACTICE"."STOCK_TRX" TO "ADAMS";
GRANT SELECT ON "PRACTICE"."STOCK_TRX" TO "BURLINGTON";
GRANT SELECT ON "PRACTICE"."STOCK_ACCOUNT" TO "ADAMS";
GRANT SELECT ON "PRACTICE"."STOCK_ACCOUNT" TO "BURLINGTON";
GRANT INSERT ON "PRACTICE"."STOCK_TRX" TO "ADAMS";

-- new object type path is: SCHEMA_EXPORT/TABLE/INDEX/INDEX
CREATE UNIQUE INDEX "PRACTICE"."CUSTOMER_PK" ON "PRACTICE"."CUSTOMER"
("CUSTOMER_ID")
PCTFREE 10 INITRANS 2 MAXTRANS 255

STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
TABLESPACE "USERS" PARALLEL 1 ;

ALTER INDEX "PRACTICE"."CUSTOMER_PK" NOPARALLEL;

The SQLFILE output is a plain text file, so you can edit the file, use it within SQL*Plus, or
keep it as documentation of your application’s database structures.

Comparing Data Pump Export/Import to Export/Import
The original Export and Import utilities are still available via the exp and imp executables. As
shown in this chapter, there are many ways in which Data Pump Export and Import offer superior
capabilities over the original Export and Import utilities. Data Pump’s server-based architecture
leads to performance gains and improved manageability. However, Data Pump does not support
the incremental commit capability offered by the COMMIT and BUFFER parameters in the original
Import. Also, Data Pump will not automatically merge multiple extents into a single extent during
the Data Pump Export/Import process; the original Export/Import offer this functionality via the
COMPRESS parameter. In Data Pump, you can use the TRANSFORM option to suppress the
storage attributes during the import—an option that many users of the original Export/Import may
prefer over the COMPRESS functionality.

If you are importing data via Data Pump into an existing table using either the APPEND or
TRUNCATE settings of the TABLE_EXISTS_ACTION option and a row violates an active constraint,
the load is discontinued and no data is loaded. In the original Import, the load would have continued.

Chapter 22: Using Data Pump Export and Import 421

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 22
Blind Folio 22:421

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 22
Blind Folio 22:422

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 23
Blind Folio 23:423

CHAPTER
23

Accessing
Remote Data

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A
s your databases grow in size and number, you will very likely need to share data
among them. Sharing data requires a method of locating and accessing the data.
In Oracle, remote data accesses such as queries and updates are enabled through
the use of database links. As described in this chapter, database links allow users
to treat a group of distributed databases as if they were a single, integrated database.

In this chapter, you will also find information about direct connections to remote databases, such
as those used in client-server applications.

Database Links
Database links tell Oracle how to get from one database to another. You may also specify the
access path in an ad hoc fashion (see “Dynamic Links: Using the SQL*Plus copy Command,”
later in this chapter). If you will frequently use the same connection to a remote database, a
database link is appropriate.

How a Database Link Works
A database link requires Oracle Net (previously known as SQL*Net and Net8) to be running on
each of the machines (hosts) involved in the remote database access. Oracle Net is usually started
by the database administrator (DBA) or the system manager. A sample architecture for a remote
access using a database link is shown in Figure 23-1. This figure shows two hosts, each running
Oracle Net. There is a database on each of the hosts. A database link establishes a connection from
the first database (named LOCAL, on the Branch host) to the second database (named REMOTE, on the
Headquarters host). The database link shown in Figure 23-1 is located in the LOCAL database.

Database links specify the following connection information:

■ The communications protocol (such as TCP/IP) to use during the connection

■ The host on which the remote database resides

■ The name of the database on the remote host

■ The name of a valid account in the remote database

■ The password for that account

424 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 23
Blind Folio 23:424

FIGURE 23-1. Sample architecture for a database link

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When used, a database link actually logs in as a user in the remote database and then logs out
when the remote data access is complete. A database link can be private, owned by a single user,
or public, in which case all users in the LOCAL database can use the link.

The syntax for creating a database link is shown in “Syntax for Database Links,” later in this
chapter.

Using a Database Link for Remote Queries
If you are a user in the LOCAL database shown in Figure 23-1, you can access objects in the
REMOTE database via a database link. To do this, simply append the database link name to
the name of any table or view that is accessible to the remote account. When appending the database
link name to a table or view name, you must precede the database link name with an @ sign.

For local tables, you reference the table name in the from clause:

select *
from BOOKSHELF;

For remote tables, use a database link named REMOTE_CONNECT. In the from clause,
reference the table name followed by @REMOTE_CONNECT:

select *
from BOOKSHELF@REMOTE_CONNECT;

When the database link in the preceding query is used, Oracle will log into the database
specified by the database link, using the username and password provided by the link. It will then
query the BOOKSHELF table in that account and return the data to the user who initiated the query.
This is shown graphically in Figure 23-2. The REMOTE_CONNECT database link shown in Figure 23-2
is located in the LOCAL database.

As shown in Figure 23-2, logging into the LOCAL database and using the REMOTE_CONNECT
database link in your from clause returns the same results as logging in directly to the remote database
and executing the query without the database link. It makes the remote database seem local.

NOTE
The maximum number of database links that can be used in a
single query is set via the OPEN_LINKS parameter in the database’s
initialization parameter file. This parameter defaults to four.

Chapter 23: Accessing Remote Data 425

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 23
Blind Folio 23:425

FIGURE 23-2. Using a database link for a remote query

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Queries executed using database links do have some restrictions. You should avoid using
database links in queries that use the connect by, start with, and prior keywords. Some queries
using these keywords will work (for example, if prior is not used outside of the connect by clause,
and start with does not use a subquery), but most uses of tree-structured queries will fail when
using database links.

Using a Database Link for Synonyms and Views
You may create local synonyms and views that reference remote objects. To do this, reference the
database link name, preceded by an @ sign, wherever you refer to a remote table. The following
example shows how to do this for synonyms. The create synonym command in this example is
executed from an account in the LOCAL database.

create synonym BOOKSHELF_SYN
for BOOKSHELF@REMOTE_CONNECT;

In this example, a synonym called BOOKSHELF_SYN is created for the BOOKSHELF table
accessed via the REMOTE_CONNECT database link. Every time this synonym is used in a from
clause of a query, the remote database will be queried. This is very similar to the remote queries
shown earlier; the only real change is that the database link is now defined as part of a local object
(in this case, a synonym).

What if the remote account that is accessed by the database link does not own the table being
referenced? In that event, any synonyms available to the remote account (either private or public)
can be used. If no such synonyms exist for a table that the remote account has been granted access
to, you must specify the table owner’s name in the query, as shown in the following example:

create synonym BOOKSHELF_SYN
for Practice.BOOKSHELF@REMOTE_CONNECT;

In this example, the remote account used by the database link does not own the BOOKSHELF
table, nor does the remote account have a synonym called BOOKSHELF. It does, however,
have privileges on the BOOKSHELF table owned by the remote user Practice in the REMOTE
database. Therefore, the owner and table name are specified; both are interpreted in the
REMOTE database. The syntax for these queries and synonyms is almost the same as if everything
were in the local database; the only addition is the database link name.

To use a database link in a view, simply add it as a suffix to table names in the create view
command. The following example creates a view in the local database of a remote table using
the REMOTE_CONNECT database link:

create view LOCAL_BOOKSHELF_VIEW
as
select * from BOOKSHELF@REMOTE_CONNECT
where Title > 'M';

The from clause in this example refers to BOOKSHELF@REMOTE_CONNECT. Therefore, the
base table for this view is not in the same database as the view. Also note that a where clause is
placed on the query, to limit the number of records returned by it for the view.

426 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 23
Blind Folio 23:426

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This view may now be treated the same as any other view in the local database. Access to this
view can be granted to other users, provided those users also have access to the REMOTE_CONNECT
database link.

Using a Database Link for Remote Updates
The database link syntax for remote updates is the same as that for remote queries. Append the
name of the database link to the name of the table being updated. For example, to change the Rating
values for books in a remote BOOKSHELF table, you would execute the update command shown
in the following listing:

update BOOKSHELF@REMOTE_CONNECT
set Rating = '5'

where Title = 'INNUMERACY';

This update command will use the REMOTE_CONNECT database link to log into the remote
database. It will then update the BOOKSHELF table in that database, based on the set and where
conditions specified.

You can use subqueries in the set portion of the update command (refer to Chapter 15). The
from clause of such subqueries can reference either the local database or a remote database. To
refer to the remote database in a subquery, append the database link name to the table names in
the from clause of the subquery. An example of this is shown in the following listing:

update BOOKSHELF@REMOTE_CONNECT /*in remote database*/
set Rating =

(select Rating
from BOOKSHELF@REMOTE_CONNECT /*in remote database*/
where Title = 'WONDERFUL LIFE')

where Title = 'INNUMERACY';

NOTE
If you do not append the database link name to the table names in the
from clause of update subqueries, tables in the local database will be
used. This is true even if the table being updated is in a remote database.

In this example, the remote BOOKSHELF table is updated based on the Rating value on the
remote BOOKSHELF table. If the database link is not used in the subquery, as in the following
example, then the BOOKSHELF table in the local database will be used instead. If this is unintended,
it will cause local data to be mixed into the remote database table. If you’re doing this on purpose,
be very careful.

update BOOKSHELF@REMOTE_CONNECT /*in remote database*/
set Rating =

(select Rating
from BOOKSHELF /*in local database*/
where Title = 'WONDERFUL LIFE')

where Title = 'INNUMERACY';

Chapter 23: Accessing Remote Data 427

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 23
Blind Folio 23:427

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Syntax for Database Links
You can create a database link with the following command:

create [shared] [public] database link REMOTE_CONNECT
connect to {current_user | username
identified by password [authentication clause]}
using 'connect string';

The specific syntax to use when creating a database link depends on two criteria:

■ The “public” or “private” status of the database link

■ The use of default or explicit logins for the remote database

These criteria and their associated syntax are described in turn in the following sections.

NOTE
To create a database link, you must have the CREATE DATABASE
LINK system privilege. The account to which you will be connecting
in the remote database must have the CREATE SESSION system
privilege. Both of these system privileges are included as part of the
CONNECT role in Oracle. The CONNECT role in Oracle Database 10g
exists only for backward compatibility with earlier releases.

If the value of the GLOBAL_NAMES initialization parameter is TRUE, the database link must
have the same name as the database to which it connects. If the value of GLOBAL_NAMES is
FALSE and you have changed the global name of the database, you can specify the global name.

Public vs. Private Database Links
As mentioned earlier, a public database link is available to all users in a database. By contrast, a
private database link is only available to the user who created it. It is not possible for one user to
grant access on a private database link to another user. The database link must either be public
(available to all users) or private.

To specify a database link as public, use the public keyword in the create database link
command, as shown in the following example:

create public database link REMOTE_CONNECT
connect to username identified by password

using 'connect string';

NOTE
To create a public database link, you must have the CREATE PUBLIC
DATABASE LINK system privilege. This privilege is included in the DBA
role in Oracle. The DBA role in Oracle Database 10g exists only for
backward compatibility with earlier releases.

428 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 23
Blind Folio 23:428

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Default vs. Explicit Logins
In place of the connect to … identified by … clause, you can use connect to current_user when
creating a database link. If you use the current_user option, then when that link is used, it will
attempt to open a session in the remote database that has the same username and password as the
local database account. This is called a default login, because the username/password combination
will default to the combination in use in the local database.

The following listing shows an example of a public database link created with a default login
(the use of default logins is described further in “Using the User Pseudo-Column in Views,” later
in this chapter):

create public database link REMOTE_CONNECT
connect to current_user
using 'HQ';

When this database link is used, it will attempt to log into the remote database identified by
the ‘HQ’ service name using the current user’s username and password. If the current username
is not valid in the remote database, or if the password is different, the login attempt will fail. This
failure will cause the SQL statement using the link to fail.

An explicit login specifies a username and password that the database link will use while
connecting to the remote database. No matter which local account uses the link, the same remote
account will be used. The following listing shows the creation of a database link with an explicit
login:

create public database link REMOTE_CONNECT
connect to WAREHOUSE identified by ACCESS339
using 'HQ';

This example shows a common usage of explicit logins in database links. In the remote database,
a user named Warehouse was created and was given the password ACCESS339. The Warehouse
account can then be granted SELECT access to specific tables, solely for use by database links. The
REMOTE_CONNECT database link then provides access to the remote Warehouse account for all
local users.

Connect String Syntax
Oracle Net uses service names to identify remote connections. The connection details for these
service names are contained in files that are distributed to each host in the network. When a service
name is encountered, Oracle checks the local Oracle Net configuration file (called tnsnames.ora)
to determine which protocol, host name, and database name to use during the connection. All the
connection information is found in external files.

When using Oracle Net, you must know the name of the service that points to the remote
database. For example, if the service name HQ specifies the connection parameters for the database
you need, then HQ should be used as the connect string in the create database link command.
The following example shows a private database link, using a default login and an Oracle Net
service name:

create database link REMOTE_CONNECT
connect to current_user
using 'HQ';

Chapter 23: Accessing Remote Data 429

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 23
Blind Folio 23:429

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When this link is used, Oracle checks the tnsnames.ora file on the local host to determine
which database to connect to. When it attempts to log into that database, it uses the current user’s
username and password.

The tnsnames.ora files for a network of databases should be coordinated by the DBAs for those
databases. A typical entry in the tnsnames.ora file (for a network using the TCP/IP protocol) is shown
in the following listing:

HQ =(DESCRIPTION=
(ADDRESS_LIST =

(ADDRESS = (PROTOCOL=TCP)
(HOST=host1)
(PORT=1521))

)
(CONNECT DATA=

(SERVICE_NAME = HQ.host1)
)

)

In this listing, the HQ service name is mapped to a connect descriptor that tells the database
which protocol to use (TCP/IP) and which host (host1) and database (HQ) to connect to. The “port”
information refers to the port on the host that will be used for the connection; that data is environment
specific. Different protocols will have different keywords, but they all must convey the same content.

Using Shared Database Links
If you use the Shared Server option for your database connections and your application will employ
many concurrent database link connections, you may benefit from using shared database links. A
shared database link uses shared server connections to support the database link connections. If
you have multiple concurrent database link accesses into a remote database, you can use shared
database links to reduce the number of server connections required.

To create a shared database link, use the shared keyword of the create database link command.
As shown in the following listing, you will also need to specify a schema and password for the
remote database:

create shared database link HR_LINK_SHARED
connect to current_user
authenticated by HR identified by puffin55556d
using 'hq';

The HR_LINK_SHARED database link uses the connected user’s username and password when
accessing the ‘hq’ database, as specified via the connect to current_user clause. In order to prevent
unauthorized attempts to use the shared link, shared links require the authenticated by clause. In
this example, the account used for authentication is an application account, but you can also use
an empty schema for authentication. The authentication account must have the CREATE SESSION
system privilege. During usage of the HR_LINK_SHARED link, connection attempts will include
authentication against the HR link account.

If you change the password on the authentication account, you will need to drop and re-create
each database link that references it. To simplify maintenance, create an account that is only used

430 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 23
Blind Folio 23:430

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

for the authentication of shared database link connections. The account should have only the CREATE
SESSION system privilege and should not have any privileges on any of the application tables.

If your application uses database links infrequently, you should use traditional database links
without the shared clause. Without the shared clause, each database link connection requires a
separate connection to the remote database.

Using Synonyms for Location Transparency
Over the lifespan of an application, its data very likely will move from one database to another, or
from one host to another. Therefore, it will simplify application maintenance if the exact physical
location of a database object is shielded from the user (and the application).

The best way to implement such location transparency is through the use of synonyms. Instead
of writing applications (or SQL*Plus reports) that contain queries that specify a table’s owner, such as

select *
from Practice.BOOKSHELF;

you should create a synonym for that table and then reference the synonym in the query, as
shown here:

create synonym BOOKSHELF
for Practice.BOOKSHELF;

select *
from BOOKSHELF;

The logic required to find the data has thus been moved out of your application and into the
database. Moving the table location logic to the database will be a benefit anytime you move
the table from one schema to another.

In addition to hiding the ownership of tables from an application, you can hide the data’s
physical location through the use of database links and synonyms. By using local synonyms
for remote tables, you move another layer of logic out of the application and into the database. For
example, the local synonym BOOKSHELF, as defined in the following listing, refers to a table that
is located in a different database, on a different host. If that table ever moves, only the link has to
be changed; the application code, which uses the synonym, will not change.

create synonym BOOKSHELF
for BOOKSHELF@REMOTE_CONNECT;

If the remote account used by the database link is not the owner of the object being referenced,
you have two options. First, you can reference an available synonym in the remote database:

create synonym BOOKSHELF
for BOOKSHELF@REMOTE_CONNECT;

Here, BOOKSHELF, in the remote account used by the database link, is a synonym for another
user’s BOOKSHELF table.

Chapter 23: Accessing Remote Data 431

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 23
Blind Folio 23:431

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Second, you can include the remote owner’s name when creating the local synonym, as shown
in the following listing:

create synonym BOOKSHELF
for Practice.BOOKSHELF@REMOTE_CONNECT;

These two examples will result in the same functionality for your queries, but there are differences
between them. The second example, which includes the owner name, is potentially more difficult
to maintain, because you are not using a synonym in the remote database and the remote object
may be moved at a later time, thus invalidating your local synonym.

Using the User Pseudo-Column in Views
The User pseudo-column is very useful when you are using remote data access methods. For
example, you may not want all remote users to see all records in a table. To solve this problem,
you must think of remote users as special users within your database. To enforce the data
restriction, you need to create a view that the remote accounts will access. But what can you use
in the where clause to properly restrict the records? The User pseudo-column, combined with
properly selected usernames, allows you to enforce this restriction.

As you may recall from Chapter 18, queries used to define views may also reference pseudo-
columns. A pseudo-column is a “column” that returns a value when it is selected, but it is not an
actual column in a table. The User pseudo-column, when selected, always returns the Oracle
username that executed the query. So, if a column in the table contains usernames, those values
can be compared against the User pseudo-column to restrict its records, as shown in the following
example. In this example, the NAME table is queried. If the value of the first part of the Name column
is the same as the name of the user entering the query, records will be returned.

create view MY_CHECKOUT as
select * from BOOKSHELF_CHECKOUT
where SUBSTR(Name,1,INSTR(Name,' ')-1) = User;

NOTE
We need to shift our point of view for this discussion. Because the
discussion concerns operations on the database that owns the table
being queried, that database will be referred to as the “local” database,
and the users from other databases will be referred to as “remote” users.

When restricting remote access to the rows of your table, you should first consider which
columns would be the best to use for the restriction. There are usually logical divisions to the
data within a table, such as Department or Region. For each distinct division, create a separate user
account in your local database. For this example, let’s add a Region column to the BOOKSHELF
table. We will now be able to record the list of books from multiple distributed locations in a
single table:

alter table BOOKSHELF
add
(Region VARCHAR2(10));

432 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 23
Blind Folio 23:432

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Suppose you have four major regions represented in your BOOKSHELF table, and you have
created an Oracle account for each region. You could then set up each remote user’s database
link to use his or her specific user account in your local database. For this example, assume the
regions are called NORTH, EAST, SOUTH, and WEST. For each of the regions, a specific database
link would be created. For example, the members of the SOUTH department would use the
database link shown in the following listing:

create database link SOUTH_LINK
connect to SOUTH identified by PAW
using 'HQ';

The database link shown in this example is a private database link with an explicit login to the
SOUTH account in the remote database.

When remote users query via their database links (such as SOUTH_LINK from the previous
example), they will be logged into the HQ database, with their Department name (such as SOUTH)
as their username. Therefore, the value of the User column for any table that the user queries will
be SOUTH.

Now create a view of your base table, comparing the User pseudo-column to the value of the
Department column in the view’s where clause:

create or replace view RESTRICTED_BOOKSHELF
as select *

from BOOKSHELF
where Region = User;

A user who connects via the SOUTH_LINK database link—and thus is logged in as the SOUTH
user—would only be able to see the BOOKSHELF records that have a Region value equal to
‘SOUTH’. If users are accessing your table from a remote database, their logins are occurring via
database links—and you know the local accounts they are using because you set them up.

This type of restriction can also be performed in the remote database rather than in the database
where the table resides. Users in the remote database may create views within their databases of
the following form:

create or replace view SOUTH_BOOKSHELF
as select *

from BOOKSHELF@REMOTE_CONNECT
where Region = 'SOUTH';

In this case, the Region restriction is still in force, but it is administered locally, and the Region
restriction is coded into the view’s query. Choosing between the two restriction options (local or
remote) is based on the number of accounts required for the desired restriction to be enforced.

To secure your production database, you should limit the privileges granted to the accounts used
by database links. Grant those privileges via roles, and use views (with the with read only or with
check option clause) to further limit the ability of those accounts to be used to make unauthorized
changes to the data.

Chapter 23: Accessing Remote Data 433

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 23
Blind Folio 23:433

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Dynamic Links: Using the
SQL*Plus copy Command
The SQL*Plus copy command allows data to be copied between databases (or within the same
database) via SQL*Plus. Although it allows you to select which columns to copy, it works best
when all the columns of a table are being chosen. The greatest benefit from using this command
is its ability to commit after each array of data has been processed (explained shortly). This in turn
generates transactions that are of a manageable size.

NOTE
The copy command is not being enhanced to handle datatypes or
features introduced with or after Oracle8i. The copy command is
likely to be made obsolete in a future release.

Consider the case of a large table, such as BOOKSHELF_CHECKOUT. What if the BOOKSHELF_
CHECKOUT table has 100,000 rows that use a total of 100MB of space, and you need to make a
copy of that table into a different database? The easiest option involves creating a database link
and then using that link in a create table … as select command, as shown next:

create database link REMOTE_CONNECT
connect to PRACTICE identified by PRACTICE
using 'HQ';

create table BOOKSHELF_CHECKOUT
as
select * from BOOKSHELF_CHECKOUT@REMOTE_CONNECT;

The first command creates the database link, and the second creates a new table based on all the
data in the remote table.

Unfortunately, this option creates a very large transaction (all 100,000 rows would be inserted
into the new table as a single transaction) that places a large burden on internal Oracle structures
called rollback segments. Rollback segments and system-managed undo (see Chapter 46) store the
prior image of data until that data is committed to the database. Because this table is being populated
by a single insert, a single, large transaction is generated that may exceed the space in the currently
available rollback segments. This failure will in turn cause the table creation to fail.

To break the transaction into smaller entries, use the SQL*Plus copy command, which has
the following syntax:

copy from
[remote username/remote password@connect string]
[to username/password@connect string]
{append|create|insert|replace}
table name
using subquery;

434 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 23
Blind Folio 23:434

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If the current account is to be the destination of the copied data, the word to and the local
username, password, and connect string are not necessary. If the current account is to be the
source of the copied data, the remote connection information for the data source is not necessary.

To set the transaction entry size, use the SQL*Plus set command to set a value for the arraysize
parameter. This determines the number of records that will be retrieved in each batch. The
copycommit parameter tells SQL*Plus how many batches should be committed at one time.
The following SQL*Plus script accomplishes the same data-copying goal that the create table
as command met; however, it breaks up the single transaction into multiple transactions. In this
example, the data is committed after every 1,000 records. This reduces the transaction’s rollback
segment entry size needed from 100MB to 1MB.

set copycommit 1
set arraysize 1000

copy from PRACTICE/PRACTICE@HQ -
create BOOKSHELF_CHECKOUT -
using -
select * from BOOKSHELF_CHECKOUT

NOTE
Except for the last line, each line in the copy command must be
terminated with a dash (-) because this is a SQL*Plus command.

Here are the different data options within the copy command:

Option Description

APPEND Inserts the rows into the destination table. Automatically creates the table if it
does not exist.

CREATE Creates the table and then inserts the rows.

INSERT Inserts the rows into the destination table if it exists; otherwise, returns an error.
When using INSERT, all columns must be specified in the using subquery.

REPLACE Drops the existing destination table and replaces it with a new table containing
the copied data.

The feedback provided by the copy command may be confusing at first. After the final commit
is complete, the database reports to the user the number of records that were committed in the
last batch. It does not report the total number of records committed (unless they are all committed
in a single batch).

Connecting to a Remote Database
In addition to the interdatabase connections described earlier in this chapter, you may connect
directly to a remote database via an Oracle tool. Therefore, instead of typing

sqlplus username/password

Chapter 23: Accessing Remote Data 435

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 23
Blind Folio 23:435

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

and accessing your local database, you can go directly to a remote database. To do this, enter your
username and password along with the Oracle Net connect string for the remote database:

sqlplus username/password@HQ

This command will log you in directly to the HQ database. The host configuration for this type
of login is shown in Figure 23-3; the Branch host has the Oracle tools (such as SQL*Plus) on it and
is running Oracle Net, and the REMOTE host is running Oracle Net and has an Oracle database.
There may or may not be a database on the Branch host; specifying the Oracle Net connect string
to the remote database forces Oracle to ignore any local databases.

As Figure 23-3 shows, there are very few hardware requirements for the Branch host. All it has
to support is the front-end tool and Oracle Net—a typical configuration for client-server applications.
A client machine, such as the Branch host, is used primarily for presentation of the data via the
database access tools. The server side, such as the Headquarters host, is used to maintain the data
and process the data access requests from users.

Regardless of the configuration you use and the configuration tools available, you need to tell
Oracle Net how to find the remote database. Work with your DBA to make sure the remote server
is properly configured to listen for new connection requests and to make sure the client machines
are properly configured to issue those requests.

436 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 23
Blind Folio 23:436

FIGURE 23-3. Sample architecture for a remote connection

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 24
Blind Folio 24:437

CHAPTER
24

Using Materialized
Views

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

T
o improve the performance of an application, you can make local copies of
remote tables that use distributed data, or create summary tables based on group
by operations. Oracle provides materialized views to store copies of data or
aggregations. Materialized views can be used to replicate all or part of a single
table, or to replicate the result of a query against multiple tables; refreshes of the

replicated data can be done automatically by the database at time intervals that you specify. In
this chapter, you will see the general usage of materialized views, including their refresh strategies,
followed by a description of the optimization strategies available.

Functionality
Materialized views are copies (also known as replicas) of data, based upon queries. In its simplest
form, a materialized view can be thought of as a table created by a command such as the following:

create table LOCAL_BOOKSHELF
as
select * from BOOKSHELF@REMOTE_CONNECT;

In this example, a table named LOCAL_BOOKSHELF is created in the local database and
is populated with data from a remote database (defined by the database link named REMOTE_
CONNECT). Once the LOCAL_BOOKSHELF table is created, though, its data may immediately
become out of sync with the master table (BOOKSHELF@REMOTE_CONNECT). Also, LOCAL_
BOOKSHELF may be updated by local users, further complicating its synchronization with the
master table.

Despite these synchronization problems, there are benefits to replicating data in this way.
Creating local copies of remote data may improve the performance of distributed queries, particularly
if the master table’s data does not change frequently. You may also use the local table creation
process to restrict the rows returned, restrict the columns returned, or generate new columns
(such as by applying functions to selected values). This is a common strategy for decision-support
environments, in which complex queries are used to periodically “roll up” data into summary
tables for use during analyses.

Materialized views automate the data replication and refresh processes. When materialized
views are created, a refresh interval is established to schedule refreshes of replicated data. Local
updates can be prevented, and transaction-based refreshes can be used. Transaction-based refreshes,
available for many types of materialized views, send from the master database only those rows
that have changed for the materialized view. This capability, described later in this chapter, may
significantly improve the performance of your refreshes.

Required System Privileges
To create a materialized view, you must have the privileges needed to create the underlying
objects it will use. You must have the CREATE MATERIALIZED VIEW privilege, as well as the
CREATE TABLE or CREATE ANY TABLE system privileges. In addition, you must have either the
UNLIMITED TABLESPACE system privilege or a sufficient specified space quota in a local tablespace.
To create a refresh-on-commit materialized view, you must also have the ON COMMIT REFRESH
system privilege on any tables you do not own, or the ON COMMIT REFRESH system privilege.

438 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 24
Blind Folio 24:438

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Materialized views of remote tables require queries of remote tables; therefore, you must have
privileges to use a database link that accesses the remote database. The link you use can be either
public or private. If the database link is private, you need to have the CREATE DATABASE LINK
system privilege to create the database link. See Chapter 23 for further information on database links.

If you are creating materialized views to take advantage of the query rewrite feature (in which
the optimizer dynamically chooses to select data from the materialized view instead of the underlying
table), you must have the QUERY REWRITE privilege. If the tables are in another user’s schema,
you must have the GLOBAL QUERY REWRITE privilege. If the materialized view is created with
on commit refresh specified, you must have the ON COMMIT REFRESH system privilege or the
ON COMMIT REFRESH object privilege on each table outside your schema.

Required Table Privileges
When creating a materialized view, you can reference tables in a remote database via a database
link. The account that the database link uses in the remote database must have access to the tables
and views used by the database link. You cannot create a materialized view based on objects
owned by the user SYS.

Within the local database, you can grant SELECT privilege on a materialized view to other
local users. Since most materialized views are read-only (although they can be updatable), no
additional grants are necessary. If you create an updatable materialized view, you must grant
users UPDATE privilege on both the materialized view and the underlying local table it accesses.

Read-Only vs. Updatable
A read-only materialized view cannot pass data changes from itself back to its master table. An
updatable materialized view can send changes to its master table.

Although that may seem to be a simple distinction, the underlying differences between these
two types of materialized views are not simple. A read-only materialized view is implemented as
a create table as select command. When transactions occur, they occur only within the master
table; the transactions are sent to the read-only materialized view. Thus, the method by which the
rows in the materialized view change is controlled—the materialized view’s rows only change
following a change to the materialized view’s master table.

In an updatable materialized view, there is less control over the method by which rows in the
materialized view are changed. Rows may be changed based on changes in the master table, or
rows may be changed directly by users of the materialized view. As a result, you need to send
records from the master table to the materialized view, and vice versa. Since multiple sources of
changes exist, multiple masters exist (referred to as a multimaster configuration).

During the transfer of records from the materialized view to master, you need to decide how
you will reconcile conflicts. For example, what if the record with ID=1 is deleted at the materialized
view site, while at the master site, a record is created in a separate table that references (via a
foreign key) the ID=1 record? You cannot delete the ID=1 record from the master site, since that
record has a “child” record that relates to it. You cannot insert the child record at the materialized
view site, since the parent (ID=1) record has been deleted. How do you plan to resolve such conflicts?

Read-only materialized views let you avoid the need for conflict resolution by forcing all
transactions to occur in the controlled master table. This may limit your functionality, but it is an
appropriate solution for the vast majority of replication needs. If you need multimaster replication,
see the Advanced Replication Guide for guidelines and detailed implementation instructions.

Chapter 24: Using Materialized Views 439

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 24
Blind Folio 24:439

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

create materialized view Syntax
The basic syntax for creating a materialized view is shown in the following listing. See the
Alphabetical Reference for the full command syntax. Following the command description,
examples are given that illustrate the creation of local replicas of remote data.

create materialized view [user.]name
[organization index iot_clause]
[{ { segment attributes clauses }

| cluster cluster (column [, column] ...) }
[{partitioning clause | parallel clause | build clause }]
| on prebuilt table [{with | without} reduced precision]]

[using index
[{ physical attributes clauses| tablespace clause }
[physical attributes clauses| tablespace clause]
| using no index]

[refresh clause]
[for update] [{disable | enable} query rewrite]
as subquery;

The create materialized view command has four major sections. The first section is the header,
in which the materialized view is named (the first line in the listing):

create materialized view [user.]name

The materialized view will be created in your user account (schema) unless a different username
is specified in the header. In the second section, the storage parameters are set:

[organization index iot_clause]
[{ { segment attributes clauses }

| cluster cluster (column [, column] ...) }
[{partitioning clause | parallel clause | build clause }]
| on prebuilt table [{with | without} reduced precision]]

[using index
[{ physical attributes clauses| tablespace clause }
[physical attributes clauses| tablespace clause]
| using no index]

The storage parameters will be applied to a table that will be created in the local database.
For information about the available storage parameters, see the “Storage” entry in the Alphabetical
Reference. If the data has already been replicated to a local table, you can use the on prebuilt
table clause to tell Oracle to use that table as a materialized view.

NOTE
You can specify the storage parameters to be used for the index that
is automatically created on the materialized view.

In the third section, the refresh options are set:

440 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 24
Blind Folio 24:440

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

[refresh clause]

The syntax for refresh clause is

{ refresh
{ { fast | complete | force }
| on { demand | commit }
| { start with | next } date
| with { primary key | rowid }
| using
{ default [master | local] rollback segment
| [master | local] rollback segment rollback_segment
}
[default [master | local] rollback segment
| [master | local] rollback segment rollback_segment
]...

}
[{ fast | complete | force }
| on { demand | commit }
| { start with | next } date
| with { primary key | rowid }
| using
{ default [master | local] rollback segment
| [master | local] rollback segment rollback_segment
}
[default [master | local] rollback segment
| [master | local] rollback segment rollback_segment
]...

]...
| never refresh
}

The refresh option specifies the mechanism Oracle should use when refreshing the materialized
view. The three options available are fast, complete, and force. Fast refreshes are only available
if Oracle can match rows in the materialized view directly to rows in the base table(s); they use
tables called materialized view logs to send specific rows from the master table to the materialized
view. Complete refreshes truncate the data and reexecute the materialized view’s base query
to repopulate it. The force option for refreshes tells Oracle to use a fast refresh if it is available;
otherwise, a complete refresh will be used. If you have created a simple materialized view but
want to use complete refreshes, specify refresh complete in your create materialized view command.
The refresh options are further described in “Refreshing Materialized Views,” later in this chapter.
Within this section of the create materialized view command, you also specify the mechanism
used to relate values in the materialized view to the master table—whether RowIDs or primary
key values should be used. By default, primary keys are used.

If the master query for the materialized view references a join or a single-table aggregate,
you can use the on commit option to control the replication of changes. If you use on commit,
changes will be sent from the master to the replica when the changes are committed on the
master table. If you specify on demand, the refresh will occur when you manually execute a
refresh command.

Chapter 24: Using Materialized Views 441

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 24
Blind Folio 24:441

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The fourth section of the create materialized view command is the query that the materialized
view will use:

[for update] [{disable | enable} query rewrite]
as subquery

If you specify for update, the materialized view will be updatable; otherwise, it will be read-
only. Most materialized views are read-only replicas of the master data. If you use updatable
materialized views, you need to be concerned with issues such as two-way replication of changes
and the reconciliation of conflicting data changes. Updatable materialized views are an example
of multimaster replication; for full details on implementing a multimaster replication environment,
see the Advanced Replication Guide.

NOTE
The query that forms the basis of the materialized view should not use
the User or SysDate pseudo-columns.

The following example creates a read-only materialized view called LOCAL_BOOKSHELF in
a local database, based on a remote table named BOOKSHELF that is accessible via the REMOTE_
CONNECT database link. The materialized view is placed in the USERS tablespace.

create materialized view LOCAL_BOOKSHELF
tablespace USERS
refresh force
start with SysDate next SysDate+7
with primary key
as
select * from BOOKSHELF@REMOTE_CONNECT;

Oracle responds with

Materialized view created.

The command shown in the preceding example will create a read-only materialized view
called LOCAL_BOOKSHELF. Its underlying table will be created in a tablespace named USERS.
You can place materialized view logs in tablespaces apart from the materialized views they
support. The force refresh option is specified because no materialized view log exists on the base
table for the materialized view; Oracle will try to use a fast refresh but will use a complete refresh
until the materialized view log is created. The materialized view’s query specifies that the entire
BOOKSHELF table, with no modifications, is to be copied to the local database. As soon as the
LOCAL_BOOKSHELF materialized view is created, its underlying table will be populated with
the BOOKSHELF data. Thereafter, the materialized view will be refreshed every seven days. The
storage parameters that are not specified will use the default values for those parameters for the
USERS tablespace.

The following example creates a materialized view named LOCAL_CATEGORY_COUNT
in a local database, based on a remote table named BOOKSHELF in a database accessed via the
REMOTE_CONNECT database link.

442 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 24
Blind Folio 24:442

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

create materialized view LOCAL_CATEGORY_COUNT
tablespace USERS
refresh force
start with SysDate next SysDate+7
as

select CategoryName, COUNT(*) CountPerCat
from BOOKSHELF@REMOTE_CONNECT
group by CategoryName;

The query in the LOCAL_CATEGORY_COUNT materialized view counts the number of
books in each category in the remote BOOKSHELF table.

There are a few important points to note about the two examples shown in this section:

■ The group by query used in the LOCAL_CATEGORY_COUNT materialized view could
be performed in SQL*Plus against the LOCAL_BOOKSHELF materialized view. That is,
the group by operation can be performed outside of the materialized view.

■ Since LOCAL_CATEGORY_COUNT uses a group by clause, it is a complex materialized
view and may only be able to use complete refreshes. LOCAL_BOOKSHELF, as a simple
materialized view, can use fast refreshes.

The two materialized views shown in the preceding examples reference the same table. Since
one of the materialized views is a simple materialized view that replicates all columns and all rows
of the master table, the second materialized view may at first appear to be redundant. However,
sometimes the second, complex materialized view is the more useful of the two.

How can this be? First, remember that these materialized views are being used to service the
query needs of local users. If those users always perform group by operations in their queries,
and their grouping columns are fixed, then LOCAL_CATEGORY_COUNT may be more useful
to them. Second, if the transaction volume on the master BOOKSHELF table is very high, or the
master BOOKSHELF table is very small, there may not be a significant difference in the refresh
times of the fast and complete refreshes. The most appropriate materialized view is the one that
is most productive for your users.

Types of Materialized Views
The materialized views shown in the previous examples illustrated two types of materialized views.
In the first, the materialized view created a local copy of remote data, with no aggregations. In
the second, an aggregation was performed. Both of the base queries could be extended to include
joins of multiple tables. The key distinguishing factor is the use of aggregations in the second example.

A third type of materialized view is a nested materialized view—a materialized view whose
definition is based on another materialized view.

The type of materialized view will impact your ability to perform fast refreshes of the materialized
view. A fast refresh will refresh the materialized view with the rows that have changed in its base
table(s) since its last refresh. If you cannot perform a fast refresh, you will have to use a complete
refresh, which is usually more expensive in terms of time and resources. Fast refreshes require the
use of materialized view logs (shown later in this chapter) on all tables referenced in the materialized
view’s base query.

Chapter 24: Using Materialized Views 443

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 24
Blind Folio 24:443

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If the materialized view contains an aggregate, a fast refresh will be possible if the select list
contains all of the group by columns and there must be a COUNT(*) and COUNT(column_name)
on any aggregated columns.

If the materialized view contains only joins but no aggregates, fast refresh is available after
any insert, update, or delete to the base tables. The RowID columns from each table must be
present in the select list for the materialized view’s base query, and all of the referenced tables
must have materialized view logs.

Because they send the incremental changes from the referenced tables to the materialized view,
fast refreshes usually represent the fastest way to update the data in your materialized views.

RowID vs. Primary Key–Based Materialized Views
You can base materialized views on primary key values of the master table instead of basing them
on the master table’s RowIDs. You should decide between these options based on several factors:

■ System stability If the master site is not stable, then you may need to perform database
recoveries involving the master table. When you use Oracle’s Data Pump Export and
Import utilities to perform recoveries, the RowID values of rows will change. If the system
requires frequent exports and imports, you should use primary key–based materialized
views.

■ Size of materialized view log table Oracle allows you to store the changes to master
tables in separate tables called materialized view logs (described later in this chapter). If
the primary key consists of many columns, the materialized view log table for a primary
key–based materialized view may be considerably larger than the materialized view log
for a comparable RowID-based materialized view.

■ Referential integrity To use primary key–based materialized views, you must have
defined a primary key on the master table. If you cannot define a primary key on the
master table, then you must use RowID-based materialized views.

Using Prebuilt Tables
When you create a materialized view, you can specify build immediate to populate the materialized
view immediately or build deferred to populate the materialized view later (via a complete refresh).
If you need to carefully manage the transactions that initially populate the materialized view, you
can create a table that has the same structure as the materialized view and populate it. When the
table is fully loaded and properly indexed, use the on prebuilt table clause of the create materialized
view command. The table and the materialized view must have the same name, and the table must
have the same columns and datatypes as the materialized view (you can specify with reduced
precision to accommodate differences in precision). The table can contain additional, unmanaged
columns.

Once the table has been registered as a materialized view, you can maintain it via refreshes,
and the optimizer can use it in query rewrite operations. For query rewrite to work properly on a
prebuilt table, you must set the QUERY_REWRITE_INTEGRITY initialization parameter to STALE_
TOLERATED or TRUSTED.

444 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 24
Blind Folio 24:444

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 24: Using Materialized Views 445

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 24
Blind Folio 24:445

Indexing Materialized View Tables
When you create a materialized view, Oracle creates a local base table containing the data that
satisfies the base query. Because that data has been replicated with a goal in mind (usually to
improve performance in the database or the network), it is important to follow through to that
goal after the materialized view has been created. Performance improvements for queries are
usually gained through the use of indexes. Columns that are frequently used in the where clauses
of queries should be indexed; if a set of columns is frequently accessed in queries, then a concatenated
index on that set of columns can be created. (See Chapter 43 for more information on the Oracle
optimizer.)

Oracle does not automatically create indexes for complex materialized views on columns other
than the primary key. You need to create these indexes manually. To create indexes on your local
base table, use the create index command (see the Alphabetical Reference). Do not create any
constraints on the materialized view’s local base table; Oracle will maintain the constraint-based
relationships on the master tables.

Since no indexes are created on the columns that users are likely to query from the materialized
view, you should create indexes on the materialized view’s local base table.

Using Materialized Views to
Alter Query Execution Paths
For a large database, a materialized view may offer several performance benefits. You can use
materialized views to influence the optimizer to change the execution paths for queries. This
feature, called query rewrite, enables the optimizer to use a materialized view in place of the
table queried by the materialized view, even if the materialized view is not named in the query.
For example, if you have a large SALES table, you may create a materialized view that sums the
SALES data by region. If a user queries the SALES table for the sum of the SALES data for a region,
Oracle can redirect that query to use your materialized view in place of the SALES table. As a
result, you can reduce the number of accesses against your largest tables, improving the system
performance. Further, since the data in the materialized view is already grouped by region,
summarization does not have to be performed at the time the query is issued.

NOTE
You must specify enable query rewrite in the materialized view
definition for the view to be used as part of a query rewrite operation.

To use the query rewrite capability effectively, you should create a dimension that defines the
hierarchies within the table’s data. To execute the create dimension command, you will need to
have been granted the CREATE DIMENSION system privilege. You can create a dimension that
supports the hierarchy between the COUNTRY and CONTINENT sample tables:

create dimension GEOGRAPHY
level COUNTRY_ID is COUNTRY.Country
level CONTINENT_id is CONTINENT.Continent

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

hierarchy COUNTRY_ROLLUP (
COUNTRY_ID child of
CONTINENT_ID

join key COUNTRY.Continent references CONTINENT_id);

To enable a materialized view for query rewrite, all of the master tables for the materialized
view must be in the materialized view’s schema, and you must have the QUERY REWRITE system
privilege. If the view and the tables are in separate schemas, you must have the GLOBAL QUERY
REWRITE system privilege. In general, you should create materialized views in the same schema
as the tables on which they are based; otherwise, you will need to manage the permissions and
grants required to create and maintain the materialized view.

NOTE
You can enable or disable query rewrite at the SQL statement level
via the REWRITE and NOREWRITE hints. When using the REWRITE
hint, you can specify materialized views for the optimizer to consider.

NOTE
Query rewrite decisions are based on the costs of the different
execution paths, so your statistics should be kept up to date.

For query rewrite to be possible, you must set the following initialization parameters:

■ OPTIMIZER_MODE = ALL_ROWS or FIRST_ROWS

■ QUERY_REWRITE_ENABLED = TRUE

■ QUERY_REWRITE_INTEGRITY = STALE_TOLERATED, TRUSTED, or ENFORCED

By default, QUERY_REWRITE_INTEGRITY is set to ENFORCED; in this mode all constraints
must be validated. The optimizer only uses fresh data from the materialized views and only uses
those relationships that are based on ENABLED VALIDATED primary, unique, or foreign key
constraints. In TRUSTED mode, the optimizer trusts that the data in the materialized view is fresh
and the relationships declared in dimensions and constraints are correct. In STALE_TOLERATED
mode, the optimizer uses materialized views that are valid but contain stale data, as well as those
that contain fresh data.

If you set QUERY_REWRITE_ENABLED to FORCE, the optimizer will rewrite queries to use
materialized views even when the estimated query cost of the original query is lower.

If query rewrite occurs, the explain plan for the query (see Chapter 43) will list the materialized
view as one of the objects accessed, along with an operation listed as “MAT_VIEW REWRITE ACCESS”.
You can use the DBMS_MVIEW.EXPLAIN_REWRITE procedure to see if rewrite is possible for a
query, and which materialized views would be involved. If the query cannot be rewritten, the
procedure will document the reasons.

EXPLAIN_REWRITE takes three input parameters—the query, a materialized view name, and
a statement identifier—and can store its output in a table. Oracle provides the create table command
for the output table in a script named utlxrw.sql in the /rdbms/admin directory under the Oracle
software home directory. The utlxrw.sql script creates a table named REWRITE_TABLE.

446 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 24
Blind Folio 24:446

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can query the REWRITE_TABLE for the original cost, rewritten cost, and the optimizer’s
decision. The Message column will display the reasons for the optimizer’s decision.

See the Data Warehousing Guide for further details and constraints related to query rewrite.

Using DBMS_ADVISOR
As of Oracle Database 10g, you can use the SQL Access Advisor to generate recommendations
for the creation and indexing of materialized views. The SQL Access Advisor may recommend
specific indexes (and types of indexes) to improve the performance of joins and other queries.
The SQL Access Advisor may also generate recommendations for altering a materialized view so
it supports query rewrite or fast refreshes. You can execute the SQL Access Advisor from within
Oracle Enterprise Manager or via executions of the DBMS_ADVISOR package.

NOTE
For best results from the DBMS_ADVISOR package, you should
gather statistics about all tables, indexes, and join columns prior
to generating recommendations.

To use the SQL Access Advisor, either from Oracle Enterprise Manager or via DBMS_ADVISOR,
you follow four steps:

1. Create a task

2. Define the workload

3. Generate recommendations

4. View and implement recommendations

You can create a task in one of two ways: by executing the DBMS_ADVISOR.CREATE_TASK
procedure or by using the DBMS_ADVISOR.QUICK_TUNE procedure (as shown in the next section).

The workload consists of one or more SQL statements plus the statistics and attributes that
relate to the statement. The workload may include all SQL statements for an application. The SQL
Access Advisor ranks the entries in the workload according to statistics and business importance.
The workload is created using the DBMS_ADVISOR.CREATE_SQLWKLD procedure. To associate
a workload with a parent Advisor task, use the DBMS_ADVISOR.ADD_SQLWKLD_REF procedure.
If a workload is not provided, the SQL Access Advisor can generate and use a hypothetical workload
based on the dimensions defined in your schema.

Once a task exists and a workload is associated with the task, you can generate recommendations
via the DBMS_ADVISOR.EXECUTE_TASK procedure. The SQL Access Advisor will consider the
workload and the system statistics and will attempt to generate recommendations for tuning the
application. You can see the recommendations by executing the DBMS_ADVISOR.GET_TASK_
SCRIPT function or via data dictionary views. Each recommendation can be viewed via USER_
ADVISOR_RECOMMENDATIONS (there are “ALL” and “DBA” versions of this view available, as
well). To relate recommendations to a SQL statement, you will need to use the USER_ADVISOR_
SQLA_WK_STMTS view and USER_ADVISOR_ACTIONS.

Chapter 24: Using Materialized Views 447

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 24
Blind Folio 24:447

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

448 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 24
Blind Folio 24:448

When you execute the GET_TASK_SCRIPT procedure, Oracle generates an executable SQL
file that will contain the commands needed to create, alter, or drop the recommended objects.
You should review the generated script prior to executing it, particularly noting the tablespace
specifications. In the following section you will see how to use the QUICK_TUNE procedure to
simplify the tuning advisor process for a single command.

Performing a Quick Tune
To tune a single SQL statement, use the QUICK_TUNE procedure of the DBMS_ADVISOR
package. QUICK_TUNE has two input parameters—a task name and a SQL statement. Using
QUICK_TUNE shields the user from the steps involved in creating workloads and tasks via
DBMS_ADVISOR.

For example, the following procedure call evaluates a query

execute DBMS_ADVISOR.QUICK_TUNE(DBMS_ADVISOR.SQLACCESS_ADVISOR, -
'MV_TUNE','SELECT PUBLISHER FROM BOOKSHELF');

NOTE
The user executing this command needs the ADVISOR system
privilege.

The recommendation generated by QUICK_TUNE can be viewed via USER_ADVISOR_
ACTIONS, but it is easier to read if you use the DBMS_ADVISOR procedures to generate a script
file. The recommendation is that a materialized view be created to support the query. Since only
one SQL statement was provided, this recommendation is given in isolation and does not consider
any other aspects of the database or application.

You can use the CREATE_FILE procedure to automate the generation of a file containing the
scripts needed to implement the recommendations. First, create a directory object to hold the file:

create directory scripts as 'e:\scripts';
grant read on directory scripts to public;
grant write on directory scripts to public;

Next, execute the CREATE_FILE procedure. It has three input variables: the script (generated
via GET_TASK_SCRIPT, to which you pass the name of the task), the output directory, and the
name of the file to be created:

execute DBMS_ADVISOR.CREATE_FILE(DBMS_ADVISOR.GET_TASK_SCRIPT('MV_TUNE'),-
'SCRIPTS','MV_TUNE.sql');

The MV_TUNE.sql file created by the CREATE_FILE procedure will contain commands
similar to those shown in the following listing. Depending on the specific version of Oracle,
the recommendations may differ.

Rem Username: PRACTICE
Rem Task: MV_TUNE
Rem

set feedback 1
set linesize 80

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 24: Using Materialized Views 449

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 24
Blind Folio 24:449

set trimspool on
set tab off
set pagesize 60

whenever sqlerror CONTINUE

CREATE MATERIALIZED VIEW "PRACTICE"."MV$$_021F0001"
REFRESH FORCE WITH ROWID
ENABLE QUERY REWRITE
AS SELECT PRACTICE.BOOKSHELF.ROWID C1,

"PRACTICE"."BOOKSHELF"."PUBLISHER" M1
FROM PRACTICE.BOOKSHELF;

begin
dbms_stats.gather_table_stats('"PRACTICE"',

'"MV$$_021F0001"',NULL,dbms_stats.auto_sample_size);
end;
/

whenever sqlerror EXIT SQL.SQLCODE

begin
dbms_advisor.mark_recommendation('MV_TUNE',1,'IMPLEMENTED');
end;
/

The MARK_RECOMMENDATION procedure allows you to annotate the recommendation
so that it can be skipped during subsequent script generations. Valid actions for MARK_
RECOMMENDATION include ACCEPT, IGNORE, IMPLEMENTED, and REJECT.

You can use the TUNE_MVIEW procedure of the DBMS_ADVISOR package to generate
recommendations for the reconfiguration of your materialized views. TUNE_VIEW generates
two sets of output results—for the creation of new materialized views, and for the removal of
previously created materialized views. The end result should be a set of materialized views that
can be fast refreshed, replacing materialized views that cannot be fast refreshed.

You can view the TUNE_MVIEW output via the USER_TUNE_MVIEW data dictionary view,
or you can generate its scripts via the GET_TASK_SCRIPT and CREATE_FILE procedures shown
in the previous listings.

Refreshing Materialized Views
The data in a materialized view may be replicated either once (when the view is created) or at
intervals. The create materialized view command allows you to set the refresh interval, delegating
the responsibility for scheduling and performing the refreshes to the database. In the following
sections, you will see how to perform both manual and automatic refreshes.

What Kind of Refreshes Can Be Performed?
To see what kind of refresh and rewrite capabilities are possible for your materialized views, you
can query the MV_CAPABILITIES_TABLE table. The capabilities may change between versions,
so you should reevaluate your refresh capabilities following Oracle software upgrades. To create

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

450 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 24
Blind Folio 24:450

this table, execute the utlxmv.sql script located in the /rdbms/admin directory under the Oracle
software home directory.

The columns of MV_CAPABILITIES TABLE are

desc MV_CAPABILITIES_TABLE

Name Null? Type
--- -------- ----------------
STATEMENT_ID VARCHAR2(30)
MVOWNER VARCHAR2(30)
MVNAME VARCHAR2(30)
CAPABILITY_NAME VARCHAR2(30)
POSSIBLE CHAR(1)
RELATED_TEXT VARCHAR2(2000)
RELATED_NUM NUMBER
MSGNO NUMBER(38)
MSGTXT VARCHAR2(2000)
SEQ NUMBER

To populate the MV_CAPABILITIES_TABLE table, execute the DBMS_MVIEW.EXPLAIN_
MVIEW procedure, using the name of the materialized view as the input value as shown in
the following listing:

execute DBMS_MVIEW.EXPLAIN_MVIEW('local_category_count');

The utlxmv.sql script provides guidance on the interpretation of the column values, as shown
in the following listing:

CREATE TABLE MV_CAPABILITIES_TABLE
(STATEMENT_ID VARCHAR(30), -- Client-supplied unique statement identifier
MVOWNER VARCHAR(30), -- NULL for SELECT based EXPLAIN_MVIEW
MVNAME VARCHAR(30), -- NULL for SELECT based EXPLAIN_MVIEW
CAPABILITY_NAME VARCHAR(30), -- A descriptive name of the particular

-- capability:
-- REWRITE
-- Can do at least full text match
-- rewrite
-- REWRITE_PARTIAL_TEXT_MATCH
-- Can do at least full and partial
-- text match rewrite
-- REWRITE_GENERAL
-- Can do all forms of rewrite
-- REFRESH
-- Can do at least complete refresh
-- REFRESH_FROM_LOG_AFTER_INSERT
-- Can do fast refresh from an mv log
-- or change capture table at least
-- when update operations are

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

-- restricted to INSERT
-- REFRESH_FROM_LOG_AFTER_ANY
-- can do fast refresh from an mv log
-- or change capture table after any
-- combination of updates
-- PCT
-- Can do Enhanced Update Tracking on
-- the table named in the RELATED_NAME
-- column. EUT is needed for fast
-- refresh after partitioned
-- maintenance operations on the table
-- named in the RELATED_NAME column
-- and to do non-stale tolerated
-- rewrite when the mv is partially
-- stale with respect to the table
-- named in the RELATED_NAME column.
-- EUT can also sometimes enable fast
-- refresh of updates to the table
-- named in the RELATED_NAME column
-- when fast refresh from an mv log
-- or change capture table is not
-- possible.

POSSIBLE CHARACTER(1), -- T = capability is possible
-- F = capability is not possible

RELATED_TEXT VARCHAR(2000),-- Owner.table.column, alias name, etc.
-- related to this message. The
-- specific meaning of this column
-- depends on the MSGNO column. See
-- the documentation for
-- DBMS_MVIEW.EXPLAIN_MVIEW() for details

RELATED_NUM NUMBER, -- When there is a numeric value
-- associated with a row, it goes here.
-- The specific meaning of this column
-- depends on the MSGNO column. See
-- the documentation for
-- DBMS_MVIEW.EXPLAIN_MVIEW() for details

MSGNO INTEGER, -- When available, QSM message #
-- explaining why not possible or more
-- details when enabled.

MSGTXT VARCHAR(2000),-- Text associated with MSGNO.
SEQ NUMBER); -- Useful in ORDER BY clause when

-- selecting from this table.

Once the EXPLAIN_MVIEW procedure has been executed, you can query MV_CAPABILITIES_
TABLE to determine your options.

select Capability_Name, Msgtxt
from MV_CAPABILITIES_TABLE
where Msgtxt is not null;

Chapter 24: Using Materialized Views 451

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 24
Blind Folio 24:451

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

452 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 24
Blind Folio 24:452

For the LOCAL_BOOKSHELF materialized view, the query returns:

CAPABILITY_NAME

MSGTXT
--
PCT_TABLE
relation is not a partitioned table

REFRESH_FAST_AFTER_INSERT
the detail table does not have a materialized view log

REFRESH_FAST_AFTER_ONETAB_DML
see the reason why REFRESH_FAST_AFTER_INSERT is disabled

REFRESH_FAST_AFTER_ANY_DML
see the reason why REFRESH_FAST_AFTER_ONETAB_DML is disabled

REFRESH_FAST_PCT
PCT is not possible on any of the detail tables in the
materialized view

REWRITE_FULL_TEXT_MATCH
query rewrite is disabled on the materialized view

REWRITE_PARTIAL_TEXT_MATCH
query rewrite is disabled on the materialized view

REWRITE_GENERAL
query rewrite is disabled on the materialized view

REWRITE_PCT
general rewrite is not possible or PCT is not possible on
any of the detail tables

PCT_TABLE_REWRITE
relation is not a partitioned table

10 rows selected.

Since the query rewrite clause was not specified during the creation of the materialized view,
the query rewrite capabilities are disabled for LOCAL_BOOKSHELF. Fast refresh capabilities are
not supported because the base table does not have a materialized view log. If you change your
materialized view or its base table, you should regenerate the data in MV_CAPABILITIES_TABLE
to see the new capabilities.

As shown in the preceding listing, the LOCAL_BOOKSHELF materialized view cannot use a
fast refresh because its base table does not have a materialized view log. There are other constraints
that will limit your ability to use fast refreshes:

■ The materialized view must not contain references to nonrepeating expressions such as
SysDate and RowNum.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:48:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ The materialized view must not contain references to RAW or LONG RAW datatypes.

■ For materialized views based on joins, RowIDs from all tables in the from list must be
part of the select list.

■ If there are outer joins, all the joins must be connected by ands, the where clause must
have no selections, and unique constraints must exist on the join columns of the inner
join table.

■ For materialized views based on aggregates, the materialized view logs must contain all
columns from the referenced tables, must specify the rowid and including new values
clauses, and must specify the sequence clause.

See the Data Warehousing Guide for additional restrictions related to fast refreshes of complex
aggregates.

NOTE
You can specify an order by clause in the create materialized view
command. The order by clause will only affect the initial creation
of the materialized view; it will not affect any refresh.

Automatic Refreshes
Consider the LOCAL_BOOKSHELF materialized view described earlier. Its refresh schedule settings,
defined by its create materialized view command, are shown in bold in the following listing:

create materialized view LOCAL_BOOKSHELF
tablespace USERS

refresh force
start with SysDate next SysDate+7
with primary key
as
select * from BOOKSHELF@REMOTE_CONNECT;

The refresh schedule has three components. First, the type of refresh (fast, complete, never,
or force) is specified. Fast refreshes use materialized view logs (described later in this chapter) to
send changed rows from the master table to the materialized view. Complete refreshes delete all
rows from the materialized view and repopulate it. The force option for refreshes tells Oracle to
use a fast refresh if it is available; otherwise, a complete refresh will be used.

The start with clause tells the database when to perform the first replication from the master
table to the local base table. It must evaluate to a future point in time. If you do not specify a start
with time but specify a next value, Oracle will use the next clause to determine the start time. To
maintain control over your replication schedule, you should specify a value for the start with clause.

The next clause tells Oracle how long to wait between refreshes. Since it will be applied to a
different base time each time the materialized view is refreshed, the next clause specifies a date
expression instead of a fixed date. In the preceding example, the expression is

next SysDate+7

Chapter 24: Using Materialized Views 453

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 24
Blind Folio 24:453

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Every time the materialized view is refreshed, the next refresh will be scheduled for seven
days later. Although the refresh schedule in this example is fairly simple, you can use many of
Oracle’s date functions to customize a refresh schedule. For example, if you want to refresh every
Monday at noon, regardless of the current date, you can set the next clause to

NEXT_DAY(TRUNC(SysDate),'MONDAY')+12/24

This example will find the next Monday after the current system date; the time portion of that
date will be truncated, and 12 hours will be added to the date. (For information on date functions
in Oracle, see Chapter 10.)

For automatic materialized view refreshes to occur, you must have at least one background
snapshot refresh process running in your database. The refresh process periodically “wakes up”
and checks whether any materialized views in the database need to be refreshed. The number
of processes running in your database is determined by an initialization parameter called JOB_
QUEUE_PROCESSES. That parameter must be set (in your initialization parameter file) to a value
greater than 0; for most cases, a value of 1 should be sufficient. A coordinator process starts job
queue processes as needed.

If the database is not running the job queue processes, you need to use manual refresh methods,
described in the next section.

Manual Refreshes
In addition to the database’s automatic refreshes, you can perform manual refreshes of materialized
views. These override the normally scheduled refreshes; the new start with value will be based on
the time of your manual refresh.

To refresh a single materialized view, use DBMS_MVIEW.REFRESH. Its two main parameters
are the name of the materialized view to be refreshed and the method to use. For this method,
you can specify ‘c’ for a complete refresh, ‘f’ for fast refresh, ‘p’ for a fast refresh using Partition
Change Tracking (PCT), and ‘?’ for force. For example:

execute DBMS_MVIEW.REFRESH('local_bookshelf','c');

NOTE
Partition Change Tracking (PCT) occurs when partition maintenance
operations have been performed on the tables referenced by the
materialized view. In PCT, Oracle performs the refresh by recomputing
the rows in the materialized view affected by the changed partitions
in the detail tables, avoiding the need for a complete refresh.

If you are refreshing multiple materialized views via a single execution of DBMS_MVIEW
.REFRESH, list the names of all the materialized views in the first parameter, and their matching
refresh methods in the second parameter, as shown here:

execute DBMS_MVIEW.REFRESH('local_bookshelf,local_category_count','?c');

In this example, the materialized view named LOCAL_BOOKSHELF will be refreshed via a
force refresh, while the second materialized view will use a complete refresh.

454 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 24
Blind Folio 24:454

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can use a separate procedure in the DBMS_MVIEW package to refresh all of the materialized
views that are scheduled to be automatically refreshed. This procedure, named REFRESH_ALL,
will refresh each materialized view separately. It does not accept any parameters. The following
listing shows an example of its execution:

execute DBMS_MVIEW.REFRESH_ALL_MVIEWS;

Since the materialized views will be refreshed via REFRESH_ALL consecutively, they are not
all refreshed at the same time. Therefore, a database or server failure during the execution of this
procedure may cause the local materialized views to be out of sync with each other. If that happens,
simply rerun this procedure after the database has been recovered. As an alternative, you can create
refresh groups, as described in the next section.

Another procedure within DBMS_MVIEWS, REFRESH_ALL_MVIEWS, refreshes all materialized
views that have the following properties:

■ The materialized view has not been refreshed since the most recent change to a master
table or master materialized view on which materialized view depends.

■ The materialized view and all of the master tables or master materialized views on which
materialized view depends are local.

■ The materialized view is in the view DBA_MVIEWS.

If you create nested materialized views, you can use the DBMS_MVIEW.REFRESH_DEPENDENT
procedure to ensure all materialized views within a tree are refreshed.

create materialized view log Syntax
A materialized view log is a table that records changes to the rows in the master table and the
materialized views’ replication history. The record of changed rows can then be used during
refreshes to send out to the materialized views only those rows that have changed in the master
table. Multiple materialized views based on the same table can use the same materialized view log.

The full syntax for the create materialized view log command is shown in the Alphabetical
Reference. The following listing shows part of the syntax; as you may note from its syntax, it has
all of the parameters normally associated with tables:

create materialized view log on [schema .] table
[{ physical_attributes_clause
| tablespace tablespace
| { logging | nologging }
| { cache | nocache }
}
[physical_attributes_clause
| tablespace tablespace
| { logging | nologging }
| { cache | nocache }
]...
]
[parallel_clause] [partitioning_clauses]

Chapter 24: Using Materialized Views 455

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 24
Blind Folio 24:455

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

456 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 24
Blind Folio 24:456

[with
{ object id | primary key | rowid | sequence | (column [, column]...) }
[, { object id | primary key | rowid | sequence | (column [, column]...) }]...
]
[{ including | excluding } new values];

The create materialized view log command is executed in the master table’s database, usually
by the owner of the master table. Materialized view logs should not be created for tables that are
only involved in complex materialized views (since they wouldn’t be used). No name is specified
for the materialized view log.

A materialized view log for the BOOKSHELF table can be created via the following command,
executed from within the account that owns the table:

create materialized view log on BOOKSHELF
with sequence,ROWID
(Title, Publisher, CategoryName, Rating)
including new values;

The with sequence clause is needed to support the replication of mixed-DML operations
against multiple base tables.

Because materialized view logs may grow unpredictably over time in production databases,
you should consider storing their associated objects in tablespaces that are dedicated to materialized
view logs.

Required System Privileges
To create the materialized view log, you must have CREATE TABLE and CREATE TRIGGER system
privileges. If you are creating the materialized view log from a user account that does not own
the master table, you need to have CREATE ANY TABLE, COMMENT ANY TABLE, and CREATE
ANY TRIGGER system privileges as well as SELECT privilege on the materialized view master table.

Altering Materialized Views and Logs
You may alter the storage parameters, refresh option, and refresh schedule for existing materialized
views. If you are unsure of the current settings for a snapshot, check the USER_MVIEWS data
dictionary view.

The syntax for the alter materialized view command is shown in the Alphabetical Reference.
The command in the following listing alters the refresh option used by the LOCAL_BOOKSHELF
materialized view:

alter materialized view LOCAL_BOOKSHELF
refresh complete;

All future refreshes of LOCAL_BOOKSHELF will refresh the entire local base table.
To alter a materialized view, you must either own the materialized view or have the ALTER

ANY MATERIALIZED VIEW system privilege.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To alter a materialized view log, you must own the table, have ALTER privilege for the table,
or have ALTER ANY TABLE system privilege.

If you created the materialized view log without the RowID or the sequence clauses, you can
add them after the fact via the alter materialized view command.

Dropping Materialized Views and Logs
To drop a materialized view, you must have the system privileges required to drop both the
materialized view and all of its related objects. You need to have DROP MATERIALIZED VIEW if
the object is in your schema, or DROP ANY MATERIALIZED VIEW system privilege if the materialized
view is not in your schema.

The following command drops the LOCAL_CATEGORY_COUNT materialized view created
earlier in this chapter:

drop materialized view LOCAL_CATEGORY_COUNT;

NOTE
When you drop a materialized view that was created on a prebuilt
table, the table still exists but the materialized view is dropped.

Materialized view logs can be dropped via the drop materialized view log command. Once
the materialized view log is dropped from a master table, no fast refreshes can be performed for
simple materialized views based on that table. A materialized view log should be dropped when
no simple materialized views are based on the master table. The following command drops the
materialized view log that was created on the BOOKSHELF table earlier in this chapter:

drop materialized view log on BOOKSHELF;

To drop a materialized view log, you must have the ability to drop both the materialized view
log and its related objects. If you own the materialized view log, you must have the DROP TABLE
and DROP TRIGGER system privileges. If you do not own the materialized view log, you need
the DROP ANY TABLE and DROP ANY TRIGGER system privileges to execute this command.

Chapter 24: Using Materialized Views 457

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 24
Blind Folio 24:457

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 24
Blind Folio 24:458

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 25
Blind Folio 25:459

CHAPTER
25

Using Oracle Text
for Text Searches

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A
s the amount of text in your database increases, so does the complexity of the text
queries performed against the database. Instead of just performing string matches,
you will need new text-search features—such as weighting the terms in a search
of multiple terms, or ranking the results of a text search.

You can use Oracle Text to perform text-based searches. Text-searching capabilities
include wildcard searching, “fuzzy matches,” relevance ranking, proximity searching, term weighting,
and word expansions. In this chapter, you’ll see how to configure and use Oracle Text.

Adding Text to the Database
You can add text to a database either by physically storing the text in a table or by storing pointers
to external files in the database. That is, for the books on the bookshelf, you can store reviews
either in the database or in external files. If you store the reviews in external files, then you store
the filenames in the database.

To store the reviews in the database, create the BOOK_REVIEW tables. In this chapter, you
will see examples of two types of indexes: CONTEXT and CTXCAT. To support these examples,
two separate tables will be created: BOOK_REVIEW_CONTEXT and BOOK_REVIEW_CTXCAT,
both loaded with the same data.

create table BOOK_REVIEW_CONTEXT
(Title VARCHAR2(100) primary key,
Reviewer VARCHAR2(25),
Review_Date DATE,
Review_Text VARCHAR2(4000));

insert into BOOK_REVIEW_CONTEXT values
('MY LEDGER', 'EMILY TALBOT', '01-MAY-02',
'A fascinating look into the transactions and finances of G. B. Talbot
and Dora Talbot as they managed a property in New Hampshire around 1900.
The stories come through the purchases – for medicine, doctor visits and
gravesites – for workers during harvests – for gifts at the general store
at Christmas. A great read. ');

create table BOOK_REVIEW_CTXCAT
(Title VARCHAR2(100) primary key,
Reviewer VARCHAR2(25),
Review_Date DATE,
Review_Text VARCHAR2(4000));

insert into BOOK_REVIEW_CTXCAT values
('MY LEDGER', 'EMILY TALBOT', '01-MAY-02',
'A fascinating look into the transactions and finances of G. B. Talbot
and Dora Talbot as they managed a property in New Hampshire around 1900.
The stories come through the purchases – for medicine, doctor visits and
gravesites – for workers during harvests – for gifts at the general store
at Christmas. A great read. ');

460 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 25
Blind Folio 25:460

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The Review_Text column of the BOOK_REVIEW tables is defined as having a VARCHAR2(4000)
datatype. For longer values, consider the use of CLOB datatypes. See Chapter 35 for details on
CLOB datatypes.

You can select the review text from the database:

set linesize 74

select Review_Text
from BOOK_REVIEW_CONTEXT
where Title = 'MY LEDGER';

REVIEW_TEXT

A fascinating look into the transactions and finances of G. B. Talbot
and Dora Talbot as they managed a property in New Hampshire around 1900.
The stories come through the purchases - for medicine, doctor visits and
gravesites - for workers during harvests - for gifts at the general store
at Christmas. A great read.

Text Queries and Text Indexes
Querying text is different from querying data because words have shades of meaning, relationships
to other words, and opposites. You may want to search for words that are near each other, or words
that are related to others. These queries would be extremely difficult if all you had available were
the standard relational operators. By extending SQL to include text indexes, Oracle Text permits
you to ask very complex questions about the text.

To use Oracle Text, you need to create a text index on the column in which the text is stored.
Text index is a slightly confusing term—it is actually a collection of tables and indexes that store
information about the text stored in the column.

In this chapter, you will see examples of both CONTEXT and CTXCAT text indexes. You can use
a third type of type index, CTXRULE, to build a content-based document classification application.
See the Oracle Text Application Developer’s Guide for details on the use of CTXRULE indexes.

NOTE
Before creating a text index on a table, you must create a primary
key for the table if one does not already exist.

You can create a text index via a special version of the create index command. For a CONTEXT
index, specify the Ctxsys.Context index type in the indextype clause, as shown in the following
listing:

create index Review_Context_Index
on BOOK_REVIEW_CONTEXT(Review_Text)

indextype is ctxsys.context;

Chapter 25: Using Oracle Text for Text Searches 461

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 25
Blind Folio 25:461

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When the text index is created, Oracle creates a number of indexes and tables in your schema
to support your text queries. You can rebuild your text index via the alter index command, just as
you would for any other index.

You can use a CTXCAT index type in place of the CONTEXT index type:

create index Review_CtxCat_Index
on BOOK_REVIEW_CTXCAT(Review_Text)

indextype is ctxsys.ctxcat;

The CTXCAT index type supports the transactional synchronization of data between the base
table (BOOK_REVIEW_CTXCAT) and its text index. With CONTEXT indexes, you need to manually
tell Oracle to update the values in the text index after data changes in the base table. CTXCAT
index types do not generate “score” values during text queries (as CONTEXT indexes do), but the
query syntax is largely the same for the two types. The following sections illustrate the types of text
queries you can perform via Oracle Text.

Text Queries
Once a text index is created on the Review_Text column of the BOOK_REVIEW_CONTEXT table,
text-searching capabilities increase dramatically. You can now look for any book review that contains
the word ‘property’:

select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property') >0;

NOTE
The matching row will be returned regardless of the case
of the word ‘property’ within the text-indexed column.

The CONTAINS function takes two parameters—the column name and the search string—and
checks the text index for the Review_Text column. If the word “property” is found in the Review_
Text column’s text index, then a score greater than 0 is returned by the database, and the matching
Title value is returned. The score is an evaluation of how well the record being returned matches
the criteria specified in the CONTAINS function.

If you create a CTXCAT index, use the CATSEARCH function in place of CONTAINS.
CATSEARCH takes three parameters: the column name, the search string, and the name of the index
set. Index sets are described in the “Index Sets” section, later in this chapter. For this example, there
is no index set, so that parameter is set to NULL:

select Title
from BOOK_REVIEW_CTXCAT
where CATSEARCH(Review_Text, 'property', NULL) >0;

CATSEARCH does not compute a score but uses the >0 syntax, simplifying your migration from
CONTEXT indexes to CTXCAT indexes. CTXCAT indexes support the use of index sets, described
later in this chapter.

462 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 25
Blind Folio 25:462

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When a function such as CONTAINS or CATSEARCH is used in a query, the text portion of
the query is processed by Oracle Text. The remainder of the query is processed just like a regular
query within the database. The results of the text query processing and the regular query processing
are merged to return a single set of records to the user.

Available Text Query Expressions
Oracle Text would be rather limited if it allowed you to search only for exact matches of
words. Oracle Text offers a broad array of text-searching capabilities you can use to customize your
queries. Most of the text-searching capabilities are enabled via the CONTAINS and CATSEARCH
functions, which can appear only in the where clause of a select statement or subquery, never in
the where clauses of inserts, updates, or deletes.

The operators within CONTAINS allow you to perform the following text searches:

■ Exact matches of a word or phrase

■ Exact matches of multiple words, using Boolean logic to combine searches

■ Searches based on how close words are to each other in the text

■ Searches for words that share the same word “stem”

■ “Fuzzy” matches of words

■ Searches for words that sound like other words

CATSEARCH supports the exact-match search functions as well as the creation of index sets,
described later in this chapter. In the following sections, you will see examples of these types of text
searches, along with information about the operators you can use to customize text searches.

Searching for an Exact Match of a Word
The following query of the BOOK_REVIEW tables returns the title for all reviews including the word
“property”:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property')>0;

REM CATSEARCH method for CTXCAT indexes:
select Title
from BOOK_REVIEW_CTXCAT
where CATSEARCH(Review_Text, 'property', NULL)>0;

Within the function calls, the > sign is called a threshold operator. The preceding text search
can be translated to the following:

select all the Title column values
from the BOOK_REVIEW_CONTEXT table
where the score for the text search of the Review_Text column

Chapter 25: Using Oracle Text for Text Searches 463

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 25
Blind Folio 25:463

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

464 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 25
Blind Folio 25:464

for an exact match of the word 'property'
exceeds a threshold value of 0.

The threshold analysis compares the score—the internal score Oracle calculated when the text
search was performed—to the specified threshold value. Score values for individual searches range
from 0 to 10 for each occurrence of the search string within the text. For CONTEXT indexes, you
can display the score as part of your query.

To show the text-search score, use the SCORE function, which has a single parameter—a label
you assign to the score within the text search:

column Title format a30

select Title, SCORE(10)
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property', 10)>0;

TITLE SCORE(10)
------------------------------ ----------
MY LEDGER 3

In this listing, the CONTAINS function’s parameters are modified to include a label (10) for the
text-search operation performed. The SCORE function will display the score of the text search
associated with that label. The score is an internal calculation based on how well the indexed
text matches the search criteria.

For CONTEXT indexes, you can use the SCORE function in the select list (as shown in the
preceding query) or in a group by clause or an order by clause.

Searching for an Exact Match of Multiple Words
What if you want to search the text for multiple words? You can use Boolean logic (ANDs and
ORs) to combine the results of multiple text searches in a single query. You can also search for
multiple terms within the same function calls and let Oracle resolve the search results.

For example, if you wanted to search for reviews that have the words “property” and “harvests”
in the review text, you could enter the following query:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property AND harvests')>0;

REM CATSEARCH method for CTXCAT indexes:
select Title
from BOOK_REVIEW_CTXCAT
where CATSEARCH(Review_Text, 'property AND harvests', NULL)>0;

NOTE
This search does not look for the phrase “property and harvests”
but rather for two individual words anywhere in the searched text.
You will see the syntax for phrase searches in the next section.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Instead of using AND in the CONTEXT index query, you could have used an ampersand (&).
Before using this method in SQL*Plus, you should set define off so the & character will not be
seen as part of a variable name:

set define off

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property & harvests')>0;

For the CTXCAT index, the word AND can be left out entirely:

REM CATSEARCH method for CTXCAT indexes:
select Title
from BOOK_REVIEW_CTXCAT
where CATSEARCH(Review_Text, 'property harvests', NULL)>0;

Using either the & character or the word AND denotes an AND operation—so the CONTAINS
function will return a row only if the review text includes both the words “property” and “harvests.”
Each search must pass the threshold criteria defined for the search scores. If you want to search for
more than two terms, just add them to the CONTAINS or CATSEARCH clause, as shown in the
following listing:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property AND harvests AND workers')>0;

REM CATSEARCH method for CTXCAT indexes:
select Title
from BOOK_REVIEW_CTXCAT
where CATSEARCH(Review_Text, 'property harvests workers', NULL)>0;

The query in this listing returns a row only if its search scores for “property,” “harvests,” and
“workers” are all greater than 0.

In addition to AND, you can use the OR operator—in which case a record is returned if either
of the search conditions meets the defined threshold. The symbol for OR in Oracle Text is a vertical
line (|), so the following two queries are processed identically:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property OR harvests')>0;

select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property | harvests')>0;

Chapter 25: Using Oracle Text for Text Searches 465

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 25
Blind Folio 25:465

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

466 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 25
Blind Folio 25:466

When these queries are executed, a record is returned if either of the two separate searches (for
“property” and “harvests”) returns a score greater than 0.

REM CATSEARCH method for CTXCAT indexes:

select Title
from BOOK_REVIEW_CTXCAT
where CATSEARCH(Review_Text, 'property OR harvests', NULL)>0;

select Title
from BOOK_REVIEW_CTXCAT
where CATSEARCH(Review_Text, 'property | harvests', NULL)>0;

The ACCUM (accumulate) operator provides another method for combining searches. ACCUM
adds together the scores of the individual searches and compares the accumulated score to the
threshold value. The symbol for ACCUM is a comma (,). Therefore, the two queries shown in
the following listing are equivalent:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property ACCUM harvests')>0;

select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property , harvests')>0;

The ACCUM syntax is supported in CATSEARCH function calls but should not be used because
CATSEARCH does not calculate a score to compare to the threshold value.

You can also use Oracle Text to subtract the scores from multiple searches before comparing
the result to the threshold score. The MINUS operator in CONTAINS subtracts the score of the
second term’s search from the score of the first term’s search. The queries in the following listing
will determine the search score for “property” and subtract from it the search score for “house”
and then compare the difference to the threshold score.

In this example, the second search term (“house”) is not found in the indexed text. If the second
term is in the text (for example, “harvests”), then no rows will be returned.

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property MINUS house')>0;

select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property - house')>0;

You can use the symbol – in place of the MINUS operator, as shown in the preceding listing.
For CONTEXT indexes, the – operator reduces the score when comparing the overall search

score to the threshold value, but it does not eliminate the row from consideration. To eliminate
rows based on search terms in CONTEXT indexes, use the ~ character as the NOT operator.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 25: Using Oracle Text for Text Searches 467

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 25
Blind Folio 25:467

For CTXCAT indexes, the symbol – has a different meaning than it does with CONTEXT indexes.
For CTXCAT indexes, – tells Oracle Text not to return the row if the search term after the – is found
(like ~ in CONTEXT indexes). If the second term is found, CATSEARCH will not return the row.
For CATSEARCH queries, you can replace – with the word NOT.

REM CATSEARCH method for CTXCAT indexes:

select Title
from BOOK_REVIEW_CTXCAT
where CATSEARCH(Review_Text, 'property - harvests', NULL)>0;

select Title
from BOOK_REVIEW_CTXCAT
where CATSEARCH(Review_Text, 'property NOT harvests', NULL)>0;

You can use parentheses to clarify the logic within your search criteria. If your search uses both
ANDs and ORs, you should use parentheses to clarify the way in which the rows are processed.
For example, the following query returns a row if the searched text contains either the word “house”
or both the words “workers” and “harvests”:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'house OR (workers AND harvests)')>0;

CATSEARCH does not require the word AND between “workers” and “harvests”:

REM CATSEARCH method for CTXCAT indexes:
select Title
from BOOK_REVIEW_CTXCAT
where CATSEARCH(Review_Text, 'house | (workers harvests)', NULL)>0;

If you change the location of the parentheses, you change the logic of the text search. The
following query returns a row if the searched text contains either “house” or “workers” and also
contains the word “harvests”:

select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, '(house OR workers) AND harvests')>0;

When evaluating the scores of multiple searches against CONTEXT indexes, you can tell Oracle
Text to weigh the scores of some searches more heavily than others. For example, if you want the
search score for “harvests” to be doubled when compared to the threshold score, you can use the
asterisk symbol (*) to indicate the factor by which the search score should be multiplied.

The following query will double the search score for “harvests” when it is evaluated in an OR
condition:

select Title, SCORE(10)
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'harvests*2 OR property*1',10)>5;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

468 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 25
Blind Folio 25:468

Through the use of the AND, OR, ACCUM, and MINUS operators, you should be able to search
for any combination of word matches.

NOTE
The EQUIV operator treats two search terms as the same during search
scoring. EQUIV (which can be replaced with =) may be useful in
combination with the operators that compare search scores.

In the next section, you will see how to search for phrases.

Searching for an Exact Match of a Phrase
When searching for an exact match for a phrase, you specify the whole phrase as part of the search
string. If your phrase includes a reserved word (such as “and,” “or,” or “minus”), you need to use
the escape characters shown in this section so that the search is executed properly. If the search
phrase includes a reserved word within Oracle Text, then you must use curly braces ({}) to enclose
the text.

The following query searches for any title whose review entry includes the phrase “doctor visits.”

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'doctor visits')>0;

REM CATSEARCH method for CTXCAT indexes:
select Title
from BOOK_REVIEW_CTXCAT
where CATSEARCH(Review_Text, 'doctor visits',NULL)>0;

The following query searches for the phrase “transactions and finances.” The word “and”
is enclosed in braces.

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'transactions {and} finances')>0;

REM CATSEARCH method for CTXCAT indexes:
select Title
from BOOK_REVIEW_CTXCAT
where CATSEARCH(Review_Text, 'transactions {and} finances',NULL)>0;

The query of ‘transactions {and} finances’ is different from a query of ‘transactions and finances’.
The query of ‘transactions {and} finances’ returns a record only if the phrase “transactions and
finances” exists in the searched text. The query of ‘transactions and finances’ returns a record if the
search score for the word “transactions” and the search score for the word “finances” are both
above the threshold score (or in a CTXCAT index, if both are found).

You can enclose the entire phrase within curly braces, in which case any reserved words within
the phrase will be treated as part of the search criteria, as shown in the following example:

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, '{transactions and finances}')>0;

Searches for Words That Are Near Each Other
You can use the proximity search capability to perform a text search based on how close terms
are to each other within the searched document. A proximity search returns a high score for words
that are next to each other, and it returns a low score for words that are far apart. If the words are
next to each other, the proximity search returns a score of 100.

To use proximity searching against CONTEXT indexes, use the keyword NEAR, as shown in
the following example:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'workers NEAR harvests')>0;

You can replace the NEAR operator with its equivalent symbol, the semicolon (;). The revised
query is shown in the following listing:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'workers ; harvests')>0;

In CONTEXT index queries, you can specify the maximum number of words between the
search terms. For example, for words within ten words of each other, you may use a search string
of ‘NEAR((workers, harvests),10)’.

You can use the phrase- and word-searching methods shown in this chapter to search for exact
matches of words and phrases, as well as to perform proximity searches of exact words and phrases.
Thus far, all the searches have used exact matches of the search terms as the basis for the search.
In the next four sections, you will see how to expand the search terms via four methods: wildcards,
word stems, fuzzy matches, and SOUNDEX searches.

Using Wildcards During Searches
In the previous examples in this chapter, the queries selected text values that exactly match the
criteria specified. For example, the search terms included “workers” but not “worker.” You can
use wildcards to expand the list of valid search terms used during your query.

Just as in regular text-string wildcard processing, two wildcards are available:

Character Description

% Percent sign; multiple-character wildcard

_ Underscore; single-character wildcard

Chapter 25: Using Oracle Text for Text Searches 469

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 25
Blind Folio 25:469

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following query will search for all text matches for all words that start with the characters
“worker”:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'worker%')>0;

The following query limits the expansion of the text string to exactly three characters. In place
of the % sign in the preceding query, three underscores (_ _ _) are used. Because the underscore
is a single-character wildcard, the text string cannot expand beyond three characters during the
search. For example, the word “workers” could be returned by the text search, but the word
“workplace” would be too long to be returned.

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'work___')>0;

You should use wildcards when you are certain of some of the characters within the search
string. If you are uncertain of the search string, you should use one of the methods described in
the following sections—word stems, fuzzy matches, or SOUNDEX matches.

Searching for Words That Share the Same Stem
Rather than using wildcards, you can use stem-expansion capabilities to expand the list of text
strings. Given the “stem” of a word, Oracle will expand the list of words to search for to include
all words having the same stem. Sample expansions are shown here:

Stem Sample Expansions

play plays, played, playing, playful

works working, work, worked, workman, workplace

have had, has, haven’t, hasn’t

story stories

Because “works” and “work” have the same stem, a stem-expansion search using the word
“works” will return text containing the word “work.”

To use stem expansion within a query, you need to use the dollar sign ($) symbol. Within the
search string, the $ should immediately precede the word to be expanded.

The following listing shows the result of a query against BOOK_REVIEW_CONTEXT for all
reviews that contain a word sharing the stem of the word “manage”:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, '$manage')>0;

470 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 25
Blind Folio 25:470

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 25: Using Oracle Text for Text Searches 471

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 25
Blind Folio 25:471

When this query is executed, Oracle expands the word “$manage” to include all words with the
same stem and then performs the search. If a review contains one of the words with a stem of
“manage,” the record will be returned to the user.

The expansion of terms via word stems simplifies the querying process for the user. You no longer
need to know what form of a verb or noun was used when the text was entered—all forms are used
as the basis for the search. You do not need to specify specific text strings, as you do when querying
for exact matches or using wildcards. Instead, you specify a word, and Oracle Text dynamically
determines all the words that should be searched for, based on the word you specified.

Searching for Fuzzy Matches
A fuzzy match expands the specified search term to include words that are spelled similarly but
that do not necessarily have the same word stem. Fuzzy matches are most helpful when the text
contains misspellings. The misspellings can be either in the searched text or in the search string
specified by the user during the query.

For example, “MY LEDGER” will not be returned by this query because its review does not
contain the word “hardest”:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'hardest')>0;

It does, however, contain the word “harvest.” A fuzzy match will return reviews containing
the word “harvest,” even though “harvest” has a different word stem than the word used as the
search term.

To use a fuzzy match, precede the search term with a question mark, with no space between
the question mark and the beginning of the search term. The following example illustrates the use
of the fuzzy match capability:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, '?hardest')>0;

Searches for Words That Sound Like Other Words
Stem-expansion searches expand a search term to multiple terms based on the stem of the word.
Fuzzy matches expand a search term based on similar words in the text index. A third kind of
search-term expansion, SOUNDEX, expands search terms based on how the word sounds. The
SOUNDEX expansion method uses the same text-matching logic available via the SOUNDEX
function in SQL.

To use the SOUNDEX option, you must precede the search term with an exclamation mark (!).
During the search, Oracle evaluates the SOUNDEX values of the terms in the text index and searches
for all words that have the same SOUNDEX value.

As shown in the following query, you can search for all reviews that include the word “great,”
using a SOUNDEX match technique:

REM CONTAINS method for CONTEXT indexes:
select Title

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

472 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 25
Blind Folio 25:472

from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, '!grate')>0;

The “MY LEDGER” review is returned because the words “grate” and “great” have the same
SOUNDEX value.

You can also nest operators, allowing you to perform stem expansions on the terms returned
by a fuzzy match. In the following example, a fuzzy match is performed on the word “stir,” and
the terms returned from the fuzzy match are expanded using stem expansion:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, '$?stir')>0;

The major search options for CONTAINS are summarized in Table 25-1. For a list of all
supported syntax (including thesaurus use, synonym expansion, and XML support), see the

Operator Description

OR Returns a record if either search term has a score that exceeds the threshold.

| Same as OR.

AND Returns a record if both search terms have a score that exceeds the threshold.

& Same as AND.

ACCUM Returns a record if the sum of the search terms’ scores exceeds the threshold.

, Same as ACCUM.

MINUS Returns a record if the score of the first search minus the score of the second
search exceeds the threshold.

– Same as MINUS.

* Assigns different weights to the score of the searches.

NEAR The score will be based on how near the search terms are to each other in the
searched text.

; Same as NEAR.

NOT Excludes the row if the term after the NOT is found.

~ Same as NOT.

TABLE 25-1. Major CONTAINS Options

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 25: Using Oracle Text for Text Searches 473

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 25
Blind Folio 25:473

Oracle Text Reference guide. The search options for CATSEARCH are summarized in Table 25-2.
Table 25-2 does not list the deprecated CONTAINS features, such as ACCUM, that are not
documented as supported features for CATSEARCH.

Operator Description

EQUIV Treats two terms (term1 equiv term2) as the same during search scoring.

= Same as EQUIV.

{} Encloses reserved words such as AND if they are part of the search term.

% Multiple-character wildcard.

_ Single-character wildcard.

$ Performs stem expansion of the search term prior to performing the search.

? Performs a fuzzy match of the search term prior to performing the search.

! Performs a SOUNDEX search.

() Specifies the order in which search criteria are evaluated.

TABLE 25-1. Major CONTAINS Options (continued)

Operator Description

| Returns a record if either search term is found.

AND Returns a record if both search terms are found. This is the default action,
so (a b) is treated as (a AND b).

- If there are spaces around the hyphen, CATSEARCH returns rows that contain
the term preceding the “-” and do not contain the term following it. A hyphen
with no space is treated as a regular character.

NOT Same as -.

“ “ Encloses phrases.

() Specifies the order in which search criteria are evaluated.

* Wildcard character to match multiple characters. Can be at the end of the
term or in the middle of characters.

TABLE 25-2. CATSEARCH Options

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using the ABOUT Operator
In Oracle Text, you can search on themes of documents. Thematic searching is integrated with
text-term searching. You can use the ABOUT operator to search for terms that have to do with the
theme of the document rather than the specific terms within the document. Here’s an example:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'ABOUT(medicine)')>0;

REM CATSEARCH method for CTXCAT indexes:
select Title
from BOOK_REVIEW_CTXCAT
where CATSEARCH(Review_Text, 'ABOUT(medicine)', NULL)>0;

Index Synchronization
By default, when using CONTEXT indexes, you will have to manage the text index contents; the
text indexes will not be updated when the base table is updated. As soon as a Review_Text value
is updated, its text index is out of sync with the base table. To sync the index, execute the SYNC_
INDEX procedure of the CTX_DDL package, as shown in the following listing.

NOTE
Grant the PRACTICE user EXECUTE privilege on the CTX_DDL
package to support these maintenance activities.

execute CTX_DDL.SYNC_INDEX('REVIEW_CONTEXT_INDEX');

As of Oracle Database 10g, CONTEXT indexes can be maintained automatically, at commit time,
or at specified intervals. As part of the create index command for a CONTEXT index, you can use
the sync clause:

[[METADATA] SYNC (MANUAL | EVERY "interval" | ON COMMIT)]

Here’s an example:

drop index Review_Context_Index;

create index Review_Context_Index
on BOOK_REVIEW_CONTEXT(Review_Text)

indextype is ctxsys.context
parameters ('sync (on commit)');

Index Sets
Historically, problems with queries of text indexes have occurred when other criteria are used
alongside text searches as part of the where clause. For example, are where clauses on nontext

474 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 25
Blind Folio 25:474

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

columns applied before or after the text searches are completed, and how are the results properly
ordered? To improve the “mixed” query capability, you can use index sets. The indexes within the
index set may be on structured relational columns or on text columns.

To create an index set, use the CTX_DDL package to create the index set and add indexes to
it. When you create a text index, you can then specify the index set it belongs to. To execute this
example, you should first drop the REVIEW_CTXCAT_INDEX text index (created earlier in this
chapter) on the BOOK_REVIEW_CTXCAT table:

drop index REVIEW_CTXCAT_INDEX;

To create an index set named Reviews, use the CREATE_INDEX_SET procedure:

execute CTX_DDL.CREATE_INDEX_SET('Reviews');

You can now add indexes to the index set via the ADD_INDEX procedure. First, add a
standard, nontext index:

execute CTX_DDL.ADD_INDEX('Reviews', 'Reviewer');
execute CTX_DDL.ADD_INDEX('Reviews', 'Review_Date');

Now create a CTXCAT text index. Specify Ctxsys.Ctxcat as the index type, and list the index
set in the parameters clause:

create index REVIEW_CTXCAT_INDEX
on BOOK_REVIEW_CTXCAT(Review_Text)

indextype is CTXSYS.CTXCAT
parameters ('index set Reviews');

You can now order your results by the result of the combined index set search:

select * from BOOK_REVIEW_CTXCAT
where CATSEARCH(Review_Text, 'great',

'Reviewer=''EMILY TALBOT''
order by Review_Date desc')>0;

To resolve this query, Oracle Text will use the index set, allowing you to order the results
properly. Note that there are two quotes around the string ‘EMILY TALBOT’ because this is a text
string search—it will be converted to a set of single quotes when the query is executed.

Index sets can contain up to 99 indexes on NUMBER, DATE, CHAR, and VARCHAR2 datatypes.
No column in an index set index can exceed 30 bytes (so in this example, the Title column cannot
be indexed as part of an index set). The indexed columns must not contain NULL values.

As of Oracle Database 10g, Oracle Text includes a tracing facility to help identify bottlenecks
in indexing and querying. Use the ADD_TRACE procedure of the CTX_OUTPUT package to enable
the trace. The available traces include the time spent on the different search components, the number
of bytes read, and the number of rows processed.

For more details on index sets, text index management, text application development, and
tracing, see Oracle Text Application Developer’s Guide and Oracle Text Reference, both provided
as part of the standard Oracle documentation set.

Chapter 25: Using Oracle Text for Text Searches 475

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 25
Blind Folio 25:475

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 25
Blind Folio 25:476

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 26
Blind Folio 26:477

CHAPTER
26

Using External Tables

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

478 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 26
Blind Folio 26:478

Y
ou can use the external table feature to access external files as if they were tables
inside the database. When you create an external table, you define its structure
and location within Oracle. When you query the table, Oracle reads the external
table and returns the results just as if the data had been stored within the database.
But because the data is outside the database, you do not have to be concerned about

the process for loading it into the database—a potentially significant benefit for data warehouses and
large databases.

External tables have limits—you cannot update or delete their rows from within Oracle, and
you cannot index them. Because they are part of the database application, you will have to account
for them as part of your backup and recovery processes. Despite these complications, external
tables can be a powerful addition to your database architecture plans. As of Oracle Database 10g,
you can use external tables to unload data from tables to external files via the ORACLE_DATAPUMP
access driver.

Accessing the External Data
To access external files from within Oracle, you must first use the create directory command to
define a directory object pointing to the external files’ location. Users who will access the external
files must have the READ privilege on the directory.

NOTE
Before you start, verify that the external directory exists and that the
user who will be issuing the create directory command has the CREATE
ANY DIRECTORY system privilege.

The following example creates a directory named BOOK_DIR and grants READ and WRITE
access to the PRACTICE schema:

create directory BOOK_DIR as 'e:\oracle\external';
grant read on directory BOOK_DIR to practice;
grant write on directory BOOK_DIR to practice;

The PRACTICE user can now read files in the e:\oracle\external directory as if he or she were
inside the database. Because PRACTICE has also been granted WRITE privilege on that directory,
the PRACTICE user can create log, discard, and bad files within the directory—just as if that user
were executing the SQL*Loader utility (see Chapter 21).

The following listing generates two files for sample data—one from BOOKSHELF and one
from BOOKSHELF_AUTHOR. Note that the spool command cannot use the directory name
created via create directory; you need to specify the full operating-system directory name.

connect practice/practice

set pagesize 0 newpage 0 feedback off
select Title||'~'||Publisher||'~'||CategoryName||'~'||Rating||'~'
from BOOKSHELF
order by Title

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 26: Using External Tables 479

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 26
Blind Folio 26:479

spool e:\oracle\external\bookshelf_dump.lst
/
spool off

select Title||'~'||AuthorName||'~'
from BOOKSHELF_AUTHOR
order by Title

spool e:\oracle\external\book_auth_dump.lst
/
spool off

In addition to the data, the output files will contain a single line at the top with “SQL> /” and
a final line that reads “SQL> spool off”. To simplify the examples, you should manually edit the
file at the operating system level to delete these extra lines before proceeding.

If another user is to access the data in the bookshelf_dump.lst and book_auth_dump.lst files,
you must grant that user READ privilege on the BOOK_DIR directory:

grant read on directory BOOK_DIR to another_user;

Also, the files themselves must be readable by the Oracle user at the operating system level.

Creating an External Table
Now that the external data is available and accessible, you can create a table structure that accesses
it. To do so, you need to use the organization external clause of the create table command. Within
that clause, you can specify the data structure much as you would for a SQL*Loader control file.
The following listing shows the creation of the BOOKSHELF_EXT table, based on the data in the
bookshelf.lst spool file created in the prior section:

set feedback on heading on newpage 1 pagesize 60

create table BOOKSHELF_EXT
(Title VARCHAR2(100),
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2)
)
organization external
(type ORACLE_LOADER
default directory BOOK_DIR
access parameters (records delimited by newline
fields terminated by "~"

(Title CHAR(100),
Publisher CHAR(20),
CategoryName CHAR(20),
Rating CHAR(2)

))
location ('bookshelf_dump.lst')
);

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

480 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 26
Blind Folio 26:480

Oracle will respond with

Table created.

although no data will have been created inside the Oracle database.
Similarly, you can create a table based on the book_auth_dump.lst spool file:

create table BOOKSHELF_AUTHOR_EXT
(Title VARCHAR2(100),
AuthorName VARCHAR2(50)
)
organization external
(type ORACLE_LOADER
default directory BOOK_DIR
access parameters (records delimited by newline

fields terminated by "~"
(Title CHAR(100),
AuthorName CHAR(50)

))
location ('book_auth_dump.lst')
);

NOTE
Oracle will perform only cursory validation when the external table is
created. You will not see most errors until you attempt to query the
table. The syntax for the access parameters is very specific, and minor
errors in the access definition—including the order of the clauses—
may prevent all the rows from being accessed.

You can verify the contents of the external tables by querying from them and comparing them
to the source tables, as shown in the following listing:

select Title from BOOKSHELF
where CategoryName = 'CHILDRENPIC';

TITLE

GOOD DOG, CARL
POLAR EXPRESS
RUNAWAY BUNNY

3 rows selected.

select Title from BOOKSHELF_EXT
where CategoryName = 'CHILDRENPIC';

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 26: Using External Tables 481

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 26
Blind Folio 26:481

TITLE

GOOD DOG, CARL
POLAR EXPRESS
RUNAWAY BUNNY

3 rows selected.

select COUNT(*) from BOOKSHELF_AUTHOR;

COUNT(*)

37

select COUNT(*) from BOOKSHELF_AUTHOR_EXT;

COUNT(*)

37

You can join the “internal” table BOOKSHELF_AUTHOR to its external counterpart,
BOOKSHELF_AUTHOR_EXT, to verify there are no rows missing or added:

select * from BOOKSHELF_AUTHOR BA
where not exists
(select 'x' from BOOKSHELF_AUTHOR_EXT BAE
where BA.Title = BAE.Title
and BA.AuthorName = BAE.AuthorName);

no rows selected

The BOOKSHELF_AUTHOR_EXT table points to the book_auth_dump.lst file. If you alter the
data in the file, the data in BOOKSHELF_AUTHOR_EXT will change. As illustrated here, you can
query external tables the same way you query standard tables—in joins, as part of views, and so
on. You can perform functions on the external table columns during queries just as you would for
standard tables.

You can query the USER_EXTERNAL_TABLES data dictionary view for information about your
external tables, including the default directory and access definitions:

desc USER_EXTERNAL_TABLES

Name Null? Type
--- -------- --------------
TABLE_NAME NOT NULL VARCHAR2(30)
TYPE_OWNER CHAR(3)
TYPE_NAME NOT NULL VARCHAR2(30)
DEFAULT_DIRECTORY_OWNER CHAR(3)
DEFAULT_DIRECTORY_NAME NOT NULL VARCHAR2(30)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

482 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 26
Blind Folio 26:482

REJECT_LIMIT VARCHAR2(40)
ACCESS_TYPE VARCHAR2(7)
ACCESS_PARAMETERS VARCHAR2(4000)
PROPERTY VARCHAR2(10)

For example, the BOOKSHELF_AUTHOR_EXT table uses BOOK_DIR as its default directory,
as shown in the following listing:

select Default_Directory_Name,
Access_Parameters

from USER_EXTERNAL_TABLES
where Table_Name = 'BOOKSHELF_AUTHOR_EXT';

DEFAULT_DIRECTORY_NAME

ACCESS_PARAMETERS
--
BOOK_DIR
records delimited by newline

fields terminated by "~"
(Title CHAR(100),
AuthorName CHAR(50)

)

USER_EXTERNAL_TABLES does not show the name of the external file (or files) that the table
references. To see that information, query USER_EXTERNAL_LOCATIONS:

select * from USER_EXTERNAL_LOCATIONS;

TABLE_NAME

LOCATION

DIR DIRECTORY_NAME
--- ------------------------------
BOOKSHELF_EXT
bookshelf_dump.lst
SYS BOOK_DIR

BOOKSHELF_AUTHOR_EXT
book_auth_dump.lst
SYS BOOK_DIR

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 26: Using External Tables 483

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 26
Blind Folio 26:483

External Table Creation Options
Within the organization external clause are four main subclauses: type, default directory, access
parameters, and location. When you create an external table, you can use these clauses to customize
the way Oracle views the external data.

Type and Default Directory
The syntax for the type component is

([type access_driver_type] external_data_properties)
[reject limit { integer | unlimited }]

For external tables, the access driver is the API used to transform the external data. Use type
ORACLE_LOADER for your external tables—as shown in the examples earlier in this chapter—or
ORACLE_DATAPUMP if you are using Data Pump (see Chapter 22). The ORACLE_DATAPUMP
driver lets you unload data into an external table and then reload it into an Oracle database. You
must specify the ORACLE_DATAPUMP access driver if you use the as subquery clause to unload
data from one database and then reload it. The type ORACLE_LOADER access driver is the default.

NOTE
Because the access driver is part of the Oracle software, only files
accessible by the database can be accessed as external tables. Files
the Oracle user cannot access cannot be used as external tables.

Following the type declaration, you can set a “reject limit” value. By default, no rows can be
rejected—any problem with any row will cause the select statement to return an error. Let’s generate
another copy of the BOOKSHELF data to a separate file, and this time leave in the extra lines
SQL*Plus inserts during the spool operation:

set pagesize 0 newpage 0 feedback off
select Title||'~'||Publisher||'~'||CategoryName||'~'||Rating||'~'
from BOOKSHELF
order by Title

spool e:\oracle\external\bookshelf_dump_2.lst
/
spool off

Now let’s create a new table that references this spool file, telling Oracle to skip the first
record (skip 1) and to allow one other error (reject limit 1). That will account for the “/” character
in the first line and “SQL> spool off” in the last line:

set feedback on heading on newpage 1 pagesize 60

create table BOOKSHELF_EXT_2

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

484 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 26
Blind Folio 26:484

(Title VARCHAR2(100),
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2)
)
organization external
(type ORACLE_LOADER
default directory BOOK_DIR
access parameters (records delimited by newline

skip 1
fields terminated by
"~"
(Title CHAR(100),
Publisher CHAR(20),
CategoryName CHAR(20),
Rating CHAR(2)

))
location ('bookshelf_dump_2.lst')
)
reject limit 1
;

You can now verify the number of rows in the table:

set feedback on heading on newpage 1 pagesize 60
select COUNT(*) from BOOKSHELF_EXT_2;

COUNT(*)

31

The default directory clause specifies the directory object to be used for all datafiles that do
not specify another directory. If you use multiple external files located in multiple directories, you
can name one of them as the default directory and specify the others by directory name in the
location clause. You must use directory object names (such as BOOK_DIR) in the location clause,
not the full directory path name.

Access Parameters
The access parameters clause tells Oracle how to map the rows in the file to rows in the table.
Its syntax is shown in the following illustration:

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 26: Using External Tables 485

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 26
Blind Folio 26:485

Within the access parameters clause, you first tell Oracle how to create a record—whether
its length is fixed or variable, and how rows are delimited. In the case of the BOOKSHELF_EXT
example, the records are delimited by newlines. If there were multiple rows on a single line, you
could use a character string as a separator between rows. Because the external data may come
from a non-Oracle database, Oracle supports multiple character sets and string sizes.

As with SQL*Loader, you can specify a when clause to limit which rows are selected. In the
following listing, the BOOKSHELF_EXT_3 table is created, with a when clause (shown in bold)
to limit it to only books in the CHILDRENPIC category.

create table BOOKSHELF_EXT_3
(Title VARCHAR2(100),
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2)
)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

organization external
(type ORACLE_LOADER
default directory BOOK_DIR
access parameters (records delimited by newline

load when CategoryName = 'CHILDRENPIC'
skip 1

fields terminated by "~"
(Title CHAR(100),
Publisher CHAR(20),
CategoryName CHAR(20),
Rating CHAR(2)

))
location ('bookshelf_dump_2.lst')
)
reject limit 1
;

You can see the result here:

select SUBSTR(Title, 1,30), CategoryName
from BOOKSHELF_EXT_3;

SUBSTR(TITLE,1,30) CATEGORYNAME
------------------------------ --------------------
GOOD DOG, CARL CHILDRENPIC
POLAR EXPRESS CHILDRENPIC
RUNAWAY BUNNY CHILDRENPIC

3 rows selected.

BOOKSHELF_EXT_3 accesses the same file as BOOKSHELF_EXT_2, but it only shows the
records for the CHILDRENPIC category due to its load when clause.

As with SQL*Loader, you can create a log file, a bad file, and a discard file. Rows that fail
the load when condition will be written to the discard file. Rows that fail the access parameters
conditions will be written to the bad file, and the load details will be written to the log file. For
all three types of files, you can specify a directory object along with the filename so that you can
write the output to a directory other than your input datafile directory. You can specify nodiscardfile,
nobadfile, and nologfile to prevent these files from being created. Use directory object names
(such as BOOK_DIR in this chapter’s examples) when specifying locations for discard files, bad
files, and log files. If you don’t specify locations for log files, bad files, and discard files, Oracle
creates them in the default directory with system-generated names.

Within the access parameters clause, you also specify the field definitions and delimiters,
such as

fields terminated by "~"
(Title CHAR(100),
Publisher CHAR(20),
CategoryName CHAR(20),
Rating CHAR(2))

486 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 26
Blind Folio 26:486

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can use the missing field values are null clause to set values for NULL column values,
but you must exercise caution when using this option. For example, the AUTHOR table has
NULL values in its Comments column. The external table creation for AUTHOR_EXT is shown in
the following listing:

set pagesize 0 newpage 0 feedback off
select AuthorName||'~'||Comments||'~'
from AUTHOR
order by AuthorName

spool e:\oracle\external\author_dump.lst
/
spool off

set feedback on heading on newpage 1 pagesize 60
create table AUTHOR_EXT
(AuthorName VARCHAR2(50),
Comments VARCHAR2(100)

)
organization external
(type ORACLE_LOADER
default directory BOOK_DIR
access parameters (records delimited by newline

skip 1
fields terminated by "~"
missing field values are null
(AuthorName CHAR(50),
Comments CHAR(100)

))
location ('author_dump.lst')
)
reject limit 1
;

But this is not correct—if you select the AuthorName values from AUTHOR_EXT, you will
see that the values include the following:

select AuthorName from AUTHOR_EXT
where AuthorName like 'S%';

AUTHORNAME
--
SOREN KIERKEGAARD
STEPHEN AMBROSE
STEPHEN JAY GOULD
SQL> spool off

4 rows selected.

Chapter 26: Using External Tables 487

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 26
Blind Folio 26:487

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Because of the missing field values are null clause, the “SQL> spool off” line at the end of
the listing was read as an AuthorName value, with a NULL Comments value. This highlights the
problem with coding exceptions into your loader definitions—you need to make sure you fully
understand the source data and the way the loader will treat it. In most cases, your data integrity
will be better served by forcing rows to fail (into bad files or discard files) and evaluating the failed
rows apart from your general loads.

See the SQL*Loader entry in the Alphabetical Reference for the full syntax available for the
access parameters clause.

Location
In the location clause, you specify the datafiles to use as the source data for the table. You can
name multiple files in the location clause if they all exist in directory objects the user has READ
privilege on. The following example combines two separate BOOKSHELF spool files to illustrate
the ability to combine multiple files into a single external table:

create table BOOKSHELF_EXT_4
(Title VARCHAR2(100),
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2)
)
organization external
(type ORACLE_LOADER
default directory BOOK_DIR
access parameters (records delimited by newline

skip 1
fields terminated by "~"
(Title CHAR(100),
Publisher CHAR(20),
CategoryName CHAR(20),
Rating CHAR(2)

))
location ('bookshelf_dump_2.lst', 'bookshelf_dump.lst')
)
reject limit 1
;

The order of the files is important—skip 1 applies to the first file, not to the second file. The second
file, bookshelf_dump.lst, is the file that was previously edited to eliminate the nondata rows in its
first and last rows. The result, reflecting the rows in both, is shown in the following listing:

select COUNT(*) from BOOKSHELF_EXT_4;

COUNT(*)

62

488 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 26
Blind Folio 26:488

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 26: Using External Tables 489

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 26
Blind Folio 26:489

Altering External Tables
You can alter external table definitions to change the way Oracle interprets the flat file. The available
options are detailed in the following subsections.

Access Parameters
You can change the access parameters without dropping and re-creating the external table definition,
thereby preserving grants, file definitions, and so on. For example, here’s how to increase the number
of records to skip in the BOOKSHELF_EXT_4 table:

alter table BOOKSHELF_EXT_4
access parameters (records delimited by newline

skip 10
fields terminated by "~"
(Title CHAR(100),
Publisher CHAR(20),
CategoryName CHAR(20),
Rating CHAR(2)

));

select COUNT(*) from BOOKSHELF_EXT_4;

COUNT(*)

53

Add Column
You can use the add column clause of the alter table command to add a column to the external
table, using the same syntax used for standard tables.

Default Directory
You can use the default directory clause of the alter table command to change the default directory
for the external files accessed by the table. The directory must be created via the create directory
command.

Drop Column
You can use the drop column clause of the alter table command to drop a column from the
external table, using the same syntax used for standard tables. The data in the file remains
unchanged.

Location
You can change the files accessed by the external table via the location clause of the alter table
command. You may use this option to add new files to the list or to change the order in which
the external table accesses the files.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Modify Column
You can use the modify column clause of the alter table command to modify a column in the
external table, using the same syntax used for standard tables.

Parallel
You can use the parallel clause of the alter table command to change the degree of parallelism
for the external table, using the same syntax used for standard tables.

Project Column
The project column clause of the alter table command tells the access driver how to validate
rows in subsequent queries. If you use the project column referenced option, the access driver
only processes the columns selected by the query. If you then query a different set of columns
from the external table, the results may be inconsistent with the first query’s results. If you use the
project column all option, the access driver processes all columns defined on the external table,
resulting in a consistent set of query results. The project column referenced option is the default.

Reject Limit
You can use the reject limit clause of the alter table command to change the allowable number
of rejected rows for the external table. Here’s an example:

alter table BOOKSHELF_EXT_3
reject limit 5;

Rename To
You can use the rename to clause of the alter table command to change the name of the external
table, using the same syntax used for standard tables. Here’s an example:

alter table BOOKSHELF_EXT_3
rename to BE3;

Limitations, Benefits,
and Potential Uses of External Tables
External tables have limitations that may make them inappropriate for some online transaction-
processing applications. You cannot perform any update or delete operations on external tables.
The more dynamic the table is, the less appropriate external files may be. As shown in the examples
earlier in this chapter, you can change the files dynamically at the operating system level. If your
application generates inserts only, you may be able to write those inserted records into an external
file instead of a database table.

You cannot index external tables. The lack of indexes on external tables does not have to be
a negative factor in application performance. Queries of external tables complete very quickly,
even though a full table scan is required with each access. There is I/O involved, but modern I/O
systems use caching and RAID techniques to significantly reduce the performance penalty associated
with repeated full scans of the same file.

490 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 26
Blind Folio 26:490

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
To analyze external tables, use the DBMS_STATS package.
You cannot analyze external tables via the analyze command.

You cannot specify constraints on an external table. Even creating a NOT NULL or foreign key
constraint fails:

alter table BOOKSHELF_EXT add constraint CATFK
foreign key (CategoryName) references CATEGORY(CategoryName);

foreign key (CategoryName) references CATEGORY(CategoryName)
*
ERROR at line 2:
ORA-30657: operation not supported on external organized table

Despite these limitations, external tables offer many useful features. You can join external
tables (to each other, or to standard tables). You can use hints to force the optimizer to choose
different join paths, and you can see the results in the query execution paths (see Chapter 43
for details on hints and the Oracle optimizer).

As an alternative to data loading, external tables offer DBAs and application developers the
possibility of accessing data without supporting long-running load programs. Because the files
can be edited at the operating system level, you can quickly replace a table’s data without worrying
about outstanding transactions modifying the table. For example, you could use this capability to
create multiple external tables and create a union all view across them, creating a partition view
across multiple files. You can then manage each table’s data separately at the file system level,
replacing its contents as needed.

Because the external table can be queried, you can use the external table as the data source
for an insert as select command. During that operation, Oracle will attempt to load the external
files in parallel, potentially improving performance. To further improve performance of the insert
as select operation, you should use the APPEND hint to force block-level inserts. When you specify
the degree of parallelism for the insert as select operation, Oracle starts multiple ORACLE_LOADER
access drivers to process the data in parallel. To further enhance load performance, avoid using
variable-length fields, delimited fields, character set conversion, NULLIF, DEFAULTIF, and datatype
conversion operations. Turning off badfile (with nobadfile) eliminates the costs associated with
the file creation and the maintenance of the original row’s context.

During the insert as select, you can perform functions on the data as it is processed. You
can perform the functions either in the insert as select command syntax or in the external table
definition. This capability highlights an important benefit of external tables—you can centralize
the representation and processing requirements for your data, building translation routines into
your table definitions. There is no processing data stored in SQL*Loader control files or PL/SQL
routines; all the logic is built into the table definition, accessible via USER_EXTERNAL_TABLES.

During queries, external tables allow you to select specific data sets (via the load when clause,
as illustrated in this chapter). If you have multiple data sources for a data warehouse load, you can
choose which data will be made available even while the data is outside the database. You can

Chapter 26: Using External Tables 491

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 26
Blind Folio 26:491

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

use this feature to maintain application availability during data loads. These loads can occur in
parallel if the external file has a FIXED file format.

The limited-access feature also allows you to enforce complex security rules concerning data
access. For example, you may keep sensitive data outside the database, in a secure directory.
Users with READ access to that directory would be able to use the external table and join it to
other tables; users without that access would be limited to the data inserted into the publicly
accessible tables. Highly secure data, or lightly accessed dynamic data, need not be inserted into
the database until it is needed, if at all.

If you use external tables in your database architecture, you must make sure your backup and
recovery plans account for those files as well as the rest of your database. If the external files change
more rapidly than the database files, you may need to back them up more frequently in order to
take advantage of Oracle’s full recovery capabilities.

492 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 26
Blind Folio 26:492

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 27
Blind Folio 27:493

CHAPTER
27

Using Flashback
Queries

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A
s part of its read consistency model, Oracle displays data that has been committed
to the database. As of Oracle9i, you can query data as it existed prior to a transaction
being committed. If you accidentally commit an errant update or delete, you can
use this capability—called a flashback query—to see the data as it existed prior to
the commit. You can use the results of the flashback query to restore the data.

To support flashback queries, your database should use system-managed undo, a feature
introduced in Oracle9i to automate management of rollback segments; see your DBA to determine
if this feature is enabled in your environment. The DBA must create an undo tablespace, enable
Automatic Undo Management, and establish an undo retention time window. Flashback queries
can be executed against remote databases.

NOTE
See Chapter 46 for details on the DBA activities needed to support
flashback queries.

Oracle will attempt to maintain enough undo information in the undo tablespace to support
flashback queries during the retention time period. The retention time setting and the amount of
space available in the undo tablespace can significantly impact your ability to successfully execute
a flashback query.

NOTE
Oracle uses undo to roll back transactions and support flashback
queries. Oracle uses redo (captured in the online redo log files)
to apply transactions during database recoveries.

Flashback queries are important tools during partial recovery efforts. In general, you should not
rely on flashback queries as part of your application design because of their dependence on system
elements outside of the application developer’s control (such as the number of transactions during
a time period and the size of the undo tablespace). Rather, you should treat them as an option
during critical periods of testing, support, and data recovery. For example, you could use them to
create copies of tables at multiple past points in time for use when reconstructing changed data.

NOTE
To use some features of flashback queries, you must have the
EXECUTE privilege on the DBMS_FLASHBACK package. Most
users will not need privileges on this package.

Time-Based Flashback Example
The BOOK_ORDER table has six records, as shown in the following listing:

column Title format a30
select * from BOOK_ORDER;

494 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 27
Blind Folio 27:494

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TITLE PUBLISHER CATEGORYNAME
------------------------------ -------------------- ------------
SHOELESS JOE MARINER ADULTFIC
GOSPEL PICADOR ADULTFIC
SOMETHING SO STRONG PANDORAS ADULTNF
GALILEO'S DAUGHTER PENGUIN ADULTNF
LONGITUDE PENGUIN ADULTNF
ONCE REMOVED SANCTUARY PUB ADULTNF

6 rows selected.

A shipment has arrived, and the old BOOK_ORDER records are deleted and then the deletion
is committed. Unfortunately, not all the books were in the shipment, so the delete is inappropriate:

delete from BOOK_ORDER;
commit;

How can you reconstruct the unreceived book records from the BOOK_ORDER table, since you
only have the received books in hand? You could perform a database recovery by using Data Pump
Import (see Chapter 22) to restore the table, or you could perform a physical database recovery to
recover the database to a point in time prior to the delete. However, with flashback queries, you
can avoid the need to perform these recovery operations.

First, let’s query the old data from the database. As of Oracle9i Release 2, you can use the as
of timestamp and as of scn clauses of the select command to specify how far Oracle should flash
back the data.

NOTE
In Oracle9i’s first release, 9.0.1, this syntax is not supported; you
need to execute procedures within the DBMS_FLASHBACK package
and write PL/SQL loops to perform any transactions based on the data.

select COUNT(*) from BOOK_ORDER;

COUNT(*)

0

select COUNT(*) from BOOK_ORDER
as of timestamp (SysDate – 5/1440);

COUNT(*)

6

When you execute a flashback query, only the state of the data is changed. The current system
time is used (as you can see by querying the SysDate value), and the current data dictionary is used.
If the structure of the table has changed, the query will fail.

Chapter 27: Using Flashback Queries 495

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 27
Blind Folio 27:495

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Saving the Data
As shown in the BOOK_ORDER example, flashback queries are simple to implement, provided
the undo management of the database is properly configured and the undo information is available.
But how can you work with the flashback data?

The simplest method involves saving the data to a separate table. There are 1440 minutes in
a day, so “SysDate – 5/1440” will direct the database to a point in time five minutes ago. Note that
the query may return no rows if more than five minutes have passed since the commit.

create table BOOK_ORDER_OLD
as select * from BOOK_ORDER
from BOOK_ORDER
as of timestamp (SysDate – 5/1440);

Table created.

select COUNT(*) from BOOK_ORDER_OLD;

COUNT(*)

6

You can verify that the data is correct:

column Title format a30

select * from BOOK_ORDER_OLD;

TITLE PUBLISHER CATEGORYNAME
------------------------------ -------------------- ------------
SHOELESS JOE MARINER ADULTFIC
GOSPEL PICADOR ADULTFIC
SOMETHING SO STRONG PANDORAS ADULTNF
GALILEO'S DAUGHTER PENGUIN ADULTNF
LONGITUDE PENGUIN ADULTNF
ONCE REMOVED SANCTUARY PUB ADULTNF

6 rows selected.

You can then work with that data to restore the missing data, perform selective updates, insert
only incorrectly deleted rows, or whatever other operation is needed.

The new table, BOOK_ORDER_OLD, has no indexes on it and no referential integrity constraints.
If you need to join it to other tables, you may need to create flashback copies of multiple tables
in order to maintain the referential integrity of the data. Also, note that each query is executed at
a different point in time—and the relative times used in the as of timestamp clause can therefore
lead to confusing or inconsistent results.

You can work directly with the old data—however, you are relying on the old data being
available for your transaction. It is generally safer to create a table and store the old data temporarily
as you work with it.

496 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 27
Blind Folio 27:496

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Limitations of Time-Based Flashbacks
The preceding example showed how to use the system timestamp during your flashback query.
As noted, that method provides limited support for multi-table flashbacks. To perform complex
flashbacks correctly, you should use the system change number (SCN).

Oracle internally uses the SCN, not the system timestamp, to generate the flashback data,
even when you specify the as of timestamp clause. The system timestamp is matched to SCN
values every five minutes; the table SYS.SMON_SCN_TIME records the last 1440 matches of SCN
to the system timestamp. When you flash back to a point in time, Oracle uses the most recent
five-minute timestamp preceding the requested time. If SMON_SCN_TIME has a record for 1:00
P.M. and for 1:05 P.M., a request for a flashback to 1:04 P.M. will return the data from 1:00 P.M.

SMON_SCN_TIME only maintains the most recent 1440 entries, so flashback queries that go
beyond the most recent five days in an always-open database must use an SCN-based approach,
as described in the next section. If you shut down your database periodically (such as for offline
backups), the 1440 records in SMON_SCN_TIME will span more than five days.

To see the most recent entries in SYS.SMON_SCN_TIME, execute the following query as SYS,
connected as SYSDBA:

select TO_CHAR(Time_DP,'DD-MON-YYYY HH24:MI:SS')
from SYS.SMON_SCN_TIME
order by Time_DP desc ;

SCN-Based Flashback Example
When you perform time-based flashbacks, you are really doing SCN-based flashbacks; you’re just
relying on Oracle to find an SCN near the time you specified. If you know the exact SCN, you can
perform a flashback with a great degree of precision.

To begin an SCN-based flashback, you must first know the SCN of your transaction. To get the
latest change number, issue a commit and then use the as of scn clause of the select command.
You can find the current SCN by executing the GET_SYSTEM_CHANGE_NUMBER function of
the DBMS_FLASHBACK package prior to executing your transaction.

NOTE
Prior to executing the following example, you must have been granted
the EXECUTE privilege on the DBMS_FLASHBACK package.

The following example shows this process as part of a transaction against the BOOK_ORDER_
OLD table created and populated in the first part in this chapter. First, the current SCN is assigned
to a variable named SCN_FLASH and displayed via the SQL*Plus print command:

commit;

variable SCN_FLASH number;
execute :SCN_FLASH :=DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER;

PL/SQL procedure successfully completed.

Chapter 27: Using Flashback Queries 497

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 27
Blind Folio 27:497

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

print SCN_FLASH

SCN_FLASH

529732

Next, the delete command is issued and the result is committed:

delete from BOOK_ORDER_OLD;

6 rows deleted.

commit;

You can now query the flashback data. Although the SCN value is known, you can continue
to use the SCN_FLASH variable value if you are within the same session:

select COUNT(*) from BOOK_ORDER_OLD;

COUNT(*)

0

select COUNT(*) from BOOK_ORDER_OLD
as of scn (:scn_flash);

COUNT(*)

6

You can now use the flashback data in BOOK_ORDER_OLD, accessed by the as of scn clause,
to populate it with its old values:

insert into BOOK_ORDER_OLD
select * from BOOK_ORDER_OLD
as of scn (:scn_flash);

6 rows created.

commit;

NOTE
DDL operations that alter the structure of a table invalidate the old undo
data for the table, and flashback capabilities are limited to the time
since the DDL was executed. Space-related changes (such as changing
pctfree) do not invalidate the old undo data. See Chapter 28 for details
on the flashback table and flashback database commands.

498 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 27
Blind Folio 27:498

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 27: Using Flashback Queries 499

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 27
Blind Folio 27:499

What If the Flashback Query Fails?
If there is not enough space in the undo tablespace to maintain all the data needed for the flashback
query, the query will fail. Even if the DBA created a large undo tablespace, it is possible for a series
of large transactions to use all the space available. A portion of each failed query will be written
to the database’s alert log.

From the perspective of a user attempting to recover old data, you should attempt to recover
data that is as correct and timely as possible. Often, you may need to execute multiple flashback
queries to determine how far back you can successfully query the data, and then save the oldest
data you can access and the data closest to the point at which the problem occurred. Once the
oldest data is gone from the undo tablespace, you can no longer use flashback queries to retrieve it.

If it is not possible to flash back to data that is old enough for your needs, you will need to
perform some sort of database recovery—either flashing back the entire database or recovering
specific tables and tablespaces via traditional DBA methods (see Chapter 46). If this problem happens
routinely, the undo retention time should be increased, the space allotted for the undo tablespace
should be increased, and the application usage should be examined to determine why questionable
transactions are occurring on a persistent basis.

What SCN Is Associated with Each Row?
As of Oracle Database 10g, you can see the most recent SCN associated with each row in the
database.

Let’s start by repopulating our BOOK_ORDER table with the data that was restored to the
BOOK_ORDER_OLD table:

delete from BOOK_ORDER;

0 rows deleted.

insert into BOOK_ORDER
select * from BOOK_ORDER_OLD;

6 rows created.

commit;

Now, use the ORA_ROWSCN pseudo-column introduced in Oracle Database 10g to see the
SCN associated with each row:

select Title, ORA_ROWSCN from BOOK_ORDER;

TITLE ORA_ROWSCN
------------------------------ ----------
SHOELESS JOE 553531
GOSPEL 553531
SOMETHING SO STRONG 553531
GALILEO'S DAUGHTER 553531
LONGITUDE 553531
ONCE REMOVED 553531

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

500 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 27
Blind Folio 27:500

All the rows were part of the same transaction, occurring at SCN 553531 (the SCN in your
database will differ from the one in this example). Now, wait for other transactions to occur in
the database and then insert a new row:

insert into BOOK_ORDER
values ('INNUMERACY','VINTAGE BOOKS','ADULTNF');

1 row created.

commit;

Now that a new change has been committed, you can see the SCN associated with it:

select Title, ORA_ROWSCN from BOOK_ORDER;

TITLE ORA_ROWSCN
------------------------------ ----------
SHOELESS JOE 553531
GOSPEL 553531
SOMETHING SO STRONG 553531
GALILEO'S DAUGHTER 553531
LONGITUDE 553531
ONCE REMOVED 553531
INNUMERACY 553853

What time does that SCN map to? You can use the SCN_TO_TIMESTAMP function to display
the date at which the change was made:

select SCN_TO_TIMESTAMP(555853) from DUAL;

SCN_TO_TIMESTAMP(555853)
--
20-FEB-04 03.11.28.000000000 PM

You can integrate the two queries to see the latest transaction times for each row:

select Title, SCN_TO_TIMESTAMP(ORA_ROWSCN)
from BOOK_ORDER;

Flashback Version Queries
As of Oracle Database 10g, you can display the different versions of rows that existed during
specified intervals. As with the examples shown previously in this chapter, the changes are SCN
dependent, so only those that are committed will be displayed.

NOTE
Flashback version queries require that the DBA has set a nonzero value
for the UNDO_RETENTION initialization parameter. If the UNDO_
RETENTION value is too low, you may get an ORA-30052 error.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 27: Using Flashback Queries 501

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 27
Blind Folio 27:501

To prepare for these examples, delete the old rows from BOOK_ORDER:

delete from BOOK_ORDER;

Next, repopulate BOOK_ORDER:

select SysTimeStamp from DUAL;

insert into BOOK_ORDER
select * from BOOK_ORDER_OLD;

select SysTimeStamp from DUAL;

Then, wait for a few minutes and update all rows:

select SysTimeStamp from DUAL;

update BOOK_ORDER set CategoryName = 'ADULTF';

select SysTimeStamp from DUAL;

To execute a flashback version query, use the versions between clause of the select command.
You can specify either the timestamp or the SCN. In this example, the format for the timestamp
clause is based on Oracle’s standard format (select SysTimeStamp from DUAL for the current value):

select *
from BOOK_ORDER

versions between timestamp
to_timestamp('20—FEB-04 16.00.20','DD-MON-YY HH24.MI.SS')
and
to_timestamp('20—FEB-04 16.06.20','DD-MON-YY HH24.MI.SS') ;

When you execute the query, Oracle will return one row for each version of each row that
occurred between the start and end points you specify in the versions between clause. For the
rows that are returned, you can query additional pseudo-columns:

Pseudo-Column Description

VERSIONS_STARTSCN The SCN when the data first had the values reflected. If NULL, then
the row was created before the lower bound for the query.

VERSIONS_STARTTIME The timestamp when the data first had the values reflected. If NULL,
then the row was created before the lower bound for the query.

VERSIONS_ENDSCN The SCN when the row version expired. If NULL, then the row is
current or has been deleted.

VERSIONS_ENDTIME The timestamp when the row version expired. If NULL, then the
row is current or has been deleted.

VERSIONS_XID The identifier of the transaction that created the row version.

VERSIONS_OPERATION The operation that performed the transaction (I for insert, U for
update, D for delete).

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following example shows the use of the flashback version query. The Versions_StartSCN
values are NULL for the current rows; the old rows have been updated. The timestamps will be
different on your platform.

select Title, Versions_StartSCN, Versions_Operation
from BOOK_ORDER

versions between timestamp
TO_TIMESTAMP('20—FEB-04 16.00.20','DD-MON-YY HH24.MI.SS')
and
TO_TIMESTAMP('20—FEB-04 16.06.20','DD-MON-YY HH24.MI.SS') ;

TITLE VERSIONS_STARTSCN V
------------------------------ ----------------- -
ONCE REMOVED 568127 U
LONGITUDE 568127 U
GALILEO'S DAUGHTER 568127 U
SOMETHING SO STRONG 568127 U
GOSPEL 568127 U
SHOELESS JOE 568127 U
SHOELESS JOE
GOSPEL
SOMETHING SO STRONG
GALILEO'S DAUGHTER
LONGITUDE
ONCE REMOVED

The versions between clause can be used in subqueries of DML and DDL commands.
As of Oracle Database 10g, you can use the FLASHBACK_TRANSACTION_QUERY data

dictionary view to track changes made by a particular transaction. For a given transaction,
FLASHBACK_TRANSACTION_QUERY shows the name of the user who executed it, the operation
performed, the table to which the transaction was applied, the start and end SCNs and timestamps,
and the SQL needed to undo the transaction.

Planning for Flashbacks
For DBAs, flashback queries may offer a means of performing partial recovery operations quickly.
If the data can be reconstructed via flashback queries, and if the data volume is not overwhelming,
you may be able to save the results of multiple flashback queries in separate tables. You could then
compare the data in the tables via the SQL options shown in prior chapters—correlated subqueries,
exists, not exists, minus, and so on. If you cannot avoid the need for a recovery operation, you
should be able to pinpoint the time period to be used for a time-based recovery operation.

As you will see in the next chapter, Oracle Database 10g introduces additional options—the
flashback database and flashback table commands.

For application developers and application administrators, flashback queries provide an
important tool for reconstructing data. Flashback queries may be particularly critical during testing
and support operations. Rather than making flashback queries part of your production application
design, you should use them as a fallback option for those support cases that cannot be resolved
before data is affected.

502 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 27
Blind Folio 27:502

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 28
Blind Folio 28:503

CHAPTER
28

Flashback—Tables
and Databases

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A
s of Oracle Database 10g, you can use the flashback table and flashback database
commands to simplify your data-recovery efforts. The flashback table command
automates the process of restoring a full table to its prior state. The flashback
database command flashes back an entire database, and it requires modifications
to the database status and its logs. In the following sections, you will see details

on implementing these options.

The flashback table Command
The flashback table command restores an earlier state of a table in the event of human or application
error. Oracle cannot restore a table to an earlier state across any DDL operations that change the
structure of the table.

NOTE
The database should be using Automatic Undo Management (AUM)
for flashback table to work. The ability to flash back to old data is
limited by the amount of undo retained in the undo tablespace and
the UNDO_RETENTION initialization parameter setting.

You cannot roll back a flashback table statement. However, you can issue another flashback
table statement and specify a time just prior to the current time.

NOTE
Record the current SCN before issuing a flashback table command.

Privileges Required
You must have either the FLASHBACK object privilege on the table or the FLASHBACK ANY TABLE
system privilege. You must also have SELECT, INSERT, DELETE, and ALTER object privileges on
the table. Row movement must be enabled for all tables in the flashback list. To flash back a table
to before a drop table operation, you only need the privileges necessary to drop the table.

Recovering Dropped Tables
Consider the AUTHOR table:

describe AUTHOR

Name Null? Type
------------------ -------- ----------------------------
AUTHORNAME NOT NULL VARCHAR2(50)
COMMENTS VARCHAR2(100)

Now, assume that the table is dropped accidentally. This usually happens when a privileged
user intends to drop a table in a development/test environment but is pointing to the production
database when the command is executed.

504 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 28
Blind Folio 28:504

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

drop table AUTHOR cascade constraints;

Table dropped.

How can the table be recovered? As of Oracle Database 10g, a dropped table does not fully
disappear. Its blocks are still maintained in its tablespace, and it still counts against your space quota.
You can see the dropped objects by querying the RECYCLEBIN data dictionary view. Note that
the format for the Object_Name column may differ between versions.

select * from RECYCLEBIN;

OBJECT_NAME ORIGINAL_NAME OPERATION
------------------------------ -------------------------------- ---------
TYPE TS_NAME CREATETIME
------------------------- ------------------------------ -------------------
DROPTIME DROPSCN PARTITION_NAME CAN CAN
------------------- ---------- -------------------------------- --- ---

RELATED BASE_OBJECT PURGE_OBJECT SPACE
---------- ----------- ------------ ----------
RB$$48448$TABLE$0 AUTHOR DROP
TABLE USERS 2004-02-23:16:10:58
2004-02-25:14:30:23 720519 YES YES

48448 48448 48448 8

RB$$48449$INDEX$0 SYS_C004828 DROP
INDEX USERS 2004-02-23:16:10:58
2004-02-25:14:30:23 720516 NO YES

48448 48448 48449 8

RECYCLEBIN is a public synonym for the USER_RECYCLEBIN data dictionary view, showing the
recycle bin entries for the current user. DBAs can see all dropped objects via the DBA_RECYCLEBIN
data dictionary view.

As shown in the preceding listing, Oracle has dropped the AUTHOR table and its associated
primary key index. Although they have been dropped, they are still available for flashback. Note
that the recycle bin listings show the SCN for the drop command used to drop the base object.

You can use the flashback table to before drop command to recover the table from the
recycle bin:

flashback table AUTHOR to before drop;

Flashback complete.

The table has been restored, along with its rows, indexes, and statistics, as shown here:

select COUNT(*) from AUTHOR;

COUNT(*)

31

Chapter 28: Flashback—Tables and Databases 505

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 28
Blind Folio 28:505

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

506 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 28
Blind Folio 28:506

What happens if you drop the AUTHOR table, re-create it, then drop it again? The recycle
bin will contain both the tables. Each entry in the recycle bin will be identified via its SCN and
the timestamp for the drop.

NOTE
The flashback table to before drop command does not recover
referential constraints.

To purge old entries from the recycle bin, use the purge command. You can purge all your
dropped objects, all dropped objects in the database (if you are a DBA), all objects in a specific
tablespace, or all objects for a particular user in a specific tablespace. See the purge command
in the Alphabetical Reference for the full syntax and command options.

You can use the rename to clause of the flashback table command to rename the table as you
flash it back.

Flashing Back to SCN or Timestamp
As shown in Chapter 27, you can save the results of a flashback query in a separate table while
the main table stays unaffected. You can also update the rows of a table based on the results of
a flashback query. You can use the flashback table command to transform a table into its prior
version—wiping out the changes that were made since the specified flashback point.

During a flashback table operation, Oracle acquires exclusive DML locks on all the tables
specified. The command is executed in a single transaction across all tables; if any of them fails,
the entire statement fails. You can flash back a table to a specific SCN or timestamp.

NOTE
flashback table to scn or to timestamp does not preserve RowIDs.

The following update command attempts to update the comment for the entry for Clement
Hurd. However, the where clause is not specified; all rows are updated with the same comment,
and the change is committed.

update AUTHOR
set Comments = 'ILLUSTRATOR OF BOOKS FOR CHILDREN';

31 rows updated.

commit;

In this case, we know that almost the entire table has incorrect data, and we know the transaction
that was executed incorrectly. To recover the correct data, we can flash back the database to a
prior time and then apply any new commands needed to bring the data up to date.

First, let’s make sure we know the current SCN in case we need to return to this point:

commit;

variable SCN_FLASH number;
execute :SCN_FLASH :=DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

PL/SQL procedure successfully completed.

print SCN_FLASH

SCN_FLASH

720880

Now, let’s flash back the table to a time just prior to the update. First, we must enable row
movement for the table:

alter table AUTHOR enable row movement;

Table altered.

We can then flash back the table:

flashback table AUTHOR to timestamp (systimestamp – 5/1440);

You can use the to scn clause if you wish to specify an SCN instead of a timestamp.

Indexes and Statistics
When a table is flashed back, its statistics are not flashed back. Indexes that exist on the table are
reverted and reflect the state of the table at the flashback point. Indexes dropped since the flashback
point are not restored. Indexes created since the flashback point will continue to exist and will be
updated to reflect the older data.

The flashback database Command
The flashback database command returns the database to a past time or SCN, providing a fast
alternative to performing incomplete database recovery. Following a flashback database operation,
in order to have write access to the flashed back database you must reopen it with an alter database
open resetlogs command. You must have the SYSDBA system privilege in order to use the flashback
database command.

NOTE
The database must have been put in flashback mode with an alter
database flashback on command. The database must be mounted in
exclusive mode but not be open when that command is executed.

The syntax for the flashback database command is as follows:

flashback [standby] database [database]
{ to {scn | timestamp} expr
| to before {scn | timestamp } expr
}

Chapter 28: Flashback—Tables and Databases 507

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 28
Blind Folio 28:507

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can use either the to scn or to timestamp clause to set the point to which the entire database
should be flashed back. You can flash back to before a critical point (such as a transaction that
produced an unintended consequence for multiple tables). Use the ORA_ROWSCN pseudo-column
to see the SCNs of transactions that most recently acted on rows.

To use flashback database, you must first alter the database while it is mounted but not open.
If you have not already done so, you will need to shut down your database and enable flashback
during the startup process:

startup mount exclusive;
alter database archivelog;
alter database flashback on;
alter database open;

NOTE
You must have enabled media recovery via the alter database archivelog
command prior to executing the alter database flashback on command.

Two initialization parameter settings control how much flashback data is retained in the
database. The DB_FLASHBACK_RETENTION_TARGET initialization parameter sets the upper
limit (in minutes) for how far in time the database can be flashed back. The DB_RECOVERY_
FILE_DEST initialization parameter sets the size of the flash recovery area. Note that the flashback
table command uses the undo tablespace, whereas the flashback database command relies on
flashback logs stored in a flash recovery area.

You can determine how far back you can flash back the database by querying the
V$FLASHBACK_DATABASE_LOG view. The amount of flashback data retained in the database
is controlled by the initialization parameter and the size of the flash recovery area. The following
listing shows the available columns in V$FLASHBACK_DATABASE_LOG and sample contents:

desc V$FLASHBACK_DATABASE_LOG

Name Null? Type
--- -------- -------
OLDEST_FLASHBACK_SCN NUMBER
OLDEST_FLASHBACK_TIME DATE
RETENTION_TARGET NUMBER
FLASHBACK_SIZE NUMBER
ESTIMATED_FLASHBACK_SIZE NUMBER

select * from V$FLASHBACK_DATABASE_LOG;

OLDEST_FLASHBACK_SCN OLDEST_FL RETENTION_TARGET FLASHBACK_SIZE
-------------------- --------- ---------------- --------------
ESTIMATED_FLASHBACK_SIZE

722689 25-FEB-04 1440 8192000
0

508 Part III: Beyond the Basics

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 28
Blind Folio 28:508

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can verify the database’s flashback status by querying V$DATABASE; the Flashback_On
column will have a value of YES if the flashback has been enabled for the database.

select Current_SCN, Flashback_On from V$DATABASE;

CURRENT_SCN FLA
---------------- ---

723649 YES

With the database open for over an hour, verify that the flashback data is available and then
flash it back—you will lose all transactions that occurred during that time:

shutdown;
startup mount exclusive;
flashback database to timestamp sysdate-1/24;

Note that the flashback database command requires that the database be mounted in exclusive
mode, which will affect its participation in any RAC clusters (see Chapter 40).

When you execute the flashback database command, Oracle checks to make sure all required
archived and online redo log files are available. If the logs are available, the online datafiles are
reverted to the time or SCN specified.

If there is not enough data online in the archive logs and the flashback area, you will need to
use traditional database recovery methods to recover the data. For example, you may need to use
a file system recovery method followed by rolling the data forward.

Once the flashback has completed, you must open the database using the resetlogs option in
order to have write access to the database:

alter database open resetlogs;

To turn off the flashback database option, execute the alter database flashback off command
when the database is mounted but not open:

startup mount exclusive;
alter database flashback off;
alter database open;

As shown in this and the preceding chapter, you can use the flashback options to perform an
array of actions—recovering old data, reverting a table to its earlier data, maintaining a history of
changes on a row basis, and quickly restoring an entire database. All of these actions are greatly
simplified if the database has been configured to support Automatic Undo Management. Also,
note that the flashback database command requires modification of the database status. Although
these requirements can present additional burdens to DBAs, the benefits involved in terms of the
number of recoveries required and the speed with which those recoveries can be completed may
be dramatic.

Chapter 28: Flashback—Tables and Databases 509

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 28
Blind Folio 28:509

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 28
Blind Folio 28:510

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 29
Blind Folio 29:511

PART
IV

PL/SQL

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 29
Blind Folio 29:512

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 29
Blind Folio 29:513

CHAPTER
29

An Introduction
to PL/SQL

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

P
L/SQL is Oracle’s procedural language (PL) superset of the Structured Query Language
(SQL). You can use PL/SQL to do such things as codify your business rules through
the creation of stored procedures and packages, trigger database events to occur,
and add programming logic to the execution of SQL commands.

The steps involved in the creation of triggers, stored procedures, and packages
are described in the following chapters in this part of this book. In this chapter, you will see the
basic structures and syntax used in PL/SQL.

PL/SQL Overview
PL/SQL code is grouped into structures called blocks. If you create a stored procedure or package,
you give the block of PL/SQL code a name; if the block of PL/SQL code is not given a name, it is
called an anonymous block. The examples in this chapter will feature anonymous blocks of PL/SQL
code; the following chapters in Part IV illustrate the creation of named blocks.

A block of PL/SQL code contains three sections:

Section Description

Declarations Defines and initializes the variables and cursors used in the block

Executable Commands Uses flow-control commands (such as if commands and loops) to
execute the commands and assign values to the declared variables

Exception Handling Provides customized handling of error conditions

Within a PL/SQL block, the first section is the Declarations section. Within the Declarations
section, you define the variables and cursors that the block will use. The Declarations section starts
with the keyword declare and ends when the Executable Commands section starts (as indicated
by the keyword begin). The Executable Commands section is followed by the Exception Handling
section; the exception keyword signals the start of the Exception Handling section. The PL/SQL
block is terminated by the end keyword.

The structure of a typical PL/SQL block is shown in the following listing:

declare
<declarations section>

begin
<executable commands>
exception
<exception handling>

end;

In the following sections of this chapter, you will see descriptions of each section of the
PL/SQL block.

Declarations Section
The Declarations section begins a PL/SQL block. The Declarations section starts with the declare
keyword, followed by a list of variable and cursor definitions. You can define variables to have

514 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 29
Blind Folio 29:514

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 29: An Introduction to PL/SQL 515

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 29
Blind Folio 29:515

constant values, and variables can inherit datatypes from existing columns and query results, as
shown in the following examples.

In the following listing, the area of a circle is calculated. The result is stored in a table named
AREAS. The AREAS table has two columns to store radius and area values. The area of the circle is
calculated by squaring the value for the circle’s radius and multiplying that value by the constant pi:

declare
pi constant NUMBER(9,7) := 3.1415927;
radius INTEGER(5);
area NUMBER(14,2);

begin
radius := 3;
area := pi*power(radius,2);
insert into AREAS values (radius, area);

end;
/

The end; line signals the end of the PL/SQL block; depending on the tool you use, you may
need to add a slash (/) to execute the PL/SQL block. When the PL/SQL block is executed, you will
receive the following response from Oracle:

PL/SQL procedure successfully completed.

To verify that the PL/SQL block completed correctly, you can select from the database the
rows that were inserted by the PL/SQL code. The query and results in the following listing show
the row the PL/SQL block created in the AREAS table:

select *
from AREAS;

RADIUS AREA
---------- ----------

3 28.27

The output shows that a single row was inserted into the AREAS table by the PL/SQL block.
Only one row was created because only one Radius value was specified.

In the first section of the PL/SQL block, shown in the following listing, three variables are
declared. You must declare the variables that will be used in the Executable Commands section
of the PL/SQL block.

declare
pi constant NUMBER(9,7) := 3.1415927;
radius INTEGER(5);
area NUMBER(14,2);

The first variable declared is pi, which is set to a constant value via the constant keyword.
Because it is declared as a constant, the value of the variable pi cannot be changed in the Executable
Commands section. The value is assigned via the := operator:

pi constant NUMBER(9,7) := 3.1415927;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

516 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 29
Blind Folio 29:516

You can also assign constant values via the default keyword:

pi NUMBER(9,7) DEFAULT 3.1415927;

The next two variables are defined but are not given default values:

radius INTEGER(5);
area NUMBER(14,2);

You can assign an initial value to a variable in the Declarations section. To set an initial value
for a variable, simply follow its datatype specification with the value assignment, as shown in the
following listing:

radius INTEGER(5) := 3;

In the example, the datatypes include NUMBER and INTEGER. PL/SQL datatypes include all
the valid SQL datatypes as well as complex datatypes based on query structures. Table 29-1 lists the
supported PL/SQL datatypes.

Scalar Datatypes

BINARY_DOUBLE* FLOAT NUMBER SMALLINT

BINARY_FLOAT* INT NUMERIC STRING

BINARY_INTEGER INTEGER NVARCHAR2 TIMESTAMP

BOOLEAN INTERVAL DAY
TO SECOND

PLS_INTEGER TIMESTAMP WITH
LOCAL TIME ZONE

CHAR INTERVAL YEAR
TO MONTH

POSITIVE TIMESTAMP WITH
TIME ZONE

CHARACTER LONG POSITIVEN UROWID

DATE LONG RAW RAW VARCHAR

DEC NATURAL REAL VARCHAR2

DECIMAL NATURALN ROWID

DOUBLE PRECISION NCHAR SIGNTYPE

*As of Oracle Database 10g, the new datatypes BINARY_FLOAT and BINARY_DOUBLE can improve
performance in number-crunching applications, such as processing scientific data.

TABLE 29-1. PL/SQL Datatypes

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 29: An Introduction to PL/SQL 517

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 29
Blind Folio 29:517

In the following example, a cursor is declared to retrieve a record from the RADIUS_VALS table.
RADIUS_VALS is a table with one column, named Radius, that holds radius values to be used in
these examples. The cursor is declared in the Declarations section, and a variable named rad_val
is declared with a datatype based on the cursor’s results.

NOTE
For this example, the table RADIUS_VALS contains a single row with
a Radius value of 3.

declare
pi constant NUMBER(9,7) := 3.1415927;
area NUMBER(14,2);
cursor rad_cursor is

select * from RADIUS_VALS;
rad_val rad_cursor%ROWTYPE;

begin
open rad_cursor;
fetch rad_cursor into rad_val;
area := pi*power(rad_val.radius,2);
insert into AREAS values (rad_val.radius, area);

close rad_cursor;
end;
/

In the first part of the Declarations section, the pi and area variables are defined, as they
were in the examples earlier in this chapter. The radius variable is not defined; instead, a cursor
named rad_cursor is defined. The cursor definition consists of a cursor name (rad_cursor) and a
query (select * from RADIUS_VALS;). A cursor holds the results of a query for processing by other
commands within the PL/SQL block:

declare
pi constant NUMBER(9,7) := 3.1415927;
area NUMBER(14,2);
cursor rad_cursor is

select * from RADIUS_VALS;

Composite Types

RECORD TABLE VARRAY

Reference Types

REF CURSOR REF object_type

LOB Types

BFILE BLOB CLOB** NCLOB**

**You can implicitly convert from CLOB to NCLOB or from NCLOB to CLOB. However, because this can
be an expensive operation, it might help maintainability to continue using the TO_CLOB and TO_NCLOB
functions.

TABLE 29-1. PL/SQL Datatypes (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A final declaration creates a variable whose structure is anchored by the cursor’s result set:

rad_val rad_cursor%ROWTYPE;

The rad_val variable will be able to reference each column of the query’s result set. In this
example, the query only returns a single column, but if the table contained multiple columns,
you would be able to reference all of them via the rad_val variable.

In addition to the %ROWTYPE declaration, you can use the %TYPE declaration to inherit
datatype information. If you use the %ROWTYPE declaration, the variable inherits the column and
datatype information for all the columns in the cursor’s result set. If you use the %TYPE declaration,
the variable only inherits the definition of the column used to define it. You can even base %TYPE
definitions on cursors, as shown in the following example:

cursor rad_cursor is
select * from RADIUS_VALS;

rad_val rad_cursor%ROWTYPE;
rad_val_radius rad_val.Radius%TYPE;

In the preceding listing, the rad_val variable inherits the datatypes of the result set of the rad_
cursor cursor. The rad_val_radius variable inherits the datatype of the Radius column within the
rad_val variable.

The advantage of datatype anchoring using %ROWTYPE and %TYPE definitions is that it makes
the datatype definitions in your PL/SQL code independent of the underlying data structures. If the
RADIUS_VALS Radius column is changed from a NUMBER(5) datatype to a NUMBER(4,2) datatype,
you do not need to modify your PL/SQL code; the datatype assigned to the associated variables
will be determined dynamically at runtime.

Executable Commands Section
In the Executable Commands section, you manipulate the variables and cursors declared in the
Declarations section of your PL/SQL block. The Executable Commands section always starts with
the keyword begin. In the following listing, the first PL/SQL block example from the Declarations
section is repeated: The area of a circle is calculated, and the results are inserted into the AREAS
table:

declare
pi constant NUMBER(9,7) := 3.1415927;
radius INTEGER(5);
area NUMBER(14,2);

begin
radius := 3;
area := pi*power(radius,2);
insert into AREAS values (radius, area);

end;
/

In the preceding listing, the Executable Commands section is as follows:

518 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 29
Blind Folio 29:518

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 29: An Introduction to PL/SQL 519

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 29
Blind Folio 29:519

begin
radius := 3;
area := pi*power(radius,2);
insert into AREAS values (radius, area);

end;

Following the begin keyword, the PL/SQL block’s work begins. First, a value is assigned to the
radius variable, and the radius variable and the pi constant value are used to determine the value
of the area variable. The Radius and Area values are then inserted into the AREAS table.

The Executable Commands section of the PL/SQL block may contain commands that execute
the cursors declared in the Declarations section. In the following example (from the “Declarations
Section” section of this chapter), the Executable Commands section features several commands
that reference the rad_cursor cursor:

declare
pi constant NUMBER(9,7) := 3.1415927;
area NUMBER(14,2);
cursor rad_cursor is

select * from RADIUS_VALS;
rad_val rad_cursor%ROWTYPE;

begin
open rad_cursor;
fetch rad_cursor into rad_val;
area := pi*power(rad_val.radius,2);
insert into AREAS values (rad_val.radius, area);

close rad_cursor;
end;
/

In the first command involving the cursor, the open command is used:

open rad_cursor;

When the rad_cursor cursor is opened, the query declared for that cursor is executed and the
records to be returned are identified. Next, records are fetched from the cursor:

fetch rad_cursor into rad_val;

In the Declarations section, the rad_val variable is declared to anchor its datatypes to the rad_
cursor cursor:

cursor rad_cursor is
select * from RADIUS_VALS;

rad_val rad_cursor%ROWTYPE;

When you fetch a record from the cursor into the rad_val variable, you can still address each
column value selected via the cursor’s query. When the cursor’s data is no longer needed, you can
close the cursor, as shown in the following listing:

close rad_cursor;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

520 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 29
Blind Folio 29:520

The Executable Commands section may contain conditional logic, such as if commands and
loops. In the following sections, you will see examples of each of the major types of flow-control
operations permitted in PL/SQL. You can use the flow-control operations to alter the manner in
which the fetched records and executable commands are managed.

Conditional Logic
Within PL/SQL, you can use if, else, elsif, and case commands to control the flow of
commands within the Executable Commands section. The formats of the if clauses are
shown in the following listing:

if <some condition>
then <some command>

elsif <some condition>
then <some command>

else <some command>
end if;

You can nest if conditions within each other, as shown in the following listing:

if <some condition>
then
if <some condition>

then <some command>
end if;

else <some command>
end if;

By nesting if conditions, you can quickly develop complex logic flows within your Executable
Commands section. When nesting if conditions, make sure you are not making the flow control
more complex than it needs to be; always check to see whether logical conditions can be combined
into simpler orders.

The “area of a circle” example used in the previous section will now be modified to include
conditional logic. In the following listing, the Executable Commands section of the PL/SQL block
has been modified to include if and then commands:

declare
pi constant NUMBER(9,7) := 3.1415927;
area NUMBER(14,2);
cursor rad_cursor is

select * from RADIUS_VALS;
rad_val rad_cursor%ROWTYPE;

begin
open rad_cursor;
fetch rad_cursor into rad_val;
area := pi*power(rad_val.radius,2);
if area > 30

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 29: An Introduction to PL/SQL 521

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 29
Blind Folio 29:521

then
insert into AREAS values (rad_val.radius, area);

end if;
close rad_cursor;

end;
/

In the preceding listing, an if condition is used to control the flow of commands within the
Executable Commands section of the PL/SQL block. The flow-control commands are shown in
the following listing:

if area > 30
then
insert into AREAS values (rad_val.radius, area);

end if;

The flow-control commands in this example begin after the area variable’s value has been
determined. If the value is greater than 30, then a record will be inserted into the AREAS table;
if the value is less than 30, then no record will be inserted into the table. You can use this sort
of flow control to direct which of several SQL statements are to be executed, based on the conditions
in your if conditions.

The following listing shows the syntax for flow control involving SQL commands:

if area>30
then <some command>

elsif area<10
then <some command>

else <some command>
end if;

Following illustrations of the supported types of loops, you will see the use of case commands
for flow control.

Loops
You can use loops to process multiple records within a single PL/SQL block. PL/SQL supports three
types of loops:

Simple loops A loop that keeps repeating until an exit or exit when statement is reached
within the loop

FOR loops A loop that repeats a specified number of times

WHILE loops A loop that repeats while a condition is met

In the following sections, you will see examples of each type of loop. The loop examples use
as their starting point the PL/SQL blocks used previously in this chapter. You can use loops to
process multiple records from a cursor.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

522 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 29
Blind Folio 29:522

Simple Loops
In the following listing, a simple loop is used to generate multiple rows in the AREAS table. The
loop is started by the loop keyword, and the exit when clause determines when the loop should
be exited. An end loop clause identifies the end of the loop.

declare
pi constant NUMBER(9,7) := 3.1415927;
radius INTEGER(5);
area NUMBER(14,2);

begin
radius := 3;
loop
area := pi*power(radius,2);
insert into AREAS values (radius, area);

radius := radius+1;
exit when area >100;

end loop;
end;
/

The loop section of this example establishes the flow control for the commands in the
Executable Commands section of the PL/SQL block. The steps within the loop are described
in the following commented version of the loop commands:

loop
/* Calculate the area, based on the radius value. */

area := pi*power(radius,2);
/* Insert the current values into the AREAS table. */
insert into AREAS values (radius, area);
/* Increment the radius value by 1. */

radius := radius+1;
/* Evaluate the last calculated area. If the value */
/* exceeds 100, then exit. Otherwise, repeat the */
/* loop using the new radius value. */

exit when area >100;
/* Signal the end of the loop. */

end loop;

The loop should generate multiple entries in the AREAS table. The first record will be the
record generated by a Radius value of 3. Once an area value exceeds 100, no more records will
be inserted into the AREAS table.

Sample output following the execution of the PL/SQL block is shown in the following listing:

select *
from AREAS
order by Radius;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

RADIUS AREA
---------- ----------

3 28.27
4 50.27
5 78.54
6 113.1

Because the area value for a Radius value of 6 exceeds 100, no further Radius values are
processed and the PL/SQL block completes.

Simple Cursor Loops
You can use the attributes of a cursor—such as whether or not any rows are left to be fetched—
as the exit criteria for a loop. In the following example, a cursor is executed until no more rows are
returned by the query. To determine the status of the cursor, the cursor’s attributes are checked.
Cursors have four attributes you can use in your program:

%FOUND A record can be fetched from the cursor.

%NOTFOUND No more records can be fetched from the cursor.

%ISOPEN The cursor has been opened.

%ROWCOUNT The number of rows fetched from the cursor so far.

The %FOUND, %NOTFOUND, and %ISOPEN cursor attributes are Booleans; they are set to
either TRUE or FALSE. Because they are Boolean attributes, you can evaluate their settings without
explicitly matching them to values of TRUE or FALSE. For example, the following command will
cause an exit to occur when rad_cursor%NOTFOUND is TRUE:

exit when rad_cursor%NOTFOUND;

In the following listing, a simple loop is used to process multiple rows from a cursor:

declare
pi constant NUMBER(9,7) := 3.1415927;
area NUMBER(14,2);
cursor rad_cursor is

select * from RADIUS_VALS;
rad_val rad_cursor%ROWTYPE;

begin
open rad_cursor;
loop
fetch rad_cursor into rad_val;
exit when rad_cursor%NOTFOUND;
area := pi*power(rad_val.radius,2);
insert into AREAS values (rad_val.radius, area);

end loop;
close rad_cursor;

end;
/

Chapter 29: An Introduction to PL/SQL 523

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 29
Blind Folio 29:523

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

524 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 29
Blind Folio 29:524

The loop section of the PL/SQL block uses values from the RADIUS_VALS table as its input.
Instead of basing the exit criteria on the Area value, the cursor’s %NOTFOUND attribute is checked.
If no more rows are found in the cursor, then %NOTFOUND will be TRUE—and, therefore, the
loop will be exited. The commented version of the loop is shown in the following listing:

loop
/* Within the loop, fetch a record. */

fetch rad_cursor into rad_val;
/* If the fetch attempt reveals no more */
/* records in the cursor, then exit the loop. */

exit when rad_cursor%NOTFOUND;
/* If the fetch attempt returned a record, */
/* then process the Radius value and insert */
/* a record into the AREAS table. */
area := pi*power(rad_val.radius,2);
insert into AREAS values (rad_val.radius, area);
/* Signal the end of the loop. */

end loop;

When the preceding PL/SQL block is executed, every record in the RADIUS_VALS table will
be processed by the loop. So far, the RADIUS_VALS table only contains one record—a Radius
value of 3.

NOTE
Prior to executing the PL/SQL block for this section, add two
new Radius values—4 and 10—to the RADIUS_VALS table.

The following listing shows the addition of the new records to the RADIUS_VALS table:

insert into RADIUS_VALS values (4);
insert into RADIUS_VALS values (10);
commit;

select *
from RADIUS_VALS
order by Radius;

RADIUS

3
4

10

Once the new records have been added to the RADIUS_VALS table, execute the PL/SQL block
shown earlier in this section. The output of the PL/SQL block is shown in the following listing:

select *
from AREAS
order by Radius;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 29: An Introduction to PL/SQL 525

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 29
Blind Folio 29:525

RADIUS AREA
---------- ----------

3 28.27
4 50.27

10 314.16

The query of the AREAS table shows that every record in the RADIUS_VALS table was fetched
from the cursor and processed. When there were no more records to process in the cursor, the loop
was exited and the PL/SQL block completed.

FOR Loops
A simple loop executes until an exit condition is met, whereas a FOR loop executes a specified
number of times. An example of a FOR loop is shown in the following listing. The FOR loop’s
start is indicated by the keyword for, followed by the criteria used to determine when the processing
is complete and the loop can be exited. Because the number of times the loop is executed is set
when the loop is begun, an exit command isn’t needed within the loop.

In the following example, the areas of circles are calculated based on Radius values ranging
from 1 through 7, inclusive.

delete from AREAS;

declare
pi constant NUMBER(9,7) := 3.1415927;
radius INTEGER(5);
area NUMBER(14,2);

begin
for radius in 1..7 loop
area := pi*power(radius,2);
insert into AREAS values (radius, area);

end loop;
end;
/

The steps involved in processing the loop are shown in the following commented listing:

/* Specify the criteria for the number of loop */
/* executions. */

for radius in 1..7 loop
/* Calculate the area using the current Radius */
/* value. */
area := pi*power(radius,2);
/* Insert the area and radius values into the AREAS */
/* table. */
insert into AREAS values (radius, area);
/* Signal the end of the loop. */

end loop;

Note that there is no line that says

radius := radius+1;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

in the FOR loop. Because the specification of the loop specifies

for radius in 1..7 loop

the Radius values are already specified. For each value, all the commands within the loop are
executed (these commands can include other conditional logic, such as if conditions). Once the
loop has completed processing a Radius value, the limits on the for clause are checked, and either
the next Radius value is used or the loop execution is complete.

Sample output from the FOR loop execution is shown in the following listing:

select *
from AREAS
order by Radius;

RADIUS AREA
---------- ----------

1 3.14
2 12.57
3 28.27
4 50.27
5 78.54
6 113.1
7 153.94

7 rows selected.

Cursor FOR Loops
Whereas a FOR loop executes a specified number of times, a Cursor FOR loop uses the results of
a query to dynamically determine the number of times the loop is executed. In a Cursor FOR loop,
the opening, fetching, and closing of cursors is performed implicitly; you do not need to explicitly
specify these actions.

The following listing shows a Cursor FOR loop that queries the RADIUS_VALS table and inserts
records into the AREAS table:

delete from AREAS;

declare
pi constant NUMBER(9,7) := 3.1415927;
area NUMBER(14,2);
cursor rad_cursor is

select * from RADIUS_VALS;
begin
for rad_val in rad_cursor
loop
area := pi*power(rad_val.radius,2);
insert into AREAS values (rad_val.radius, area);

end loop;
end;
/

526 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 29
Blind Folio 29:526

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 29: An Introduction to PL/SQL 527

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 29
Blind Folio 29:527

In a Cursor FOR loop, there is no open or fetch command. The command

for rad_val in rad_cursor

implicitly opens the rad_cursor cursor and fetches a value into the rad_val variable. When no more
records are in the cursor, the loop is exited and the cursor is closed. In a Cursor FOR loop, there
is no need for a close command. Note that rad_val is not explicitly declared in the block.

The loop portion of the PL/SQL block is shown in the following listing, with comments to
indicate the flow of control. The loop is controlled by the existence of a fetchable record in the rad_
cursor cursor. There is no need to check the cursor’s %NOTFOUND attribute—that is automated
via the Cursor FOR loop.

/* If a record can be fetched from the cursor, */
/* then fetch it into the rad_val variable. If */
/* no rows can be fetched, then skip the loop. */

for rad_val in rad_cursor
/* Begin the loop commands. */
loop

/* Calculate the area based on the Radius value */
/* and insert a record into the AREAS table. */

area := pi*power(rad_val.radius,2);
insert into AREAS values (rad_val.radius, area);

/* Signal the end of the loop commands. */
end loop;

Sample output is shown in the following listing; for this example, the RADIUS_VALS table has
three records, with Radius values of 3, 4, and 10:

select *
from RADIUS_VALS
order by Radius;

RADIUS

3
4

10

The execution of the PL/SQL block with the Cursor FOR loop will generate the following
records in the AREAS table:

select *
from AREAS
order by Radius;

RADIUS AREA
---------- ----------

3 28.27
4 50.27

10 314.16

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

WHILE Loops
A WHILE loop is processed until an exit condition is met. Instead of the exit condition being
specified via an exit command within the loop, the exit condition is specified in the while
command that initiates the loop.

In the following listing, a WHILE loop is created so that multiple Radius values will be processed.
If the current value of the Radius variable meets the while condition in the loop’s specification,
then the loop’s commands are processed. Once a Radius value fails the while condition in the
loop’s specification, the loop’s execution is terminated:

delete from AREAS;

declare
pi constant NUMBER(9,7) := 3.1415927;
radius INTEGER(5);
area NUMBER(14,2);

begin
radius := 3;
while radius<=7
loop
area := pi*power(radius,2);
insert into AREAS values (radius, area);

radius := radius+1;
end loop;

end;
/

The WHILE loop is similar in structure to the simple loop because it terminates based on
a variable’s value. The following listing shows the steps involved in the loop, with embedded
comments:

/* Set an initial value for the Radius variable. */
radius := 3;
/* Establish the criteria for the termination of */
/* the loop. If the condition is met, execute the */
/* commands within the loop. If the condition is */
/* not met, then terminate the loop. */

while radius<=7
/* Begin the commands to be executed. */

loop
/* Calculate the area based on the current */
/* Radius value and insert a record in the */
/* AREAS table. */

area := pi*power(radius,2);
insert into AREAS values (radius, area);

/* Set a new value for the Radius variable. The */
/* new value of Radius will be evaluated against */
/* the termination criteria and the loop commands */
/* will be executed for the new Radius value or */
/* the loop will terminate. */

528 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 29
Blind Folio 29:528

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

radius := radius+1;
/* Signal the end of the commands within the loop. */

end loop;

When executed, the PL/SQL block in the previous listing will generate records in the AREAS
table. The output of the PL/SQL block is shown in the following listing:

select *
from AREAS
order by Radius;

RADIUS AREA
---------- ----------

3 28.27
4 50.27
5 78.54
6 113.1
7 153.94

Because of the value assigned to the Radius variable prior to the loop, the loop is forced to
execute at least once. You should verify that your variable assignments meet the conditions used
to limit the loop executions.

CASE Statements
You can use case statements to control the branching logic within your PL/SQL blocks. For
example, you can use case statements to assign values conditionally or to transform values prior
to inserting them. In the following example, case expressions use the Radius values to determine
which rows to insert into the AREAS table:

declare
pi constant NUMBER(9,7) := 3.1415927;
area NUMBER(14,2);
cursor rad_cursor is

select * from RADIUS_VALS;
rad_val rad_cursor%ROWTYPE;

begin
open rad_cursor;
loop
fetch rad_cursor into rad_val;
exit when rad_cursor%NOTFOUND;
area := pi*power(rad_val.radius,2);
case
when rad_val.Radius = 3
then
insert into AREAS values (rad_val.radius, area);

when rad_val.Radius = 4
then
insert into AREAS values (rad_val.radius, area);

when rad_val.Radius = 10

Chapter 29: An Introduction to PL/SQL 529

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 29
Blind Folio 29:529

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

then
insert into AREAS values (0, 0);

else raise CASE_NOT_FOUND;
end case;

end loop;
close rad_cursor;

end;
/

This block generates the following output. When the Radius value is 10, the case clause inserts
a row with the Radius and Area values both set to 0:

select * from AREAS;

RADIUS AREA
---------- ----------

3 28.27
4 50.27
0 0

The keyword case begins the clause:

case
when rad_val.Radius = 3
then
insert into AREAS values (rad_val.radius, area);

The when clauses are evaluated sequentially. The else keyword within the case clause works
similarly to the else keyword within an if-then clause. If you omit the else keyword, PL/SQL adds
the following implicit else clause:

else raise CASE_NOT_FOUND;

The end case clause ends the case clause. The case clause is commonly used to translate lists
of values to their descriptions, as in the case of the bookshelf category names. The following listing
shows how CategoryName values can be translated to other values as part of SQL commands:

case CategoryName
when 'ADULTFIC' then 'Adult Fiction'
when 'ADULTNF' then 'Adult Nonfiction'
when 'ADULTREF' then 'Adult Reference'
when 'CHILDRENFIC' then 'Children Fiction'
when 'CHILDRENNF' then 'Children Nonfiction'
when 'CHILDRENPIC' then 'Children Picturebook'
else CategoryName

end

See Chapter 16 for examples of the complex uses of case.

530 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 29
Blind Folio 29:530

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Exception Handling Section
When user-defined or system-related exceptions (errors) are encountered, the control of the PL/SQL
block shifts to the Exception Handling section. Within the Exception Handling section, the when
clause is used to evaluate which exception is to be “raised”—that is, executed.

If an exception is raised within the Executable Commands section of your PL/SQL block,
the flow of commands immediately leaves the Executable Commands section and searches the
Exception Handling section for an exception matching the error encountered. PL/SQL provides
a set of system-defined exceptions and allows you to add your own exceptions. Examples of user-
defined exceptions are shown in Chapters 30 and 31.

The Exception Handling section always begins with the keyword exception, and it precedes
the end command that terminates the Executable Commands section of the PL/SQL block. The
placement of the Exception Handling section within the PL/SQL block is shown in the following
listing:

declare
<declarations section>

begin
<executable commands>
exception
<exception handling>

end;

The Exception Handling section of a PL/SQL block is optional—none of the PL/SQL blocks shown
previously in this chapter included an Exception Handling section. However, the examples shown in
this chapter have been based on a very small set of known input values with very limited processing
performed.

In the following listing, the simple loop for calculating the area of a circle is shown, with two
modifications. A new variable named some_variable is declared in the Declarations section, and
a calculation to determine the variable’s value is created in the Executable Commands section.

declare
pi constant NUMBER(9,7) := 3.1415927;
radius INTEGER(5);
area NUMBER(14,2);
some_variable NUMBER(14,2);

begin
radius := 3;
loop
some_variable := 1/(radius-4);
area := pi*power(radius,2);
insert into AREAS values (radius, area);

radius := radius+1;
exit when area >100;

end loop;
end;
/

Chapter 29: An Introduction to PL/SQL 531

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 29
Blind Folio 29:531

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Because the calculation for some_variable involves division, you may encounter a situation in
which the calculation attempts to divide by zero—an error condition. The first time through the
loop, the radius variable (with an initial value of 3) is processed and a record is inserted into
the AREAS table. The second time through the loop, the radius variable has a value of 4—and the
calculation for some_variable encounters an error:

declare
*
ERROR at line 1:
ORA-01476: divisor is equal to zero
ORA-06512: at line 9

Because an error was encountered, the first row inserted into AREAS is rolled back, and the PL/SQL
block terminates.

You can modify the processing of the error condition by adding an Exception Handling section
to the PL/SQL block, as shown in the following listing:

delete from AREAS;

declare
pi constant NUMBER(9,7) := 3.1415927;
radius INTEGER(5);
area NUMBER(14,2);
some_variable NUMBER(14,2);

begin
radius := 3;
loop
some_variable := 1/(radius-4);
area := pi*power(radius,2);
insert into AREAS values (radius, area);

radius := radius+1;
exit when area >100;

end loop;
exception
when ZERO_DIVIDE
then insert into AREAS values (0,0);

end;
/

The Exception Handling section of the PL/SQL block is repeated in the following listing:

exception
when ZERO_DIVIDE
then insert into AREAS values (0,0);

When the PL/SQL block encounters an error, it scans the Exception Handling section for
the defined exceptions. In this case, it finds the ZERO_DIVIDE exception, which is one of the
system-defined exceptions available in PL/SQL. In addition to the system-defined exceptions and
user-defined exceptions, you can use the when others clause to address all exceptions not defined

532 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 29
Blind Folio 29:532

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

within your Exception Handling section. The command within the Exception Handling section for
the matching exception is executed and a row is inserted into the AREAS table. The output of the
PL/SQL block is shown in the following listing:

select *
from AREAS;

RADIUS AREA
---------- ----------

3 28.27
0 0

The output shows that the first Radius value (3) was processed and that the exception was
encountered on the second pass through the loop.

NOTE
Once an exception is encountered, you cannot return to your normal
flow of command processing within the Executable Commands section.
If you need to maintain control within the Executable Commands
section, you should use if conditions to test for possible exceptions
before they are encountered by the program, or create a nested block
with its own local exception handling.

The available system-defined exceptions are listed in the “Exceptions” entry in the Alphabetical
Reference. Examples of user-defined exceptions are shown in Chapters 30 and 31.

See Chapter 32 for details on the use of dynamic PL/SQL, which allows for the dynamic creation
of the commands executed within the PL/SQL block.

PL/SQL supports complex queries that use the most recent features in Oracle’s SQL. For example,
flashback version queries (see Chapter 27) and regular expression functions (see Chapter 8) are
both supported within PL/SQL as of their introduction in Oracle Database 10g. See those chapters
for details on the new features; they can be introduced into your PL/SQL and may simplify and
enhance your processing capabilities.

Chapter 29: An Introduction to PL/SQL 533

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 29
Blind Folio 29:533

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 29
Blind Folio 29:534

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 30
Blind Folio 30:535

CHAPTER
30

Triggers

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

536 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 30
Blind Folio 30:536

A
trigger defines an action the database should take when some database-related
event occurs. Triggers may be used to supplement declarative referential integrity,
to enforce complex business rules, or to audit changes to data. The code within
a trigger, called the trigger body, is made up of PL/SQL blocks (see Chapter 29).

The execution of triggers is transparent to the user. Triggers are executed by the database
when specific types of data manipulation commands are performed on specific tables. Such
commands may include inserts, updates, and deletes. Updates of specific columns may also
be used as triggering events. Triggering events may also include DDL commands and database
events such as shutdowns and logins.

Because of their flexibility, triggers may supplement referential integrity; they should not be
used to replace it. When enforcing the business rules in an application, you should first rely on
the declarative referential integrity available with Oracle; use triggers to enforce rules that cannot
be coded through referential integrity.

Required System Privileges
To create a trigger on a table, you must be able to alter that table. Therefore, you must either
own the table, or have the ALTER privilege for the table, or have the ALTER ANY TABLE system
privilege. In addition, you must have the CREATE TRIGGER system privilege; to create triggers in
another user’s schema you must have the CREATE ANY TRIGGER system privilege. The CREATE
TRIGGER system privilege is part of the RESOURCE role provided with Oracle.

NOTE
The RESOURCE role is provided in Oracle Database 10g only
for backward compatibility and should not be used regularly.

To alter a trigger, you must either own the trigger or have the ALTER ANY TRIGGER system
privilege. You may also enable or disable triggers by altering the tables they are based on, which
requires that you have either the ALTER privilege for that table or the ALTER ANY TABLE system
privilege. For information on altering triggers, see “Enabling and Disabling Triggers,” later in this
chapter.

To create a trigger on a database-level event, you must have the ADMINISTER DATABASE
TRIGGER system privilege.

Required Table Privileges
Triggers may reference tables other than the one that initiated the triggering event. For example,
if you use triggers to audit changes to data in the BOOKSHELF table, then you may insert a record
into a different table (say, BOOKSHELF_AUDIT) every time a record is changed in BOOKSHELF.
To do this, you need to have privileges to insert into BOOKSHELF_AUDIT (to perform the triggered
transaction).

NOTE
The privileges needed for triggered transactions cannot come from
roles; they must be granted directly to the creator of the trigger.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 30: Triggers 537

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 30
Blind Folio 30:537

Types of Triggers
A trigger’s type is defined by the type of triggering transaction and by the level at which the trigger
is executed. In the following sections, you will see descriptions of these classifications, along with
relevant restrictions.

Row-Level Triggers
Row-level triggers execute once for each row affected by a DML statement. For the BOOKSHELF
table auditing example described earlier, each row that is changed in the BOOKSHELF table may
be processed by the trigger. Row-level triggers are the most common type of trigger; they are
often used in data auditing applications. Row-level triggers are also useful for keeping distributed
data in sync. Materialized views, which use internal row-level triggers for this purpose, are described
in Chapter 24.

Row-level triggers are created using the for each row clause in the create trigger command.
The syntax for triggers is shown in “Trigger Syntax,” later in this chapter.

Statement-Level Triggers
Statement-level triggers execute once for each DML statement. For example, if a single INSERT
statement inserts 500 rows into the BOOKSHELF table, a statement-level trigger on that table would
only be executed once. Statement-level triggers therefore are not often used for data-related activities;
they are normally used to enforce additional security measures on the types of actions that may
be performed on a table.

Statement-level triggers are the default type of trigger created via the create trigger command.
The syntax for triggers is shown in “Trigger Syntax,” later in this chapter.

BEFORE and AFTER Triggers
Because triggers are executed by events, they may be set to occur immediately before or after those
events. Since the events that execute triggers include database DML statements, triggers can be
executed immediately before or after inserts, updates, and deletes. For database-level events,
additional restrictions apply; you cannot trigger an event to occur before a login or startup takes
place.

Within the trigger, you can reference the old and new values involved in the DML statement.
The access required for the old and new data may determine which type of trigger you need. “Old”
refers to the data as it existed prior to the DML statement; updates and deletes usually reference
old values. “New” values are the data values that the DML statement creates (such as the columns
in an inserted record).

If you need to set a column value in an inserted row via your trigger, then you need to use
a BEFORE INSERT trigger to access the “new” values. Using an AFTER INSERT trigger would not
allow you to set the inserted value, since the row will already have been inserted into the table.

Row-level AFTER triggers are frequently used in auditing applications, since they do not fire
until the row has been modified. The row’s successful modification implies that it has passed the
referential integrity constraints defined for that table.

INSTEAD OF Triggers
You can use INSTEAD OF triggers to tell Oracle what to do instead of performing the actions that
invoked the trigger. For example, you could use an INSTEAD OF trigger on a view to redirect inserts

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

into a table or to update multiple tables that are part of a view. You can use INSTEAD OF triggers
on either object views (see Chapter 33) or relational views.

For example, if a view involves a join of two tables, your ability to use the update command
on records in the view is limited. However, if you use an INSTEAD OF trigger, you can tell Oracle
how to update, delete, or insert records in the view’s underlying tables when a user attempts to
change values via the view. The code in the INSTEAD OF trigger is executed in place of the insert,
update, or delete command you enter.

NOTE
You can access or change LOB data within BEFORE and INSTEAD OF
triggers.

In this chapter, you will see how to implement basic triggers. INSTEAD OF triggers, which were
initially introduced to support object views, are described in Chapter 33.

Schema Triggers
You can create triggers on schema-level operations such as create table, alter table, drop table,
audit, rename, truncate, and revoke. You can even create a before ddl trigger. For the most part,
schema-level triggers provide two capabilities: preventing DDL operations and providing additional
security monitoring when DDL operations occur.

Database-Level Triggers
You can create triggers to be fired on database events, including errors, logins, logoffs, shutdowns,
and startups. You can use this type of trigger to automate database maintenance or auditing actions.
Virtual Private Databases, as described in Chapter 19, rely on database-level triggers to establish
session-context variable values.

Trigger Syntax
The full syntax for the create trigger command is shown in the Alphabetical Reference section of
this book. The following listing contains an abbreviated version of the command syntax:

create [or replace] trigger [schema .] trigger
{ before | after | instead of }
{ dml_event_clause
| { ddl_event [or ddl_event]...

| database_event [or database_event]...
}
on { [schema .] schema | database }

}
[when (condition)]
{ pl/sql_block | call_procedure_statement }

The syntax options available depend on the type of trigger in use. For example, a trigger on a
DML event will use the dml_event_clause, which follows this syntax:

538 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 30
Blind Folio 30:538

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 30: Triggers 539

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 30
Blind Folio 30:539

{ delete | insert | update [of column [, column]...] }
[or { delete | insert | update [of column [, column]...] }]...
on { [schema .] table | [nested table nested_table_column of] [schema .] view
}
[referencing_clause] [for each row]

Clearly, there is a great deal of flexibility in the design of a trigger. The before and after keywords
indicate whether the trigger should be executed before or after the triggering event. If the instead
of clause is used, the trigger’s code will be executed instead of the event that caused the trigger
to be invoked. The delete, insert, and update keywords (the last of which may include a column
list) indicate the type of data manipulation that will constitute a triggering event. When referring
to the old and new values of columns, you can use the defaults (“old” and “new”) or you can use
the referencing clause to specify other names.

When the for each row clause is used, the trigger will be a row-level trigger; otherwise, it will
be a statement-level trigger. The when clause is used to further restrict when the trigger is executed.
The restrictions enforced in the when clause may include checks of old and new data values.

For example, suppose we want to track any changes to the Rating value in the BOOKSHELF
table whenever rating values are lowered. First, we’ll create a table that will store the audit records:

drop table BOOKSHELF_AUDIT;
create table BOOKSHELF_AUDIT
(Title VARCHAR2(100),
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Old_Rating VARCHAR2(2),
New_Rating VARCHAR2(2),
Audit_Date DATE);

The following row-level BEFORE UPDATE trigger will be executed only if the Rating value is
lowered. This example also illustrates the use of the new keyword, which refers to the new value
of the column, and the old keyword, which refers to the old value of the column.

create or replace trigger BOOKSHELF_BEF_UPD_ROW
before update on BOOKSHELF
for each row
when (new.Rating < old.Rating)
begin
insert into BOOKSHELF_AUDIT
(Title, Publisher, CategoryName,
Old_Rating, New_Rating, Audit_Date)

values
(:old.Title, :old.Publisher, :old.CategoryName,
:old.Rating, :new.Rating, Sysdate);

end;
/

Breaking this create trigger command into its components makes it easier to understand.
First, the trigger is named:

create or replace trigger BOOKSHELF_BEF_UPD_ROW

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

540 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 30
Blind Folio 30:540

The name of the trigger contains the name of the table it acts upon and the type of trigger it is. (See
“Naming Triggers,” later in this chapter, for information on naming conventions.)

This trigger applies to the BOOKSHELF table; it will be executed before update transactions
have been committed to the database:

before update on BOOKSHELF

Because the for each row clause is used, the trigger will apply to each row changed by the update
statement. If this clause is not used, then the trigger will execute at the statement level.

for each row

The when clause adds further criteria to the triggering condition. The triggering event not
only must be an update of the BOOKSHELF table, but also must reflect a lowering of the Rating
value:

when (new.Rating < old.Rating)

The PL/SQL code shown in the following listing is the trigger body. The commands shown
here are to be executed for every update of the BOOKSHELF table that passes the when condition.
For this to succeed, the BOOKSHELF_AUDIT table must exist, and the owner of the trigger must
have been granted privileges (directly, not via roles) on that table. This example inserts the old
values from the BOOKSHELF record into the BOOKSHELF_AUDIT table before the BOOKSHELF
record is updated.

begin
insert into BOOKSHELF_AUDIT
(Title, Publisher, CategoryName,
Old_Rating, New_Rating, Audit_Date)

values
(:old.Title, :old.Publisher, :old.CategoryName,
:old.Rating, :new.Rating, Sysdate);

end;

NOTE
When the new and old keywords are referenced in the PL/SQL block,
they are preceded by colons (:).

This example is typical of auditing triggers. The auditing activity is completely transparent to
the user who performs the update of the BOOKSHELF table. However, the transaction against the
BOOKSHELF table is dependent on the successful execution of the trigger.

Combining DML Trigger Types
Triggers for multiple insert, update, and delete commands on a table can be combined into a
single trigger, provided they are all at the same level (row level or statement level). The following

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

example shows a trigger that is executed whenever an insert or an update occurs. Several points
(shown in bold) should stand out in this example:

■ The update portion of the trigger occurs only when the Rating column’s value is updated.

■ An if clause is used within the PL/SQL block to determine which of the two commands
invoked the trigger.

■ The column to be changed is specified in the dml_event_clause instead of in the when
clause, as in prior examples.

drop trigger BOOKSHELF_BEF_UPD_ROW;

create or replace trigger BOOKSHELF_BEF_UPD_INS_ROW
before insert or update of Rating on BOOKSHELF
for each row
begin
if INSERTING then
insert into BOOKSHELF_AUDIT
(Title, Publisher, CategoryName,
New_Rating, Audit_Date)

values
(:new.Title, :new.Publisher, :new.CategoryName,
:new.Rating, Sysdate);

else -- if not inserting then we are updating the Rating
insert into BOOKSHELF_AUDIT
(Title, Publisher, CategoryName,
Old_Rating, New_Rating, Audit_Date)

values
(:old.Title, :old.Publisher, :old.CategoryName,
:old.Rating, :new.Rating, Sysdate);

end if;
end;
/

Again, look at the trigger’s component parts. First, it is named and identified as a BEFORE
INSERT and BEFORE UPDATE (of Rating) trigger, executing for each row:

create or replace trigger BOOKSHELF_BEF_UPD_INS_ROW
before insert or update of Rating on BOOKSHELF
for each row

The trigger body then follows. In the first part of the trigger body, shown in the following
listing, the type of transaction is checked via an if clause. Valid transaction types are INSERTING,
DELETING, and UPDATING. In this case, the trigger checks to see if the record is being inserted
into the BOOKSHELF table. If it is, then the first part of the trigger body is executed. The INSERTING
portion of the trigger body inserts the new values of the record into the BOOKSHELF_AUDIT table.

begin
if INSERTING then

Chapter 30: Triggers 541

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 30
Blind Folio 30:541

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

insert into BOOKSHELF_AUDIT
(Title, Publisher, CategoryName,
New_Rating, Audit_Date)

values
(:new.Title, :new.Publisher, :new.CategoryName,
:new.Rating, Sysdate);

Other transaction types can then be checked. In this example, because the trigger executed, the
transaction must be either an insert or an update of the Rating column. Since the if clause in the
first half of the trigger body checks for inserts, and the trigger is only executed for inserts and
updates, the only conditions that should execute the second half of the trigger body are updates
of Rating. Therefore, no additional if clauses are necessary to determine the DML event type. This
portion of the trigger body is the same as in the previous example: Prior to being updated, the old
values in the row are written to the BOOKSHELF_AUDIT table.

else –- if not inserting then we are updating the Rating
insert into BOOKSHELF_AUDIT
(Title, Publisher, CategoryName,
Old_Rating, New_Rating, Audit_Date)

values
(:old.Title, :old.Publisher, :old.CategoryName,
:old.Rating, :new.Rating, Sysdate);

Combining trigger types in this manner may help you to coordinate trigger development among
multiple developers, since it consolidates all the database events that depend on a single table.

Setting Inserted Values
You may use triggers to set column values during inserts and updates. The previous examples in
this chapter set the BOOKSHELF_AUDIT.Audit_Date value to the result of the SYSDATE function.
You may also use updates to support different application needs, such as storing an uppercase
version of a value along with the mixed-case version entered by users. In that case, you may have
partially denormalized your table to include a column for the derived data. Storing this data in an
uppercase format (for this example, in the column UpperPerson) allows you to display data to the
users in its natural format while using the uppercase column during queries.

Since the uppercase version of the value is derived data, it may become out of sync with the
user-entered column. Unless your application supplies a value for the uppercase version during
inserts, that column’s value will be NULL when a new row is entered.

To avoid this synchronization problem, you can use a table-level trigger. Put a BEFORE INSERT
and a BEFORE UPDATE trigger on the table; they will act at the row level. As shown in the following
listing, this approach can set a new value for UpperName every time the Name column’s value is
changed in BOOKSHELF_CHECKOUT:

alter table BOOKSHELF_CHECKOUT add (UpperName VARCHAR2(25));

create or replace trigger BOOKSHELF_CHECKOUT_BUI_ROW
before insert or update of Name on BOOKSHELF_CHECKOUT
for each row
begin

542 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 30
Blind Folio 30:542

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 30: Triggers 543

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 30
Blind Folio 30:543

:new.UpperName := UPPER(:new.Name);
end;
/

In this example, the trigger body determines the value for UpperName by using the UPPER function
on the Name column. This trigger will be executed every time a row is inserted into BOOKSHELF_
CHECKOUT and every time the Name column is updated. The Name and UpperName columns
will thus be kept in sync.

Maintaining Duplicated Data
The method of setting values via triggers, shown in the preceding section, can be combined with
the remote data access methods described in Chapter 23. As with materialized views, you may
replicate all or some of the rows in a table.

For example, you may want to create and maintain a second copy of your application’s audit
log. By doing so, you safeguard against a single application’s erasing the audit log records created
by multiple applications. Duplicate audit logs are frequently used in security monitoring.

Consider the BOOKSHELF_AUDIT table used in the examples in this chapter. A second table,
BOOKSHELF_AUDIT_DUP, could be created, possibly in a remote database. For this example,
assume that a database link called AUDIT_LINK can be used to connect the user to the database
in which BOOKSHELF_AUDIT_DUP resides (refer to Chapter 23 for details on database links).

drop table BOOKSHELF_AUDIT_DUP;
create table BOOKSHELF_AUDIT_DUP
(Title VARCHAR2(100),
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Old_Rating VARCHAR2(2),
New_Rating VARCHAR2(2),
Audit_Date DATE);

To automate populating the BOOKSHELF_AUDIT_DUP table, the following trigger could be
placed on the BOOKSHELF_AUDIT table:

create or replace trigger BOOKSHELF_AUDIT_AFT_INS_ROW
after insert on BOOKSHELF_AUDIT
for each row
begin
insert into BOOKSHELF_AUDIT_DUP@AUDIT_LINK
(Title, Publisher, CategoryName,
New_Rating, Audit_Date)

values (:new.Title, :new.Publisher, :new.CategoryName,
:new.New_Rating, :new.Audit_Date);

end;
/

As the trigger header shows, this trigger executes for each row that is inserted into the BOOKSHELF_
AUDIT table. It inserts a single record into the BOOKSHELF_AUDIT_DUP table in the database
defined by the AUDIT_LINK database link. AUDIT_LINK may point to a database located on a remote
server. If there is any problem with the remote insert initiated via the trigger, the local insert will fail.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:49:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

For asynchronous replication requirements, consider using materialized views instead (see
Chapter 24).

You can see the actions of these triggers by inserting a row into BOOKSHELF:

insert into BOOKSHELF
(Title, Publisher, CategoryName, Rating) values
('HARRY POTTER AND THE CHAMBER OF SECRETS',
'SCHOLASTIC','CHILDRENFIC','4');

1 row created.

select Title from BOOKSHELF_AUDIT;

TITLE

HARRY POTTER AND THE CHAMBER OF SECRETS

select Title from BOOKSHELF_AUDIT_DUP;

TITLE

HARRY POTTER AND THE CHAMBER OF SECRETS

Customizing Error Conditions
Within a single trigger, you may establish different error conditions. For each of the error conditions
you define, you may select an error message that appears when the error occurs. The error numbers
and messages that are displayed to the user are set via the RAISE_APPLICATION_ERROR procedure,
which may be called from within any trigger.

The following example shows a statement-level BEFORE DELETE trigger on the BOOKSHELF
table. When a user attempts to delete a record from the BOOKSHELF table, this trigger is executed
and checks two system conditions: that the day of the week is neither Saturday nor Sunday, and
that the Oracle username of the account performing the delete begins with the letters “LIB.” The
trigger’s components will be described following the listing.

create or replace trigger BOOKSHELF_BEF_DEL
before delete on BOOKSHELF
declare
weekend_error EXCEPTION;
not_library_user EXCEPTION;

begin
if TO_CHAR(SysDate,'DY') = 'SAT' or

TO_CHAR(SysDate,'DY') = 'SUN' THEN
RAISE weekend_error;

end if;
if SUBSTR(User,1,3) <> 'LIB' THEN

RAISE not_library_user;
end if;

544 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 30
Blind Folio 30:544

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXCEPTION
WHEN weekend_error THEN
RAISE_APPLICATION_ERROR (-20001,
'Deletions not allowed on weekends');

WHEN not_library_user THEN
RAISE_APPLICATION_ERROR (-20002,
'Deletions only allowed by Library users');

end;
/

The header of the trigger defines it as a statement-level BEFORE DELETE trigger:

create or replace trigger BOOKSHELF_BEF_DEL
before delete on BOOKSHELF

There are no when clauses in this trigger, so the trigger body is executed for all deletes.
The next portion of the trigger declares the names of the two exceptions that are defined within

this trigger:

declare
weekend_error EXCEPTION;
not_library_user EXCEPTION;

The first part of the trigger body contains an if clause that uses the TO_CHAR function on the
SYSDATE function. If the current day is either Saturday or Sunday, then the WEEKEND_ERROR
error condition is raised. This error condition, called an exception, must be defined within the
trigger body.

if TO_CHAR(SysDate,'DY') = 'SAT' or
TO_CHAR(SysDate,'DY') = 'SUN' THEN
RAISE weekend_error;

end if;

A second if clause checks the User pseudo-column to see if its first three letters are “LIB.” If the
username does not begin with “LIB,” then the NOT_LIBRARY_USER exception is raised. In this
example, the <> operator is used; this is equivalent to != (meaning “not equals”).

if SUBSTR(User,1,3) <> 'LIB' THEN
RAISE not_library_user;

end if;

The final portion of the trigger body tells the trigger how to handle the exceptions. It begins
with the keyword exception, followed by a when clause for each of the exceptions. Each of the
exceptions in this trigger calls the RAISE_APPLICATION_ERROR procedure, which takes two
input parameters: the error number (which must be between –20001 and –20999), and the error
message to be displayed. In this example, two different error messages are defined, one for each
of the defined exceptions:

EXCEPTION
WHEN weekend_error THEN
RAISE_APPLICATION_ERROR (-20001,

Chapter 30: Triggers 545

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 30
Blind Folio 30:545

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

'Deletions not allowed on weekends');
WHEN not_library_user THEN
RAISE_APPLICATION_ERROR (-20002,
'Deletions only allowed by Library users');

The use of the RAISE_APPLICATION_ERROR procedure gives you great flexibility in
managing the error conditions that may be encountered within your trigger. For a further
description of procedures, see Chapter 31.

NOTE
The exceptions will still be raised even if the delete operations find no
rows to delete.

When a non-”LIB” user attempts to delete a row from BOOKSHELF on a weekday, this is the
result:

delete from BOOKSHELF
where Title = 'MY LEDGER';

delete from BOOKSHELF
*

ERROR at line 1:
ORA-20002: Deletions only allowed by Library users
ORA-06512: at "PRACTICE.BOOKSHELF_BEF_DEL", line 17
ORA-04088: error during execution of trigger 'PRACTICE.BOOKSHELF_BEF_DEL'

If you attempt to delete a row on a Saturday or Sunday, the ORA-20001 error is returned
instead. As soon as an exception is encountered, Oracle leaves the main executable commands
section of the trigger and processes the exception. You will only see the first exception encountered.

Calling Procedures Within Triggers
Rather than creating a large block of code within a trigger body, you can save the code as a stored
procedure and call the procedure from within the trigger, by using the call command. For example,
if you create an INSERT_BOOKSHELF_AUDIT_DUP procedure that inserts rows into BOOKSHELF_
AUDIT_DUP, you can call it from a trigger on the BOOKSHELF_AUDIT table, as shown in the
following listing:

create or replace trigger BOOKSHELF_AFT_INS_ROW
after insert on BOOKSHELF_AUDIT
for each row
begin
call INSERT_BOOKSHELF_AUDIT_DUP(:new.Title, :new.Publisher,

:new.CategoryName, :new.Old_Rating, :new.New_Rating,
:new.Audit_Date);

end;
/

546 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 30
Blind Folio 30:546

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 30: Triggers 547

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 30
Blind Folio 30:547

Naming Triggers
The name of a trigger should clearly indicate the table it applies to, the DML commands that trigger
it, its before/after status, and whether it is a row-level or statement-level trigger. Since a trigger name
cannot exceed 30 characters in length, you need to use a standard set of abbreviations when naming.
In general, the trigger name should include as much of the table name as possible. Thus, when
creating a BEFORE UPDATE, row-level trigger on a table named BOOKSHELF_CHECKOUT,
you should not name the trigger BEFORE_UPDATE_ROW_LEVEL_BC. A better name would be
BOOKSHELF_CHECKOUT_BEF_UPD_ROW.

Creating DDL Event Triggers
You can create triggers that are executed when a DDL event occurs. If you are planning to use
this feature solely for security purposes, you should investigate using the audit command instead.
For example, you can use a DDL event trigger to execute the trigger code for create, alter, and drop
commands performed on a cluster, function, index, package, procedure, role, sequence, synonym,
table, tablespace, trigger, type, user, or view. If you use the on schema clause, the trigger will execute
for any new data dictionary objects created in your schema. The following example will execute a
procedure named INSERT_AUDIT_RECORD whenever objects are created within your schema:

create or replace trigger CREATE_DB_OBJECT_AUDIT
after create on schema
begin
call INSERT_AUDIT_RECORD (ora_dict_obj_name);

end;
/

As shown in this example, you can reference system attributes such as the object name.
The available attributes are listed in Table 30-1.

To protect the objects within a schema, you may want to create a trigger that is executed
for each attempted drop table command. That trigger will have to be a BEFORE DROP trigger:

create or replace trigger PREVENT_DROP
before drop on Practice.schema

begin
if ora_dict_obj_owner = 'PRACTICE'

and ora_dict_obj_name like 'BOO%'
and ora_dict_obj_type = 'TABLE'

then
RAISE_APPLICATION_ERROR (

-20002, 'Operation not permitted.');
end if;

end;
/

Note that the trigger references the event attributes within its if clauses. Attempting to drop
a table in the Practice schema whose name starts with BOO results in the following:

drop table BOOKSHELF_AUDIT_DUP;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

548 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 30
Blind Folio 30:548

drop table BOOKSHELF_AUDIT_DUP
*
ERROR at line 1:
ORA-00604: error occurred at recursive SQL level 1
ORA-20002: Operation not permitted.
ORA-06512: at line 6

You can use the RAISE_APPLICATION_ERROR procedure to further customize the error message
displayed to the user.

Creating Database Event Triggers
Like DML events, database events can execute triggers. When a database event occurs (a shutdown,
startup, or error), you can execute a trigger that references the attributes of the event (as with DDL
events). You could use a database event trigger to perform system maintenance functions immediately
after each database startup.

For example, the following trigger pins packages on each database startup. Pinning packages
is an effective way of keeping large PL/SQL objects in the shared pool of memory, improving
performance, and enhancing database stability. This trigger, PIN_ON_STARTUP, will run each time
the database is started. You should create this trigger while connected as a user with ADMINISTER
DATABASE TRIGGER privilege.

rem while connected as a user with the
rem ADMINISTER DATABASE TRIGGER system privilege:

create or replace trigger PIN_ON_STARTUP
after startup on database
begin

DBMS_SHARED_POOL.KEEP (
'SYS.STANDARD', 'P');

end;
/

This example shows a simple trigger that will be executed immediately after a database startup. You
can modify the list of packages in the trigger body to include those most used by your applications.

Startup and shutdown triggers can access the ora_instance_num, ora_database_name, ora_
login_user, and ora_sysevent attributes listed in Table 30-1. See the Alphabetical Reference for
the full create trigger command syntax.

Enabling and Disabling Triggers
Unlike declarative integrity constraints (such as NOT NULL and PRIMARY KEY), triggers do not
necessarily affect all rows in a table. They only affect operations of the specified type, and then
only while the trigger is enabled. Any data created prior to a trigger’s creation will not be affected
by the trigger.

By default, a trigger is enabled when it is created. However, there are situations in which you
may want to disable a trigger. The two most common reasons involve data loads. During large
data loads, you may want to disable triggers that would execute during the load. Disabling the
triggers during data loads may dramatically improve the performance of the load. After the data

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 30: Triggers 549

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 30
Blind Folio 30:549

has been loaded, you need to manually perform the data manipulation that the trigger would
have performed had it been enabled during the data load.

The second data load–related reason for disabling a trigger occurs when a data load fails and
has to be performed a second time. In such a case, it is likely that the data load partially succeeded—
and thus the trigger was executed for a portion of the records loaded. During a subsequent load,
the same records would be inserted. Thus, it is possible that the same trigger will be executed twice
for the same insert operation (when that insert operation occurs during both loads). Depending
on the nature of the operations and the triggers, this may not be desirable. If the trigger was enabled
during the failed load, then it may need to be disabled prior to the start of a second data-load process.
After the data has been loaded, you need to manually perform the data manipulation that the trigger
would have performed had it been enabled during the data load.

To enable a trigger, use the alter trigger command with the enable keyword. To use this
command, you must either own the table or have the ALTER ANY TRIGGER system privilege.
A sample alter trigger command is shown in the following listing:

alter trigger BOOKSHELF_BEF_UPD_INS_ROW enable;

A second method of enabling triggers uses the alter table command, with the enable all triggers
clause. You may not enable specific triggers with this command; you must use the alter trigger
command to do that. The following example shows the usage of the alter table command:

alter table BOOKSHELF enable all triggers;

To use the alter table command, you must either own the table or have the ALTER ANY TABLE
system privilege.

You can disable triggers using the same basic commands (requiring the same privileges) with
modifications to their clauses. For the alter trigger command, use the disable clause:

alter trigger BOOKSHELF_BEF_UPD_INS_ROW disable;

For the alter table command, use the disable all triggers clause:

alter table BOOKSHELF disable all triggers;

You can manually compile triggers. Use the alter trigger compile command to manually
compile existing triggers that have become invalid. Since triggers have dependencies, they can
become invalid if an object the trigger depends on changes. The alter trigger debug command
allows PL/SQL information to be generated during trigger recompilation.

Replacing Triggers
The status of a trigger is the only portion that can be altered. To alter a trigger’s body, the trigger
must be re-created or replaced. When replacing a trigger, use the create or replace trigger command
(refer to “Trigger Syntax” and the examples earlier in the chapter).

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Dropping Triggers
Triggers may be dropped via the drop trigger command. To drop a trigger, you must either own
the trigger or have the DROP ANY TRIGGER system privilege. An example of this command is
shown in Table 30-1:

drop trigger BOOKSHELF_BEF_UPD_INS_ROW;

550 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 30
Blind Folio 30:550

Attribute Type Description Example

ora_client_ip_address VARCHAR2 Returns the IP
address of the
client in a LOGON
event when the
underlying protocol
is TCP/IP.

if (ora_sysevent = 'LOGON')
then addr := ora_client_ip_

address;
end if;

ora_database_name VARCHAR2(50) Database name. Declare
db_name VARCHAR2(50);

begin
db_name := ora_database_

name;
end;

ora_des_encrypted_password VARCHAR2 The DES encrypted
password of the
user being created
or altered.

if (ora_dict_obj_type = 'USER')
then insert into event_table

(ora_des_encrypted_password);
end if;

ora_dict_obj_name VARCHAR(30) Name of the
dictionary object
on which the
DDL operation
occurred.

insert into event_table
('Changed object is ' || ora_
dict_obj_name');

ora_dict_obj_name_list
(name_list OUT ora_name_
list_t)

BINARY_INTEGER Returns the list
of object names
of objects being
modified in the
event.

if (ora_sysevent = 'ASSOCIATE
STATISTICS')
then number_modified := ora_

dict_obj_name_list (name_list);
end if;

ora_dict_obj_owner VARCHAR(30) Owner of the
dictionary object
on which the DDL
operation occurred.

insert into event_table ('object
owner is' || ora_dict_obj_
owner');

ora_dict_obj_owner_
list(owner_list OUT ora_
name_list_t)

BINARY_INTEGER Returns the list
of object owners
of objects being
modified in the
event.

if (ora_sysevent = 'ASSOCIATE
STATISTICS')
then number_of_modified_

objects := ora_dict_obj_owner_
list(owner_list);
end if;

TABLE 30-1. System-Defined Event Attributes

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 30
Blind Folio 30:551

Chapter 30: Triggers 551

Attribute Type Description Example

ora_dict_obj_type VARCHAR(20) Type of the dictionary
object on which the
DDL operation
occurred.

insert into event_table ('This
object is a ' || ora_dict_obj_
type);

ora_grantee(
user_list
OUT ora_name_list_t)

BINARY_INTEGER Returns the
grantees of a grant
event in the OUT
parameter; returns
the number of
grantees in the
return value.

if (ora_sysevent = 'GRANT') then
number_of_users := ora_
grantee(user_list);
end if;

ora_instance_num NUMBER Instance number. if (ora_instance_num = 1)
then insert into event_table

('1');
end if;

ora_is_alter_column(column_
name IN VARCHAR2)

BOOLEAN Returns true if the
specified column
is altered.

if (ora_sysevent = 'ALTER' and
ora_dict_obj_type = 'TABLE')
then alter_column := ora_is_

alter_column('FOO');
end if;

ora_is_creating_nested_table BOOLEAN Returns true if
the current event
is creating a
nested table.

if (ora_sysevent = 'CREATE' and
ora_dict_obj_type = 'TABLE' and
ora_is_creating_nested_table)
then insert into event_tab

values ('A nested table is
created');
end if;

ora_is_drop_column(column_
name IN VARCHAR2)

BOOLEAN Returns true if the
specified column
is dropped.

if (ora_sysevent = 'ALTER' and
ora_dict_obj_type = 'TABLE')
then drop_column := ora_is_

drop_column('FOO');
end if;

ora_is_servererror BOOLEAN Returns true if
given error is on
error stack, FALSE
otherwise.

if (ora_is_servererror(error_
number))
then insert into event_table

('Server error!!');
end if;

ora_login_user VARCHAR2(30) Login username. select ora_login_user
from dual;

ora_partition_pos BINARY_INTEGER In an INSTEAD
OF trigger for
CREATE TABLE,
the position within
the SQL text where
you could insert a
PARTITION clause.

-- Retrieve ora_sql_txt into
-- sql_text variable first.

n := ora_partition_pos;
new_stmt :=
substr(sql_text, 1, n-1) ||
' ' || my_partition_clause ||
' ' || substr(sql_text, n));

TABLE 30-1. System-Defined Event Attributes (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

552 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 30
Blind Folio 30:552

Attribute Type Description Example

ora_privilege_list(
privilege_list OUT ora_name_
list_t)

BINARY_INTEGER Returns the list of
privileges being
granted by the
grantee or the list of
privileges revoked
from the revokees
in the OUT
parameter; returns
the number of
privileges in the
return value.

if (ora_sysevent = 'GRANT' or
ora_sysevent = 'REVOKE')
then number_of_privileges :=

ora_privilege_list(priv_list);
end if;

ora_revokee (
user_list OUT ora_name_
list_t)

BINARY_INTEGER Returns the
revokees of a
revoke event in
the OUT parameter;
returns the number
of revokees in the
return value.

if (ora_sysevent = 'REVOKE')
then
number_of_users := ora_
revokee(user_list);

ora_server_error NUMBER Given a position
(1 for top of stack),
it returns the error
number at that
position on error
stack.

insert into event_table ('top
stack error ' || ora_server_
error(1));

ora_server_error_depth BINARY_INTEGER Returns the total
number of error
messages on the
error stack.

n := ora_server_error_depth;
-- This value is used with
-- other functions such as
-- ora_server_error

ora_server_error_msg
(position in binary_integer)

VARCHAR2 Given a position
(1 for top of stack),
it returns the error
message at that
position on error
stack.

insert into event_table ('top
stack error message' || ora_
server_error_msg(1));

ora_server_error_num_params
(position in binary_integer)

BINARY_INTEGER Given a position
(1 for top of stack),
it returns the number
of strings that have
been substituted into
the error message
using a format
like “%s”.

n := ora_server_error_num_
params(1);

ora_server_error_param
(position in binary_integer,
param in binary_integer)

VARCHAR2 Given a position
(1 for top of stack)
and a parameter
number, returns
the matching “%s”,
“%d”, and so on
substitution value
in the error
message.

-- E.g. the 2nd %s in a message
-- like "Expected %s, found %s"
param := ora_server_error_
param(1,2);

TABLE 30-1. System-Defined Event Attributes (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 30: Triggers 553

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 30
Blind Folio 30:553

Attribute Type Description Example

ora_sql_txt (sql_text out
ora_name_list_t)

BINARY_INTEGER Returns the
SQL text of
the triggering
statement in the
OUT parameter.
If the statement is
long, it is broken
up into multiple
PL/SQL table
elements. The
function return
value specifies how
many elements are
in the PL/SQL table.

sql_text ora_name_list_t;
stmt VARCHAR2(2000);
...
n := ora_sql_txt(sql_text);
for i in 1..n loop
stmt := stmt || sql_text(i);

end loop;
insert into event_table ('text
of triggering statement: ' ||
stmt);

ora_sysevent VARCHAR2(20) System event firing
the trigger: Event
name is same as
that in the syntax.

insert into event_table (ora_
sysevent);

ora_with_grant_option BOOLEAN Returns true if
the privileges
are granted with
grant option.

if (ora_sysevent = 'GRANT' and
ora_with_grant_option = TRUE)
then insert into event_table

('with grant option');
end if;

space_error_info(
error_number OUT NUMBER,
error_type OUT VARCHAR2,
object_owner OUT VARCHAR2,
table_space_name OUT
VARCHAR2,
object_name OUT VARCHAR2,
sub_object_name OUT
VARCHAR2)

BOOLEAN Returns true if the
error is related to
an out-of-space
condition, and
fills in the OUT
parameters with
information about
the object that
caused the error.

if (space_error_info(eno, typ,
owner, ts, obj, subobj) = TRUE)
then.put_line('The
object ' || run out of
space.');
dbms_outputobj || ' owned by '
|| owner || ' has
end if;

TABLE 30-1. System-Defined Event Attributes (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 30
Blind Folio 30:554

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 31
Blind Folio 31:555

CHAPTER
31

Procedures,
Functions, and

Packages

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

S
ophisticated business rules and application logic can be stored as procedures within
Oracle. Stored procedures—groups of SQL, PL/SQL, and Java statements—enable
you to move code that enforces business rules from your application to the database.
As a result, the code will be stored once for use by multiple applications. Because
Oracle supports stored procedures, the code within your applications can become

more consistent and easier to maintain.

NOTE
For details on Java and its use in stored procedures, see Chapters 37,
38, and 39. This chapter will focus on PL/SQL procedures.

You may group procedures and other PL/SQL commands into packages. In the following
sections, you will see implementation details and recommendations for packages, procedures,
and functions (procedures that can return values to the user).

You may experience performance gains when using procedures, for two reasons:

■ The processing of complex business rules may be performed within the database—and
therefore by the server. In client-server or three-tier applications, shifting complex processing
from the application (on the client) to the database (on the server) may dramatically
improve performance.

■ Because the procedural code is stored within the database and is fairly static, you may
also benefit from the reuse of the same queries within the database. The Shared SQL Area
in the System Global Area (SGA) will store the parsed versions of the executed commands.
Thus, the second time a procedure is executed, it may be able to take advantage of the
parsing that was previously performed, improving the performance of the procedure’s
execution.

In addition to these advantages, your application development efforts may also benefit.
Business rules that are consolidated within the database no longer need to be written into each
application, thus saving you time during application creation and simplifying the maintenance
process.

Required System Privileges
To create a procedural object, you must have the CREATE PROCEDURE system privilege. If
the procedural object will be in another user’s schema, then you must have the CREATE ANY
PROCEDURE system privilege.

Executing Procedures
Once a procedural object has been created, it may be executed. When a procedural object is
executed, it may rely on the table privileges of its owner or may rely on the privileges of the user
who is executing it. When the procedure is created using the definer’s rights, a user executing
the procedure does not need to be granted access to the tables that the procedure accesses. If a
procedure relies on the invoker’s rights, the user must have access to all of the database objects

556 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 31
Blind Folio 31:556

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 31: Procedures, Functions, and Packages 557

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 31
Blind Folio 31:557

accessed by the procedure. Unless stated otherwise, the examples in this chapter assume users
are executing procedures under the owner’s privileges.

To allow other users to execute your procedural object, grant them the EXECUTE privilege on
that object, as shown in the following example:

grant execute on MY_PROCEDURE to Dora;

The user Dora will now be able to execute the procedure named MY_PROCEDURE. If you do not
grant the EXECUTE privilege to users, they must have the EXECUTE ANY PROCEDURE system
privilege in order to execute the procedure.

When executed, procedures usually have variables passed to them. For example, a procedure
that interacts with the BOOKSHELF table may accept as input a value for the Title column. In this
example, we will assume that the procedure creates a new record in the BOOKSHELF table when
a new book is received (from the list of books in the BOOK_ORDER table). This procedure can
be called from any application within the database (provided the user calling the procedure has
been granted the EXECUTE privilege for it).

The syntax used to execute a procedure depends on the environment from which the procedure
is called. From within SQL*Plus, a procedure can be executed by using the execute command,
followed by the procedure name. Any arguments to be passed to the procedure must be enclosed
in parentheses following the procedure name, as shown in the following example (which uses a
procedure called NEW_BOOK):

execute NEW_BOOK('ONCE REMOVED');

The command will execute the NEW_BOOK procedure, passing to it the value ONCE REMOVED.
From within another procedure, function, package, or trigger, the procedure can be called

without the execute command. If the NEW_BOOK procedure was called from a trigger on the
BOOK_ORDER table, the body of that trigger may include the following command:

NEW_BOOK(:new.Title);

The NEW_BOOK procedure will be executed using the new value of the Title column as its input.
(See Chapter 30 for further information on the use of old and new values within triggers.)

To execute a procedure owned by another user, you must either create a synonym for that
procedure or reference the owner’s name during the execution, as shown in the following listing:

execute Practice.NEW_BOOK('ONCE REMOVED');

The command will execute the NEW_BOOK procedure in the Practice schema.
Alternatively, a synonym for the procedure could be created by using the following command:

create synonym NEW_BOOK for Practice.NEW_BOOK;

The owner of that synonym would then no longer need to refer to the procedure’s owner to
execute the procedure. You could simply enter the command:

execute NEW_BOOK('ONCE REMOVED');

and the synonym would point to the proper procedure.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When you execute remote procedures, the name of a database link must be specified (see
Chapter 23 for information on database links). The name of the database link must immediately
follow the procedure’s name and precede the variables, as shown in the following example:

execute NEW_BOOK@REMOTE_CONNECT('ONCE REMOVED');

The command uses the REMOTE_CONNECT database link to access a procedure called NEW_
BOOK in a remote database.

To make the location of the procedure transparent to the user, a synonym may be created for
the remote procedure, as shown in the following example:

create synonym NEW_BOOK
for NEW_BOOK@REMOTE_CONNECT;

Once this synonym has been created, the user may refer to the remote procedure by using
the name of the synonym. Oracle assumes that all remote procedure calls involve updates in the
remote database.

Required Table Privileges
Procedural objects may reference tables. For the objects to execute properly, the owner of the
procedure, package, or function being executed must have privileges on the tables it uses. Unless
you are using invoker rights, the user who is executing the procedural object does not need privileges
on its underlying tables.

NOTE
The privileges needed for procedures, packages, and functions cannot
come from roles; they must be granted directly to the owner of the
procedure, package, or function.

Procedures vs. Functions
Procedures do not have to return a value to the caller. Functions can return a value to the caller,
and functions can be directly referenced in queries. This value is returned through the use of the
return keyword within the function. Examples of functions are shown in “create function Syntax,”
later in this chapter.

Procedures vs. Packages
Packages are groups of procedures, functions, variables, and SQL statements grouped together
into a single unit. To execute a procedure within a package, you must first list the package name,
and then list the procedure name, as shown in the following example:

execute BOOK_INVENTORY.NEW_BOOK('ONCE REMOVED');

Here, the NEW_BOOK procedure within the BOOK_INVENTORY package was executed.

558 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 31
Blind Folio 31:558

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 31: Procedures, Functions, and Packages 559

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 31
Blind Folio 31:559

Packages allow multiple procedures to use the same variables and cursors. Procedures within
packages may be either available to the public (as is the NEW_BOOK procedure in the prior example)
or private, in which case they are only accessible via commands from within the package (such
as calls from other procedures). Examples of packages are shown in “create package Syntax,” later
in this chapter.

Packages may also include commands that are to be executed each time the package is called,
regardless of the procedure or function called within the package. Thus, packages not only group
procedures but also give you the ability to execute commands that are not procedure specific.
See “Initializing Packages,” later in this chapter, for an example of code that is executed each
time a package is called.

create procedure Syntax
The full syntax for the create procedure command is shown in the Alphabetical Reference. The
brief syntax is

create [or replace] procedure [schema .] procedure
[(argument [in | out | in out] [nocopy] datatype

[, argument [in | out | in out] [nocopy] datatype]...
)]

[authid { current_user | definer }]
{ is | as } { pl/sql_subprogram_body |
language { java name 'string'| c [name name] library lib_name

}};

Both the header and the body of the procedure are created by this command.
The NEW_BOOK procedure is created by the command shown in the following listing:

create or replace procedure NEW_BOOK (aTitle IN VARCHAR2,
aPublisher IN VARCHAR2, aCategoryName IN VARCHAR2)

as
begin

insert into BOOKSHELF (Title, Publisher, CategoryName, Rating)
values (aTitle, aPublisher, aCategoryName, NULL);

delete from BOOK_ORDER
where Title = aTitle;

end;
/

The NEW_BOOK procedure will accept a book’s title, publisher, and category as its input. It can
be called from any application. It inserts a record into the BOOKSHELF table, with a NULL value
for the Rating column, and deletes the matching Title from the BOOK_ORDER table.

If a procedure already exists, you may replace it via the create or replace procedure command.
The benefit of using this command (instead of dropping and re-creating the old procedure) is that
the EXECUTE privilege grants previously made on the procedure will remain in place.

The IN qualifier is used for arguments for which values must be specified when calling the
procedure. In the NEW_BOOK example, the aTitle, aPublisher, and aCategoryName arguments
are declared as IN. The OUT qualifier signifies that the procedure passes a value back to the caller
through this argument. The IN OUT qualifier signifies that the argument is both an IN and an

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

560 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 31
Blind Folio 31:560

OUT: A value must be specified for this argument when the procedure is called, and the procedure
will return a value to the caller via this argument. If no qualifier type is specified, then the default
value is IN.

In the create procedure syntax, authid refers to the type of authentication: definer rights (the
default) or invoker rights (the current_user). The nocopy keyword tells Oracle to pass the variable
value back to the user as quickly as possible.

By default, a procedure consists of a block of code written in PL/SQL (block refers to the code
that the procedure will execute when called). In the NEW_BOOK example, the block is as follows:

begin
insert into BOOKSHELF (Title, Publisher, CategoryName, Rating)
values (aTitle, aPublisher, aCategoryName, NULL);

delete from BOOK_ORDER
where Title = aTitle;

end;

The PL/SQL block shown is fairly simple, consisting of a single SQL statement. PL/SQL blocks
within procedures can include any DML statement; they cannot be used for DDL statements
(such as create view).

Alternatively, language refers to the language in which the code is written. For Java examples,
see Chapter 39.

The following listing shows the execution of the NEW_BOOK procedure, and the resulting
changes to the BOOK_ORDER and BOOKSHELF tables.

select Title from BOOK_ORDER;

TITLE
--
GALILEO'S DAUGHTER
GOSPEL
LONGITUDE
ONCE REMOVED
SHOELESS JOE
SOMETHING SO STRONG

execute NEW_BOOK('ONCE REMOVED','SANCTUARY PUB','ADULTNF');

PL/SQL procedure successfully completed.

select Title from BOOK_ORDER;

TITLE
--
GALILEO'S DAUGHTER
GOSPEL
LONGITUDE
SHOELESS JOE
SOMETHING SO STRONG

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select * from BOOKSHELF
where Title = 'ONCE REMOVED';

TITLE
--
PUBLISHER CATEGORYNAME RA
-------------------- -------------------- --
ONCE REMOVED
SANCTUARY PUB ADULTNF

NOTE
You can make external C procedures and Java libraries available
within PL/SQL by creating external procedures. You will need to set
up an agent (named extproc by default) in the network configuration
files. If you need to reference external libraries, work with your database
administrator to configure the network environment, the agents that are
needed, and the creation of directories and libraries within the database.

create function Syntax
The syntax for the create function command is more complicated than the syntax for the create
procedure command. At a high level, the syntax is

create [or replace] function [schema .] function
[(argument [in | out | in out] [nocopy] datatype

[, argument [in | out | in out] [nocopy] datatype]...
)]

return datatype
[{ invoker_rights_clause | deterministic | parallel_enable_clause }
[invoker_rights_clause | deterministic | parallel_enable_clause]...

]
{ { aggregate | pipelined } using [schema .] implementation_type
| [pipelined] { is | as } { pl/sql_function_body | call_spec }};

Both the header and the body of the function are created by this command.
The return keyword specifies the datatype of the function’s return value. This can be any valid

PL/SQL datatype (see Chapter 29). Every function must have a return clause, since the function
must, by definition, return a value to the calling environment.

The following example shows a function named OVERDUE_CHARGES, which returns the
overdue book charges by person, based on calculations against the BOOKSHELF_CHECKOUT
table. The input is the person’s name, while the output is the balance for that person.

create or replace function OVERDUE_CHARGES (aName IN VARCHAR2)
return NUMBER
is
owed_amount NUMBER(10,2);

begin
select SUM(((ReturnedDate-CheckoutDate) -14)*0.20)

Chapter 31: Procedures, Functions, and Packages 561

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 31
Blind Folio 31:561

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

into owed_amount
from BOOKSHELF_CHECKOUT

where Name = aName;
RETURN(owed_amount);

end;
/

First, the function is named and the input is specified:

create or replace function OVERDUE_CHARGES (aName IN VARCHAR2)

Next, we define the characteristics of the value to be returned. The definition of the variable
whose value will be returned has three parts: its datatype, its name, and its length. The datatype
in this example is set via the return NUMBER clause. The variable is then named owed_amount,
and is defined as a NUMBER(10,2). Thus, all three parts of the variable—its datatype, its name, and
its length—have been defined.

return NUMBER
is
owed_amount NUMBER(10,2);

The PL/SQL block follows. In the SQL statement, the sum of all late charges ($0.20 per day
over 14 days) is calculated. The sum is selected into a variable called owed_amount (which we
previously defined). The RETURN(owed_amount) command line then returns the value in the
owed_amount variable to the calling program.

begin
select SUM(((ReturnedDate-CheckoutDate) -14)*0.20)
into owed_amount
from BOOKSHELF_CHECKOUT

where Name = aName;
RETURN(owed_amount);

end;

If a function already exists, you may replace it via the create or replace function command. If
you use the or replace clause, any EXECUTE grants previously made on the function will remain
in place.

If the function is to be created in a different schema, you must have the CREATE ANY
PROCEDURE system privilege. If no schema is specified, the function will be created in your
schema. To create a function in your schema, you must have been granted the CREATE PROCEDURE
system privilege (which is part of the RESOURCE role). Having the privilege to create procedures
gives you the privilege to create functions and packages as well.

You can check the function by creating a variable and setting its value equal to the function’s
returned value:

variable owed number;
execute :owed := OVERDUE_CHARGES('FRED FULLER');

PL/SQL procedure successfully completed.

562 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 31
Blind Folio 31:562

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can verify the results by printing the variable’s value:

print owed

OWED

3.8

Referencing Remote Tables in Procedures
Remote tables can be accessed by the SQL statements in procedures. A remote table can be queried
via a database link in the procedure, as shown in the following example. In this example, the
NEW_BOOK procedure inserts a record into the BOOKSHELF table in the database defined by
the REMOTE_CONNECT database link while deleting from a local copy of BOOK_ORDER.

create or replace procedure NEW_BOOK (aTitle IN VARCHAR2,
aPublisher IN VARCHAR2, aCategoryName IN VARCHAR2)

as
begin

insert into BOOKSHELF@REMOTE_CONNECT
(Title, Publisher, CategoryName, Rating)
values (aTitle, aPublisher, aCategoryName, NULL);

delete from BOOK_ORDER
where Title = aTitle;

end;
/

Procedures may also use local synonyms. For example, you may create a local synonym for
a remote table, as follows:

create synonym BOOKSHELF for BOOKSHELF@REMOTE_CONNECT;

You can then rewrite your procedure to remove the database link specifications:

create or replace procedure NEW_BOOK (aTitle IN VARCHAR2,
aPublisher IN VARCHAR2, aCategoryName IN VARCHAR2)

as
begin

insert into BOOKSHELF
(Title, Publisher, CategoryName, Rating)
values (aTitle, aPublisher, aCategoryName, NULL);

delete from BOOK_ORDER
where Title = aTitle;

end;
/

Removing database link names from procedures allows you to remove the details of the table’s
physical location from the procedure. If the table changes location, only the synonym will change,
while the procedure will still be valid.

Chapter 31: Procedures, Functions, and Packages 563

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 31
Blind Folio 31:563

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Debugging Procedures
The SQL*Plus show errors command displays all the errors associated with the most recently
created procedural object. This command checks the USER_ERRORS data dictionary view for the
errors associated with the most recent compilation attempt for that object. show errors displays
the line and column number for each error, as well as the text of the error message.

To view errors associated with previously created procedural objects, you may query USER_
ERRORS directly, as shown in the following listing. This example queries USER_ERRORS for error
messages encountered during the creation of the OVERDUE_CHARGES function shown earlier in
this chapter. If any errors were encountered, the lines in the code that resulted in the error conditions
would be returned by the query.

select Line, /*Line number of the error. */
Position, /*Column number of the error.*/
Text /*Text of the error message.*/

from USER_ERRORS
where Name = 'OVERDUE_CHARGES'
and Type = 'FUNCTION'

order by Sequence;

Valid values for the Type column are VIEW, PROCEDURE, PACKAGE, FUNCTION, and
PACKAGE BODY.

Two other data dictionary view levels—ALL and DBA—may also be used to retrieve information
about errors involving procedural objects. For information on these views, see Chapter 42.

Using the DBMS_OUTPUT Package
In addition to the debugging information provided by the show errors command, you may use
the DBMS_OUTPUT package, one of a set of packages that is automatically installed when you
create an Oracle database.

To use DBMS_OUTPUT, you must issue the set serveroutput on command before executing
the procedural object you will be debugging.

DBMS_OUTPUT allows you to use three debugging functions within your package:

PUT Puts multiple outputs on the same line

PUT_LINE Puts each output on a separate line

NEW_LINE Used with PUT; signals the end of the current output line

PUT and PUT_LINE are used to generate the debugging information you want to display. For
example, if you are debugging a procedure that includes a loop (refer to Chapter 29), you may
want to track the changes in a variable with each pass through the loop. To track the variable’s
value, you may use a command similar to the one shown in the following listing. In this example,
the value of the Owed_Amount column is printed, prefixed by the literal string ‘Owed:’.

DBMS_OUTPUT.PUT_LINE('Owed:'||Owed_Amount);

564 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 31
Blind Folio 31:564

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You may also use PUT and PUT_LINE outside of loops, but such uses may be better
accomplished via the use of the return command in functions (refer to “create function Syntax,”
earlier in this chapter).

NOTE
For additional debugging capabilities, you can use the DBMS_
DEBUG procedure if you have the DEBUG CONNECT SESSION
system privilege. The DEBUG ANY PROCEDURE system privilege
is equivalent to having the DEBUG privilege for all objects in the
database.

Creating Your Own Functions
Rather than just calling custom functions via execute commands, you may use them within SQL
expressions. This enables you to extend the functionality of SQL, customizing it to your needs.
Such functions can be used in the same manner as Oracle-provided functions such as SUBSTR
and TO_CHAR. Custom functions cannot be used in CHECK or DEFAULT constraints and cannot
manipulate any database values.

You can call either stand-alone functions (created via the create function command shown
in the previous sections) or functions declared in package specifications (to be covered in “create
package Syntax” later in this chapter). Procedures are not directly callable from SQL, but may be
called by the functions you create.

For example, consider the OVERDUE_CHARGES function shown earlier in this chapter, which
calculated the total owed for overdue books. It had a single input variable—the person’s name.
However, to see the OVERDUE_CHARGES results for all of the book borrowers, you would normally
need to execute this procedure once for each record in the BOOKSHELF_CHECKOUT table.

You can improve the overdue charges calculation process. Consider the following query:

create view BOOK_BORROWERS
as select distinct Name from BOOKSHELF_CHECKOUT;

select Name,
OVERDUE_CHARGES(Name)

from BOOK_BORROWERS;

Oracle returns the following output:

NAME OVERDUE_CHARGES(NAME)
------------------------- ---------------------
DORAH TALBOT -.8
EMILY TALBOT .2
FRED FULLER 3.8
GERHARDT KENTGEN 2.8
JED HOPKINS 1.4
PAT LAVAY 2.6
ROLAND BRANDT 22.6

7 rows selected.

Chapter 31: Procedures, Functions, and Packages 565

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 31
Blind Folio 31:565

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This single query uses the custom OVERDUE_CHARGES function to calculate the overdue charges
for all book borrowers. It’s not quite correct—people are getting credit for books they returned early.
You can use the create or replace function command to add a where clause to the function’s query:

create or replace function OVERDUE_CHARGES (aName IN VARCHAR2)
return NUMBER
is
owed_amount NUMBER(10,2);

begin
select SUM(((ReturnedDate-CheckoutDate) -14)*0.20)
into owed_amount
from BOOKSHELF_CHECKOUT

where Name = aName
and ReturnedDate-CheckoutDate > 14;

RETURN(owed_amount);
end;
/

The corrected output is shown in the following listing:

select Name,
OVERDUE_CHARGES(Name)

from BOOK_BORROWERS;

NAME OVERDUE_CHARGES(NAME)
------------------------- ---------------------
DORAH TALBOT .4
EMILY TALBOT .8
FRED FULLER 3.8
GERHARDT KENTGEN 4.6
JED HOPKINS 1.4
PAT LAVAY 3.4
ROLAND BRANDT 22.6

The query selected each name from BOOK_BORROWERS; for each name, it executed the
OVERDUE_CHARGES function, which selected data from BOOKSHELF_CHECKOUT.

To take advantage of this feature, your functions must follow the same guidelines as Oracle’s
functions. Most notably, they must not update the database, and must contain only IN parameters.

NOTE
Although this technique works, it has performance costs. The more
data there is in the table, the bigger the performance penalty will be
when comparing this method to a traditional join.

Customizing Error Conditions
You may establish different error conditions within procedural objects (refer to Chapter 30 for
examples of customized error conditions within triggers). For each of the error conditions you

566 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 31
Blind Folio 31:566

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

define, you may select an error message that will appear when the error occurs. The error numbers
and messages that are displayed to the user are set by you via the RAISE_APPLICATION_ERROR
procedure, which may be called from within any procedural object.

You can call RAISE_APPLICATION_ERROR from within procedures, packages, and functions.
It requires two inputs: the message number and the message text. You get to assign both the message
number and the text that will be displayed to the user. This is a very powerful addition to the
standard exceptions that are available in PL/SQL (see “Exception” in the Alphabetical Reference).

The following example shows the OVERDUE_CHARGES function defined earlier in this chapter.
Now, however, it has an additional section (shown in bold). Titled EXCEPTION, this section tells
Oracle how to handle nonstandard processing. In this example, the NO_DATA_FOUND exception’s
standard message is overridden via the RAISE_APPLICATION_ERROR procedure.

create or replace function OVERDUE_CHARGES (aName IN VARCHAR2)
return NUMBER
is
owed_amount NUMBER(10,2);

begin
select SUM(((ReturnedDate-CheckoutDate) -14)*0.20)
into owed_amount
from BOOKSHELF_CHECKOUT

where Name = aName
and (ReturnedDate-CheckoutDate) > 14;

RETURN(owed_amount);
EXCEPTION
when NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR(-20100,
'No books borrowed.');

end;
/

In the preceding example, the NO_DATA_FOUND exception was used. If you want to define
custom exceptions, you need to name the exception in a Declarations section of the procedure,
which immediately precedes the begin command. As shown in the following listing, this section
should include entries for each of the custom exceptions you have defined, listed as type EXCEPTION:

declare
some_custom_error EXCEPTION;

NOTE
If you are using the exceptions already defined within PL/SQL, you
do not need to list them in the Declarations section of the procedural
object. See “Exception” in the Alphabetical Reference for a list of the
predefined exceptions.

In the exception portion of the procedural object’s code, you tell the database how to handle
the exceptions. It begins with the keyword exception, followed by a when clause for each exception.
Each exception may call the RAISE_ APPLICATION_ERROR procedure, which takes two input

Chapter 31: Procedures, Functions, and Packages 567

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 31
Blind Folio 31:567

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

parameters: the error number (which must be between –20001 and –20999) and the error message
to be displayed. In the preceding example, only one exception was defined. Multiple exceptions
can be defined, as shown in the following listing; you may use the when others clause to handle
all nonspecified exceptions:

EXCEPTION
when NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR(-20100,
'No books borrowed.');

when some_custom_error THEN
RAISE_APPLICATION_ERROR (-20101,
'Some custom error message.');

The use of the RAISE_APPLICATION_ERROR procedure gives you great flexibility in managing
the error conditions that may be encountered within procedural objects.

Naming Procedures and Functions
Procedures and functions should be named according to the business function they perform or
business rule they enforce. There should be no ambiguity about their purpose.

The NEW_BOOK procedure shown earlier should be renamed. NEW_BOOK performs a
business function—inserting records into BOOKSHELF and deleting them from BOOK_ORDER—
so its name should reflect that function. A better choice for the name would be RECEIVE_BOOK_
ORDER. Since it performs a function, a verb (in this case, “receive”) should describe what it does.
The name of the procedure should also include the name of the major table(s) it impacts. If the
tables are properly named, then the name of the table should be the direct object upon which
the verb acts (in this case, BOOK_ORDER or BOOKSHELF). For the sake of consistency, we will
continue to refer to the procedure as NEW_BOOK for the remainder of this chapter.

create package Syntax
When creating packages, the package specification and the package body are created separately.
Thus, there are two commands to use: create package for the package specification, and create
package body for the package body. Both of these commands require that you have the CREATE
PROCEDURE system privilege. If the package is to be created in a schema other than your own,
then you must have the CREATE ANY PROCEDURE system privilege.

Here is the syntax for creating package specifications:

create [or replace] package [user.] package
[authid {definer | current_user}]
{is | as}
package specification;

A package specification consists of the list of functions, procedures, variables, constants,
cursors, and exceptions that will be available to users of the package.

A sample create package command is shown in the following listing. In this example, the BOOK_
MANAGEMENT package is created. The OVERDUE_CHARGES function and NEW_BOOK procedure
seen earlier in this chapter are included in the package.

568 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 31
Blind Folio 31:568

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

create or replace package BOOK_MANAGEMENT
as
function OVERDUE_CHARGES(aName IN VARCHAR2) return NUMBER;
procedure NEW_BOOK (aTitle IN VARCHAR2,

aPublisher IN VARCHAR2, aCategoryName IN VARCHAR2);
end BOOK_MANAGEMENT;
/

NOTE
You may append the name of the procedural object to the end clause
to make it easier to coordinate the logic within your code.

A package body contains the blocks and specifications for all of the public objects listed in the
package specification. The package body may include objects that are not listed in the package
specification; such objects are said to be private and are not available to users of the package.
Private objects may only be called by other objects within the same package body. A package body
may also include code that is run every time the package is invoked, regardless of the part of the
package that is executed—see “Initializing Packages,” later in this chapter, for an example.

The syntax for creating package bodies is

create [or replace] package body [user.] package body
{is | as}
package body;

The name of the package body should be the same as the name of the package specification.
Continuing the BOOK_MANAGEMENT example, its package body can be created via the

create package body command shown in the following example:

create or replace package body BOOK_MANAGEMENT
as
function OVERDUE_CHARGES (aName IN VARCHAR2)
return NUMBER
is
owed_amount NUMBER(10,2);

begin
select SUM(((ReturnedDate-CheckoutDate) -14)*0.20)
into owed_amount
from BOOKSHELF_CHECKOUT

where Name = aName
and (ReturnedDate-CheckoutDate) > 14;

RETURN(owed_amount);
EXCEPTION
when NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR(-20100,
'No books borrowed.');

end OVERDUE_CHARGES;
procedure NEW_BOOK (aTitle IN VARCHAR2,

aPublisher IN VARCHAR2, aCategoryName IN VARCHAR2)

Chapter 31: Procedures, Functions, and Packages 569

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 31
Blind Folio 31:569

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

570 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 31
Blind Folio 31:570

is
begin

insert into BOOKSHELF
(Title, Publisher, CategoryName, Rating)
values (aTitle, aPublisher, aCategoryName, NULL);

delete from BOOK_ORDER
where Title = aTitle;

end NEW_BOOK;
end BOOK_MANAGEMENT;
/

The create or replace package body command shown in the preceding example combines
the create function command for the OVERDUE_CHARGES function with the create procedure
command for the NEW_BOOK procedure. The end clauses all have the names of their associated
objects appended to them (shown in bold in the prior listing).

Additional functions, procedures, exceptions, variables, cursors, and constants may be defined
within the package body, but they will not be available to the public unless they have been declared
within the package specification (via the create package command). If a user has been granted
the EXECUTE privilege on a package, then that user can access any of the public objects that are
declared in the package specification.

NOTE
You can hide the internals of your application code by using the PL/SQL
wrapper. The WRAP executable (found in the /bin directory under the
Oracle software home directory) takes an input filename as its input
and generates an output file containing the object code. You cannot
unwrap a package that has been wrapped.

Initializing Packages
Packages may include code that is to be run the first time a user executes a function or procedure
in the package within each session. In the following example, the BOOK_MANAGEMENT package
body is modified to include a SQL statement that records the current user’s username and the
timestamp for the first time a package component is executed within the session. Two new variables
must also be declared in the package body to record these values.

Since the two new variables are declared within the package body, they are not available to
the public. Within the package body, they are separated from the procedures and functions. The
package initialization code is shown in bold in the following listing:

create or replace package body BOOK_MANAGEMENT
as
User_Name VARCHAR2(30);
Entry_Date DATE;
function OVERDUE_CHARGES (aName IN VARCHAR2)
return NUMBER

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 31: Procedures, Functions, and Packages 571

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 31
Blind Folio 31:571

is
owed_amount NUMBER(10,2);

begin
select SUM(((ReturnedDate-CheckoutDate) -14)*0.20)
into owed_amount
from BOOKSHELF_CHECKOUT

where Name = aName
and (ReturnedDate-CheckoutDate) > 14;

RETURN(owed_amount);
EXCEPTION
when NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR(-20100,
'No books borrowed.');

end OVERDUE_CHARGES;
procedure NEW_BOOK (aTitle IN VARCHAR2,

aPublisher IN VARCHAR2, aCategoryName IN VARCHAR2)
is
begin

insert into BOOKSHELF
(Title, Publisher, CategoryName, Rating)
values (aTitle, aPublisher, aCategoryName, NULL);

delete from BOOK_ORDER
where Title = aTitle;

end NEW_BOOK;
begin
select User, SysDate
into User_Name, Entry_Date
from DUAL;

end BOOK_MANAGEMENT;
/

NOTE
The code that is to be run the first time that a component of the
package is executed is stored in its own PL/SQL block at the bottom
of the package body. It does not have its own end clause; it uses the
package body’s end clause.

The first time a BOOK_MANAGEMENT package component is executed in the user’s session,
the User_Name and Entry_Date variables will be populated by the query shown in the previous
listing. These two variables can then be used by the functions and procedures within the
package, although in the interest of brevity this example does not use them.

To execute a procedure or function that is within a package, specify both the package name
and the name of the procedure or function in the execute command, as follows:

execute BOOK_MANAGEMENT.NEW_BOOK('SOMETHING SO STRONG','PANDORAS','ADULTNF');

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

572 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 31
Blind Folio 31:572

Viewing Source Code for Procedural Objects
The source code for existing procedures, functions, packages, and package bodies can be
queried from the following data dictionary views:

USER_SOURCE For procedural objects owned by the user

ALL_SOURCE For procedural objects owned by the user or to which the user
has been granted access

DBA_SOURCE For all procedural objects in the database

Select information from the USER_SOURCE view via a query similar to the one shown in the
following listing. In this example, the Text column is selected, ordered by the Line number. The
Name of the object and the object Type are used to define which object’s source code is to be
displayed. The following example uses the NEW_BOOK procedure shown earlier in this chapter:

select Text
from USER_SOURCE
where Name = 'NEW_BOOK'
and Type = 'PROCEDURE'

order by Line;

TEXT

procedure NEW_BOOK (aTitle IN VARCHAR2,

aPublisher IN VARCHAR2, aCategoryName IN VARCHAR2)
as
begin

insert into BOOKSHELF (Title, Publisher, CategoryName, Rating)
values (aTitle, aPublisher, aCategoryName, NULL);

delete from BOOK_ORDER
where Title = aTitle;

end;

As shown in this example, the USER_SOURCE view contains one record for each line of the
NEW_BOOK procedure. The sequence of the lines is maintained by the Line column; therefore,
the Line column should be used in the order by clause.

Valid values for the Type column are PROCEDURE, FUNCTION, PACKAGE, PACKAGE BODY,
JAVA SOURCE, TYPE, and TYPE BODY.

Compiling Procedures, Functions, and Packages
Oracle compiles procedural objects when they are created. However, procedural objects may
become invalid if the database objects they reference change. The next time the procedural objects
are executed, they will be recompiled by the database.

You can avoid this run-time compiling—and the performance degradation it may cause—by
explicitly recompiling the procedures, functions, and packages. To recompile a procedure, use
the alter procedure command, as shown in the following listing. The compile clause is the only
valid option for this command.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

alter procedure NEW_BOOK compile;

To recompile a procedure, you must either own the procedure or have the ALTER ANY PROCEDURE
system privilege.

To recompile a function, use the alter function command, with the compile clause:

alter function OVERDUE_CHARGES compile;

To recompile a function, you must either own the function or have the ALTER ANY PROCEDURE
system privilege.

When recompiling packages, you may either recompile both the package specification and
the body or just recompile the package body. By default, both the package specification and the
package body are recompiled. You cannot use the alter function or alter procedure command to
recompile functions and procedures stored within a package.

If the source code for the procedures or functions within the package body has changed but
the package specification has not, you may want to recompile only the package body. In most
cases, it is appropriate to recompile both the specification and the package body.

The following is the syntax for the alter package command:

alter package [user.] package_name
compile [debug] [package | body | specification];

To recompile a package, use the preceding alter package command with the compile clause,
as follows:

alter package BOOK_MANAGEMENT compile;

To recompile a package, you must either own the package or have the ALTER ANY PROCEDURE
system privilege. Since neither PACKAGE nor BODY was specified in the preceding example, the
default of PACKAGE was used, resulting in the recompilation of both the package specification
and the package body.

Replacing Procedures, Functions, and Packages
Procedures, functions, and packages may be replaced via their respective create or replace
command. Using the or replace clause keeps in place any existing grants that have been made
for those objects. If you choose to drop and re-create procedural objects, you have to regrant
any EXECUTE privileges that were previously granted.

Dropping Procedures, Functions, and Packages
To drop a procedure, use the drop procedure command, as follows:

drop procedure NEW_BOOK;

To drop a procedure, you must either own the procedure or have the DROP ANY PROCEDURE
system privilege.

Chapter 31: Procedures, Functions, and Packages 573

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 31
Blind Folio 31:573

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To drop a function, use the drop function command, as follows:

drop function OVERDUE_CHARGES;

To drop a function, you must either own the function or have the DROP ANY PROCEDURE
system privilege.

To drop a package body, use the drop package command with the body clause, as follows:

drop package body BOOK_MANAGEMENT;

To drop a package body, you must either own the package or have the DROP ANY PROCEDURE
system privilege.

To drop a package (both the specification and the body), use the drop package command,
as follows:

drop package BOOK_MANAGEMENT;

To drop a package, you must either own the package or have the DROP ANY PROCEDURE
system privilege.

574 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 31
Blind Folio 31:574

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 32
Blind Folio 32:575

CHAPTER
32

Using Native
Dynamic SQL and

DBMS_SQL

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Y
ou can use native dynamic SQL to create general-purpose procedures and to
execute DDL commands within PL/SQL. You can use dynamic SQL to execute
SQL commands that are built at run time rather than at program-creation time. You
can use dynamic SQL within your stored procedural objects (such as packages)
and in anonymous PL/SQL blocks. For example, you can create procedures that

create tables, that take table names as input parameters, or that take where clauses as input
parameters.

Using EXECUTE IMMEDIATE
The script in the following example creates a procedure called ANYSTRING. The ANYSTRING
procedure has a single input variable: a SQL command. When you execute the ANYSTRING
procedure, you pass it the SQL command to execute; the SQL command may be either a DML
command (such as select or insert) or a DDL command (such as create table).

create or replace procedure ANYSTRING(String IN VARCHAR2) AS
BEGIN

EXECUTE IMMEDIATE (String);
END;
/

You can execute the ANYSTRING procedure via the execute command, as shown in the
upcoming examples of DDL and DML commands. Note that the strings are not terminated with
semicolons.

NOTE
If you are going to run DDL commands through dynamic SQL, you
must have been granted the necessary system privileges explicitly—
not via roles. If you do not have the CREATE TABLE system privilege
explicitly granted to you, the following command will fail with an
“ORA-01031: insufficient privileges” error:

execute ANYSTRING('create table CD (Artist VARCHAR2(25), Title VARCHAR2(25)) ');

execute ANYSTRING('insert into CD values(''NEIL FINN'',''TRY WHISTLING THIS'') ');

The first command in the preceding listing executes the following SQL command:

create table CD
(Artist VARCHAR2(25),
Title VARCHAR2(25));

The second command in the listing inserts a record into the CD table:

insert into CD values ('NEIL FINN', 'TRY WHISTLING THIS');

576 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 32
Blind Folio 32:576

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If the SQL statements passed to ANYSTRING contain quotes, each quote should be replaced
with a set of two quotes, as shown in the preceding execution of ANYSTRING for the insert
command. After each command, you will receive the following response:

PL/SQL procedure successfully completed.

You can verify that the commands succeeded by querying the new table:

select * from CD;

ARTIST TITLE
------------------------- -------------------------
NEIL FINN TRY WHISTLING THIS

You can write native dynamic SQL for which the input parameters will be passed to the SQL
commands:

declare
Symbol VARCHAR2(6) := 'WOND';

begin
EXECUTE IMMEDIATE 'delete from STOCK where Symbol = :symbol'
USING Symbol;

end;
/

The symbol variable is set equal to the value ‘WOND’, and that value is then passed to the delete
command via the using clause.

In the following listing, a procedure named DELETE_ROWS will delete all rows from the
table passed in as a variable. If a where_clause value is entered when the procedure is executed,
it will be dynamically appended to the delete command; otherwise, all rows will be deleted.

create or replace procedure DELETE_ROWS (
Table_Name in VARCHAR2,
Condition in VARCHAR2 default NULL) as
Where_Clause VARCHAR2(100) := ' where ' || Condition;

begin
if Condition is NULL then Where_Clause := NULL; end if;
execute immediate 'delete from ' || Table_Name || Where_Clause;

end;
/

You can call the DELETE_ROWS procedure anytime you want to delete rows from a table.
You could call it within another procedure or within an application without having to grant
anyone access to perform delete commands directly within SQL*Plus. The following command
will delete all the rows in the DEPT table:

execute DELETE_ROWS('STOCK');

Chapter 32: Using Native Dynamic SQL and DBMS_SQL 577

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 32
Blind Folio 32:577

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In addition to calling SQL statements, you can execute procedures and PL/SQL blocks via
native dynamic SQL.

Using Bind Variables
One of the benefits of native dynamic SQL is the ability to use bind variables in your code.
For example, consider this example from earlier in this chapter:

declare
Symbol VARCHAR2(6) := 'WOND';

begin
EXECUTE IMMEDIATE 'delete from STOCK where Symbol = :symbol'
USING Symbol;

end;
/

In the preceding listing, :symbol is a bind variable. Successive values of symbol can be passed
in to the EXECUTE IMMEDIATE command. Because a bind variable is used, the command will
not have to be parsed repeatedly. If you monitor the database as the application is used, you will
see in V$SQL one entry for the command. If you had not used bind variables, you would see a
separate entry in V$SQL for each separate execution of the command. That is, instead of seeing

delete from STOCK where Symbol = :symbol

in the library cache, you would see one entry for each unique deletion, such as

delete from STOCK where Symbol = 'WOND'

and so on.
Each of these commands would be separately parsed, and each would be taking space in

memory. Failing to use bind variables may thus fill your SGA with a large number of very similar
commands—a waste of the resources that the database is supposed to be exploiting and a potential
cause of performance problems. Database administrators can resolve a portion of this problem by
setting the CURSOR_SHARING initialization parameter to SIMILAR, but at its heart this is a problem
that should be solved by using a proper development approach.

When the query is run, bind arguments replace their corresponding placeholders in the string.
Each of the placeholders must be associated with a bind variable in the using clause or a returning
into clause. Bind variables can be numeric, character, or string literals.

The following example illustrates the use of bind variables within a dynamic update statement:

declare
sql_stmt VARCHAR2(200);
Symbol VARCHAR2(6) := 'ADSP';
CloseToday NUMBER(6,2);

begin
sql_stmt := 'update STOCK set CloseToday = 32 WHERE Symbol = :1

RETURNING CloseToday INTO :2';
EXECUTE IMMEDIATE sql_stmt USING Symbol RETURNING INTO CloseToday;

578 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 32
Blind Folio 32:578

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

end;
/

The returning into clause is only used in insert, update, and delete commands that have a
returning clause. For each value returned by the command, there must be a corresponding variable
in the returning into clause.

Using DBMS_SQL
Prior to Oracle9i, dynamic SQL required the use of the DBMS_SQL package. You can still use
the DBMS_SQL method, as shown in this section. Using DBMS_SQL may give you greater
control over the processing flow within the dynamic SQL, but it is generally more complicated
to write than the native dynamic SQL shown earlier in this chapter.

The script in the following example creates the DBMS_SQL version of the ANYSTRING
procedure shown earlier. The ANYSTRING procedure has a single input variable: a SQL
command. When you execute the ANYSTRING procedure, you pass it the SQL command to
execute; the SQL command may be either a DML command (such as select or insert) or a DDL
command (such as create table).

create or replace procedure ANYSTRING(String IN VARCHAR2) AS
Cursor_Name INTEGER;
Ret INTEGER;

BEGIN
Cursor_Name := DBMS_SQL.OPEN_CURSOR;
DBMS_SQL.PARSE(Cursor_Name, String, dbms_sql.Native);
Ret := DBMS_SQL.EXECUTE(Cursor_Name);
DBMS_SQL.CLOSE_CURSOR(Cursor_Name);

END;
/

As with the earlier version, you can execute the ANYSTRING procedure via the execute
command, as shown in the following examples of DDL and DML commands:

execute ANYSTRING('drop table CD');

execute ANYSTRING('create table CD (Artist VARCHAR2(25), Title VARCHAR2(25))');

execute ANYSTRING('insert into CD values(''NEIL FINN'',''TRY WHISTLING THIS'')');

If the SQL statements passed to ANYSTRING contain quotes, each quote should be replaced
with a set of two quotes, as shown in the preceding execution of ANYSTRING for the insert
command. After each command, you will receive the following response:

PL/SQL procedure successfully completed.

You can verify that the commands succeeded by querying the new table, as shown in the
next example.

Chapter 32: Using Native Dynamic SQL and DBMS_SQL 579

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 32
Blind Folio 32:579

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select * from CD;

ARTIST TITLE
------------------------- -------------------------
NEIL FINN TRY WHISTLING THIS

In the following sections, you will see descriptions of the major functions and procedures used
within dynamic SQL statements.

OPEN_CURSOR
The OPEN_CURSOR function of the DBMS_SQL package opens a cursor and returns to your
program a cursor ID number. Thus, within the ANYSTRING procedure, the cursor_name variable
is defined as an INTEGER datatype:

Cursor_Name INTEGER;

Within the Executable Commands section, the cursor_name variable is set to the output of
the OPEN_CURSOR execution:

Cursor_Name := DBMS_SQL.OPEN_CURSOR;

PARSE
Parsing a statement checks its syntax and associates the statement with the cursor. To parse a
statement, use the PARSE procedure of the DBMS_SQL package. For example, in the ANYSTRING
procedure, the following command parses the SQL command. PARSE takes three parameters:
the cursor ID, the command being parsed, and a language flag.

DBMS_SQL.PARSE(Cursor_Name, String, dbms_sql.Native);

The language flag specifies the behavior for the statement. The “Native” setting shown in this
example specifies behavior according to the current version of the database.

NOTE
DDL commands (such as create table) are executed when they are
parsed.

BIND_VARIABLE and BIND_ARRAY
If your dynamic SQL procedure performs data manipulation, you will need to use bind variables.
Any dynamic SQL command that inserts, updates, or deletes records needs to use either the BIND_
VARIABLE or BIND_ARRAY procedure within DBMS_SQL as part of its processing. You must call
one of these procedures to supply the value of a variable in your program to the placeholder. When
the SQL statement is then executed, Oracle uses the data that your program has placed in the output
and input, or bind, variables.

For example, the PARSE execution in the following listing parses a SQL command in which
one of the values is unknown—the value of the bind variable used in the procedure:

580 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 32
Blind Folio 32:580

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DBMS_SQL.PARSE(Cursor_Name, 'delete from CD where Artist > :artist',
dbms_sql.Native);

Following the PARSE execution, you must bind the :artist bind variable to the artist_name
variable passed to the procedure. When a user executes the procedure, a value will be specified
for the artist_name variable. The BIND_VARIABLE procedure shown in the following listing will
bind the artist_name value to the :artist bind variable used by the command string being parsed:

DBMS_SQL.BIND_VARIABLE(Cursor_Name, ':artist', artist_name);

You can use dynamic SQL to execute a DML statement multiple times—each time with
a different bind variable. You can use the BIND_ARRAY procedure to bind an array of values,
each of which will be used as an input variable once per EXECUTE.

EXECUTE
To execute your dynamically created SQL statement, use the EXECUTE function of the DBMS_SQL
package. The following listing, from the ANYSTRING procedure, shows the use of the EXECUTE
function:

Ret := DBMS_SQL.EXECUTE(Cursor_Name);

When you use the EXECUTE function, you pass the cursor ID value (in this example, the
cursor_name variable) as input. The ret variable holds the output of the EXECUTE function,
which will be the number of rows processed (if the executed statement performs DML).

DEFINE_COLUMN
If your cursor performs a query, you must execute the DEFINE_COLUMN function once for
each column being selected. If the column is defined with a LONG datatype, you must use the
DEFINE_COLUMN_LONG function in place of DEFINE_COLUMN. If you are selecting values
into a PL/SQL array, you must use DEFINE_ARRAY in place of DEFINE_COLUMN.

For example, consider the query parsed in the following command:

DBMS_SQL.PARSE(Cursor_Name,'select Artist, Title from CD',
dbms_sql.Native);

Prior to executing the cursor, you must define the columns by their position in the query,
as shown in the following listing:

DBMS_SQL.DEFINE_COLUMN(Cursor_Name, 1, Artist, 25);
DBMS_SQL.DEFINE_COLUMN(Cursor_Name, 2, Title, 25);

Once you have defined the columns, you can use the EXECUTE function to execute the cursor.

Chapter 32: Using Native Dynamic SQL and DBMS_SQL 581

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 32
Blind Folio 32:581

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

582 Part IV: PL/SQL

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 32
Blind Folio 32:582

FETCH_ROWS, EXECUTE_AND_FETCH,
and COLUMN_VALUE
If your dynamic SQL command performs a query, you can call the FETCH_ROWS function to
retrieve the query’s rows. The EXECUTE_AND_FETCH function both executes and fetches rows.

For example, suppose there is a table called CD_COPY, with the same column definitions as
the CD table created earlier in this chapter. You can use dynamic SQL to select records from the
CD table and insert them into the CD_COPY table. For this example, the Get_CD_Cursor statement
will retrieve rows from the CD table, and the Insert_CD_Copy_Cursor statement will insert the
retrieved values into the CD_COPY table.

In this example, the Get_CD_Cursor cursor has already been parsed. The sample code executes
the FETCH_ROWS function. If the number of rows fetched is greater than zero, the record will be
processed.

if DBMS_SQL.FETCH_ROWS(Get_CD_Cursor)>0 then

For the fetched record, the COLUMN_VALUE procedure is executed once for each column
selected:

DBMS_SQL.COLUMN_VALUE(Get_CD_Cursor, 1, Artist);
DBMS_SQL.COLUMN_VALUE(Get_CD_Cursor, 2, Title);

Now that the queried values have been bound to variables, you can bind those values into
the cursor that inserts records into the CD_COPY table:

DBMS_SQL.BIND_VARIABLE(Insert_CD_Copy_Cursor, 'artist', Artist);
DBMS_SQL.BIND_VARIABLE(Insert_CD_Copy_Cursor, 'title', Title);

You can now execute the cursor that inserts values into the CD_COPY table:

Ret := DBMS_SQL.EXECUTE(Insert_CD_COPY_Cursor);

The ret variable will hold the number of rows inserted into the CD_COPY table. If you called
a procedure from within an anonymous PL/SQL block, execute the VARIABLE_VALUE function
to retrieve the values assigned to its output variables.

CLOSE_CURSOR
You can close an open cursor by executing the CLOSE_CURSOR procedure of the DBMS_SQL
package. The example in the following listing, from the ANYSTRING procedure, shows that the
CLOSE_CURSOR procedure uses the cursor ID value as its sole input parameter:

DBMS_SQL.CLOSE_CURSOR(Cursor_Name);

Closing a cursor frees the memory used by the cursor and reduces the number of concurrently
open cursors in your session.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Table 32-1 lists the major functions and procedures available in dynamic SQL, along with a
brief description of each.

Chapter 32: Using Native Dynamic SQL and DBMS_SQL 583

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 32
Blind Folio 32:583

Function or Procedure Description

BIND_ARRAY Binds a value to an array.

BIND_VARIABLE Binds a value to a variable.

CLOSE_CURSOR Closes a cursor.

COLUMN_VALUE Returns the value of a cursor element within a cursor’s query.

COLUMN_VALUE_LONG Returns all or a portion of a LONG datatype element within
a cursor’s query.

DEFINE_ARRAY Defines an array to be selected from a cursor’s query.

DEFINE_COLUMN Defines a column to be selected from a cursor’s query.

DEFINE_COLUMN_LONG Defines a LONG datatype column to be selected from a
cursor’s query.

DESCRIBE_COLUMNS Describes columns for a cursor opened and parsed through
DBMS_SQL.

DESCRIBE_COLUMNS2 Alternative to DESCRIBE_COLUMNS.

EXECUTE Executes a cursor.

EXECUTE_AND_FETCH Executes a cursor and fetches rows from the cursor.

FETCH_ROWS Fetches a row from a cursor.

IS_OPEN Checks to see if a cursor is open; possible return values are
TRUE and FALSE.

LAST_ERROR_POSITION Returns the position in the SQL statement where an error
occurred.

LAST_ROW_COUNT Shows the number of rows fetched.

LAST_ROW_ID Shows the ROWID value of the last row processed.

LAST_SQL_FUNCTION_CODE Returns the SQL function code for a statement.

OPEN_CURSOR Opens a cursor and returns the cursor ID value.

PARSE Parses a statement. If the statement is a DDL command,
it is immediately executed.

VARIABLE_VALUE Returns the value of a variable in a cursor.

TABLE 32-1. Procedures and Functions in DBMS_SQL

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 32
Blind Folio 32:584

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 33
Blind Folio 33:585

PART
V

Object-Relational
Databases

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 33
Blind Folio 33:586

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 33
Blind Folio 33:587

CHAPTER
33

Implementing Types,
Object Views,
and Methods

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

I
n this chapter, you will see details on the use of abstract datatypes. This chapter covers
topics such as security administration for abstract datatypes and the indexing of abstract
datatype attributes. The creation of methods for abstract datatypes is also shown, along
with the use of object views and INSTEAD OF triggers.

To use the information provided in this chapter, you should be familiar with datatypes (see
Chapter 4), views (see Chapter 18), the grant command (see Chapter 19), indexes (see Chapter 17),
and PL/SQL procedures and triggers (see Chapters 29, 30, and 31). Elements of each of these topics
play a part in the implementation of an object-relational database.

Working with Abstract Datatypes
You can use abstract datatypes to group related columns into objects. For example, columns that
are part of address information can be grouped into an ADDRESS_TY datatype via the create type
command. For this example, use an account named Dora with CONNECT and RESOURCE roles:

rem while connected as Dora:

create type ADDRESS_TY as object
(Street VARCHAR2(50),
City VARCHAR2(25),
State CHAR(2),
Zip NUMBER);

/

The create type command in the preceding listing creates an ADDRESS_TY abstract datatype.
You can use ADDRESS_TY when creating additional database objects. For example, the following
create type command creates the PERSON_TY datatype, using the ADDRESS_TY datatype as the
datatype for its Address column:

create type PERSON_TY as object
(Name VARCHAR2(25),
Address ADDRESS_TY);

/

Because the Address column of the PERSON_TY datatype uses the ADDRESS_TY datatype,
it holds not one value but four—the four columns that constitute the ADDRESS_TY datatype.

Security for Abstract Datatypes
The preceding example assumed that the same user owned both the ADDRESS_TY datatype and
the PERSON_TY datatype. What if the owner of the PERSON_TY datatype were different from the
ADDRESS_TY datatype’s owner?

For example, what if the account named Dora owns the ADDRESS_TY datatype, and the user of
the account named George tries to create the PERSON_TY datatype? George executes the following
command:

588 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 33
Blind Folio 33:588

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 33: Implementing Types, Object Views, and Methods 589

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 33
Blind Folio 33:589

rem while connected as George:

create type PERSON_TY as object
(Name VARCHAR2(25),
Address ADDRESS_TY);

/

If George does not own the ADDRESS_TY abstract datatype, Oracle will respond to this create
type command with the following message:

Warning: Type created with compilation errors.

The compilation errors are caused by problems creating the constructor method—a special
method created by Oracle when the datatype is created. Oracle cannot resolve the reference to
the ADDRESS_TY datatype because George does not own a datatype with that name. George
could issue the create type command again (using the or replace clause) to specifically reference
Dora’s ADDRESS_TY datatype:

create or replace type PERSON_TY as object
(Name VARCHAR2(25),
Address Dora.ADDRESS_TY);

/

Warning: Type created with compilation errors.

To see the errors associated with the datatype creation, use the show errors command:

show errors
Errors for TYPE PERSON_TY:

LINE/COL ERROR
-------- --
0/0 PL/SQL: Compilation unit analysis terminated
3/11 PLS-00201: identifier 'DORA.ADDRESS_TY' must be declared

George will not be able to create the PERSON_TY datatype (which includes the ADDRESS_
TY datatype) unless Dora first grants him EXECUTE privilege on her type. The following listing
shows this grant:

rem while connected as Dora:

grant EXECUTE on ADDRESS_TY to George;

Now that the proper grants are in place, George can create a datatype that is based on Dora’s
ADDRESS_TY datatype, as shown in the following listing.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

rem while connected as George:

create or replace type PERSON_TY as object
(Name VARCHAR2(25),
Address Dora.ADDRESS_TY);

/

Using another user’s datatypes is not trivial. For example, during insert operations, you
must specify the owner of each type or use a synonym. George can create a table based on his
PERSON_TY datatype (which includes Dora’s ADDRESS_TY datatype), as shown in the following
listing:

create table CUSTOMER
(Customer_ID NUMBER,
Person PERSON_TY);

If George owned the PERSON_TY and ADDRESS_TY datatypes, an insert into CUSTOMER
would use the following format:

insert into CUSTOMER values
(1,PERSON_TY('SomeName',

ADDRESS_TY('StreetValue','CityValue','ST',11111)));

Because George does not own the ADDRESS_TY datatype, this command will fail. During the
insert, the ADDRESS_TY constructor method is used—and Dora owns it. Therefore, the insert
command must be modified to specify Dora as the owner of ADDRESS_TY. The following example
shows the corrected insert statement, with the reference to Dora shown in bold:

insert into CUSTOMER values
(1,PERSON_TY('SomeName',

Dora.ADDRESS_TY('StreetValue','CityValue','ST',11111)));

George can simplify the SQL by creating a synonym named ADDRESS_TY:

create synonym ADDRESS_TY for Dora.ADDRESS_TY;

This synonym can be used in queries, DML, and DDL.
You can use a synonym for another user’s datatype during queries and inserts. For example,

George’s insert works now that the ADDRESS_TY synonym exists:

insert into CUSTOMER values
(1,PERSON_TY('SomeName',

ADDRESS_TY('StreetValue','CityValue','ST',11111)));

NOTE
When you create a synonym, Oracle does not check the validity of
the object for which you are creating a synonym. When you create
synonym x for y, Oracle does not check to make sure that y is a valid
object name or valid object type. The validity of that object is only
checked when the object is accessed via the synonym.

590 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 33
Blind Folio 33:590

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In a relational-only implementation of Oracle, you grant the EXECUTE privilege on procedural
objects such as procedures and packages. Within the object-relational implementation of Oracle,
the EXECUTE privilege is extended to cover abstract datatypes as well. The EXECUTE privilege is
appropriate because abstract datatypes can include methods—PL/SQL functions and procedures
that operate on the datatype. If you grant someone the privilege to use your datatype, you are
granting the user the privilege to execute the methods you have defined on the datatype. Although
Dora did not yet define any methods on the ADDRESS_TY datatype, Oracle automatically creates
constructor methods to access the data. Any object (such as PERSON_TY) that uses the ADDRESS_
TY datatype uses the constructor method associated with ADDRESS_TY. Even if you haven’t created
any methods for your abstract datatype, it still has procedures associated with it.

You can describe CUSTOMER:

describe CUSTOMER

Name Null? Type
--- -------- ---------
CUSTOMER_ID NUMBER
PERSON PERSON_TY

You can use the set describe depth command in SQL*Plus to show the datatype attributes for
tables that use object-relational features. You can specify depth values from 1 to 50:

set describe depth 2

desc CUSTOMER

Name Null? Type
--- -------- ----------------
CUSTOMER_ID NUMBER
PERSON PERSON_TY
NAME VARCHAR2(25)
ADDRESS DORA.ADDRESS_TY

set describe depth 3

desc customer

Name Null? Type
--- -------- ----------------
CUSTOMER_ID NUMBER
PERSON PERSON_TY
NAME VARCHAR2(25)
ADDRESS DORA.ADDRESS_TY
STREET VARCHAR2(50)
CITY VARCHAR2(25)
STATE CHAR(2)
ZIP NUMBER

Chapter 33: Implementing Types, Object Views, and Methods 591

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 33
Blind Folio 33:591

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Indexing Abstract Datatype Attributes
As shown in the previous listings, the CUSTOMER table contains a normal column (Customer_ID)
and a Person column that is defined by the PERSON_TY abstract datatype.

From the datatype definitions shown in the preceding section of this chapter, you can see that
PERSON_TY has one column (Name) followed by an Address column defined by the ADDRESS_
TY datatype.

During queries, you fully qualify the datatype attributes when referencing columns within the
abstract datatypes by prefacing the attribute name with the column name and by prefacing the
column name with a correlation variable. For example, the following query returns the Customer_
ID column along with the Name column. The Name column is an attribute of the datatype that
defines the Person column, so you refer to the attribute as Person.Name:

select Customer_ID, C.Person.Name
from CUSTOMER C;

NOTE
When querying the attributes of an abstract datatype, you must
use a correlation variable for the table, as shown in this example.

To set the display attributes for an abstract datatype’s attributes in SQL*Plus, use the column
command, specifying the name of the datatype and the attribute:

column Customer_ID format 9999999
column Person.Name format A25

You can refer to attributes within the ADDRESS_TY datatype by specifying the full path through
the related columns. For example, the Street column is referred to as Person.Address.Street, fully
describing its location within the structure of the table. In the following example, the City column
is referenced twice—once in the list of columns to select, and once within the where clause. In each
reference, a correlation variable (in this example, C) is required.

select C.Person.Name,
C.Person.Address.City

from CUSTOMER C
where C.Person.Address.City like 'C%';

Because the City column is used with a range search in the where clause, the Oracle optimizer
may be able to use an index when resolving the query. If an index is available on the City column,
Oracle can quickly find all the rows that have City values starting with the letter C, as requested
by the query.

NOTE
See Chapter 43 for guidelines regarding the columns to index.

592 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 33
Blind Folio 33:592

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To create an index on a column that is part of an abstract datatype, you need to specify the full
path to the column as part of the create index command. To create an index on the City column
(which is part of the Address column), you can execute the following command:

create index I_CUSTOMER$CITY
on CUSTOMER(Person.Address.City);

This command will create an index named I_CUSTOMER$CITY on the Person.Address.City column.
Whenever the City column is accessed, the Oracle optimizer will evaluate the SQL used to access
the data and determine if the new index can be useful for improving the performance of the query.

NOTE
In the create index command, you do not use correlation variables
when referencing the attributes of abstract datatypes.

When creating tables based on abstract datatypes, you should consider how the columns
within the abstract datatypes will be accessed. If, like the City column in the preceding example,
certain columns will commonly be used as part of limiting conditions in queries, they should be
indexed. In this regard, the representation of multiple columns in a single abstract datatype may
hinder your application performance because it may obscure the need to index specific columns
within the datatype. When using abstract datatypes, you become accustomed to treating a group
of columns as a single entity, such as the Address columns or the Person columns. It is important
to remember that the optimizer, when evaluating query access paths, will consider the columns
individually. In addition, remember that indexing the City column in one table that uses the ADDRESS_
TY datatype does not affect the City column in a second table that uses the ADDRESS_TY datatype.
For example, if there is a second table named BRANCH that uses the ADDRESS_TY datatype, its
City column will not be indexed unless you create an index for it. The fact that there is an index
on the City column in the CUSTOMER table will have no impact on the City column in the BRANCH
table.

Therefore, one of the advantages of abstract datatypes—the ability to improve adherence to
standards for logical data representation—does not extend to the physical data representation. You
need to address each physical implementation separately.

Implementing Object Views
The CUSTOMER table created in the previous section of this chapter assumed that a PERSON_TY
datatype already existed. When implementing object-relational database applications, you should
first use the relational database design methods described in the first part of this book. After the
database design is properly normalized, you should look for groups of columns (or individual
columns) that constitute the representation of an abstract datatype. You can then create your tables
based on the abstract datatypes, as shown earlier in this chapter.

But what if your tables already exist? What if you have previously created a relational database
application and now want to implement object-relational concepts in your application without
rebuilding and re-creating the entire application? To do this, you need the ability to overlay object-
oriented (OO) structures, such as abstract datatypes, on existing relational tables. Oracle provides
object views as a means for defining objects used by existing relational tables.

Chapter 33: Implementing Types, Object Views, and Methods 593

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 33
Blind Folio 33:593

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

594 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 33
Blind Folio 33:594

NOTE
Throughout the examples in this book, the names of object views will
always end with the suffix OV.

In the examples earlier in this chapter, the order of operations was as follows:

1. Create the ADDRESS_TY datatype.

2. Create the PERSON_TY datatype, using the ADDRESS_TY datatype.

3. Create the CUSTOMER table, using the PERSON_TY datatype.

If the CUSTOMER table already existed, you could create the ADDRESS_TY and PERSON_TY
datatypes and use object views to relate them to the CUSTOMER table. In the following listing,
the CUSTOMER table is created as a relational table, using only the built-in datatypes. To keep the
examples separated, create these objects under a new schema.

rem connected as a new user:

drop table CUSTOMER;

create table CUSTOMER
(Customer_ID NUMBER primary key,
Name VARCHAR2(25),
Street VARCHAR2(50),
City VARCHAR2(25),
State CHAR(2),
Zip NUMBER);

If you want to create another table or application that stores information about people and
addresses, you may choose to create the ADDRESS_TY and PERSON_TY datatypes. However,
for consistency, they should be applied to the CUSTOMER table as well.

With the CUSTOMER table already created (and possibly containing data), you should create
the abstract datatypes. First, create ADDRESS_TY:

drop type PERSON_TY;
drop type ADDRESS_TY;
create or replace type ADDRESS_TY as object
(Street VARCHAR2(50),
City VARCHAR2(25),
State CHAR(2),
Zip NUMBER);

/

Next, create PERSON_TY, which uses ADDRESS_TY:

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 33: Implementing Types, Object Views, and Methods 595

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 33
Blind Folio 33:595

create or replace type PERSON_TY as object
(Name VARCHAR2(25),
Address ADDRESS_TY);

/

Now, create an object view based on the CUSTOMER table using the datatypes you have
defined. An object view starts with the create view command. Within the create view command,
you specify the query that will form the basis of the view. You’ll use the datatypes you just created.
The code for creating the CUSTOMER_OV object view is shown in the following listing:

create view CUSTOMER_OV (Customer_ID, Person) as
select Customer_ID,

PERSON_TY(Name,
ADDRESS_TY(Street, City, State, Zip))

from CUSTOMER;

Let’s look at this command closely. In the first line, the object view is named:

create view CUSTOMER_OV (Customer_ID, Person) as

The CUSTOMER_OV view will have two columns: the Customer_ID column and the Person
column (the latter is defined by the PERSON_TY datatype). Note that you cannot specify “object”
as an option within the create view command.

In the next section of the create view command, you create the query that will form the basis
for the view:

select Customer_ID,
PERSON_TY(Name,
ADDRESS_TY(Street, City, State, Zip))

from CUSTOMER;

This example presents several important syntax issues. When a table is built on existing abstract
datatypes, you select column values from the table by referring to the names of the columns
(such as Person and Address in earlier examples) instead of their constructor methods. When
creating the object view, however, you refer to the names of the constructor methods (PERSON_
TY and ADDRESS_TY) instead.

You can use a where clause in the query that forms the basis of the object view. In the following
example, CUSTOMER_OV is modified to include a where clause that limits it to showing the
CUSTOMER values for which the State column has a value of ‘DE’:

create or replace view CUSTOMER_OV (Customer_ID, Person) as
select Customer_ID,

PERSON_TY(Name,
ADDRESS_TY(Street, City, State, Zip))

from CUSTOMER
where State = 'DE';

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Note that when you create the object view CUSTOMER_OV, the where clause of the view’s
base query does not refer to the abstract datatype. Instead, it refers directly to the CUSTOMER
table. The where clause refers directly to the State column because the query refers directly to
the CUSTOMER table—a relational table that is not based on any abstract datatypes.

To create object views based on relational tables, the order of operations is as follows:

1. Create the CUSTOMER table if it does not already exist.

2. Create the ADDRESS_TY datatype.

3. Create the PERSON_TY datatype, using the ADDRESS_TY datatype.

4. Create the CUSTOMER_OV object view, using the defined datatypes.

There are two main benefits to using object views. First, they allow you to create abstract
datatypes that operate against tables that already exist. Because you can use the same
abstract datatypes in multiple tables within your application, you can improve your application’s
adherence to standard representation of data and your ability to reuse existing objects. Because
you can define methods for the abstract datatypes, the methods will apply to the data within any
new tables you create as well as to your existing tables.

Second, object views provide two different ways to enter data into the base table. The
flexibility of data manipulation for object views—being able to treat the base table as either
a relational table or an object table—is a significant benefit for application developers. In the
next section, you will see the data-manipulation options available for object views.

Manipulating Data via Object Views
You can update the data in the CUSTOMER table via the CUSTOMER_OV object view, or you
can update the CUSTOMER table directly. By treating CUSTOMER as just a table, you can insert
data into it via a normal SQL insert command, as shown in the following example:

insert into CUSTOMER values
(123,'SIGMUND','47 HAFFNER RD','LEWISTON','NJ',22222);

This insert command inserts a single record into the CUSTOMER table. Even though you have
created an object view on the table, you can still treat the CUSTOMER table as a regular relational
table.

Because the object view has been created on the CUSTOMER table, you can insert into
CUSTOMER via the constructor methods used by the view. As previously shown in this chapter,
when you insert data into an object that uses abstract datatypes, you specify the names of the
constructor methods within the insert command. The example shown in the following listing inserts
a single record into the CUSTOMER_OV object view using the CUSTOMER_TY, PERSON_TY,
and ADDRESS_TY constructor methods:

insert into CUSTOMER_OV values
(234,
PERSON_TY('EVELYN',
ADDRESS_TY('555 HIGH ST','LOWLANDS PARK','NE',33333)));

596 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 33
Blind Folio 33:596

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Because you can use either method to insert values into the CUSTOMER_OV object view,
you can standardize the manner in which your application performs data manipulation. If your
inserts are all based on abstract datatypes, you can use the same kind of code for inserts regardless
of whether the abstract datatypes were created before or after the table was.

You can query the rows just entered from either CUSTOMER or CUSTOMER_OV; but because
the view has a where clause, CUSTOMER_OV will only show the rows that pass that limiting
condition.

Using INSTEAD OF Triggers
If you create an object view, you can use an INSTEAD OF trigger to tell Oracle how to update
the underlying tables that are part of the view. You can use INSTEAD OF triggers on either
object views or standard relational views.

For example, if a view involves a join of two tables, your ability to update records in the
view is limited. However, if you use an INSTEAD OF trigger, you can tell Oracle how to update,
delete, or insert records in tables when a user attempts to change values via the view. The code
in the INSTEAD OF trigger is executed in place of the insert, update, or delete command you enter.

For example, you may have a view that joins the BOOKSHELF table to BOOKSHELF_AUTHOR:

create or replace view AUTHOR_PUBLISHER as
select BA.AuthorName, Title, B.Publisher
from BOOKSHELF_AUTHOR BA inner join BOOKSHELF B
using (Title);

You can select values from this view—and if you use INSTEAD OF triggers, you can also
perform data manipulation via this view. Consider these records:

select AuthorName, Publisher from AUTHOR_PUBLISHER
where AuthorName = 'W. P. KINSELLA';

AUTHORNAME PUBLISHER
-- ----------
W. P. KINSELLA MARINER
W. P. KINSELLA BALLANTINE

If we attempt to update the Publisher value, the update fails:

update AUTHOR_PUBLISHER
set Publisher = 'MARINER'

where AuthorName = 'W. P. KINSELLA';

set Publisher = 'MARINER'
*

ERROR at line 2:
ORA-01779: cannot modify a column which maps to a

non key-preserved table

The problem is that Oracle cannot determine which publisher in which record to update in
BOOKSHELF. To perform the update via the view, you will need to use an INSTEAD OF trigger.

Chapter 33: Implementing Types, Object Views, and Methods 597

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 33
Blind Folio 33:597

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In the following listing, an INSTEAD OF trigger for the AUTHOR_PUBLISHER view is created:

create or replace trigger AUTHOR_PUBLISHER_UPDATE
instead of UPDATE on AUTHOR_PUBLISHER
for each row
begin
if :old.Publisher <> :new.Publisher
then
update BOOKSHELF

set Publisher = :new.Publisher
where Title = :old.Title;

end if;
if :old.AuthorName <> :new.AuthorName
then
update BOOKSHELF_AUTHOR

set AuthorName = :new.AuthorName
where Title = :old.Title;

end if;
end;
/

In the first part of this trigger, the trigger is named and its purpose is described via the instead of
clause. The trigger has been named to make its function clear: It is used to support update commands
executed against the AUTHOR_PUBLISHER view. It is a row-level trigger; each changed row will be
processed, as shown next:

create trigger AUTHOR_PUBLISHER_UPDATE
instead of UPDATE on AUTHOR_PUBLISHER
for each row

The next section of the trigger tells Oracle how to process the update. In the first check within
the trigger body, the Publisher value is checked. If the old Publisher value is equal to the new
Publisher value, no changes are made. If the values are not the same, the BOOKSHELF table is
updated with the new Publisher value:

begin
if :old.Publisher <> :new.Publisher
then
update BOOKSHELF

set Publisher = :new.Publisher
where Title = :old.Title;

end if;

In the next section of the trigger, the AuthorName value is evaluated. If the AuthorName value
has changed, the BOOKSHELF table is updated to reflect the new AuthorName value:

if :old.AuthorName <> :new.AuthorName
then
update BOOKSHELF_AUTHOR

598 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 33
Blind Folio 33:598

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 33: Implementing Types, Object Views, and Methods 599

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 33
Blind Folio 33:599

set AuthorName = :new.AuthorName
where Title = :old.Title;

end if;

Thus, the view relies on two tables—BOOKSHELF and BOOKSHELF_AUTHOR—and an update
of the view can update either or both of the tables. The INSTEAD OF trigger, introduced to support
object views, is a powerful tool for application development.

You can now update the AUTHOR_PUBLISHER view directly and have the trigger update the
proper underlying table. For example, the following command will update the BOOKSHELF table:

update AUTHOR_PUBLISHER
set Publisher = 'MARINER'

where AuthorName = 'W. P. KINSELLA';

2 rows updated.

Verify the update by querying the BOOKSHELF table:

select Publisher from BOOKSHELF
where Title in

(select Title from BOOKSHELF_AUTHOR
where AuthorName = 'W. P. KINSELLA');

PUBLISHER

MARINER
MARINER

INSTEAD OF triggers are very powerful. As shown in this example, you can use them to
perform operations against different database tables, using the flow-control logic available within
PL/SQL. In dealing with object views, you can use INSTEAD OF triggers to redirect DML against the
object views to the base tables for the views.

Methods
When you created an object view on the CUSTOMER table, you defined abstract datatypes that
the table used. Those datatypes help to standardize the representation of data, but they serve
another purpose as well. You can define methods that apply to datatypes, and by applying those
datatypes to existing tables, you can apply those methods to the data in those tables.

Consider the CUSTOMER_OV object view:

create or replace view CUSTOMER_OV (Customer_ID, Person) as
select Customer_ID,

PERSON_TY(Name,
ADDRESS_TY(Street, City, State, Zip))

from CUSTOMER;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This view applies the PERSON_TY and ADDRESS_TY abstract datatypes to the data in the
CUSTOMER table. If any methods are associated with those datatypes, they will apply to the
data in the table. When you create an abstract datatype, you use the create type command.
When you create a method, you use the create type body command.

Syntax for Creating Methods
Before creating the body for a method, you must name the method within the datatype declaration.
For example, let’s create a new datatype, ANIMAL_TY. The datatype definition for ANIMAL_TY is
shown in the following listing:

create or replace type ANIMAL_TY as object
(Breed VARCHAR2(25),
Name VARCHAR2(25),
BirthDate DATE,

member function AGE (BirthDate IN DATE) return NUMBER);
/

The ANIMAL_TY datatype could be used as part of an object view on the BREEDING table
used in Chapter 14. In the BREEDING table, the name of an offspring, its sex, its parents, and its
birthdate are recorded.

Within the create type command, the line

member function AGE (BirthDate IN DATE) return NUMBER)

names the function that is a “member” of the ANIMAL_TY datatype. Because AGE will return
a value, it is a function (see Chapter 31). To define the AGE function, use the create type body
command, whose full syntax is shown in the Alphabetical Reference.

Let’s create the AGE function as a member function within the ANIMAL_TY datatype. The AGE
function will return the age, in days, of the animals:

create or replace type body ANIMAL_TY as
member function Age (BirthDate DATE) return NUMBER is

begin
RETURN ROUND(SysDate - BirthDate);
end;

end;
/

If you had additional functions or procedures to code, you would specify them within the same
create type body command, before the final end clause.

Now that the AGE function has been created, it is associated with the ANIMAL_TY datatype.
If a table uses this datatype, it can use the AGE function.

NOTE
You cannot drop or re-create a type that is in use by a table.

600 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 33
Blind Folio 33:600

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 33
Blind Folio 33:601

You can use the AGE function within a query. If ANIMAL_TY is used as the datatype for a
column named Animal in the table named ANIMAL, the table structure could be as follows:

create table ANIMAL
(ID NUMBER,
Animal ANIMAL_TY);

insert into ANIMAL values
(11,ANIMAL_TY('COW','MIMI',TO_DATE('01-JAN-1997','DD-MON-YYYY')));

You can now invoke the AGE function, which is part of the ANIMAL_TY datatype. Like the
attributes of an abstract datatype, the member methods are referenced using the column names
that use the datatypes (in this case, Animal.AGE). Your result will reflect the current system date
when you execute the query:

select A.Animal.AGE(A.Animal.BirthDate)
from ANIMAL A;

A.ANIMAL.AGE(A.ANIMAL.BIRTHDATE)

2694

The A.Animal.AGE(A.Animal.BirthDate) call executes the AGE method within the ANIMAL_
TY datatype. Therefore, you do not have to store variable data such as age within your database.
Instead, you can store static data—such as birthdate—in your database and use function and
procedure calls to derive the variable data.

NOTE
In this example, you need to use correlation variables in two places—
when calling the AGE method and when passing the name of the
BirthDate column to that method.

Managing Methods
You can add new methods to a datatype by altering the datatype (via the alter type command).
When altering a datatype, list all its methods, both the old and the new. After altering the datatype,
alter the datatype’s body, listing all the datatype’s methods in a single command.

You do not need to grant EXECUTE privilege on the member functions and procedures of
abstract datatypes. If you grant another user EXECUTE privilege on the ANIMAL_TY datatype, that
user automatically has EXECUTE privilege on the methods that are part of the datatype. Thus, the
grant of access to the datatype includes both the data representation and its data access methods,
in accordance with OO concepts.

When creating member functions, you can specify them as being map methods or order methods
(or neither, as in the case of the ANIMAL_TY.Age member function). A map method returns the
relative position of a given record in the ordering of all records within the object. A type body can
contain only one map method, which must be a function.

Chapter 33: Implementing Types, Object Views, and Methods 601

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

An order method is a member function that takes a record in the object as an explicit argument
and returns an integer value. If the returned value is negative, zero, or positive, the implicit “self”
argument of the function is less than, equal to, or greater than, respectively, that of the explicitly
specified record. When multiple rows within an object are compared in an order by clause, the
order method is automatically executed to order the rows returned. A datatype specification
can contain only one order method, which must be a function with the return type INTEGER.

The notion of ordering within the rows of an abstract datatype may have more relevance
when you consider the implementation of collectors—datatypes that hold multiple values per
row. Oracle offers two types of collectors, called nested tables and varying arrays. In the next
chapter, you will see how to implement these collector types.

602 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 33
Blind Folio 33:602

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 34
Blind Folio 34:603

CHAPTER
34

Collectors
(Nested Tables and

Varying Arrays)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C
ollectors make use of abstract datatypes. You should be familiar with the creation
and implementation of abstract datatypes (see Chapter 33) before attempting to
use varying arrays and nested tables.

Varying Arrays
A varying array allows you to store repeating attributes of a record in a single row. For example,
suppose you want to track which of your tools were borrowed by which of your neighbors. You
could model this in a relational database by creating a BORROWER table:

create table BORROWER
(Name VARCHAR2(25),
Tool VARCHAR2(25),

constraint BORROWER_PK primary key (Name, Tool));

Even though the borrower’s Name value does not change, it is repeated in each record because
it is part of the primary key. Collectors such as varying arrays allow you to repeat only those column
values that change, potentially saving storage space. You can use collectors to accurately represent
relationships between datatypes in your database objects. In the following sections, you will see
how to create and use collectors.

Creating a Varying Array
You can create a varying array based on either an abstract datatype or one of Oracle’s standard
datatypes (such as NUMBER). For example, you could create a new datatype, TOOL_TY, as shown
in the following listing, which has only one column; you should limit varying arrays to one column.
If you need to use multiple columns in an array, consider using nested tables (described later in
this chapter).

create type TOOL_TY as object
(ToolName VARCHAR2(25));
/

You do not have to create the base type—in this case, TOOL_TY—before you can create a
varying array (to be named TOOLS_VA). Because the varying array is based on only one column,
you can create the TOOLS_VA type in a single step. To create the varying array, use the as varray()
clause of the create type command:

create or replace type TOOLS_VA as varray(5) of VARCHAR2(25);
/

When this create type command is executed, a type named TOOLS_VA is created. The as
varray(5) clause tells Oracle that a varying array is being created, and it will hold a maximum of
five entries per record. The name of the varying array is the pluralized TOOLS (instead of TOOL)
to show that this type will be used to hold multiple records. The suffix VA makes it clear that the
type is a varying array. You can now use this type as the basis for a column definition, as shown
in the following listing:

604 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 34
Blind Folio 34:604

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 34: Collectors (Nested Tables and Varying Arrays) 605

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 34
Blind Folio 34:605

drop table BORROWER;

create table BORROWER
(Name VARCHAR2(25),
Tools TOOLS_VA,

constraint BORROWER_PK primary key (Name));

Describing the Varying Array
The BORROWER table will contain one record for each borrower, even if that borrower has multiple
tools. The multiple tools will be stored in the Tools column, using the TOOLS_VA varying array.
You can describe the BORROWER table as follows:

desc BORROWER

Name Null? Type
------------------------------- -------- ------------
NAME NOT NULL VARCHAR2(25)
TOOLS TOOLS_VA

Note that the set describe depth command shown in Chapter 33 will not affect this output.
You can query similar information from USER_TAB_COLUMNS:

column Data_Type format a12

select Column_Name,
Data_Type

from USER_TAB_COLUMNS
where Table_Name = 'BORROWER';

COLUMN_NAME DATA_TYPE
------------------------------ ------------
NAME VARCHAR2
TOOLS TOOLS_VA

USER_TYPES shows TOOLS_VA is a collection, with no attributes:

select TypeCode,
Attributes

from USER_TYPES
where Type_Name = 'TOOLS_VA';

TYPECODE ATTRIBUTES
------------------------------ ----------
COLLECTION 0

For more details on TOOLS_VA, query the USER_COLL_TYPES data dictionary view, as shown
in the following listing:

select Coll_Type,
Elem_Type_Owner,

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Elem_Type_Name,
Upper_Bound,
Length

from USER_COLL_TYPES
where Type_Name = 'TOOLS_VA';

COLL_TYPE ELEM_TYPE_OWNER
------------------------------ -----------------------------
ELEM_TYPE_NAME UPPER_BOUND LENGTH
------------------------------ ----------- ----------
VARYING ARRAY
VARCHAR2 5 25

If you base a varying array on an existing abstract datatype, the datatype’s owner will be
displayed in the Elem_Type_Owner column, and the datatype’s name will be displayed in the
Elem_Type_Name column. Because TOOLS_VA uses VARCHAR2 instead of an abstract datatype,
the Elem_Type_Owner column’s value is NULL.

Inserting Records into the Varying Array
Because a varying array is an abstract datatype, you need to use constructor methods to insert
records into tables that use varying arrays. Furthermore, because the varying array is itself an
abstract datatype, you may need to nest calls to multiple constructor methods to insert a record
into a table that uses a varying array.

The following command will insert a single record into the BORROWER table. In this example,
the record will have a single Name column value and three Tools values.

insert into BORROWER values
('JED HOPKINS',
TOOLS_VA('HAMMER','SLEDGE','AX'));

This insert command first specifies the value for the Name column. Because the Name column
is not part of any abstract datatype, it is populated in the same way you would insert values into
any relational column:

insert into BORROWER values
('JED HOPKINS',

The next part of the insert command inserts records into the Tools column. Because the Tools
column uses the TOOLS_VA varying array, you need to use the TOOLS_VA constructor method:

TOOLS_VA('HAMMER','SLEDGE','AX'));

Because this is a varying array, you can pass multiple values to the TOOLS_VA constructor
method. As the preceding listing shows, three tools are listed in a single insert for the single borrower
name. If the varying array had been based on the TOOL_TY datatype, you would have instead
nested calls to TOOL_TY within the TOOLS_VA calls:

606 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 34
Blind Folio 34:606

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

insert into BORROWER values
('JED HOPKINS',
TOOLS_VA(

TOOL_TY('HAMMER'),
TOOL_TY('SLEDGE'),
TOOL_TY('AX')));

Basing the varying array on an Oracle-supplied datatype (and using only a single column)
instead of an abstract or user-defined datatype simplifies the insert command by eliminating the
nested calls to additional constructor methods.

The TOOLS_VA varying array was defined to have up to five values. In this insert command,
only three values were entered for the row; the other two are uninitialized. If you want to set the
uninitialized values to NULL, you can specify that in the insert command:

insert into BORROWER values
('JED HOPKINS',
TOOLS_VA('HAMMER','SLEDGE','AX',NULL,NULL));

If you specify too many values to insert into the varying array, Oracle responds with the following:

ORA-22909: exceeded maximum VARRAY limit

You cannot insert records into a table that contains a varying array unless you know the structure
and datatypes within the array. This example assumes that all the datatypes used by the BORROWER
table were within the schema used to create the BORROWER table. If the datatypes are owned
by a separate schema, the creator of the BORROWER table will need EXECUTE privilege on those
datatypes. See Chapter 33 for examples of using datatypes created under other schemas.

Selecting Data from Varying Arrays
You can query the varying array data directly from the table:

select Tools from BORROWER;

TOOLS
--
TOOLS_VA('HAMMER', 'SLEDGE', 'AX')

You can use the TABLE function in the from clause to display the data from varying arrays
on separate lines. Consider the following query and its output:

select B.Name, N.*
from BORROWER B, TABLE(B.Tools) N;

NAME COLUMN_VALUE
------------------------- -------------------------
JED HOPKINS HAMMER
JED HOPKINS SLEDGE
JED HOPKINS AX

Chapter 34: Collectors (Nested Tables and Varying Arrays) 607

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 34
Blind Folio 34:607

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

How did that work? The TABLE function took as its input the name of the varying array, and
its output is given the alias N. The values within N are selected, generating the second column
of the output.

To display the varying array data on separate lines, you can also use PL/SQL. You can query
the varying array to determine its maximum number of entries per row, called its LIMIT, and the
current number of entries per row, called its COUNT. To retrieve the COUNT, LIMIT, and data from
a varying array, you can use a set of nested Cursor FOR loops, as shown in the following listing:

NOTE
For an overview of PL/SQL and Cursor FOR loops, see Chapter 29.

set serveroutput on
declare

cursor borrower_cursor is
select * from BORROWER;

begin
for borrower_rec in borrower_cursor
loop
dbms_output.put_line('Contact Name: '||borrower_rec.Name);
for i in 1..borrower_rec.Tools.Count
loop
dbms_output.put_line(borrower_rec.Tools(i));

end loop;
end loop;

end;
/

The following is the output of this PL/SQL script:

Contact Name: JED HOPKINS
HAMMER
SLEDGE
AX

PL/SQL procedure successfully completed.

The script uses several PL/SQL features to retrieve data from the varying array. The data will
be displayed via the PUT_LINE procedure of the DBMS_OUTPUT package (see Chapter 31), so
you must first enable PL/SQL output to be displayed:

set serveroutput on

In the Declarations section of the PL/SQL block, a cursor is declared; the cursor’s query selects
all the values from the BORROWER table:

declare
cursor borrower_cursor is
select * from BORROWER;

608 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 34
Blind Folio 34:608

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 34: Collectors (Nested Tables and Varying Arrays) 609

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 34
Blind Folio 34:609

The Executable Commands section of the PL/SQL block contains two nested FOR loops. In the
first loop, each record from the cursor is evaluated and the Name value is printed via PUT_LINE:

begin
for borrower_rec in borrower_cursor
loop
dbms_output.put_line('Contact Name: '||borrower_rec.Name);

NOTE
You should only print character data via PUT_LINE. PL/SQL will print
numeric values via PUT_LINE, but you cannot concatenate them to
expressions before printing. Therefore, you may need to use the
TO_CHAR function on numeric data before printing it via PUT_LINE.

In the next section of the PL/SQL block, the rows are evaluated further to retrieve the data
stored in the varying array. A second FOR loop, nested within the first loop, is executed. The inner
FOR loop is limited by the number of values in the array, as defined by the COUNT method (the
maximum number of values in the array is available via the LIMIT method).

The values in the Tools array will be printed, one by one, by this loop:

for i in 1..borrower_rec.Tools.Count
loop
dbms_output.put_line(borrower_rec.Tools(i));

The notation

Tools(i)

tells Oracle to print the array value that corresponds to the value of i. Thus, the first time through
the loop, the first value in the array is printed; then the value of i is incremented, and the second
value in the array is printed.

The last part of the PL/SQL block closes the two nested loops and ends the block:

end loop;
end loop;

end;

Because this method involves nested loops within PL/SQL, selecting data from varying arrays
is not trivial.

Note that we may get a different number of tools for each borrower—anywhere from zero to
five. For example, the following row would insert a row with just one entry in the varying array:

insert into BORROWER values
('FRED FULLER',
TOOLS_VA('HAMMER'));

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can select that data via PL/SQL, via the TABLE function, or via SQL:

select B.Name, N.*
from BORROWER B, TABLE(B.Tools) N;

NAME COLUMN_VALUE
------------------------- -------------------------
JED HOPKINS HAMMER
JED HOPKINS SLEDGE
JED HOPKINS AX
FRED FULLER HAMMER

For greater flexibility in selecting data from collectors, you should consider the use of nested
tables, as described in the next section.

NOTE
You can use the modify limit clause of the alter type command to
change the maximum number of entries allowed in a varying array.

Following the examples of the use of nested tables, you will see additional functions that can
be used against varying arrays and nested tables.

Nested Tables
Whereas varying arrays have a limited number of entries, a second type of collector, called a nested
table, has no limit on the number of entries per row. A nested table is, as its name implies, a table
within a table. In this case, it is a table that is represented as a column within another table. You
can have multiple rows in the nested table for each row in the main table.

For example, if you have a table of animal breeders, you may also have data about their animals.
Using a nested table, you could store the information about breeders and all of their animals within
the same table. Consider the ANIMAL_TY datatype introduced in Chapter 33:

create or replace type ANIMAL_TY as object
(Breed VARCHAR2(25),
Name VARCHAR2(25),
BirthDate DATE);

/

NOTE
To keep this example simple, this version of the ANIMAL_TY datatype
does not include any methods. For this example, you should drop the
ANIMAL table if it exists in your practice schema.

The ANIMAL_TY datatype contains a record for each animal—its breed, name, and birth date.
To use this datatype as the basis for a nested table, you need to create a new datatype:

610 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 34
Blind Folio 34:610

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

create type ANIMALS_NT as table of ANIMAL_TY;
/

The as table of clause of this create type command tells Oracle that you will be using this type
as the basis for a nested table. The name of the type, ANIMALS_NT, has a pluralized root to indicate
that it stores multiple rows, and it has the suffix NT to indicate that it will be a nested table.

You can now create a table of breeders, using the ANIMALS_TY datatype:

create table BREEDER
(BreederName VARCHAR2(25),
Animals ANIMALS_NT)
nested table ANIMALS store as ANIMALS_NT_TAB;

In this create table command, the BREEDER table is created. The first column of the BREEDER table
is a BreederName column. The second column is a column named Animals, whose definition is
the nested table ANIMALS_NT.

When creating a table that includes a nested table, you must specify the name of the table
that will be used to store the nested table’s data. That is, the data for the nested table is not stored
“inline” with the rest of the table’s data. Instead, it is stored apart from the main table. The data in
the Animals column will be stored in one table, and the data in the BreederName column will be
stored in a separate table. Oracle will maintain pointers between the tables. In this example, the
“out-of-line” data for the nested table is stored in a table named ANIMALS_NT_TAB:

nested table ANIMALS store as ANIMALS_NT_TAB;

This example highlights the importance of naming standards for collectors. If you pluralize
the column names (“Animals” instead of “Animal”) and consistently use suffixes (TY, NT, and so
forth), you can tell what an object is just by its name. Furthermore, because nested tables and
varying arrays may be based directly on previously defined datatypes, their names may mirror
the names of the datatypes on which they are based. Therefore, a datatype named ANIMAL_TY
could be used as the basis for a varying array named ANIMALS_VA or a nested table named
ANIMALS_NT. The nested table would have an associated out-of-line table named ANIMALS_
NT_TAB. If you know that a table named ANIMALS_NT_TAB exists and you are consistent
in your object naming, you automatically know that it stores data based on a datatype named
ANIMAL_TY.

Specifying Tablespaces for Nested Tables
When you create the BREEDER table with the ANIMALS nested table, the nested table’s storage is
created in the same table as the parent table. If you create a nested table within a nested table, the
child table is created in the same tablespace as its parent table unless you specify a tablespace.

You can use the create table command to specify a tablespace for the nested table, as shown
in the following listing. In this example, the BREEDER table will be stored in the user’s default
tablespace, whereas the ANIMALS nested table will be stored in the USERS tablespace:

drop table BREEDER;

create table BREEDER
(BreederName VARCHAR2(25),

Chapter 34: Collectors (Nested Tables and Varying Arrays) 611

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 34
Blind Folio 34:611

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

612 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 34
Blind Folio 34:612

Animals ANIMALS_NT)
nested table ANIMALS store as ANIMALS_NT_TAB (tablespace USERS);

You can move the nested table via the move clause of the alter table command. If you execute
the alter table move command on the BREEDER table, its nested table will not be moved. To
move the nested table, use the name of the storage table listed in the create table command:

alter table ANIMALS_NT_TAB move tablespace PRACTICE;

Inserting Records into a Nested Table
You can insert records into a nested table by using the constructor methods for its datatype. For the
Animals column, the datatype is ANIMALS_NT; therefore, you will use the ANIMALS_NT constructor
method. The ANIMALS_NT type, in turn, uses the ANIMAL_TY datatype. As shown in the following
example, inserting a record into the BREEDER table requires you to use both the ANIMALS_NT and
ANIMAL_TY constructor methods. In the example, three animals are listed for the breeder named
Jane James.

insert into BREEDER values
('JANE JAMES',
ANIMALS_NT(

ANIMAL_TY('DOG', 'BUTCH', '31-MAR-01'),
ANIMAL_TY('DOG', 'ROVER', '05-JUN-01'),
ANIMAL_TY('DOG', 'JULIO', '10-JUN-01')

));

This insert command first specifies the name of the breeder:

insert into BREEDER values
('JANE JAMES',

Next, the value for the Animals column is entered. Because the Animals column uses the ANIMALS_
NT nested table, the ANIMALS_NT constructor method is called:

ANIMALS_NT(

The ANIMALS_NT nested table uses the ANIMAL_TY datatype, so the ANIMAL_TY constructor
method is called for each value inserted:

ANIMAL_TY('DOG', 'BUTCH', '31-MAR-01'),
ANIMAL_TY('DOG', 'ROVER', '05-JUN-01'),
ANIMAL_TY('DOG', 'JULIO', '10-JUN-01')

));

You can see the datatypes that constitute the table and its nested table via the describe command.
Use the set describe depth SQL*Plus command to enable the display of the datatype attributes:

set describe depth 2

desc breeder

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Name Null? Type
--- -------- ------------
BREEDERNAME VARCHAR2(25)
ANIMALS ANIMALS_NT
BREED VARCHAR2(25)
NAME VARCHAR2(25)
BIRTHDATE DATE

You can query this metadata from USER_TAB_COLUMNS, USER_TYPES, USER_COLL_TYPES,
and USER_TYPE_ATTRS data dictionary views, as in the examples earlier in this chapter.

Querying Nested Tables
Nested tables support a great variety of queries. A nested table is a column within a table. To support
queries of the columns and rows of a nested table, use the TABLE function introduced earlier in this
chapter.

To see how the TABLE function is used, first consider the nested table by itself. If it were a
normal column of a relational table, you would be able to query it via a normal select command:

select BirthDate /* This won't work.*/
from ANIMALS_NT
where Name = 'JULIO';

ANIMALS_NT is not a normal table; it’s a datatype. To select columns (such as BirthDate) from
the nested table, you first need to “flatten” the table so it can be queried. First, apply the TABLE
function to the nested table column (BREEDER.Animals), as shown in the following listing:

select BreederName, N.Name, N.BirthDate
from BREEDER, TABLE(BREEDER.Animals) N;

BREEDERNAME NAME BIRTHDATE
------------------------- ------------------------- ---------
JANE JAMES BUTCH 31-MAR-01
JANE JAMES ROVER 05-JUN-01
JANE JAMES JULIO 10-JUN-01

With the data in this format, it is simple to retrieve the proper row:

select BreederName, N.Name, N.BirthDate
from BREEDER, TABLE(BREEDER.Animals) N

where N.Name = 'JULIO';

BREEDERNAME NAME BIRTHDATE
------------------------- ------------------------- ---------
JANE JAMES JULIO 10-JUN-01

Inserts, Updates, and Deletes with the TABLE Function
You can use the TABLE function whenever you need to perform inserts or updates directly against
the nested table. For example, a breeder probably will have more animals as time goes by, so

Chapter 34: Collectors (Nested Tables and Varying Arrays) 613

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 34
Blind Folio 34:613

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

you need the ability to add new records to the ANIMALS_NT nested table within the BREEDER
table. You will have to insert records into the nested table without adding new records into the
BREEDER table, and you will need to relate the new Animal records to breeders who are already
in the BREEDER table.

The following insert statement adds a new record to the nested table in Jane James’s BREEDER
record:

insert into TABLE(select Animals
from BREEDER

where BreederName = 'JANE JAMES')
values
(ANIMAL_TY('DOG','MARCUS','01-AUG-01'));

The insert does not provide a value for the BreederName column; we are only inserting into
the nested table of a breeder’s row. The TABLE function is again used to “flatten” the nested table
in the Animals column (for Jane’s row), and the new values are inserted. Note the use of the where
clause within the TABLE function call to specify the rows to be acted on.

You can also update the dog’s birth date. Julio’s birth date was originally entered as 10-JUN-01
but has since been discovered to be 01-SEP-01. The following update changes the nested table’s
BirthDate value for Julio. Its syntax and structure are very close to the query examples shown earlier
in this chapter.

update TABLE(select Animals
from BREEDER

where BreederName = 'JANE JAMES') N
set N.BirthDate = '01-SEP-01'

where N.Name = 'JULIO';

You can verify this change by querying the nested table data:

select BreederName, N.Name, N.BirthDate
from BREEDER, TABLE(BREEDER.Animals) N;

BREEDERNAME NAME BIRTHDATE
------------------------- ------------------------- ---------
JANE JAMES BUTCH 31-MAR-01
JANE JAMES ROVER 05-JUN-01
JANE JAMES JULIO 01-SEP-01
JANE JAMES MARCUS 01-AUG-01

You can delete nested table entries as well:

delete TABLE(select Animals
from BREEDER

where BreederName = 'JANE JAMES') N
where N.Name = 'JULIO';

1 row deleted.

614 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 34
Blind Folio 34:614

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 34: Collectors (Nested Tables and Varying Arrays) 615

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 34
Blind Folio 34:615

select BreederName, N.Name, N.BirthDate
from BREEDER, TABLE(BREEDER.Animals) N;

BREEDERNAME NAME BIRTHDATE
------------------------- ------------------------- ---------
JANE JAMES BUTCH 31-MAR-01
JANE JAMES ROVER 05-JUN-01
JANE JAMES MARCUS 01-AUG-01

Additional Functions for Nested Tables
and Varying Arrays
As of Oracle Database 10g, you can use several new functions against nested tables and varying
arrays. These functions are discussed in this section.

The CARDINALITY function returns the number of elements in a nested table or varying array:

select CARDINALITY(Animals) from BREEDER;

CARDINALITY(ANIMALS)

3

The MULTISET EXCEPT function takes two nested tables as input and returns the set of records
that are in the first nested table but not in the second nested table (similar to a minus operator).
MULTISET INTERSECT returns the rows two nested tables have in common. MULTISET UNION
performs a union of two nested tables; you can specify MULTISET UNION ALL (the default) or
MULTISET UNION DISTINCT.

The SET function converts a nested table into a set while eliminating duplicates, returning a
nested table of distinct values:

set linesize 60
select SET(Animals) from BREEDER;

SET(ANIMALS)(BREED, NAME, BIRTHDATE)
--
ANIMALS_NT(ANIMAL_TY('DOG', 'BUTCH', '31-MAR-01'), ANIMAL_TY
('DOG', 'ROVER', '05-JUN-01'), ANIMAL_TY('DOG', 'MARCUS', '0
1-AUG-01'))

See the Alphabetical Reference for the syntax for these functions, along with the COLLECT,
POWERMULTISET, and POWERMULTISET_BY_CARDINALITY functions.

Management Issues for Nested Tables
and Varying Arrays
When storing data that is related to a table, you can choose one of three methods: a varying
array, a nested table, or a separate table. If you have a limited number of rows, a varying array

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

may be appropriate. As the number of rows increases, however, you may begin to encounter
performance problems while accessing the varying array. These problems may be caused by a
characteristic of varying arrays: They cannot be indexed. Nested tables and standard relational
tables, however, can be indexed. As a result, the performance of a varray collector may worsen
as it grows in size.

Varying arrays are further burdened by the difficulty in querying data from them. If varying
arrays are not a good solution for your application, which alternative should you use—a nested
table or a separate relational table? It depends. Nested tables and relational tables serve different
purposes, so your answer depends on what you are trying to do with the data. Here are the key
differences:

■ Nested tables are abstract datatypes, created via the create type command. Therefore,
they can have methods associated with them. If you plan to attach methods to the data,
you should use nested tables instead of relational tables. Alternatively, you could
consider using object views with methods, as described in Chapter 33.

■ Relational tables are easily related to other relational tables. If the data may be related
to many other tables, it may be best not to nest the data within one table. Storing it in
its own table will give you the greatest flexibility in managing the data relationships.

Variability in Collectors
You can use abstract datatypes to enforce standards within your database. However, you may not
be able to realize the same standardization benefits when you are using collectors. Consider the
TOOLS_VA varying array shown earlier in this chapter. If another application or table wants to
use a TOOLS_VA varying array, that application must use the same definition for the array, including
the same maximum number of values. However, the new application may have a different value
for the maximum number of tools. Therefore, the array must be altered to support the greatest
possible number of values it may contain in any of its implementations. As a result, the usefulness
of the array’s limiting powers may diminish. To support multiple array limits, you would need
to create multiple arrays, thus eliminating any object reuse benefits you may have received from
creating the varying arrays. You would then need to manage the different array limits and know
what the limit is in each array.

You may also find that multiple nested tables are similar, with a difference in only one or two
columns. You may be tempted to create a single, all-inclusive nested table type that is used in
multiple tables, but that table would also encounter management problems. You would need to
know which columns of the nested table were valid for which implementations. If you cannot
use the same column structure, with the same meaning and relevance of the columns in each
instance, you should not use a shared nested-table datatype. If you want to use nested tables in
that environment, you should create a separate nested-table datatype for each instance in which
you will use the nested table, and manage them all separately. Having multiple nested-table datatypes
will complicate the management of the database.

Location of the Data
In a varying array, the data in the array is stored with the rest of the data in the table. In nested
tables, however, the data may be stored “out of line” (and as shown earlier in this chapter, the
data may be stored in a separate tablespace). As a result, the amount of data scanned during

616 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 34
Blind Folio 34:616

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

queries that do not involve the collector data may be less for a nested table than for a varying array.
That is, during a query, the database will not need to read through the data in the nested table; if
a varying array is used, the database may need to read through the varying array’s data to find the
data it needs. Out-of-line data, as used by nested tables, can improve the performance of queries.

Out-of-line collector data mimics the way the data would be stored in a normal relational
database application. For example, in a relational application, you would store related data (such
as workers and skills) in separate tables, and the tables would be physically stored apart. Out-of-
line nested tables store their data apart from the main table but maintain a relationship with the
main table. Out-of-line data may improve the performance of queries by distributing across multiple
tables the I/O performed against the main table.

Out-of-line data is also used to store large objects (LOBs) that are stored internally (as opposed
to BFILEs, which are pointers to LOBs external to the database). In the next chapter, you will see
how to create and manipulate LOB values. The combination of abstract datatypes, object views,
collectors, and LOBs provides a strong foundation for the implementation of an object-relational
database application.

Chapter 34: Collectors (Nested Tables and Varying Arrays) 617

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 34
Blind Folio 34:617

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 34
Blind Folio 34:618

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:619

CHAPTER
35

Using Large Objects

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

I
n place of LONG and LONG RAW, you can use the LOB datatypes (BLOB, CLOB,
NCLOB, and BFILE) for storage of long data. Although Oracle still allows LONG
and LONG RAW columns to be created, Oracle recommends that you create new
columns using the LOB datatypes and that you convert existing LONG and LONG
RAW columns to CLOB or BLOB columns, respectively. If you use one of these

datatypes to store large objects (LOBs), you can take advantage of new capabilities for viewing
and manipulating the data. You can also use Oracle Text (see Chapter 25) to perform text searches
on CLOB data.

In this chapter, you will see how to use the LOB datatypes and how to manipulate the data—
which does not even have to be stored within the database!

Available Datatypes
Four types of LOBs are supported:

LOB Datatype Description

BLOB Binary LOB. Binary data stored in the database.

CLOB Character LOB. Character data stored in the database.

BFILE Binary File. Read-only binary data stored outside the database, the length of
which is limited by the operating system.

NCLOB A CLOB column that supports a multibyte character set.

You can create multiple LOBs per table. For example, suppose you want to create a PROPOSAL
table to track formal proposals you submit. Your proposal records may consist of a series of word
processing files and spreadsheets used to document and price the proposed work. The PROPOSAL
table will contain VARCHAR2 datatypes (for columns such as the name of the proposal recipient)
plus LOB datatypes (containing the word processing and spreadsheet files).

NOTE
You cannot create multiple LONG or LONG RAW columns
in a single table.

The create table command in the following listing creates the PROPOSAL table:

create table PROPOSAL
(Proposal_ID NUMBER(10),
Recipient_Name VARCHAR2(25),
Proposal_Name VARCHAR2(25),
Short_Description VARCHAR2(1000),
Proposal_Text CLOB,
Budget BLOB,
Cover_Letter BFILE,

constraint PROPOSAL_PK primary key (Proposal_ID));

620 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:620

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Because you may submit multiple proposals to the same recipient, assign each proposal a
Proposal_ID number. The PROPOSAL table stores the recipient of the proposal, the name of
the proposal, and a short description. Then, taking advantage of the LOB datatypes available
in Oracle, the PROPOSAL table includes three columns:

Proposal_Text A CLOB containing the text of the proposal

Budget A BLOB containing a spreadsheet showing calculations of the cost and profit
for the proposed work

Cover_Letter A binary file (BFILE) stored outside the database that contains your cover letter
that accompanies the proposal

Each row in the PROPOSAL table will have up to three LOB values stored. Oracle will use
the normal database capabilities to support data integrity and concurrency for the Proposal and
Budget entries, but not for the Cover_Letter values. Because the Cover_Letter column uses the
BFILE datatype, its data is stored outside the database. Internally, the database stores only a locator
value that allows it to find the external file, thus reducing the space and management requirements
for the database. Oracle does not guarantee the data integrity of BFILE files stored outside the
database. Also, Oracle does not validate that these files exist when you insert a record using a
BFILE datatype. Data concurrency and integrity are maintained only for internally stored LOBs.

The data for the LOB columns may be physically apart from the PROPOSAL table. Within the
PROPOSAL table, Oracle stores locator values that point to data locations. For BFILE datatypes,
the locator points to an external file; for BLOB and CLOB datatypes, the locator points to a separate
data location that the database creates to hold the LOB data. The data location for the LOB data
may be inline with the rest of the PROPOSAL row or stored out of line. By default, the LOB data
is stored inline if its length is less than approximately 4000 bytes.

Storing the data out of line allows the database to avoid having to scan the LOB data each
time it reads multiple rows from the database. The LOB data will only be read when it is required;
otherwise, only its locator values will be read. You can specify the storage parameters (tablespace
and sizing) for the area used to hold the LOB data, as described in the next section.

Specifying Storage for LOB Data
When you create a table that includes a LOB column, you can specify the storage parameters
for the area used for the LOB data. Thus, for a table that has no LOB columns, you may have
a storage clause in the create table command (see Chapter 17). If the table has at least one LOB
column, you also need an additional lob clause within your create table command.

Consider the PROPOSAL table, this time with a tablespace clause:

create table PROPOSAL
(Proposal_ID NUMBER(10),
Recipient_Name VARCHAR2(25),
Proposal_Name VARCHAR2(25),
Short_Description VARCHAR2(1000),
Proposal_Text CLOB,
Budget BLOB,
Cover_Letter BFILE,

Chapter 35: Using Large Objects 621

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:621

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:50:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

constraint PROPOSAL_PK primary key (Proposal_ID))
tablespace PROPOSALS;

Because there are three LOB columns, the create table command should be modified to
include the storage specifications for the out-of-line LOB data (if you plan to store the LOB data
out of line). Two of the LOB columns—Proposal_Text and Budget—will store data within the
database. The revised version of the create table command, with the LOB storage clause specified,
is shown in the following listing:

create table PROPOSAL
(Proposal_ID NUMBER(10),
Recipient_Name VARCHAR2(25),
Proposal_Name VARCHAR2(25),
Short_Description VARCHAR2(1000),
Proposal_Text CLOB,
Budget BLOB,
Cover_Letter BFILE,

constraint PROPOSAL_PK primary key (Proposal_ID))
tablespace PROPOSALS

lob (Proposal_Text, Budget) store as
(tablespace Proposal_Lobs

storage (initial 100K next 100K pctincrease 0)
chunk 16K pctversion 10 nocache logging);

The last four lines of the create table command tell Oracle how to store the out-of-line LOB
data. The instructions are as follows:

lob (Proposal_Text, Budget) store as
(tablespace Proposal_Lobs

storage (initial 100K next 100K pctincrease 0)
chunk 16K pctversion 10 nocache logging);

The lob clause tells Oracle that the next set of commands deals with the out-of-line storage
specifications for the table’s LOB columns. The two LOB columns (Proposal_Text and Budget)
are explicitly listed. When the two columns’ values are stored out of line, they are stored in a
segment as specified via the lob clause:

lob (Proposal_Text, Budget) store as

NOTE
If there were only one LOB column, you could specify a name for the
LOB segment. You would name the segment immediately after the
store as clause in the preceding command.

The next two lines specify the tablespace and storage parameters for the out-of-line LOB storage.
The tablespace clause assigns the out-of-line data to the PROPOSAL_LOBS tablespace, and an
optional storage clause can be used to specify the initial, next, and pctincrease values the out-
of-line data storage will use. See the entry for the storage clause in the Alphabetical Reference
for an explanation of the available storage parameters for segments.

622 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:622

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

(tablespace Proposal_Lobs

Because the segments are for storing LOB data, several additional parameters are available,
and they are specified within the lob clause:

chunk 16K pctversion 10

The chunk LOB storage parameter tells Oracle how much space to allocate during each LOB
value manipulation. The default chunk size is 1KB, going up to a maximum value of 32KB.

The pctversion parameter is the maximum percentage of overall LOB storage space used for
creating new versions of the LOB. By default, older versions of the LOB data will not be overwritten
until 10 percent of the available LOB storage space is used.

The last two parameters of the LOB storage space tell Oracle how to handle the LOB data
during reads and writes:

nocache logging);

The nocache parameter in the lob storage clause specifies that the LOB values are not stored
in memory for faster access during queries. The default lob storage setting is nocache; its opposite
is cache.

The logging parameter specifies that all operations against the LOB data will be recorded in the
database’s redo log files. The opposite of logging, nologging, keeps operations from being recorded
in the redo log files, thereby improving the performance of table-creation operations. You can
also specify the tablespace and storage parameters for a LOB index. See the create table command
entry in the Alphabetical Reference for the full syntax related to LOB indexes.

If you specify cache and omit the nologging/logging clause, logging is automatically implemented
because you cannot specify cache nologging. If cache is not specified and the nologging/logging
clause is omitted, the logging value is obtained from the tablespace in which the LOB value is
stored.

Now that the table has been created, you can begin to enter records into it. In the next section,
you will see how to insert LOB values into the PROPOSAL table and how to use the DBMS_LOB
package to manipulate the values.

Manipulating and Selecting LOB Values
LOB data can be selected or manipulated in several ways. You can use the character string functions
you would use on VARCHAR2 columns against LOB datatypes. For large LOB values (100KB or
more in length), or for more complex operations against the data, you should manipulate LOB data
via the DBMS_LOB package. Other methods for manipulating LOB data include using application
programming interface (API) and Oracle Call Interface (OCI) programs. In this section, you will
see the use of the string functions plus an overview of the DBMS_LOB package. As these examples
demonstrate, LOBs are much more flexible than LONG datatypes in terms of data-manipulation
possibilities.

Initializing Values
Consider the PROPOSAL table again. The Proposal_ID column is the primary key column for the
PROPOSAL table. The PROPOSAL table contains three LOB columns—one BLOB column, one

Chapter 35: Using Large Objects 623

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:623

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

624 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:624

CLOB, and one BFILE. For each of the LOB columns, Oracle will store a locator value that tells it
where to find any out-of-line data stored for the record.

When you insert a record into a table that contains LOBs, you use functions to tell Oracle to
create an empty locator value for the internally stored LOB columns. An empty locator value is
different from a NULL value. If an internally stored LOB column’s value is NULL, you have to set
it to an empty locator value before updating it to a non-NULL value.

Suppose you begin to work on a proposal and enter a record in the PROPOSAL table. At this
point, you have neither a budget spreadsheet nor a cover letter. The insert command is shown in
the following listing:

insert into PROPOSAL
(Proposal_ID, Recipient_Name, Proposal_Name, Short_Description,
Proposal_Text,
Budget, Cover_Letter)

values
(1, 'DOT RODALE', 'MAINTAIN ORGANIC GARDEN', NULL,
'This is the text of a proposal to maintain an organic garden.',
EMPTY_BLOB(),NULL);

The inserted record has a Proposal_ID value of 1 and a Recipient_Name value of DOT RODALE.
The Proposal_Name value is MAINTAIN ORGANIC GARDEN and the Short_Description column
is left NULL for now. The Proposal_Text column is set equal to a short character string for now.
To set the Budget column to an empty locator value, you use the EMPTY_BLOB function. If you
had wanted to set a CLOB datatype column equal to an empty locator value, you would have
used the EMPTY_CLOB function. The Cover_Letter column, because it is an externally stored
BFILE value, is set to NULL.

To set a LOB column to an empty locator value, you have to know its datatype:

BLOB Use EMPTY_BLOB()

CLOB Use EMPTY_CLOB()

NCLOB Use EMPTY_CLOB()

BFILE Use BFILENAME

You use the BFILENAME procedure to point to a directory and filename combination. Before
entering a value for the directory in the BFILENAME function, a user with the DBA role or the
CREATE ANY DIRECTORY system privilege must create the directory. To create a directory, use
the create directory command, as shown in the following example:

create directory proposal_dir as '/u01/proposal/letters';

When inserting BFILE entries, you refer to the logical directory name—such as proposal_dir—
instead of the physical directory name on the operating system. Users with DBA authority can
grant READ access to the directory names to users. See the entry for the create directory command
in the Alphabetical Reference for further details.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can now enter a second PROPOSAL record; this record will have a Cover_Letter value:

insert into PROPOSAL
(Proposal_ID, Recipient_Name, Proposal_Name, Short_Description,
Proposal_Text, Budget,

Cover_Letter)
values
(2, 'BRAD OHMONT', 'REBUILD FENCE', NULL,
EMPTY_CLOB(), EMPTY_BLOB(),
BFILENAME('proposal_dir','P2.DOC'));

In this listing, a second proposal—rebuilding a fence—is inserted into the PROPOSAL table.
The EMPTY_CLOB() and EMPTY_BLOB() functions are used to insert empty locator values in the
table. The BFILENAME function tells Oracle exactly where to find the cover letter—it’s in the
proposal_dir directory and its name is P2.DOC. Within the BFILENAME function, the first parameter
is always the directory name, and the second parameter is the name of the file within that directory.

NOTE
The P2.DOC file does not have to exist for this record to be inserted
successfully.

When you select the value from a LOB column, Oracle uses the locator value to find the data
that is associated with the LOB data. You never need to know or specify the locator values. And,
as you’ll see in the following sections, you can do things with LOB values that are impossible to
do with LONG datatypes.

Using insert with Subqueries
What if you want to duplicate a proposal record? For example, suppose you begin to work on a
third proposal, and it is very similar to the first proposal:

insert into PROPOSAL
(Proposal_ID, Recipient_Name, Proposal_Name, Short_Description,
Proposal_Text, Budget, Cover_Letter)

select 3, 'SKIP GATES', 'CLEAR GATES FIELD', NULL,
Proposal_Text, Budget, Cover_Letter

from PROPOSAL
where Proposal_ID = 1;

This insert command tells Oracle to find the PROPOSAL record with a Proposal_ID value of 1.
Take the Proposal_Text, Budget, and Cover_Letter column values and the literal values specified
(3, SKIP GATES, and so forth) and insert a new record into the PROPOSAL table. Note that the
inserted LOB columns will be set to empty locator values. The ability to perform inserts based on
queries is a significant advantage of using LOB datatypes—you cannot perform this type of insert
if a LONG column is part of the query.

Chapter 35: Using Large Objects 625

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:625

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

626 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:626

NOTE
If you use insert as select to populate LOB values, you may have
multiple BFILE values pointing to the same external file. You may
need to update the new values to point to the correct external files.
Oracle does not maintain data integrity for the external files.

Updating LOB Values
In the third record that was created, the Proposal_Text value was copied from the first record. To
update the Proposal_Text value of the record that has a Proposal_ID of 3, execute the following
command:

update PROPOSAL
set Proposal_Text = 'This is the new proposal text.'

where Proposal_ID = 3;

You can also update the Cover_Letter column to point to the correct cover letter. Use the
BFILENAME function to point to the correct file:

update PROPOSAL
set Cover_Letter = BFILENAME('proposal_dir', 'P3.DOC')

where Proposal_ID = 3;

You can update NULL values of BFILE columns without first setting them to empty locator
values. If you had inserted a record with a NULL value for Budget (a BLOB column), you could
not update the Budget column’s value unless you first set its value to EMPTY_BLOB() via an
update command. After setting the value to EMPTY_BLOB() and establishing an empty locator
value, you could then update the Budget column value.

Using String Functions to Manipulate LOB Values
You can use the Oracle-provided string functions against CLOB values. For example, you can use
SUBSTR, INSTR, LTRIM, and INITCAP to modify the strings. See Chapter 7 for descriptions of the
built-in string functions.

In the PROPOSAL table, the Proposal_Text column is defined as a CLOB datatype. Here are
the three Proposal_Text values (the second is NULL):

select Proposal_Text from PROPOSAL;

PROPOSAL_TEXT

This is the text of a proposal to maintain an organic garden.

This is the new proposal text.

Applying INITCAP to the third record yields this result:

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 35: Using Large Objects 627

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:627

select INITCAP(Proposal_Text) from PROPOSAL
where Proposal_ID = 3;

INITCAP(PROPOSAL_TEXT)

This Is The New Proposal Text.

Applying INSTR to all three rows returns the expected result:

select INSTR(Proposal_Text,'new',1,1) from PROPOSAL;

INSTR(PROPOSAL_TEXT,'NEW',1,1)

0
0

13

You can use SUBSTR to return the first ten characters of the text:

select SUBSTR(Proposal_Text,1,10) from PROPOSAL
where Proposal_ID = 3;

SUBSTR(PROPOSAL_TEXT,1,10)

This is th

However, you cannot perform NVL and DECODE on the CLOB columns:

select NVL(Proposal_Text, 'Null') from PROPOSAL;
*

ERROR at line 1:
ORA-00932: inconsistent datatypes: expected CLOB got CHAR

For complex manipulations, you should use the DBMS_LOB package, as described in the
following sections.

NOTE
The regular expression functions (see Chapter 8) may be used against
LOB datatypes.

Using DBMS_LOB to Manipulate LOB Values
You can use the DBMS_LOB package to change or select LOB values. In the following sections, you
will see how to perform SQL functions such as SUBSTR and INSTR on LOB values, as well as how to
append to LOB values, compare LOB values, and read LOB values.

The string comparison and manipulation procedures and functions available within the DBMS_
LOB package are listed in Table 35-1.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

628 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:628

Subprogram Description

APPEND procedure Appends the contents of the source LOB to the destination LOB

CLOSE procedure Closes a previously opened internal or external LOB

COMPARE function Compares two entire LOBs or parts of two LOBs

COPY procedure Copies all, or part, of the source LOB to the destination LOB

CONVERTOCLOB procedure Reads character data from a source CLOB or NCLOB
instance, converts the character data to the specified
character, writes the converted data to a destination BLOB
instance in binary format, and returns the new offsets

COPY procedure Copies all, or part, of the source LOB to the destination LOB

CREATETEMPORARY procedure Creates a temporary BLOB or CLOB and its corresponding
index in the user’s default temporary tablespace

ERASE procedure Erases all or part of a LOB

FILECLOSE procedure Closes the file

FILECLOSEALL procedure Closes all previously opened files

FILEEXISTS function Checks whether the file exists on the server

FILEGETNAME procedure Gets the directory alias and filename

FILEISOPEN function Checks whether the file was opened using the input BFILE
locators

FILEOPEN procedure Opens a file

FREETEMPORARY procedure Frees the temporary BLOB or CLOB in the user’s default
temporary tablespace

GETCHUNKSIZE function Returns the amount of space used in the LOB chunk to store
the LOB value

GETLENGTH function Gets the length of the LOB value

GET_STORAGE_LIMIT function Returns the storage limit for LOBs in your database
configuration

INSTR function Returns the matching position of the nth occurrence of the
pattern in the LOB

ISOPEN function Checks to see whether the LOB was already opened using
the input locator

ISTEMPORARY function Checks whether the locator is pointing to a temporary LOB

TABLE 35-1. DBMS_LOB Functions and Procedures

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 35: Using Large Objects 629

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:629

The major procedures and functions available within the DBMS_LOB package are described
in the following sections. When using BFILEs, the maximum number of files you can concurrently
have open is limited by the setting of the SESSION_MAX_OPEN_FILES parameter in the database’s
system parameter file. The default maximum number of concurrently open BFILE files is 10; the
maximum is either 50 or the value of the MAX_OPEN_FILES parameter, whichever is lower.

In the following examples, the Proposal_Text CLOB column is used to show the impact of the
major procedures and functions.

READ
The READ procedure reads a piece of a LOB value. In the PROPOSAL table example, the Proposal_
Text for the first row is

select Proposal_Text
from PROPOSAL
where Proposal_ID = 1;

PROPOSAL_TEXT

This is the text of a proposal to maintain an organic garden.

This is a fairly short description, so it could have been stored in a VARCHAR2 datatype column.
Because it is stored in a CLOB column, though, its maximum length is much greater than it would
have been if it had been stored in a VARCHAR2 column—it can expand to 8TB in length. For these
examples, we’ll use this short string for purposes of demonstration; you can use the same functions
and operations against longer CLOB strings, as well.

Subprogram Description

LOADFROMFILE procedure Loads BFILE data into an internal LOB

LOADBLOBFROMFILE procedure Loads BFILE data into an internal BLOB

LOADCLOBFROMFILE procedure Loads BFILE data into an internal CLOB

OPEN procedure Opens a LOB (internal, external, or temporary) in the
indicated mode

READ procedure Reads data from the LOB starting at the specified offset

SUBSTR function Returns part of the LOB value starting at the specified offset

TRIM procedure Trims the LOB value to the specified shorter length

WRITE procedure Writes data to the LOB from a specified offset

WRITEAPPEND procedure Writes a buffer to the end of a LOB

TABLE 35-1. DBMS_LOB Functions and Procedures (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The READ procedure has four parameters, which must be specified in this order:

1. The LOB locator (for either a BLOB, CLOB, or BFILE)

2. The number of bytes or characters to be read

3. The offset (starting point of the read) from the beginning of the LOB value

4. The output data from the READ procedure

If the end of the LOB value is reached before the specified number of bytes is read, the READ
procedure will return an error.

Because the READ procedure requires the LOB locator as input, the READ procedure is executed
within PL/SQL blocks. You will need to select the LOB locator value, provide that as input to the
READ procedure, and then display the text read via the DBMS_OUTPUT package.

A Word About the DBMS_OUTPUT Package As noted in Chapter 31, you can use the DBMS_
OUTPUT package to display the values of variables within a PL/SQL block. The PUT_LINE
procedure within DBMS_OUTPUT displays the specified output on a line. Before using the
DBMS_OUTPUT package, you should first execute the set serveroutput on command. In the
next section, you’ll see how to create the PL/SQL block that will read the data from a LOB.

A READ Example To use the READ procedure, you need to know the locator value of the
LOB you want to read. The locator value must be selected from the table that contains the LOB.
Because the locator value must be supplied as input to the READ procedure, you should use
PL/SQL variables to hold the locator value. The READ procedure, in turn, will place its output
in a PL/SQL variable. You can use the DBMS_OUTPUT package to display the output value.
The structure of the PL/SQL block for this example is as follows:

declare
variable to hold locator value
variable to hold the amount (the number of characters/bytes to read)
variable to hold the offset
variable to hold the output

begin
set value for amount_var;
set value for offset_var;
select locator value into locator var from table;
DBMS_LOB.READ(locator var, amount var, offset var, output var);
DBMS_OUTPUT.PUT_LINE('Output:' || output var);

end;

NOTE
See Chapter 29 for an overview of PL/SQL blocks and their
components.

For the PROPOSAL table, selecting the first ten characters from the Proposal_Text column
would look like this:

630 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:630

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

declare
locator_var CLOB;
amount_var INTEGER;
offset_var INTEGER;
output_var VARCHAR2(10);

begin
amount_var := 10;
offset_var := 1;
select Proposal_Text into locator_var
from PROPOSAL

where Proposal_ID = 1;
DBMS_LOB.READ(locator_var, amount_var, offset_var, output_var);
DBMS_OUTPUT.PUT_LINE('Start of proposal text: ' || output_var);

end;
/

When you execute the preceding PL/SQL block, the output will match the SQL SUBSTR example
shown earlier:

Start of proposal text: This is th

PL/SQL procedure successfully completed.

The output shows the first ten characters of the Proposal_Text value, starting at the first character
of the LOB value.

The PL/SQL block in the preceding example first declared the variables to use:

declare
locator_var CLOB;
amount_var INTEGER;
offset_var INTEGER;
output_var VARCHAR2(10);

Next, values were assigned to the variables:

begin
amount_var := 10;
offset_var := 1;

Then the locator value was selected from the table and stored in a variable named locator_var:

select Proposal_Text into locator_var
from PROPOSAL
where Proposal_ID = 1;

Next, the READ procedure was called, using the values that had been assigned so far:

DBMS_LOB.READ(locator_var, amount_var, offset_var, output_var);

Chapter 35: Using Large Objects 631

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:631

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

As a result of the execution of the READ procedure, the output_var variable will be populated
with the data that was read. The PUT_LINE procedure displays that data:

DBMS_OUTPUT.PUT_LINE('Start of proposal text: ' || output_var);

This format for PL/SQL blocks will be used throughout the rest of this chapter. You can optionally
set the variable values when they are declared.

If you want to select a different portion of the Proposal_Text CLOB, just change the amount
and offset variables. If you change the number of characters read, you need to change the size
of the output variable, too. In the following example, 12 characters are read from Proposal_Text,
starting from the tenth character:

declare
locator_var CLOB;
amount_var INTEGER;
offset_var INTEGER;
output_var VARCHAR2(12);

begin
amount_var := 12;
offset_var := 10;
select Proposal_Text into locator_var
from PROPOSAL

where Proposal_ID = 1;
DBMS_LOB.READ(locator_var, amount_var, offset_var, output_var);
DBMS_OUTPUT.PUT_LINE('Part of proposal text: ' || output_var);

end;
/

Output from this PL/SQL block is shown in the following listing:

Part of proposal text: he text of a

PL/SQL procedure successfully completed.

If Proposal_Text had been created as a VARCHAR2 column, you could have selected this
data using the SUBSTR function. However, you would have been limited to a maximum column
length of 4,000 characters. Also, note that the LOB column can contain binary data (BLOB datatypes),
and you can use the READ procedure to select data from BLOBs in the same way you select from
CLOBs. For BLOBs, you should declare the output buffer to use the RAW datatype. In PL/SQL,
RAW and VARCHAR2 datatypes (used for the output variables for CLOB and BLOB reads) have a
maximum length of 32,767 characters.

For the READ procedure, possible exceptions are VALUE_ERROR, INVALID_ARGVAL,
NO_DATA_FOUND, UNOPENED_FILE, NOEXIST_DIRECTORY, NOPRIV_DIRECTORY,
INVALID_DIRECTORY, and INVALID_OPERATION.

SUBSTR
The SUBSTR function within the DBMS_LOB package performs the SQL SUBSTR function on a
LOB value. This function has three input parameters, which must be specified in this order:

632 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:632

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1. The LOB locator

2. The number of bytes or characters to be read

3. The offset (starting point of the read) from the beginning of the LOB value

Because SUBSTR is a function, there is no output variable value returned directly from SUBSTR
as there was with READ. For the READ procedure, you declared an output variable and then
populated it within the READ procedure call. The PL/SQL block used for the READ procedure is
shown in the following listing, with the lines related to the output variable shown in bold:

declare
locator_var CLOB;
amount_var INTEGER;
offset_var INTEGER;
output_var VARCHAR2(12);

begin
amount_var := 12;
offset_var := 10;
select Proposal_Text into locator_var
from PROPOSAL

where Proposal_ID = 1;
DBMS_LOB.READ(locator_var, amount_var, offset_var, output_var);
DBMS_OUTPUT.PUT_LINE('Section of proposal text: ' || output_var);

end;
/

Because SUBSTR is a function, you will populate the output variable differently. The format is

output_var := DBMS_LOB.SUBSTR(locator_var, amount_var, offset_var);

The preceding PL/SQL statement uses the SUBSTR function of the DBMS_LOB package to
select 12 characters from the Proposal_Text LOB column, starting at the tenth character. The full
PL/SQL block is

declare
locator_var CLOB;
amount_var INTEGER;
offset_var INTEGER;
output_var VARCHAR2(12);

begin
amount_var := 12;
offset_var := 10;
select Proposal_Text into locator_var
from PROPOSAL

where Proposal_ID = 1;
output_var := DBMS_LOB.SUBSTR(locator_var, amount_var, offset_var);
DBMS_OUTPUT.PUT_LINE('Section of proposal text: ' || output_var);

end;
/

Chapter 35: Using Large Objects 633

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:633

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The output is shown in the following listing:

Section of proposal text: he text of a
PL/SQL procedure successfully completed.

The equivalent SQL function call is

select SUBSTR(Proposal_Text,10,12)
from PROPOSAL
where Proposal_ID = 1;

The SUBSTR example differs from the READ example in only two ways: the name of the function
call, and the manner of assigning a value to the output variable. As with the READ procedure
example, the PUT_LINE procedure of the DBMS_OUTPUT package is used to display the results.

In general, you should use the SUBSTR function whenever you are interested in selecting
only a specific section of the LOB value. The READ function can be used to select only a portion
of a text string (as in the previous examples), but it is more often used within a loop. For example,
suppose the LOB value is larger than the largest allowed RAW or VARCHAR2 variable in PL/SQL
(32,767 characters). In that case, you can use the READ procedure within a loop to read all the
data from the LOB value. Refer to Chapter 29 for details on the different loop options available in
PL/SQL.

For the SUBSTR function, possible exceptions are UNOPENED_FILE, NOEXIST_DIRECTORY,
NOPRIV_DIRECTORY, INVALID_DIRECTORY, and INVALID_OPERATION.

INSTR
The INSTR function within the DBMS_LOB package performs the SQL INSTR function on a LOB
value.

The INSTR function has four input parameters, which must be specified in this order:

1. The LOB locator

2. The pattern to be tested for (RAW bytes for BLOBs, character strings for CLOBs)

3. The offset (starting point of the read) from the beginning of the LOB value

4. The occurrence of the pattern within the LOB value

The INSTR function within DBMS_LOB searches the LOB for a specific pattern of bytes or
characters. The occurrence variable allows you to specify which occurrence of the pattern within
the searched value should be returned. The output of the INSTR function is the position of the start
of the pattern within the searched string. For example, in SQL,

INSTR('ABCABC','A',1,1) = 1

means that within the string ABCABC, the pattern A is searched for, starting at the first position of
the string, and looking for the first occurrence. The A is found in the first position of the searched
string. If you start the search at the second position of the string, the answer will be different:

INSTR('ABCABC','A',2,1) = 4

634 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:634

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Because this INSTR starts at the second position, the first A is not part of the value that is searched.
Instead, the first A found is the one in the fourth position.

If you change the last parameter in the SQL INSTR to look for the second occurrence of the
string A, starting at the second position, the pattern is not found:

INSTR('ABCABC','A',2,2) = 0

If the SQL INSTR function cannot find the matching occurrence of the pattern, 0 is returned.
The INSTR function of the DBMS_LOB package operates in the same manner.

Because INSTR is a function, you need to assign its output variable in the same manner as the
SUBSTR function’s output variable was assigned. In the following listing, the Proposal_Text CLOB
value is searched for the string ‘pr’. The position_var variable is declared to hold the output of the
INSTR function.

declare
locator_var CLOB;
pattern_var VARCHAR2(2);
offset_var INTEGER;
occur_var INTEGER;
position_var INTEGER;

begin
pattern_var := 'pr';
offset_var := 1;
occur_var := 1;
select Proposal_Text into locator_var
from PROPOSAL

where Proposal_ID = 1;
position_var := DBMS_LOB.INSTR(locator_var, pattern_var,

offset_var, occur_var);
DBMS_OUTPUT.PUT_LINE('Found string at position: ' || position_var);

end;
/

The output would be

Found string at position: 23

PL/SQL procedure successfully completed.

The output shows that the search string ‘pr’ is found within the Proposal_Text, starting at the 23rd
character of the LOB value. Because Oracle supports SQL string functions against CLOB columns,
this function call is equivalent to the following query:

select INSTR(Proposal_Text ,'pr',1,1)
from PROPOSAL
where Proposal_ID = 1;

For the INSTR function, possible exceptions are UNOPENED_FILE, NOEXIST_DIRECTORY,
NOPRIV_DIRECTORY, INVALID_DIRECTORY, and INVALID_OPERATION.

Chapter 35: Using Large Objects 635

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:635

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

GETLENGTH
The GETLENGTH function of the DBMS_LOB package returns the length of the LOB value. The
DBMS_LOB.GETLENGTH function is similar in function to the SQL LENGTH function, but it’s used
only for LOB values.

The GETLENGTH function of the DBMS_LOB package has only one input parameter: the locator
value for the LOB. In the following listing, variables are declared to hold the locator value and
the output value. The GETLENGTH function is then executed, and the result is reported via the
PUT_LINE procedure:

declare
locator_var CLOB;
length_var INTEGER;

begin
select Proposal_Text into locator_var
from PROPOSAL

where Proposal_ID = 1;
length_var := DBMS_LOB.GETLENGTH(locator_var);
DBMS_OUTPUT.PUT_LINE('Length of LOB: ' || length_var);

end;
/

The following is the GETLENGTH output:

Length of LOB: 61

PL/SQL procedure successfully completed.

If the LOB value is NULL, the GETLENGTH function will return a value of NULL.
The equivalent SQL function for CLOB values is

select LENGTH(Proposal_Text)
from PROPOSAL
where Proposal_ID = 1;

COMPARE
The COMPARE function of the DBMS_LOB package compares two LOB values. If the two LOB
values are the same, the COMPARE function returns 0; otherwise, it returns a nonzero integer value
(usually 1 or –1). To execute the COMPARE function, the DBMS_LOB package essentially performs
two READ functions and compares the results. Thus, for each of the LOB values to be compared,
you need to supply a locator value and an offset value; the number of characters or bytes to
be compared will be the same for both LOB values. You can only compare LOBs of the same
datatype.

The COMPARE function has five input parameters, which must be specified in this order:

1. The LOB locator for the first LOB

2. The LOB locator for the second LOB

3. The amount variable (the number of bytes or characters to compare)

636 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:636

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

4. The offset (starting point of the read) from the beginning of the first LOB value

5. The offset (starting point of the read) from the beginning of the second LOB value

Because the two LOBs being compared can have different offset values, you can compare
the first part of one LOB value with the second part of a different LOB value. The example in the
following listing compares the first 25 characters of the Proposal_Text values from two entries—
the Proposal_ID 1 record and the Proposal_ID 3 record:

declare
first_locator_var CLOB;
second_locator_var CLOB;
amount_var INTEGER;
first_offset_var INTEGER;
second_offset_var INTEGER;
output_var INTEGER;

begin
amount_var := 25;
first_offset_var := 1;
second_offset_var := 1;
select Proposal_Text into first_locator_var
from PROPOSAL

where Proposal_ID = 1;
select Proposal_Text into second_locator_var
from PROPOSAL
where Proposal_ID = 3;

output_var :=DBMS_LOB.COMPARE(first_locator_var, second_locator_var,
amount_var, first_offset_var, second_offset_var);

DBMS_OUTPUT.PUT_LINE('Comparison value (0 if the same): '||
output_var);

end;
/

The following is the output:

Comparison value (0 if the same): 1

PL/SQL procedure successfully completed.

If the two strings are the same, the COMPARE function will return 0.
In the following listing, the same two LOBs are compared, but this time only their first five

characters are used for the comparison. Because both start with the characters “This ”, the COMPARE
will return 0:

declare
first_locator_var CLOB;
second_locator_var CLOB;
amount_var INTEGER;
first_offset_var INTEGER;
second_offset_var INTEGER;

Chapter 35: Using Large Objects 637

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:637

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

output_var INTEGER;
begin
amount_var := 5;
first_offset_var := 1;
second_offset_var := 1;
select Proposal_Text into first_locator_var
from PROPOSAL

where Proposal_ID = 1;
select Proposal_Text into second_locator_var
from PROPOSAL
where Proposal_ID = 3;

output_var :=DBMS_LOB.COMPARE(first_locator_var, second_locator_var,
amount_var, first_offset_var, second_offset_var);

DBMS_OUTPUT.PUT_LINE('Comparison value (0 if the same): ' ||
output_var);

end;
/

Comparison value (0 if the same): 0

PL/SQL procedure successfully completed.

The COMPARE function allows you to compare character strings to character strings and
compare binary data to binary data. If you are using the COMPARE function on BLOB columns,
you should define the locator variables as RAW datatypes.

For the COMPARE function, possible exceptions are UNOPENED_FILE, NOEXIST_DIRECTORY,
NOPRIV_DIRECTORY, INVALID_DIRECTORY, and INVALID_OPERATION.

WRITE
The WRITE procedure of the DBMS_LOB package allows you to write data in specific locations
of the LOB. For example, you can write binary data into a section of a BLOB, overwriting the
existing data there. You can write character data into CLOB fields using the WRITE procedure.
This procedure has four input parameters, which must be specified in this order:

1. The LOB locator for the LOB

2. The amount variable (the number of bytes or characters to write)

3. The offset (starting point of the write) from the beginning of the LOB value

4. The buffer variable assigned to the character string or binary data being added

Because the WRITE procedure updates the LOB value, you should first lock the row via a
select for update, as shown in bold in the following listing. In this example, a record is selected
and locked. The text ADD NEW TEXT is then written to the LOB value, overwriting the data starting
in position 10 (as defined by the offset variable).

declare
locator_var CLOB;
amount_var INTEGER;

638 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:638

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

offset_var INTEGER;
buffer_var VARCHAR2(12);

begin
amount_var := 12;
offset_var := 10;
buffer_var := 'ADD NEW TEXT';
select Proposal_Text into locator_var
from PROPOSAL

where Proposal_ID = 3
for update;

DBMS_LOB.WRITE(locator_var, amount_var, offset_var, buffer_var);
commit;
end;
/

Because the WRITE procedure changes the data, a commit command is added before the end
clause of the PL/SQL block.

NOTE
Test without a commit first so you can see the impact of your
procedure call before committing the change to the database.

For the WRITE procedure, no output is provided. To see the changed data, you need to either
call the READ procedure (within the same PL/SQL block, if you want) or select the LOB value from
the table again:

select Proposal_Text
from PROPOSAL
where Proposal_ID = 3;

PROPOSAL_TEXT

This is tADD NEW TEXTsal text.

The WRITE procedure overwrote 12 characters, starting at the tenth character of Proposal_
Text. You can use the WRITEAPPEND procedure to append new data to the end of an existing
LOB value.

For CLOB data, you can rewrite this using an update statement combined with SUBSTR and
concatenation functions.

For the WRITE function, possible exceptions are VALUE_ERROR and INVALID_ARGVAL.

APPEND
The APPEND procedure of the DBMS_LOB package appends data from one LOB to a second
LOB. Because this amounts to an update of a LOB value, the record being updated should be
locked prior to executing the APPEND procedure.

The APPEND procedure takes only two parameters: the locator value for the destination LOB,
and the locator value for the source LOB. If either parameter is NULL, the APPEND procedure
will return an error.

Chapter 35: Using Large Objects 639

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:639

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

640 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:640

In the following example, two locator variables are defined. The first locator variable is named
dest_locator_var; this is the locator value for the LOB into which the data is to be appended. The
second locator variable, source_locator_var, is the locator value for the source data that is to be
appended to the destination LOB. The destination LOB, because it is being updated, is locked via
a select for update command. In this example, the Proposal_Text value for the Proposal_ID 1 record
is appended to the Proposal_Text value for the Proposal_ID 3 record:

declare
dest_locator_var CLOB;
source_locator_var CLOB;

begin
select Proposal_Text into dest_locator_var
from PROPOSAL

where Proposal_ID = 3
for update;

select Proposal_Text into source_locator_var
from PROPOSAL
where Proposal_ID = 1;

DBMS_LOB.APPEND(dest_locator_var, source_locator_var);
commit;
end;
/

To see the changed data, you can select the record from the PROPOSAL table:

select Proposal_Text
from PROPOSAL
where Proposal_ID = 3;

PROPOSAL_TEXT

This is tADD NEW TEXTsal text.This is the text of a proposal to
maintain an orga

What happened to the rest of the text? By default, only 80 characters of LONG and LOB values
are displayed during queries. To see the rest of the text, use the set long command:

set long 1000

select Proposal_Text
from PROPOSAL
where Proposal_ID = 3;

PROPOSAL_TEXT

This is tADD NEW TEXTsal text.This is the text of a proposal to
maintain an organic garden.

In this example, the first 1,000 characters of the LOB value were displayed. If you need to
know how long the LOB is, use the GETLENGTH function, as described earlier in this chapter.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In addition to allowing you to append CLOB values, the APPEND procedure allows you to
append BLOB values. When appending BLOB data, you need to be aware of the format of the
BLOB data and the impact of appending new data on the end of the BLOB value. For BLOB values,
the APPEND function may be most useful for applications in which the BLOB contains only raw
data (such as digital data transmissions) rather than formatted binary data (such as spreadsheet files
formatted by a program).

For CLOB data, you could rewrite this with an update statement, setting the Proposal_Text value
equal to the concatenation of multiple values.

For the APPEND procedure, VALUE_ERROR is the only defined exception.

ERASE
You can use the ERASE procedure of the DBMS_LOB package to erase the characters or bytes in
any part of a LOB. You can use ERASE to erase the entire LOB value, or you can specify which
section of the LOB to erase. ERASE is similar in function to WRITE. If you erase data in a BLOB
value, the data is replaced with zero-byte filler. If you erase data in a CLOB value, spaces are
inserted into the CLOB.

Because you are updating a LOB value, you should follow the standard procedures for LOB
updates: Lock the row and commit when the procedure has completed.

In the following PL/SQL block, a portion of Proposal_Text for the record with Proposal_ID 3
is erased. The erased characters will start at an offset of 10 and continue for 17 characters. The
parameters for the ERASE procedure, in order, are

1. The LOB locator for the LOB

2. The amount variable (the number of bytes or characters to erase)

3. The offset (starting point of the erasure) from the beginning of the LOB value

declare

locator_var CLOB;

amount_var INTEGER;

offset_var INTEGER;

begin

amount_var := 17;

offset_var := 10;

select Proposal_Text into locator_var

from PROPOSAL

where Proposal_ID = 3

for update;

DBMS_LOB.ERASE(locator_var, amount_var, offset_var);

commit;

end;

/

The change to the record can be seen by querying the Proposal_Text value:

select Proposal_Text

from PROPOSAL

where Proposal_ID = 3;

Chapter 35: Using Large Objects 641

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:641

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

PROPOSAL_TEXT

This is t ext.This is the text of a proposal to

maintain an organic garden.

NOTE
The space previously held by the erased data is replaced by blanks;
the rest of the data in the LOB does not change its position.

For CLOB data, you can rewrite this operation using an update statement, setting a new value
for Proposal_Text by concatenating SUBSTR results and a blank string.

For the ERASE procedure, possible exceptions are VALUE_ERROR and INVALID_ARGVAL.

TRIM
You can use the TRIM procedure of the DBMS_LOB package to reduce the size of a LOB value by
trimming characters or bytes from the end of the value (like the SQL RTRIM function). When the
TRIM procedure is executed, you specify the locator value for the LOB and the LOB’s new length.

In the following listing, the Proposal_Text for the Proposal_ID 3 record is trimmed to its first ten
characters. Because the TRIM procedure changes the data, a commit command is added before the
end clause of the PL/SQL block.

declare
locator_var CLOB;
new_length_var INTEGER;

begin
new_length_var := 10;
select Proposal_Text into locator_var
from PROPOSAL

where Proposal_ID = 3
for update;

DBMS_LOB.TRIM(locator_var, new_length_var);
commit;
end;
/

For the TRIM procedure, no output is provided. To see the changed data, you need to select
the LOB value from the table again:

select Proposal_Text
from PROPOSAL
where Proposal_ID = 3;

PROPOSAL_TEXT
--
This is t

The sample output shows the results of the TRIM procedure following the ERASE procedure
executed in the preceding section. For CLOB data, you could rewrite this as a simple update:

642 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:642

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

update PROPOSAL
set Proposal_Text = SUBSTR(Proposal_Text,1,10)

where Proposal_ID = 3;

For the TRIM procedure, possible exceptions are VALUE_ERROR and INVALID_ARGVAL.

COPY
You can use the COPY procedure of the DBMS_LOB package to copy data from a part of one
LOB into a second LOB. Unlike with the APPEND procedure, you do not have to copy the full
text of one LOB value into another. During the COPY procedure, you can specify the offset to
read from and the offset to write to. The five parameters of the COPY procedure are, in order:

1. The destination LOB locator

2. The source LOB locator

3. The amount (the number of characters or bytes to copy)

4. The offset to start writing to within the destination LOB value

5. The offset to start reading from within the destination LOB value

COPY is a combination of the READ and WRITE capabilities. Like the WRITE operation, the
COPY procedure modifies the LOB value. Therefore, the record should first be locked, and the
PL/SQL block must contain a commit command. In the following example, the first 61 characters
of the Proposal_ID 1 record are copied to the Proposal_ID 3 record. Because the destination LOB
uses an offset of 1, the copied data will overwrite data within the destination LOB.

declare
dest_locator_var CLOB;
source_locator_var CLOB;
amount_var INTEGER;
dest_offset_var INTEGER;
source_offset_var INTEGER;

begin
amount_var := 61;
dest_offset_var := 1;
source_offset_var := 1;
select Proposal_Text into dest_locator_var
from PROPOSAL

where Proposal_ID = 3
for update;

select Proposal_Text into source_locator_var
from PROPOSAL
where Proposal_ID = 1;

DBMS_LOB.COPY(dest_locator_var, source_locator_var,
amount_var, dest_offset_var, source_offset_var);

commit;
end;
/

Chapter 35: Using Large Objects 643

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:643

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

644 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:644

The COPY procedure displays no output. To see the changed data, you need to select the LOB
value from the table again:

select Proposal_Text
from PROPOSAL
where Proposal_ID = 3;

PROPOSAL_TEXT

This is the text of a proposal to maintain an organic garden.

For the COPY procedure, possible exceptions are VALUE_ERROR and INVALID_ARGVAL.

Using the BFILE Functions and Procedures
Because BFILE values are stored externally, several functions and procedures are used to manipulate
the files prior to executing READ, SUBSTR, INSTR, GETLENGTH, or COMPARE operations on
BFILE LOBs. The BFILE-related procedures and functions within DBMS_LOB, shown earlier in
Table 35-1, allow you to open files, close files, get the filename, check whether a file exists, and
check whether a file is open. The existence-check function is necessary because Oracle does not
maintain the data stored in the external file; Oracle only maintains the pointer created via the
BFILENAME procedure when the record is inserted or updated. You should use the procedures
and functions in Table 35-1 to control the files used by your PL/SQL code. For example, to read
the first ten bytes from the Cover_Letter BFILE for the Proposal_ID 2 record, you would open the
file and then execute the READ procedure. The PUT_LINE procedure of the DBMS_OUTPUT
package can then be called to show the data that was read.

As part of the standard Oracle installation, examples of LOB interactions are created in the
/rdbms/demo/logs directories beneath the Oracle software home directory. The subdirectories

there contain demonstrations of the use of PL/SQL, Java, OCI, Pro*C, Pro*COBOL, and Visual
Basic against LOBs.

For example, the file fpattern.sql in the /rdbms/demo/logs/plsql directory shows how to apply
the COMPARE function shown earlier in this chapter to BFILE LOBs. Note that it relies on specific
directories as part of its execution; see Application Developer’s Guide—Large Objects for full details
of all demos provided.

/* This file is installed in the following path when you install */
/* the database: $ORACLE_HOME/rdbms/demo/lobs/plsql/fpattern.sql */
/* Checking if a pattern exists in a BFILE using instr
/* Procedure compareBFILEs_proc is not part of DBMS_LOB package: */

CREATE OR REPLACE PROCEDURE compareBFILEs_proc IS
/* Initialize the BFILE locator: */
file_loc1 BFILE := BFILENAME('MEDIA_DIR', 'keyboard.jpg');
file_loc2 BFILE;
Retval INTEGER;

BEGIN
DBMS_OUTPUT.PUT_LINE('------------ LOB COMPARE EXAMPLE ------------');
/* Select the LOB: */

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SELECT ad_graphic INTO File_loc2 FROM print_media
WHERE Product_ID = 3060 AND ad_id = 11001;

/* Open the BFILEs: */
DBMS_LOB.OPEN(File_loc1, DBMS_LOB.LOB_READONLY);
DBMS_LOB.OPEN(File_loc2, DBMS_LOB.LOB_READONLY);

Retval := DBMS_LOB.COMPARE(File_loc2, File_loc1, DBMS_LOB.LOBMAXSIZE, 1, 1);
/* Close the BFILEs: */
DBMS_LOB.CLOSE(File_loc1);
DBMS_LOB.CLOSE(File_loc2);

END;
/

The approach shown in this example mimics that of the COMPARE example shown earlier.
Because we are working with BFILEs, there are two additional sections: the DBMS_LOB.OPEN
calls to open the files and the DBMS_LOB.CLOSE calls to close the files when the COMPARE
has completed.

Reading data from BFILEs follows the steps shown earlier for the READ function, with the
addition of the calls to open and close the file. The READ process is illustrated via the fread.sql
demo file provided by Oracle in the /rdbms/demo/logs/plsql subdirectory:

/* This file is installed in the following path when you install */
/* the database: $ORACLE_HOME/rdbms/demo/lobs/plsql/fread.sql */
/* Reading data from a BFILE. */
/* Procedure readBFILE_proc is not part of DBMS_LOB package: */

CREATE OR REPLACE PROCEDURE readBFILE_proc IS
file_loc BFILE;
Amount INTEGER := 32767;
Position INTEGER := 1;
Buffer RAW(32767);

BEGIN
DBMS_OUTPUT.PUT_LINE('------------ BFILE READ EXAMPLE ------------');
/* Select the LOB: */
SELECT ad_graphic INTO File_loc FROM print_media

WHERE product_id = 3060 AND ad_id = 11001;
/* Open the BFILE: */
DBMS_LOB.OPEN(File_loc, DBMS_LOB.LOB_READONLY);
/* Read data: */
DBMS_LOB.READ(File_loc, Amount, Position, Buffer);
/* Close the BFILE: */
DBMS_LOB.CLOSE(File_loc);

END;
/

If you use an Exception Handling section in your PL/SQL block, you need to be sure to include
FILECLOSE procedure calls within the declared exceptions. (Refer to Chapter 29 for further details
on exception handling within PL/SQL blocks.)

To move data from an external file into a BLOB datatype, you can create a BFILE datatype in
a table and use the BFILENAME function to create a LOB locator that points to the external file.

Chapter 35: Using Large Objects 645

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:645

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The BFILENAME function takes two parameters: the directory name and the filename. Here’s an
example:

insert into PROPOSAL (Proposal_ID, Cover_Letter)
values (4, BFILENAME ('proposal_dir','extfile.doc'));

You can then open the file and use the LOADFROMFILE, LOADBLOBFROMFILE, or
LOADCLOBFROMFILE procedure to load the BLOB datatype with the data from the external file.

If the data is presently in a LONG datatype, you can change it to a CLOB or NCLOB column
via the alter table command. You can also use alter table to change a LONG RAW column to a
BLOB datatype column. For insert as select operations, you can use the TO_LOB SQL function to
move the data from the LONG column to a BLOB column.

Deleting LOBS
When you delete LOB values, the locator value is deleted. If the deleted value is an internal LOB
(BLOB, CLOB, or NCLOB), both the locator and the LOB value are deleted. If the deleted value is
an external LOB (BFILE), only the locator value is deleted; you will need to manually delete the
file to which the locator points.

646 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 35
Blind Folio 35:646

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 36
Blind Folio 36:647

CHAPTER
36

Advanced Object-
Oriented Concepts

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

I
n the preceding chapters, all of the object-oriented programming (OOP) features of
Oracle shown shared two characteristics: They are embedded objects, and they are
column objects. An embedded object is one that is completely contained within another.
For example, a nested table is contained within a table, so it is an embedded object.
Although a nested table’s data is stored apart from the main table, its data can only

be accessed via the main table. A column object is one that is represented as a column in a table.
For example, a varying array is represented as a column in a table, so it is a column object.

To take full advantage of OOP capabilities, a database must also support row objects—objects
that are represented as rows instead of columns. The row objects are not embedded objects;
instead, they are referenced objects, accessible via references from other objects. In this chapter,
you will see how row objects are created and referenced.

Object-oriented structures may not be appropriate for many applications—you may be limited
based on your toolset, interfaces, or existing relationships within the database. In this chapter, you
will see how Oracle has implemented row objects and how to use object views to bridge the
object-oriented and relational architectures. In addition to row objects, this chapter covers the
application of objects to PL/SQL—creating object PL/SQL.

Row Objects vs. Column Objects
The distinction between row objects and column objects is critical. First, consider column objects.
Column objects are based on extensions of features already in the database. An abstract datatype
or a varying array can be embedded as a column within a table. A nested table or a large object
(LOB) can be stored in a single column of a table. In each case, the object is represented as a column
within a table.

Nested tables and LOBs, however, involve data that is stored out-of-line from the main table.
When you use a LOB (see Chapter 35), you specify the storage values for the table that will store
the LOB data, and Oracle creates LOB locators that point from the main table to the rows in the
LOB table if the LOB data is stored out-of-line. When you create a nested table, you specify the
name of the table in which the nested table’s records will be stored—and Oracle creates pointers
from the main table to the records in the nested tables. Thus, the main table and its embedded
nested table are related.

In row objects, the objects are represented as rows, not columns. The data is not embedded
within the main table; instead, the main table contains a reference to another table. Nested tables,
since they are stored apart from the main table, provide a useful tool for understanding row objects.
What if the nested table’s data is not embedded within the main table, and each of its rows is a
row object? The main table will define references to the related data.

The object-relational features of Oracle described in earlier chapters relied on column objects.
In this chapter, the focus is on the advanced OOP capabilities, which are based on row objects. You
use row objects to create references between the rows of different tables.

Object Tables and OIDs
In an object table, each row is a row object. An object table differs from a normal relational table
in several ways. First, each row within the object table has an OID—an object identifier value—
assigned by Oracle when the row is created. Second, the rows of an object table can be referenced
by other objects within the database.

648 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 36
Blind Folio 36:648

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 36: Advanced Object-Oriented Concepts 649

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 36
Blind Folio 36:649

You can create an object table via the create table command. Consider the ANIMAL_TY
datatype shown in previous chapters. To avoid conflicts with objects created during earlier
chapters, create this type in a new schema:

create or replace type ANIMAL_TY as object
(Breed VARCHAR2(25),
Name VARCHAR2(25),
BirthDate DATE);

/

NOTE
To keep this example simple, the ANIMAL_TY datatype is created
without any member functions.

To create an object table of the ANIMAL_TY datatype, issue the following create table command:

create table ANIMAL of ANIMAL_TY;

Table created.

Note that the command has an unusual syntax—creating the table of an abstract datatype.
The resulting table may first appear to be a normal relational table:

describe ANIMAL

Name Null? Type
------------------------------- -------- ------------
BREED VARCHAR2(25)
NAME VARCHAR2(25)
BIRTHDATE DATE

The ANIMAL table’s columns map to the attributes of the ANIMAL_TY datatype. However, there
are significant differences in how you can use the table, since it is an object table. As noted earlier
in this section, each row within the object table will have an OID value, and the rows can be
referenced as objects.

Inserting Rows into Object Tables
Because ANIMAL is an object table, you can use its datatype’s constructor method when inserting
data into the table. Since the ANIMAL table is based on the ANIMAL_TY abstract datatype, the
ANIMAL_TY constructor method can be used when inserting values into ANIMAL.

NOTE
Refer to Chapter 33 for detailed discussions of constructor methods.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In the following listing, three rows are inserted into the ANIMAL object table. In each command,
the ANIMAL_TY constructor method is called.

insert into ANIMAL values
(ANIMAL_TY('MULE','FRANCES', '01-APR-02'));

insert into ANIMAL values
(ANIMAL_TY('DOG','BENJI', '03-SEP-01'));

insert into ANIMAL values
(ANIMAL_TY('CROCODILE','LYLE', '14-MAY-00'));

If the abstract datatype on which the object table is based is itself based on a second abstract
datatype, you may need to nest calls to multiple constructor methods within your insert command.
(Refer to Chapter 33 for examples of nested abstract datatypes.)

NOTE
If an object table is based on a datatype that does not contain any
nested datatypes, you can also insert records into the object table
using the normal insert command syntax for relational tables.

When you insert a row into an object table, Oracle assigns an OID to the row. Having an
OID allows you to use the row as a referenceable object. OID values are not reused.

Selecting Values from Object Tables
When the ANIMAL table was created, it was based entirely on the ANIMAL_TY datatype:

create table ANIMAL of ANIMAL_TY;

When you select from a table that contains an abstract datatype, you refer to the abstract
datatype’s columns as part of the table’s columns. That is, if you used the ANIMAL_TY datatype
as the basis for a column named Animal, then you would select the animal names by selecting
Animal.Name from the table.

An object table, though, is based on a datatype—it has no other columns. Therefore, you do
not need to reference the datatype when accessing the columns. To select the names from the
ANIMAL table, just query the datatype’s attributes directly:

select Name
from ANIMAL;

NAME

FRANCES
BENJI
LYLE

You can refer to the columns within the where clause just as if ANIMAL were a relational table:

select Name
from ANIMAL

650 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 36
Blind Folio 36:650

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

where Breed = 'CROCODILE';

NAME

LYLE

If the ANIMAL_TY datatype used another abstract datatype for one of its columns, that datatype’s
column would be referenced during all selects, updates, and deletes.

Updates and Deletes from Object Tables
If the object table is based on an abstract datatype that uses no other abstract datatypes, an
update or delete of an object table uses the same format as you would use for relational tables.
The ANIMAL_TY datatype does not use any other abstract datatype for one of its columns, so
your updates and deletes from the ANIMAL object table behave the same as if ANIMAL were a
relational table.

In the following command, one of the rows of ANIMAL is updated:

update ANIMAL
set BirthDate = '01-MAY-00'

where Name = 'LYLE';

1 row updated.

Note that during the update, the columns of the object table are referred to as if ANIMAL were
a relational table. During a delete, you use the same means to reference the object table’s columns
in the where clause:

delete from ANIMAL
where Name = 'LYLE';

1 row deleted.

Keeping a crocodile alongside mules and dogs probably wasn’t such a good idea anyway.

The REF Function
The REF function allows you to reference existing row objects. For example, the ANIMAL table has
(after the deletion of one row, shown in the preceding section) two row objects, each of which has
an OID value assigned to it. You can see the OID assigned to each row by using the REF function,
as shown here:

select REF(A)
from ANIMAL A
where Name = 'FRANCES';

REF(A)

0000280209F525172CC0F84F8ABABF0F0F46ECB7209A233BD5F
FD34A7E82D8C0C5CFB88FC0010002270000

Chapter 36: Advanced Object-Oriented Concepts 651

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 36
Blind Folio 36:651

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
Your REF(A) value should be different from the one shown here.
The REF(A) value is wrapped over multiple lines in this listing.

In the preceding listing, the ANIMAL table was given the alias A, and that alias was used as
input to the REF function. The output shows the OID for the row object that met the limiting condition
of the query.

NOTE
The REF function takes as its input the alias given to the object
table. The other functions shown later in this chapter also take
aliases as inputs, so you should be familiar with this syntax.

Since the REF function can only reference row objects, you cannot use it to reference column
objects. Column objects include abstract datatypes, LOBs, and collectors.

As you can see, the REF function by itself does not give you any useful information. You need
to use another function—DEREF—that translates the REF output into values. You can then use REF
and DEREF to reference row-object values, as described in the next section.

Using the DEREF Function
The REF function takes a row object as its argument and returns a reference value. The DEREF
function does the opposite—it takes a reference value (the OID generated for a reference) and
returns the value of the row object.

Earlier in this chapter, the ANIMAL object table was created using the ANIMAL_TY abstract
datatype:

create table ANIMAL of ANIMAL_TY;

To see how DEREF and REF work together, consider a table that is related to the ANIMAL
table. The KEEPER table will track the people who take care of the animals. It will have a column
for the name of the keeper (KeeperName) and a reference to the ANIMAL object table (AnimalKept),
as shown in the following listing:

create table KEEPER
(KeeperName VARCHAR2(25),
AnimalKept REF ANIMAL_TY);

The first part of the create table command looks normal:

create table KEEPER
(KeeperName VARCHAR2(25),

but the last line shows a new feature:

AnimalKept REF ANIMAL_TY);

652 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 36
Blind Folio 36:652

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The AnimalKept column references data that is stored elsewhere. The REF function points the
AnimalKept column to a row object of the ANIMAL_TY datatype. Since ANIMAL is an object
table of the ANIMAL_TY datatype, the AnimalKept column can point to the row objects within
the ANIMAL object table. You can point the REF to any object table of that type.

When you describe the KEEPER table, you can see that its AnimalKept column relies on a REF:

describe KEEPER

Name Null? Type
------------------------------- -------- ----
KEEPERNAME VARCHAR2(25)
ANIMALKEPT REF OF ANIMAL_TY

To see the full details, use a higher value for the describe depth:

set describe depth 2

desc KEEPER

Name Null? Type
--------------------------------------- -------- ----------------
KEEPERNAME VARCHAR2(25)
ANIMALKEPT REF OF ANIMAL_TY
BREED VARCHAR2(25)
NAME VARCHAR2(25)
BIRTHDATE DATE

Now, insert a record into KEEPER. You need to use the REF function to store the ANIMAL
references in the AnimalKept column.

insert into KEEPER
select 'CATHERINE WEILZ',

REF(A)
from ANIMAL A

where Name = 'BENJI';

Let’s look at this insert command closely. First, the KeeperName value is selected as a literal
value:

insert into KEEPER
select 'CATHERINE WEILZ',

Next, the value for the AnimalKept column must be specified. But the datatype of AnimalKept
is REF OF ANIMAL_TY, so you must select the reference from the ANIMAL object table to populate
the AnimalKept column:

REF(A)
from ANIMAL A

where Name = 'BENJI';

Chapter 36: Advanced Object-Oriented Concepts 653

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 36
Blind Folio 36:653

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

What’s going on here? First, the ANIMAL object table is queried, and the REF function returns
the OID for the row object selected. The OID is then stored in the KEEPER table as a pointer to
that row object in the ANIMAL object table.

Does the KEEPER table contain the animal information? No. KEEPER contains the name of the
keeper and a reference to a row object in the ANIMAL table. You can see the reference OID by
querying KEEPER:

select * from KEEPER;

KEEPERNAME

ANIMALKEPT

CATHERINE WEILZ
00002202088817DC34109A4A929C632C0FAF1F78EF9A233BD5F
FD34A7E82D8C0C5CFB88FC0

NOTE
Your AnimalKept value and text wrapping will differ from those
shown here.

The AnimalKept column, as shown in this listing, contains the reference to the row object, not
the value of the data stored in the row object.

You can’t see the referenced value unless you use the DEREF function. When you select from
KEEPER, Oracle will use the OID to evaluate the reference (REF). The DEREF function will take
the reference and return a value.

In the following query, the value of the AnimalKept column in KEEPER is the parameter passed
to the DEREF function. DEREF will take the OID from AnimalKept and find the referenced object;
the function will evaluate the reference and return the values to the user.

select DEREF(K.AnimalKept)
from KEEPER K
where KeeperName = 'CATHERINE WEILZ';

DEREF(K.ANIMALKEPT)(BREED, NAME, BIRTHDATE)

ANIMAL_TY('DOG', 'BENJI', '03-SEP-01')

NOTE
The parameter for the DEREF function is the column name of the REF
column, not the table name.

The result shows that the CATHERINE WEILZ record in KEEPER references an ANIMAL record
for the animal named BENJI. A few aspects of this query are noteworthy:

654 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 36
Blind Folio 36:654

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ The query used a reference to a row object to travel from one table (KEEPER) to a second
(the ANIMAL object table). Thus, a join is performed in the background, without your
specifying the join criteria.

■ The object table itself is not mentioned in the query. The only table listed in the query is
KEEPER. You do not need to know the name of the object table to DEREF its values.

■ The entire referenced row object was returned, not just part of the row.

These are significant differences that separate object queries from relational queries. Thus, when
querying your tables, you need to know the way in which their relationships are established. Are
the relationships based on foreign keys and primary keys, or on object tables and REF datatypes?
If you are planning to use Oracle’s object-oriented features, you need to accommodate the changes
in SQL and the ways relationships are enforced. To help smooth the transition between relational
and object-oriented approaches, Oracle allows you to create object views that contain REFs
superimposed on existing relational tables. See “Object Views with REFs” later in this chapter.

The VALUE Function
The DEREF function was applied to the relational table—the KEEPER table, in this case. The DEREF
function returns the value of the reference that goes from the relational table to the object table.

What about querying from the object table? Can you select from ANIMAL?

select * from ANIMAL;

BREED NAME BIRTHDATE
------------------------- ------------------------- ---------
MULE FRANCES 01-APR-02
DOG BENJI 03-SEP-01

Even though ANIMAL is an object table, you can select from it as if it were a relational table.
This is consistent with the examples of inserts and selects shown earlier in this chapter. However,
that is not what was shown via the DEREF. The DEREF showed the full structure of the abstract
datatype used by the ANIMAL object table:

select DEREF(K.AnimalKept)
from KEEPER K
where KeeperName = 'CATHERINE WEILZ';

DEREF(K.ANIMALKEPT)(BREED, NAME, BIRTHDATE)

ANIMAL_TY('DOG', 'BENJI', '03-SEP-01')

To see the same structures from a query of the ANIMAL object table, use the VALUE function.
As shown in the following listing, VALUE shows you the data in the same format that DEREF will
use. The parameter for the VALUE function is the table alias.

select VALUE(A)
from ANIMAL A

Chapter 36: Advanced Object-Oriented Concepts 655

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 36
Blind Folio 36:655

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

where Name = 'BENJI';

VALUE(A)(BREED, NAME, BIRTHDATE)

ANIMAL_TY('DOG', 'BENJI', '03-SEP-01')

The VALUE function is useful when debugging references and within PL/SQL, as shown in
“Object PL/SQL,” later in this chapter. Since it allows you to query the formatted values directly
from the object table, you can select those values without using the DEREF query of KEEPER’s
AnimalKept column.

Invalid References
You can delete the object to which a reference points. For example, you can delete a row from
the ANIMAL object table to which a KEEPER record points:

delete from ANIMAL
where Name = 'BENJI';

The record in KEEPER that references this ANIMAL record will now have what is called a
dangling REF. If you insert a new ANIMAL row for the animal named BENJI, it won’t be recognized
as being part of the same reference established earlier. The reason is that the first time you inserted
a BENJI row, Oracle generated an OID for the row object, and that is what the KEEPER column
referenced. When you deleted the row object, the OID went away—and Oracle does not reuse
OID numbers. Therefore, when the new BENJI record is entered, it is given a new OID value—
and the KEEPER record still points to the old value.

This is a critical difference between relational and OOP systems. In a relational system, the join
between two tables is dependent only on the current data. In an OOP system, the join is between
objects—and just the fact that two objects have the same data doesn’t mean they are the same.

Object Views with REFs
You can use object views to superimpose OOP structures on existing relational tables (refer to
Chapter 33). For example, you can create abstract datatypes and use them within the object view
of an existing table. Using object views allows you to access the table via either relational command
syntax or abstract datatype syntax. As a result, object views provide an important technological
bridge from existing relational applications to object-relational applications.

A Quick Review of Object Views
This example from Chapter 33 will serve as part of the basis for the advanced object views in this
chapter. First, a CUSTOMER table is created, with the Customer_ID column as its primary key:

create table CUSTOMER
(Customer_ID NUMBER constraint CUSTOMER_PK primary key,
Name VARCHAR2(25),
Street VARCHAR2(50),
City VARCHAR2(25),

656 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 36
Blind Folio 36:656

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

State CHAR(2),
Zip NUMBER);

Next, two abstract datatypes are created. The first, ADDRESS_TY, contains attributes for
addresses: Street, City, State, and Zip. The second, PERSON_TY, contains a Name attribute plus
an Address attribute that uses the ADDRESS_TY datatype, as shown in the following listing:

create or replace type ADDRESS_TY as object
(Street VARCHAR2(50),
City VARCHAR2(25),
State CHAR(2),
Zip NUMBER);

/

create or replace type PERSON_TY as object
(Name VARCHAR2(25),
Address ADDRESS_TY);

/

Since the CUSTOMER table was created without using the ADDRESS_TY and PERSON_TY
datatypes, you need to use object views in order to access CUSTOMER data via object-based
accesses (such as methods). You can create an object view that specifies the abstract datatypes
that apply to the CUSTOMER table. In the following listing, the CUSTOMER_OV object view is
created:

create view CUSTOMER_OV (Customer_ID, Person) as
select Customer_ID,

PERSON_TY(Name,
ADDRESS_TY(Street, City, State, Zip))

from CUSTOMER;

In the creation of the CUSTOMER_OV object view, the constructor methods for the two abstract
datatypes (ADDRESS_TY and PERSON_TY) are specified. You can now access the CUSTOMER table
directly (as a relational table) or via the constructor methods for the abstract datatypes.

The CUSTOMER table will be used in the next set of examples in this chapter.

Object Views Involving References
If the CUSTOMER table shown in the previous section is related to another table, you can use object
views to create a reference between the tables. That is, Oracle will use the existing primary key/
foreign key relationships to simulate OIDs for use by REFs between the tables. You will thus be
able to access the tables either as relational tables or as objects. When you treat the tables as objects,
you will be able to use the REFs to automatically perform joins of the tables (refer to “Using the
DEREF Function,” earlier in this chapter, for examples).

The CUSTOMER table has a primary key of Customer_ID. Let’s create a small table that will
contain a foreign key reference to the Customer_ID column. In the following listing, the CUSTOMER_
CALL table is created. The primary key of the CUSTOMER_CALL table is the combination of
Customer_ID and Call_Number. The Customer_ID column of CUSTOMER_CALL is a foreign key

Chapter 36: Advanced Object-Oriented Concepts 657

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 36
Blind Folio 36:657

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

back to CUSTOMER—you cannot record a call for a customer who does not already have a record in
CUSTOMER. A single nonkey attribute, Call_Date, is created within the CUSTOMER_CALL table.

create table CUSTOMER_CALL
(Customer_ID NUMBER,
Call_Number NUMBER,
Call_Date DATE,
constraint CUSTOMER_CALL_PK

primary key (Customer_ID, Call_Number),
constraint CUSTOMER_CALL_FK foreign key (Customer_ID)

references CUSTOMER(Customer_ID));

For example, you could have the following CUSTOMER and CUSTOMER_CALL entries:

insert into CUSTOMER values
(123,'SIGMUND','47 HAFFNER RD','LEWISTON','NJ',22222);
insert into CUSTOMER values
(234,'EVELYN','555 HIGH ST','LOWLANDS PARK','NE',33333);

insert into CUSTOMER_CALL values
(123,1,TRUNC(SysDate)-1);
insert into CUSTOMER_CALL values
(123,2,TRUNC(SysDate));

The foreign key from CUSTOMER_CALL to CUSTOMER defines the relationship between the
tables. From an OOP point of view, the records in CUSTOMER_CALL reference the records in
CUSTOMER. Therefore, we must find a way to assign OID values to the records in CUSTOMER
and generate references in CUSTOMER_CALL.

How to Generate OIDs
First, use an object view to assign OIDs to the records in CUSTOMER. Remember that OIDs are
assigned to records in an object table—and an object table, in turn, is based on an abstract datatype.
Therefore, we first need to create an abstract datatype that has the same structure as the CUSTOMER
table:

create or replace type CUSTOMER_TY as object
(Customer_ID NUMBER,
Name VARCHAR2(25),
Street VARCHAR2(50),
City VARCHAR2(25),
State CHAR(2),
Zip NUMBER);

/

Now, create an object view based on the CUSTOMER_TY type, while assigning OID values
to the records in CUSTOMER:

create or replace view CUSTOMER_OV of CUSTOMER_TY
with object identifier (Customer_ID) as

658 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 36
Blind Folio 36:658

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select Customer_ID, Name, Street, City, State, Zip
from CUSTOMER;

The first part of this create view command gives the view its name (CUSTOMER_OV) and tells
Oracle that the view’s structure is based on the CUSTOMER_TY datatype:

create or replace view CUSTOMER_OV of CUSTOMER_TY

The next part of the create view command tells the database how to construct OID values for
the rows in CUSTOMER. The with object identifier clause is followed by the column to use for the
OID—in this case, the Customer_ID value. This will allow you to address the rows within the
CUSTOMER table as if they were referenceable row objects within an object table.

with object identifier (Customer_ID) as

The final part of the create view command gives the query on which the view’s data access
will be based. The columns in the query must match the columns in the view’s base datatype.

select Customer_ID, Name, Street, City, State, Zip
from CUSTOMER;

The rows of CUSTOMER are now accessible as row objects via the CUSTOMER_OV view.
The OID values generated for the CUSTOMER_OV rows are called pkOIDs, because they are
based on CUSTOMER’s primary key values. Relational tables can be accessed as row objects if
you create object views for them.

How to Generate References
The rows of CUSTOMER_CALL reference rows in CUSTOMER. From a relational perspective, the
relationship is determined by the foreign key pointing from the CUSTOMER_CALL.Customer_ID
column to the CUSTOMER.Customer_ID column. Now that the CUSTOMER_OV object view has
been created, and the rows in CUSTOMER can be accessed via OIDs, you need to create reference
values in CUSTOMER_CALL that reference CUSTOMER. Once the REFs are in place, you will be
able to use the DEREF function (shown earlier in this chapter) to access the CUSTOMER data from
within CUSTOMER_CALL.

The create view command for the object view of CUSTOMER_CALL is shown in the following
listing. It uses a new function, MAKE_REF, which is described following the listing.

create view CUSTOMER_CALL_OV as
select MAKE_REF(CUSTOMER_OV, Customer_ID) Customer_ID,

Call_Number,
Call_Date

from CUSTOMER_CALL;

With the exception of the MAKE_REF operation, this create view command looks like a normal
create view command. The MAKE_REF operation is shown in this line:

select MAKE_REF(CUSTOMER_OV, Customer_ID) Customer_ID,

Chapter 36: Advanced Object-Oriented Concepts 659

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 36
Blind Folio 36:659

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The MAKE_REF function takes as arguments the name of the object view being referenced
and the name of the column (or columns) that form the foreign key in the local table. In this case,
the Customer_ID column of the CUSTOMER_CALL table references the column that is used as the
basis of OID generation in the CUSTOMER_OV object view. Therefore, two parameters are passed
to MAKE_REF: CUSTOMER_OV and Customer_ID. The result of the MAKE_REF operation is given
the column alias Customer_ID. Since this command creates a view, the result of an operation must
be given a column alias.

What does MAKE_REF do? It creates references (called pkREFs, since they are based on primary
keys) from the CUSTOMER_CALL_OV view to the CUSTOMER_OV view. You can now query
the two views as if CUSTOMER_OV were an object table and CUSTOMER_CALL_OV were a
table that contains a REF datatype that references CUSTOMER_OV.

Querying the Object Views
The queries of the object views with REFs mirror the structure of the queries of table REFs. You
use the DEREF function to select the value of the referenced data, as shown earlier in this chapter.
Applied to the object views, the query will be

select DEREF(CCOV.Customer_ID)
from CUSTOMER_CALL_OV CCOV
where Call_Date = TRUNC(SysDate);

DEREF(CCOV.CUSTOMER_ID)(CUSTOMER_ID, NAME, STREET, CITY, STATE,ZIP)

CUSTOMER_TY(123, 'SIGMUND', '47 HAFFNER RD', 'LEWISTON','NJ',22222)

The query found the record in CUSTOMER_CALL for which the Call_Date value was the current
system date. It then took the Customer_ID value from that record and evaluated its reference. That
Customer_ID value, from the MAKE_REF function, pointed to a pkOID value in the CUSTOMER_
OV object view. The CUSTOMER_OV object view returned the record whose pkOID matched
the referenced value. The DEREF function then returned the value of the referenced row. The query
thus returned rows from CUSTOMER even though the user only queried CUSTOMER_CALL.

Object views of column objects enable you to work with tables as if they were both relational
tables and object-relational tables. When extended to row objects, object views enable you to
generate OID values based on established foreign key/primary key relationships. Object views
allow you to continue to use the existing constraints and standard insert, update, delete, and
select commands. They also allow you to use OOP features such as references against the object
tables. Object views thus provide an important technological bridge for migrating to an OOP
database architecture.

As described earlier in this chapter, Oracle performs joins that resolve the references defined
in the database. When the referenced data is retrieved, it brings back the entire row object that
was referenced. To reference the data, you need to establish pkOIDs in the table that is the
“primary key” table in the relationship, and use MAKE_REF to generate references in the table
that is the “foreign key” table in the relationship. You can then work with the data as if it were
stored in object tables.

660 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 36
Blind Folio 36:660

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Object PL/SQL
PL/SQL programs can use the abstract datatypes you have created. Whereas earlier versions of PL/SQL
could only use the Oracle-provided datatypes (such as DATE, NUMBER, and VARCHAR2), you
can now use your own user-defined datatypes as well. The result is the merging of SQL, procedural
logic, and OOP extensions—a combination referred to as object PL/SQL.

The following anonymous PL/SQL block uses object PL/SQL concepts. The CUSTOMER_TY
abstract datatype is used as the datatype for the Cust1 variable, and its value is populated by a
query of the CUSTOMER_OV object view.

set serveroutput on
declare

Cust1 CUSTOMER_TY;
begin

select VALUE(COV) into Cust1
from CUSTOMER_OV COV

where Customer_ID = 123;
DBMS_OUTPUT.PUT_LINE(Cust1.Name);
DBMS_OUTPUT.PUT_LINE(Cust1.Street);

end;
/

The output of this PL/SQL block is

SIGMUND
47 HAFFNER RD

In the first part of the PL/SQL block, a variable is declared using the CUSTOMER_TY datatype:

declare
Cust1 CUSTOMER_TY;

The Cust1 variable value is selected from the CUSTOMER_OV object view (created in the
preceding section of this chapter). The VALUE function is used to retrieve the data in the structure
of the abstract datatype. Since the data will be selected in the format of the abstract datatype,
you need to use the CUSTOMER_OV object view created on the CUSTOMER table.

begin
select VALUE(COV) into Cust1
from CUSTOMER_OV COV

where Customer_ID = 123;

The Cust1.Name and Cust1.Street values are then retrieved from the attributes of the Cust1
variable and displayed. You cannot pass the entire Cust1 variable to the PUT_LINE procedure.

DBMS_OUTPUT.PUT_LINE(Cust1.Name);
DBMS_OUTPUT.PUT_LINE(Cust1.Street);

end;

Chapter 36: Advanced Object-Oriented Concepts 661

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 36
Blind Folio 36:661

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This is a deliberately simple example, but it shows the power of object PL/SQL. You can use
object PL/SQL anywhere you use abstract datatypes. Your PL/SQL is thus no longer bound to the
Oracle-provided datatypes, and may more accurately reflect the objects in your database. In this
example, an object view was queried to illustrate that the queries can access either column objects
or row objects. You can then select the attributes of the abstract datatype and manipulate or display
them. If you have defined methods for the abstract datatype, you can apply them as well.

For example, you can call the datatype’s constructor methods within your PL/SQL blocks. In
the following example, a variable named NewCust is defined using the CUSTOMER_TY datatype.
The NewCust variable is then set equal to a set of values using the CUSTOMER_TY constructor
method. The NewCust variable’s set of values is then inserted via the CUSTOMER_OV object view.

declare
NewCust CUSTOMER_TY;

begin
NewCust :=
CUSTOMER_TY(345,'NewCust','StreetVal', 'City','ST',00000);

insert into CUSTOMER_OV
values (NewCust);

end;
/

You can see the result of the insert by querying CUSTOMER_OV:

select Customer_ID, Name from CUSTOMER_OV;

CUSTOMER_ID NAME
----------- -------------------------

123 SIGMUND
234 EVELYN
345 NewCust

In addition to calling constructor methods, you can call the methods you have created on
your abstract datatypes. If you will be comparing the values of variables that use the abstract
datatypes, you will need to define map or order methods for the datatypes. This capability allows
you to further extend object PL/SQL—you define the datatypes and the functions at the database
level, and they are callable within any of your PL/SQL programs. Object PL/SQL represents a
significant enhancement over traditional PL/SQL.

Objects in the Database
The features available in Oracle—column objects, row objects, and object extensions to PL/SQL—
enable you to implement objects in your database without sacrificing the investment you have
already made in analysis and design. You can continue to create systems based on relational
design techniques and tune them based on relational access methods. The tools that Oracle
provides allow you to create an OOP layer above your relational tables. Once you have that
layer in place, you can access the relational data as if it were stored in a fully OOP database.

Having an OOP layer allows you to realize some of the benefits of an OOP system, such as
abstraction and encapsulation. You can apply the methods for each abstract datatype across a set

662 Part V: Object-Relational Databases

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 36
Blind Folio 36:662

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

of consistently implemented objects, and benefit from object reuse and standards enforcement.
At the same time, you can benefit from Oracle’s relational features. The ability to use both relational
and object technology within an application lets you use the proper tool for the proper job within
the database.

Note that implementing object-relational features may force you to change your approach
to data relationships and the tools you use to access the data. If you use row objects, the
relationships among tables are among row objects, not their data—possibly resulting in dangling
REFs. Additionally, unless you use object views you will need to use new SQL syntax for queries
and DML operations.

When implementing the object portion of an object-relational database, start by defining the
abstract datatypes that are the core components of your business. Every object-relational feature,
whether it relates to column objects or row objects, is based on an abstract datatype. The better
you have defined your datatypes and their methods, the better you will be able to implement objects.
If necessary, nest objects so that you can have multiple variations of the same core datatype. The
result will be a database that is properly designed to take advantage of both relational and object-
oriented features.

Chapter 36: Advanced Object-Oriented Concepts 663

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 36
Blind Folio 36:663

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 36
Blind Folio 36:664

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 37
Blind Folio 37:665

PART
VI

Java in Oracle

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 37
Blind Folio 37:666

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 37
Blind Folio 37:667

CHAPTER
37

An Introduction
to Java

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

668 Part VI: Java in Oracle

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 37
Blind Folio 37:668

I
n this chapter, you will see an overview of Java as it relates to Oracle database
applications. There are numerous uses of Java beyond Oracle applications, and there
are many features of the language that will not be used by most Oracle developers.
The goal of this chapter is to provide developers who have a background in SQL and
PL/SQL with an understanding of the Java language structures. This is not an exhaustive

review of Java (numerous books are available that accomplish that goal) but rather a short overview
of the Java language components most commonly used by Oracle developers.

Although in many cases PL/SQL and Java correlate well to each other, there are significant
differences in terminology and usage. That shouldn’t be surprising because the two programming
languages were developed independently. Furthermore, PL/SQL’s object oriented capabilities
were not part of its initial implementation, whereas Java has been object oriented since its inception.
To use Java effectively, you need to take a different approach than the one you may have taken
in the past with PL/SQL.

Chapter 29 presented an introduction to the PL/SQL language structures and flow control.
This chapter mirrors that approach: You will see the structures used by Java and the basic flow-
control methods provided. Where applicable, you will also see the matching PL/SQL structures.
You should be familiar with PL/SQL (Chapter 29); packages, functions, and procedures (Chapter 31);
and abstract datatypes and methods (Chapter 33) before reading this chapter.

Java vs. PL/SQL: An Overview
In comparing PL/SQL to Java, you get no further than the basic PL/SQL structure—a block—before
you encounter a significant difference in terminology between the two languages. In PL/SQL, a block
is a structured piece of code that has a Declarations section, an Executable Commands section, and
an Exception Handling section. For a PL/SQL block, the structure may be represented as follows:

declare
<declarations section>

begin
<executable commands>
exception
<exception handling>

end;

In Java, the term block refers to a much smaller subset of code. In Java, a block is a collection
of statements enclosed by curly braces, { and }. For example, the following pseudo-code contains
two Java blocks:

if (some condition) {
block of code to process if condition is met

}
else {

block of code to process if condition is not met
}

Within PL/SQL, that entire code section would be merely one part of a larger block; within
Java, it contains two separate blocks. Throughout this chapter, all references to “blocks” refer
to Java blocks unless otherwise specified.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A PL/SQL procedure is bound by a begin and end, whereas a Java method is bound by opening
and closing braces. These braces are also utilized to isolate individual blocks of scoped code, or
as indicators of the opening and closing of conditional segments.

A second major difference between PL/SQL and Java is in the declaration of variables. In a
PL/SQL block, you define your variables before you begin the Executable Commands section.
In a Java program, you can define variables where they are needed within the program. A Java
program has no Declarations section comparable to the one used in PL/SQL blocks.

Throughout this chapter, you will see a number of other differences between PL/SQL and Java.
It’s important to remember that Java does not replace PL/SQL within your applications—you can
continue to use PL/SQL for Oracle applications. For data-retrieval operations, you should test the
performance of PL/SQL and Java before deciding on a technical direction to follow.

Getting Started
To use the examples in this section, you need a copy of the Java Development Kit (JDK), which is
available for free download from http://java.sun.com/. You need to install the JDK on the server on
which you will be running the Java programs. As of the time of this writing, JDK 1.4 is the most
recent production release; most development efforts use JDK 1.3.1. At a minimum, you should use
JDK 1.2.2.

NOTE
The JDK is installed as part of the Oracle Database 10g installation.
Be sure to install both the database kernel software and the software
that comes on the Companion CD.

Declarations
Within Java, you can declare variables as needed. A variable has a name and a datatype, and it’s
used to store a data value during the program’s execution. A variable also has a scope, allowing
it to be publicly accessible or private—similar to the manner in which procedures within packages
can have private variables.

Here are examples of Java variable declarations:

char aCharVariable = 'J';
boolean aBooleanVariable = false;

By convention, Java variables always start with a lowercase letter, as shown in this example,
where the datatypes are CHAR and BOOLEAN, and each variable is assigned an initial value.
Note that the assignment character in Java is =, as opposed to := or => in PL/SQL. Each declaration
is terminated with a semicolon.

The available primitive datatypes in Java are listed in Table 37-1.
In addition to the primitive datatypes listed in Table 37-1, you can use reference datatypes,

which are based on the contents of variables. You may note that there is no primitive datatype for
variable-length character strings—Java provides a String class for that purpose. Classes are discussed
later in this chapter.

Chapter 37: An Introduction to Java 669

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 37
Blind Folio 37:669

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Executable Commands
You can assign values to variables via the use of expressions and statements. The arithmetic operators
supported by Java include the following:

Operator Description

* Multiplication

/ Division

+ Addition

– Subtraction

% Modulus

In addition to these operators, you can use Java’s unary operators to simplify your coding.
For example, you can increment variables via the ++ operator, as shown here:

aLoopCounter = aLoopCounter++;

Or you could simply write this:

aLoopCounter++

NOTE
The ++ operator is called a unary operator because it has only one
operand. If an operator requires two operands (such as *), it is called
a binary operator.

670 Part VI: Java in Oracle

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 37
Blind Folio 37:670

Datatype Description

Byte Byte-length integer

Short Short integer

Int Integer

Long Long integer

Float Single-precision floating-point real number

Double Double-precision floating-point real number

Char A single Unicode character

Boolean A Boolean value, true or false

TABLE 37-1. Primitive Java Datatypes

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In PL/SQL, that would have been written as follows:

aLoopCounter := aLoopCounter +1;

If the ++ operator is placed in front of the variable name, it is a pre-increment operator rather
than a post-increment operator:

int anotherCounter = ++aLoopCounter;

In this example, the variable anotherCounter is set to the incremented value of aLoopCounter.
By contrast,

int anotherCounter = aLoopCounter++;

sets anotherCounter to the value of aLoopCounter before it is incremented. You can decrement a
variable’s value via the -- unary operator:

aLoopCounter = aLoopCounter--;

You can also combine the assignment of values with an operation. For example, instead of
writing

aNumberVariable = aNumberVariable * 2;

you can write

aNumberVariable *= 2;

You can perform similar combinations using /=, %=, +=, and –=.
If you perform multiple arithmetic operations, you should use parentheses to clearly indicate

the order in which the operations should be evaluated, as shown in the following example:

aNumberVariable = (aNumberVariable*2) +2;

Terminating these operations with semicolons makes them statements—complete units of
execution.

Conditional Logic
You can evaluate variables by using expressions and statements. To do so, you may use one or
more of the fundamental classes provided as part of Java. A full listing of those methods is beyond
the scope of this book; see Sun’s Java documentation site or one of the many Java books available
for the functionality currently provided.

NOTE
The number of supplied classes usually changes dramatically with
each release of Java.

Chapter 37: An Introduction to Java 671

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 37
Blind Folio 37:671

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In the following listing, the Character.isUpperCase method is used to evaluate the aCharVariable
variable declared earlier:

if (Character.isUpperCase(aCharVariable)) {
some commands to execute

}

If the aCharVariable value is uppercase, the commands in the following block will be executed;
otherwise, flow will continue to the next part of the program.

The following is the general syntax for if clauses:

if (expression) {
statement

}

Notice the lack of a then clause. If the expression being evaluated is true, the following block is
automatically executed. Also, note the lack of an end if clause. Java blocks are simply terminated
by the closing brace of the statement.

You can also have else clauses to evaluate different conditions, as shown in the following listing:

if (expression) {
statement

}
else {

statement
}

If you have multiple conditions to check, you can use the else if clause to evaluate each in
turn, ending with an else clause. The following listing illustrates the use of else if clauses:

if (aCharVariable == 'V') {
statement

}
else if (aCharVariable == 'J') {

statement
}
else {

statement
}

NOTE
PL/SQL supports the use of elsif clauses to choose between
alternatives. A single if clause can have multiple elsif clauses.

In addition to supporting if clauses for conditional logic, Java features a switch clause. Used
in conjunction with its break clause and statement labels, the switch clause can approximate the
functionality of goto clauses (which Java does not support). First, let’s look at a simple switch
example. Using the case statement, multiple values of the aMonth variable are evaluated. Depending

672 Part VI: Java in Oracle

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 37
Blind Folio 37:672

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

on the aMonth value, the text name for the month is displayed, and the processing leaves the
switch block by means of a break.

int aMonth=2;
switch (aMonth) {
case 1:

System.out.println("January");
break;

case 2:
System.out.println("February");
break;

case 3:
System.out.println("March");
break;

default:
System.out.println("Out of range");
break;

}

NOTE
In Java, the arguments of a case statement must be integers.

This kind of code is much more complex to write than a simple TO_CHAR, but it illustrates
the switch usage. The switch operator takes the aMonth variable as its input and then evaluates
its value. If the value matches a case value, the System.out.println method is called to print the
month’s name, and processing control leaves the switch block by means of a break. If the value
does not match one of the case clauses, the default option is executed.

Where does control go? By default, it goes to the next section of the program. However, you
have the option of creating labels for sections of your code and passing the names of those labels
to the break clause. The following listing shows an example of a label and a break clause:

somelabel:
if (aCharVariable == 'V') {

statement
}
else {

statement
}
int aMonth=2;
switch (aMonth) {
case 1:

System.out.println("January");
break somelabel;

case 2:
System.out.println("February");
break someotherlabel;

case 3:
System.out.println("March");

Chapter 37: An Introduction to Java 673

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 37
Blind Folio 37:673

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

break somethirdlabel;
default:

System.out.println("Out of range");
break;

}

In this example, the if clause is evaluated, followed by the switch clause. Note that the aMonth
variable is not declared until just before it is needed. For this example, the aMonth variable is
assigned a value of 2, so the program will display the word “February” and will then branch over
to the section of code identified by the someotherlabel label. If the aMonth value had been 1, the
if clause at the beginning of the code listing would have been reexecuted.

Java also supports a ternary operator—an operator that takes three operands and whose function
is similar to that of DECODE. Acting as an inline if-else combination, the ternary operator evaluates an
expression. If the expression evaluates to true, the second operand is returned; otherwise, the third is
returned. The syntax is as follows:

expression ? operand1 : operand2

The following listing shows a sample ternary operation:

aStatusVariable = (aCharVariable == 'V') ? "OK" : "Invalid";

In this example, the expression

(aCharVariable == 'V')

is evaluated. If it is true, “OK” is returned; otherwise, “Invalid” is returned.
You can use the ternary operator to simulate the use of a GREATEST function:

double greatest = (a > b) ? a : b;

In this example, the expression (a > b) is evaluated, where a and b are the names of variables. If that
expression is true, a’s value is returned; otherwise, b’s value is returned.

NOTE
Java has a “greatest” method for numeric values—the Max method
within the java.lang.Math class. The ternary example in the preceding
listing can be rewritten as double greatest = Math.Max(a, b);

You can combine multiple logic checks via the use of AND and OR operations. In Java, an AND
operation is represented by the && operator:

if (aCharVariable == 'V' && aMonth == 3) {
statement

}

The OR operation is represented by ||, as shown in the following listing:

674 Part VI: Java in Oracle

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 37
Blind Folio 37:674

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

if (aCharVariable == 'V' || aMonth == 3) {
statement

}

For performance reasons, the && and || operations are carried out only if required; the second
expression is not evaluated if the first expression determines the result. In the case of the AND
operator, if the first value is false, the evaluation ends at that point and the Boolean value false is
returned. In the case of the OR operator, if the first expression is false, the second expression will
still be evaluated because only one of the test conditions needs to be true for the Boolean value
true to be returned. If the first value of the OR operator were true, subsequent expressions would
not need to be evaluated and true would be returned.

The & and | operators are bitwise AND and OR; they are not short-circuited as && and || are.
All expressions will always be evaluated. This functionality can be important if you are testing the
return values of method calls and you need to make sure the methods are executed.

Loops
Java supports three main types of loops: WHILE loops, DO-WHILE loops, and FOR loops. In this
section, you will see examples of each type of loop. Because Java is not written as an extension
of SQL, it does not support Cursor FOR loops as PL/SQL does.

WHILE Loops and DO-WHILE Loops
A while clause evaluates a condition; if the condition is true, the associated block of statements
is executed. The syntax for a WHILE loop is of the following form:

while (expression) {
statement
statement

}

The WHILE loop executes the block of statements (the section within the { and } braces)
repeatedly until the expression is no longer true:

int aNumberVariable = 3;
while (aNumberVariable < 7) {

some_processing_statement
aNumberVariable++;

}

In this example, a counter variable (aNumberVariable) is created and initialized. The variable’s
value is then evaluated via the while clause. If the value is less than 7, the associated statement
block is executed. As part of that block, the variable is incremented. When the block completes,
the variable is again evaluated and the loop continues.

NOTE
For examples of WHILE loop processing, see “Classes” later in this
chapter.

Chapter 37: An Introduction to Java 675

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 37
Blind Folio 37:675

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You could also write this as a DO-WHILE loop:

int aNumberVariable = 3;
do {

some_processing_statement
aNumberVariable++;

} while (aNumberVariable < 7);

In a DO-WHILE loop, the expression’s value is not evaluated until the block has been processed
at least one time.

FOR Loops
You can use a FOR loop to repeatedly execute a block of code. In a FOR loop, you specify an
initial value, a termination value, and an increment for the loop counter. The loop counter will
be incremented each time through the loop, by the increment you specify, until the termination
value is reached. The following is the syntax for a FOR loop:

for (initialization; termination; increment) {
statement;

}

The prior section’s WHILE example can be rewritten with a for clause, as shown in the following
listing:

for (int aNumberVariable=3; aNumberVariable<7; aNumberVariable++) {
some_processing_statement

}

The for clause version for this example is much shorter than the while version. In this example,
the aNumberVariable variable is declared and initialized within the FOR loop. As long as the
variable’s value does not exceed 7, the block will be executed. For each pass through the loop,
the variable’s value is incremented by 1 via the ++ unary operator.

Within a loop, you can use the continue clause to jump to another statement within the loop.
If you just use the continue clause by itself, the process flow will jump to the end of the loop body
and evaluate the loop’s termination test. If you use continue with a label (as shown previously in
the section on the switch clause), processing will continue at the next iteration of the labeled loop.

Cursors and Loops
Within PL/SQL, you can use Cursor FOR loops to iterate through the results of a query. You can
use Java’s WHILE and FOR loops to simulate the functionality of a PL/SQL Cursor FOR loop. The
examples provided with Oracle show how this can be accomplished. Oracle provides sample
files on the Companion disc that accompanies the Oracle software installation. The Companion
disc uses the Oracle Universal Installer to load software drivers and demonstration files, including
those supporting JDBC development. Following installation of the Companion disc, the JDBC
examples will be in a file named demo.zip in the /jdbc/demo subdirectory under the Oracle
software home directory; when unzipped, the files referred to in this chapter will be located in
the /jdbc/demo/samples/generic subdirectory. The SelectEmployee.java demo issues the following
commands:

676 Part VI: Java in Oracle

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 37
Blind Folio 37:676

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Statement stmt conn.createStatement();
ResultSet rset = stmt.executeQuery ("select FIRST_NAME, "

+ "LAST_NAME from EMPLOYEES");

// Iterate through the result and print the employee names
while (rset.next ())
System.out.println (rset.getString (1) + " " + rset.getString (2));

This example assumes that a connection to the database has already been established. The
first line of the example creates a variable called stmt, based on a connection variable called conn
(not shown in this partial listing). The second line of the example creates a variable called rset,
based on the result set that the query stmt will return. Following a comment (prefixed by //), a
while clause fetches each row in the result set. If the fetch retrieves a row from the result set,
the ENAME from that EMP row is printed; otherwise, the loop will end.

From a programming perspective, you should be specific in the data returned (as in the preceding
example), specifying the column names to be returned.

The JDBC (Java Database Connectivity; see Chapter 38) demos provided by Oracle show
examples of queries involving procedure calls, LOBs, and DML. In most cases, your Java code
will be performing in a similar manner to the previous example: Write the process flow-control
language in Java and pass it a statement to execute. Based on the outcome of that statement, you
can direct different actions to occur via the use of while, for, if, break, continue, and switch clauses,
as shown earlier in this chapter.

Exception Handling
In a PL/SQL procedure, you have a single EXCEPTION block; in Java, you can have as many try/
catch blocks as you desire. Java provides a robust set of error-handling routines and enables you
to create complex error-handling procedures. In PL/SQL, you raise an exception; in Java, you
throw exceptions. If an exception is thrown, you need to use the Java catch clause to capture
and properly process the exception.

Java’s exception-handling syntax is based on three blocks: try, catch, and finally. The try block
includes the statements that might throw an exception. The catch block immediately following the
try block associates exception handlers with the exceptions that may be thrown by the try block.
The finally block cleans up any system resources not properly cleaned up during the catch block
processing. The general structure is as follows:

try {
statements

}
catch () {

statements
}
catch () {

statements
}
finally {

statements
}

Chapter 37: An Introduction to Java 677

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 37
Blind Folio 37:677

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

For example, consider the following Java code:

try {
Statement stmt = conn.createStatement ();

stmt.execute ("drop table plsqltest");
}
catch (SQLException e) {
}

In this example, a variable named stmt is created to execute a drop table command. If the
execution fails—for example, if the table does not exist—how will that error be processed? The
catch clause tells Java to handle it via an exception object called SQLException, a standard part
of Java’s SQL implementation. As shown in the example, the catch clause takes two parameters
(an exception object and a variable name) and is optionally followed by a block of statements to
execute.

The try block can contain multiple statements, or you can create separate try blocks for each
statement. In general, it is easier to manage exception handling if you consolidate your catch blocks,
so consolidating your try blocks will help you manage your code as it changes and grows. The
when others clause in PL/SQL is essentially catch (Throwable th) in Java.

The finally block cleans up the state of the current code section before passing control to any
subsequent parts of the program. At run time, the contents of the finally block are always executed,
regardless of the outcome of the try block. For example, you could use the finally block to close
a database connection.

Reserved Words
The reserved words in Java are listed in Table 37-2. You cannot use these words as the names of
classes, methods, or variables.

678 Part VI: Java in Oracle

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 37
Blind Folio 37:678

abstract else interface super

boolean extends long switch

break false native synchronized

byte final new this

case finally null throw

catch float package throws

char for private transient

class goto protected true

const if public try

TABLE 37-2. Reserved Words in Java

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Classes
In the prior sections of this chapter, you saw the basic syntax structures for Java. In this section,
you will see how to use that syntax to create and use objects. A simple program for printing the
word “Oracle” is shown in the following listing:

public class HelloOracle {
public static void main (String[] args) {

System.out.println("Oracle");
}

}

This example creates a class called HelloOracle. Within the HelloOracle class, a public
method called main is created. The main method prints the word “Oracle.” This is significantly
more complex than

select 'Oracle' from dual;

but the Java version has features lacking in the SQL version. HelloOracle is a class, and as such
its methods can be called from within other classes. HelloOracle could have multiple methods;
in this example, it has only the main method.

The main method’s declaration (public static void main) has a number of keywords that you
should become familiar with:

public Defining the class as public allows all classes to call this method.

static Declares that this is a class method; you use static to declare class methods. An additional
option is the keyword final for methods and variables whose values cannot change (similar
to PL/SQL’s constant option).

void Specifies the return value’s datatype from the procedure. Because this procedure does
not return values, its type is void.

In this example, the method is given the name main because that will simplify running the
class’s method. Now that the class has been created, you can compile and load it.

Chapter 37: An Introduction to Java 679

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 37
Blind Folio 37:679

continue implements return void

default import short volatile

do instanceof static while

double int strictfp

TABLE 37-2. Reserved Words in Java (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

680 Part VI: Java in Oracle

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 37
Blind Folio 37:680

NOTE
To compile and execute a Java class, you must have the JDK on your
server. The following examples assume that the binaries that are part
of that kit are located in a directory that is automatically searched via
the PATH environment variable and that the directory containing your
class files is included in the CLASSPATH environment variable. The
programs referenced here (javac and java) are located in the /bin
subdirectory of the JDK software directory.

First, save the program as a plain text file called HelloOracle.java. Next, compile it:

javac HelloOracle.java

A new file, called HelloOracle.class, will be created on your server. You can then run the class:

java HelloOracle

Then the output will be displayed:

Oracle

As shown in the HelloOracle example, the class is first given a name, along with other optional
attributes related to its inheritance of other classes’ attributes. In the class body, all the class variables
and methods are defined. As with abstract datatypes in Oracle, Java classes have methods associated
with them for the manipulation of their related data.

Let’s consider a more complex example. The following listing is a Java program that computes
the area of a circle, given a radius value as input (see Chapter 29 for the PL/SQL version):

// AreaOfCircle.java
//
public class AreaOfCircle {
public static void main(String[] args) {
try {

int input = Integer.parseInt(args[0]);
double result=area(input);
System.out.println(result);

}
catch (ArrayIndexOutOfBoundsException oob) {

System.out.println("You did not provide the radius of the circle.");
System.out.println("Usage: java AreaOfCircle 10");

}
catch (NumberFormatException nfe) {

System.out.println("Enter a valid number for the radius.");
System.out.println("Usage: java AreaOfCircle 10");

}
} /// main

public static double area (int rad) {
double pi=3.1415927;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

double areacircle=pi*rad*rad;
return areacircle;

} /// area
} ///AreaOfCircle

NOTE
Be sure to include a closing brace, }, for each block. In the examples
shown in this chapter, the closing braces are always on lines by
themselves to simplify debugging and processing flow-control errors
that may arise.

First, note that the class and the name of the file must be the same. In this case, the class is
named AreaOfCircle, so this text is stored in a file called AreaOfCircle.java. The class has two
methods, called main and area. When you execute the class, the main method is automatically
executed. The main method takes the string provided as input and parses it as an integer into the
input variable:

int input=Integer.parseInt(args[0]);

There are at least two possible exceptions that could be thrown when running this code. The
first exception handled, ArrayIndexOutOfBoundsException, occurs when you try to reference a
position in an array that doesn’t exist. Because the code explicitly references the first position of
the array named args (args[0]), an exception will be thrown if no data was passed to the program.
The other possible error, NumberFormatException, would occur if a nonnumeric value was
passed in. For example, if you ran the program by entering “java AreaOfCircle XYZ” instead of
“java AreaOfCircle 123”, the NumberFormatException would be thrown because XYZ isn’t a
valid number. Both of these exceptions are handled by the two catch statements that provide the
user with useful feedback regarding the cause of the error:

catch (ArrayIndexOutOfBoundsException oob) {
System.out.println("You did not provide the radius of the circle.");
System.out.println("Usage: java AreaOfCircle 10");

}
catch (NumberFormatException nfe) {

System.out.println("Enter a valid number for the radius.");
System.out.println("Usage: java AreaOfCircle 10");

}

Next, a variable named result is declared and is set equal to the value returned by the call to
area(input):

double result=area(input);

To process that directive, the area method is executed using the input variable’s value as its
input. That method is as follows:

public static double area (int rad) {
double pi=3.1415927;

Chapter 37: An Introduction to Java 681

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 37
Blind Folio 37:681

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

double areacircle=pi*rad*rad;
return areacircle;

}

In its definition, the area method specifies that it will accept one variable, an integer type named
rad. That variable’s value (passed from the input variable in the main method) is then processed, and
a variable named areacircle is calculated and returned to main. In main, that value is then printed:

double result=area(input);
System.out.println(result);

Testing the program is straightforward:

javac AreaOfCircle.java
java AreaOfCircle 10

The following is the output:

314.15927

Let’s extend this example to include WHILE loop processing. In this example, the area method
will be called repeatedly until the resulting input value exceeds a given value:

// AreaOfCircleWhile.java
//
public class AreaOfCircleWhile {

public static void main(String[] args) {
try {
int input=Integer.parseInt(args[0]);
while (input < 7) {
double result=area(input);
System.out.println(result);
input++;

}
}
catch (ArrayIndexOutOfBoundsException oob) {

System.out.println("You did not provide the radius of the circle.");
System.out.println("Usage: java AreaOfCircle 10");

}
catch (NumberFormatException nfe) {

System.out.println("Enter a valid number for the radius.");
System.out.println("Usage: java AreaOfCircle 10");

}
} /// main
public static double area (int rad) {
double pi=3.1415927;
double areacircle=pi*rad*rad;
return areacircle;

} /// area
} /// AreaOfCircleWhile

682 Part VI: Java in Oracle

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 37
Blind Folio 37:682

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In this listing, the area method and the exception-handling blocks are unchanged from the
prior example. The change is in the main method:

int input=Integer.parseInt(args[0]);
while (input < 7) {

double result=area(input);
System.out.println(result);
input++;

}

While the input value is less than 7, the input value will be processed. After the area for that radius
value has been calculated and printed, the input value is incremented:

input++;

Then the loop is evaluated again. Sample output is shown in the following listing:

javac AreaOfCircleWhile.java
java AreaOfCircleWhile 4

50.2654832
78.5398175
113.0973372

The output shows the area calculations for input radius values of 4, 5, and 6.
This example is not as complete as a finished program—you may need additional exception

handling to handle nonintegers, for example—but the structure is the important lesson to learn
from this example. In addition to the methods shown in this example, you could create a constructor
for the AreaOfCircleWhile class. All Java classes have constructors (see Chapter 31) to initialize
new objects based on the class. The constructor’s name is the same as the name of the class. If
you create a class with no constructor, Java will create a default constructor at run time. Like a
method, the constructor body can contain local variable declarations, loops, and statement blocks.
The constructor initializes these variables for the class.

In the following chapters, you will see how to implement Java within Oracle—within stored
procedures and via JDBC. Those chapters assume that you have the basic knowledge of Java provided
in this chapter. For additional information about the Java language, see the Sun Microsystems
Web site and the variety of books devoted to Java.

Chapter 37: An Introduction to Java 683

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 37
Blind Folio 37:683

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 37
Blind Folio 37:684

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 38
Blind Folio 38:685

CHAPTER
38

JDBC Programming

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

686 Part VI: Java in Oracle

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 38
Blind Folio 38:686

J
ava Database Connectivity (JDBC) builds on the Java and programming basics described
earlier in this book. The discussions and examples in this chapter assume you are
familiar with the Java syntax and structures described in Chapter 37. This chapter does
not cover every aspect of JDBC but focuses on its basic configuration and usage.
You can use JDBC to execute dynamic SQL statements in Java programs. Oracle

provides sample files on the Companion disc that accompanies the Oracle software installation.
The Companion disc uses the Oracle Universal Installer to load software drivers and demonstration
files, including those supporting JDBC development. Following installation of the Companion disc,
the JDBC examples will be in a file named demo.zip in the /jdbc/demo subdirectory under the
Oracle software home directory; when unzipped, the files referred to in this chapter will be located
in the /jdbc/demo/samples/generic directory.

The following listing is from the SelectExample.java demo file. The SelectExample.java demo
issues the following commands after establishing a database connection:

// Create a Statement
Statement stmt = conn.createStatement ();

// Select first_name and last_name column from the employees table
ResultSet rset = stmt.executeQuery ("select FIRST_NAME, "

+ "LAST_NAME from EMPLOYEES");

// Iterate through the result and print the employee names
while (rset.next ())
System.out.println (rset.getString (1) + " " + rset.getString (2));

When you execute a SQL statement via JDBC—in this case, select First_Name, Last_Name from
EMPLOYEES—the SQL statement is not checked for errors until it is run. The JDBC program that
contains the SQL command will compile even if the SQL statement is invalid.

Getting Started
To use the examples in this section, you need a copy of the Java Development Kit (JDK), which
is installed during the Oracle Database Companion CD installation process.

Additional Steps for Windows Users
If you will be accessing Oracle via JDBC, you must set the CLASSPATH environment variable to
find the classes12.zip file provided by Oracle. The file is located in the /jdbc/lib directory beneath
your Oracle home directory, or it’s available for download from http://technet.oracle.com. You
must also check the setting of your PATH environment variable.

NOTE
Setting the CLASSPATH environment variable is not performed by the
standard Oracle installation, so you need to do it manually. If the system
variables are not properly set, you will not be able to compile Java
classes that use Oracle’s JDBC classes. The system variable setting
procedure differs by operating system version. In Windows 2000, use
the System icon under the Control Panel to add and edit environment
variable settings.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 38: JDBC Programming 687

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 38
Blind Folio 38:687

Create an environment variable named CLASSPATH if it doesn’t already exist (it won’t for an
initial Java setup). This variable must have two entries, separated by a semicolon. The first entry
must be a period, which denotes the current directory. The second entry must be the directory for
the classes12.zip file:

.;E:\oracle\ora10\jdbc\lib\classes12.zip

If CLASSPATH is not set correctly, you will get a NoClassDefFoundError error when you run
a compiled class.

NOTE
Be sure to use a version of the JDK that is compatible with the Oracle
release you are using. If you use a new release of the JDK with an
older release of Oracle’s drivers, you may encounter “access violation”
errors when executing your programs.

The PATH environment variable should already be set; append the following entry to its value:

;E:\oracle\ora10\jdbc\lib\classes12.zip

Replace “E:\oracle\ora10” with your Oracle software home directory.

Testing Your Connection
Oracle provides a sample program called JdbcCheckup.java that you can use to verify your JDBC
configuration. This file may be in a zip file (demo.zip on the /jdbc/demo directory) or in /jdbc/demo/
samples/generic if you have unzipped it. You will need to extract it before running the program. Go
to the directory where the sample file is, then compile and execute the JdbcCheckup.java class:

javac JdbcCheckup.java
java JdbcCheckup

NOTE
Java commands are case sensitive. When you execute JdbcCheckup,
you are prompted for a username, password, and connect string for
a database. That connection information will be used to attempt a
connection; if successful, that attempt will return the following output:

Connecting to the database...Connecting...
connected.
Hello World.
Your JDBC installation is correct.

If you don’t receive feedback telling you that your installation is correct, you need to check
your configuration. Common problems include incorrectly set environment variables (PATH
and CLASSPATH) and mismatched versions of database connection drivers. If you change the
environment variable values, you need to shut down and restart the command windows for the
changes to take effect.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Using the JDBC Classes
JDBC is implemented in Oracle via a set of Oracle-provided classes whose names begin with
oracle.sql, whereas the standard JDBC classes provided with the JDK begin with java.sql. The
JdbcCheckup.java class, shown in the following listing, provides a good roadmap for beginning
JDBC programmers. The JdbcCheckup.java class assumes you are using Oracle Net to connect
to the database.

NOTE
The following code is provided by Oracle. Your programming
standards may implement these commands differently, such as by
calling System.out.println in place of System.out.print, or by placing
the brackets in different places.

/*
* This sample can be used to check the JDBC installation.
* Just run it and provide the connect information. It will select
* "Hello World" from the database.
*
* note: jdk1.2 or later version is recommended.
*/

// You need to import the java.sql package to use JDBC
import java.sql.*;

// We import java.io to be able to read from the command line
import java.io.*;

import oracle.jdbc.pool.OracleDataSource;

class JdbcCheckup
{
public static void main (String args [])

throws SQLException, IOException
{
// Prompt the user for connect information
System.out.println ("Please enter information to test connection to the

database");
String user;
String password;
String database;

user = readEntry ("user: ");
int slash_index = user.indexOf ('/');
if (slash_index != -1)
{
password = user.substring (slash_index + 1);
user = user.substring (0, slash_index);

}

688 Part VI: Java in Oracle

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 38
Blind Folio 38:688

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

else
password = readEntry ("password: ");

database = readEntry ("database (a TNSNAME entry, name-value pairs): ");

// Create an OracleDataSource and set URL
OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:oracle:oci8:" + user + "/" + password + "@" + database);

System.out.print ("Connecting to the database...");
System.out.flush ();

// Connect to the database
// You can put a database name after the @ sign in the connection URL.

System.out.println ("Connecting...");
Connection conn = ods.getConnection();

System.out.println ("connected.");

// Create a statement
Statement stmt = conn.createStatement ();

// Do the SQL "Hello World" thing
ResultSet rset = stmt.executeQuery ("select 'Hello World' from dual");

while (rset.next ())
System.out.println (rset.getString (1));

System.out.println ("Your JDBC installation is correct.");

// close the resultSet
rset.close();

// Close the statement
stmt.close();

// Close the connection
conn.close();

}

// Utility function to read a line from standard input
static String readEntry (String prompt)
{
try
{
StringBuffer buffer = new StringBuffer ();
System.out.print (prompt);
System.out.flush ();
int c = System.in.read ();
while (c != '\n' && c != -1)

Chapter 38: JDBC Programming 689

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 38
Blind Folio 38:689

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

{
buffer.append ((char)c);
c = System.in.read ();

}
return buffer.toString ().trim ();

}
catch (IOException e)
{
return "";

}
}

}

NOTE
Production applications would be expected to include many more
exception-handling sections than shown in this brief example. See
Chapter 37 for an example of exception handling.

Starting at the top, this script first imports the java.sql classes provided by Sun Microsystems:

import java.sql.*;

The Oracle-provided data source driver is then imported:

import oracle.jdbc.pool.OracleDataSource;

When you are prompted for information, the user variable is populated via a call to the
readEntry function:

user = readEntry ("user: ");

The readEntry function is defined later in the class, in the section beginning

// Utility function to read a line from standard input
static String readEntry (String prompt)

Once the connection data has been input, a connection object is created to maintain the
state of the database session, based on the OracleDataSource definition. The getConnection call
in the following listing starts the connection:

Connection conn = ods.getConnection();

If you receive an error during the connection, this step is usually the cause. An incorrect
username/password combination, a mismatched set of drivers, or failure to install and configure
Oracle Net will cause this step to fail.

By default, a connection object is created with autocommit turned on—every transaction is
automatically committed. To change that setting, you can use the following command (assuming
you name the connection object conn, as shown in the example):

690 Part VI: Java in Oracle

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 38
Blind Folio 38:690

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 38: JDBC Programming 691

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 38
Blind Folio 38:691

conn.setAutoCommit(false);

The class then creates a statement, executes a hard-coded query, and prints the output:

// Create a statement
Statement stmt = conn.createStatement ();

// Do the SQL "Hello World" thing
ResultSet rset = stmt.executeQuery ("select 'Hello World' from dual");

while (rset.next ())
System.out.println (rset.getString (1));

The result set, statement, and connection are then closed and the program completes. Note that
there are two steps in executing the statement: First, it’s created via the call to the createStatement
method. Second, it’s executed via the executeQuery method. In place of executeQuery, you can
use execute or, if you’re running an insert, update, or delete SQL statement, executeUpdate. If
you select a column value (instead of just a text string), you should specify that column value in
the print command, as shown in the following listing:

ResultSet rset =stmt.executeQuery("select User from dual");
while (rset.next ()) {

System.out.println (rset.getString ("USER"));

Using JDBC for Data Manipulation
Let’s combine the pieces that have been described so far—the basic connection syntax from this
chapter with the Java classes from Chapter 37. The example in this section will query the RADIUS_
VALS table, calculate an area for each value, and insert those values into the AREAS table. Therefore,
it requires the use of the Java equivalent of a Cursor FOR loop, along with support for executable
commands and inserts.

For the example, put three records into the RADIUS_VALS table and delete any rows in the
AREAS table:

delete from RADIUS_VALS;
insert into RADIUS_VALS(Radius) values (3);
insert into RADIUS_VALS(Radius) values (4);
insert into RADIUS_VALS(Radius) values (10);
delete from AREAS;
commit;

The following listing, JdbcCircle.java, contains the connection components from JdbcCheckup
.java. The executable commands for the circle area start in the section called RetrieveRadius, shown
in bold in the listing.

// You need to import the java.sql package to use JDBC
import java.sql.*;
// We import java.io to be able to read from the command line
import java.io.*;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

692 Part VI: Java in Oracle

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 38
Blind Folio 38:692

import oracle.jdbc.pool.OracleDataSource;

class JdbcCircle {

public static void main (String args [])
throws SQLException, IOException {

// Prompt the user for connect information
System.out.println ("Please enter information for connection");
String user;
String password;
String database;

user = readEntry ("user: ");
int slash_index = user.indexOf ('/');
if (slash_index != -1) {

password = user.substring (slash_index + 1);
user = user.substring (0, slash_index);

}
else {
password = readEntry ("password: ");

}
database = readEntry ("database (a TNSNAME entry): ");
System.out.println ("Connecting to the database...");

// Create an OracleDataSource and set URL
OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:oracle:oci8:" + user + "/" + password + "@" + database);
System.out.flush ();

// Connect to the database
// You can put a database name after the @ sign in the connection URL.

Connection conn = ods.getConnection();

System.out.println ("connected.");

// Create a statement
Statement stmt = conn.createStatement ();

// RetrieveRadius
ResultSet rset =stmt.executeQuery("select Radius from RADIUS_VALS");

while (rset.next ()) {
// if you wish to print the values:
// System.out.println (rset.getInt ("RADIUS"));
int radInput = rset.getInt ("RADIUS");

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

// Retrieve Radius value, calculate area:
double result = area(radInput);

// insert the value into AREAS
String sql = "insert into AREAS values ("+radInput+","+result+ ")";
// If you want to print the SQL statement:
// System.out.println(sql);

// Create a statement for the insert:
Statement insArea = conn.createStatement();
// Execute the insert:
boolean insertResult = insArea.execute(sql);

}

// close the resultSet
rset.close();
// Close the statement
stmt.close();
// Close the connection
conn.close();

}

// Utility function to calculate the area
public static double area (int rad) {
double pi=3.1415927;
double areacircle=pi*rad*rad;
return areacircle;

}

// Utility function to read a line from standard input
static String readEntry (String prompt) {

try {
StringBuffer buffer = new StringBuffer ();
System.out.print (prompt);
System.out.flush ();
int c = System.in.read ();
while (c != '\n' && c != -1) {

buffer.append ((char)c);
c = System.in.read ();

}
return buffer.toString ().trim ();

}
catch (IOException e) {
return "";

}
}

}

Chapter 38: JDBC Programming 693

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 38
Blind Folio 38:693

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In the RetrieveRadius section, the query to be executed is passed to the executeQuery method.
The result of the query is stored in a variable named rset.

// RetrieveRadius
ResultSet rset =stmt.executeQuery("select Radius from RADIUS_VALS");

As noted in Chapter 37, you can use a WHILE loop in Java to approximate the functionality of a
PL/SQL Cursor FOR loop. The following part of the RetrieveRadius section uses the getInt method
to retrieve the integer Radius value from the result set. If the value had been a string, the getString
method would have been used instead.

while (rset.next ()) {
// if you wish to print the values:
// System.out.println (rset.getInt ("RADIUS"));
int radInput = rset.getInt ("RADIUS");

The radInput variable, assigned in the preceding listing, can now be used as input to the area
calculation. The area calculation is performed via a utility function (see the full JdbcCircle listing)
based on the code examples presented in Chapter 37.

// Retrieve Radius value, calculate area:
double result = area(radInput);

We now have the radius value (the radInput variable) and the area value (the result variable)
to use when populating the AREAS table. Let’s build the insert statement to perform the insert. First,
use the string concatenation functions in Java to concatenate text with the variable values. Make
sure not to include a semicolon at the end of the generated command string.

// insert the value into AREAS
String sql = "insert into AREAS values ("+radInput+","+result+ ")";
// If you want to print the SQL statement:
// System.out.println(sql);

Next, create a statement and execute the insert command (via a call to the sql variable that
contains the command text):

// Create a statement for the insert:
Statement insArea = conn.createStatement();
// Execute the insert:
boolean insertResult = insArea.execute(sql);

Did it work? Compile and execute the JdbcCircle.java file:

javac JdbcCircle.java
java JdbcCircle

When prompted, provide a username and password for the owner of the RADIUS_VALS and
AREAS tables. After the program completes, check the AREAS table:

694 Part VI: Java in Oracle

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 38
Blind Folio 38:694

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select * from AREAS
order by Radius;

RADIUS AREA
--------- ---------

3 28.27
4 50.27

10 314.16

This example is based on a simple calculation—the area of a circle—but it illustrates the key
concepts in JDBC development: connecting to the database, retrieving data, implementing a Cursor
FOR loop, assigning variables, generating a dynamic SQL statement, and executing DML.

JDBC supports extensive programming features, including statement caching, connection
caching, connection failover, distributed transactions, support for LOBs, and more. See the Oracle
Database JDBC Developer’s Guide and Reference for further details on the use of JDBC.

Chapter 38: JDBC Programming 695

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 38
Blind Folio 38:695

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 38
Blind Folio 38:696

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 39
Blind Folio 39:697

CHAPTER
39

Java Stored
Procedures

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

698 Part VI: Java in Oracle

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 39
Blind Folio 39:698

Y
ou can write stored procedures, triggers, object type methods, and functions that
call Java classes. In this chapter, you will see a sample set of Java procedures, along
with the commands required to execute a procedure. To get the most from this
chapter, you should already be familiar with Java structures (refer to Chapter 37)
and the uses of Java classes and JDBC (Chapter 38). You should also be familiar

with the basic syntax and usage of stored procedures (refer to Chapter 31).
To focus on the database access operations of the Java classes, the example in this chapter is

brief. The following class, called BookshelfDML, contains methods to insert and delete records
from the BOOKSHELF table. In this example, the calculation of the area is not performed; rather, all
required values are supplied during the insert. The following listing shows the BookshelfDML.java file:

import java.sql.*;
import java.io.*;
import oracle.jdbc.*;

public class BookshelfDML {
public static void insertBookshelf (String title, String publisher,
String categoryname, String rating) throws SQLException {
String sql = "INSERT INTO BOOKSHELF VALUES (?,?,?,?)";
try {
Connection conn =
DriverManager.getConnection("jdbc:default:connection:");

PreparedStatement pstmt = conn.prepareStatement(sql);
pstmt.setString(1, title);
pstmt.setString(2, publisher);
pstmt.setString(3, categoryname);
pstmt.setString(4, rating);
pstmt.executeUpdate();
pstmt.close();

} catch (SQLException e) {System.err.println(e.getMessage());}
}

public static void updateBookshelf (String rating,
String title) throws SQLException {
String sql = "UPDATE BOOKSHELF SET Rating = ? " +

"WHERE Title = ? ";
try {
Connection conn =
DriverManager.getConnection("jdbc:default:connection:");

PreparedStatement pstmt = conn.prepareStatement(sql);
pstmt.setString(1, rating);
pstmt.setString(2, title);
pstmt.executeUpdate();
pstmt.close();

} catch (SQLException e) {System.err.println(e.getMessage());}
}

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

public static void deleteBookshelf (String title) throws SQLException {
String sql = "DELETE FROM BOOKSHELF WHERE TITLE = ?";
try {
Connection conn =
DriverManager.getConnection("jdbc:default:connection:");

PreparedStatement pstmt = conn.prepareStatement(sql);
pstmt.setString(1, title);
pstmt.executeUpdate();
pstmt.close();

} catch (SQLException e) {System.err.println(e.getMessage());}
}

}

The BookshelfDML.java file defines the BookshelfDML class. Within the BookshelfDML class,
there are separate methods for processing inserts, updates, and deletes. In each of the method
specifications, the datatypes for the BOOKSHELF table’s related columns are specified (in this
example, they are all VARCHAR2 datatypes).

These parameters use the datatypes provided as part of Oracle’s class libraries. If you use the
standard Java datatypes, you may encounter datatype-related problems during the class execution.

The next part of the insert method inserts the values into the BOOKSHELF table:

String sql = "INSERT INTO BOOKSHELF VALUES (?,?,?,?)";

The four variables are defined via setString (setInt would have been used for integers):

pstmt.setString(1, title);
pstmt.setString(2, publisher);
pstmt.setString(3, categoryname);
pstmt.setString(4, rating);

Note that the variable names are case sensitive—they must exactly match the names declared
earlier.

The delete method is very similar in structure. Its SQL statement is

String sql = "DELETE FROM BOOKSHELF WHERE TITLE = ?";

Note that no part of the class creates a connection to the database, in contrast with the examples
in Chapter 38. The connection used to invoke this class will provide the connection context for
the class’s methods.

You can verify that the class compiles properly by processing it via the Java compiler. Note
that this step will not validate your SQL:

javac BookshelfDML.java

This step should complete successfully. If you encounter errors during this compilation step,
check your environment configuration (see Chapter 38) and your class file.

Chapter 39: Java Stored Procedures 699

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 39
Blind Folio 39:699

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Loading the Class into the Database
You can use the loadjava utility to load the class into the database. The syntax for the loadjava
utility is as follows:

loadjava {-user | -u} username/password[@database]
[-option_name -option_name ...] filename filename ...

The options available for the loadjava utility are shown in Table 39-1.

700 Part VI: Java in Oracle

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 39
Blind Folio 39:700

Option Description

<filenames> Any number and combination of .java, .class, .sqlj, .ser, .jar, .zip, and resource
filename arguments, in any order.

andresolve Compiles source files and resolves each class file as it is loaded.

debug Generates debugging information.

definer Specifies that the methods of uploaded classes will execute with the privileges of their
definer, not their invoker. By default, methods execute with the privileges of their
invoker.

encoding Sets (or resets) the option -encoding in the database table JAVA$OPTIONS
to the specified value.

fileout Prints messages to an output file.

force Forces the loading of Java class files regardless of whether they have been loaded
before. By default, previously loaded class files are rejected.

grant Grants EXECUTE privilege on uploaded classes to the listed users and roles.

help Prints loadjava help text.

javaresource Directs loadjava to load a JAR file without unpacking it.

nousage Suppresses the usage message given if either no option is specified or the -help
option is specified.

noserverside Changes the behavior of the server-side loadjava tool to use a JDBC driver to access
objects.

noverify Causes the classes to be loaded without bytecode verification. You must be granted
oracle.aurora.security.JServerPermission(Verifier) to execute this option. In addition,
this option must be used in conjunction with -r.

oci8 Directs loadjava to communicate with the database using the OCI JDBC driver. This
option (the default) and -thin are mutually exclusive.

resolve Resolves all external references in the loaded and compiled classes. If this option is
not specified, files are loaded but not compiled or resolved until run time.

TABLE 39-1. Loadjava Options

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 39: Java Stored Procedures 701

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 39
Blind Folio 39:701

For example, to load the BookshelfDML.java file into the Practice schema in an instance
named “orcl,” you can use the following command:

loadjava –u Practice/practice@orcl.world -verbose BookshelfDML.java

You should see a series of comments related to the loading of the class into the database. If any
errors are reported, the load will not complete.

NOTE
The name of the class should not match the name of any
of the existing objects in your schema.

The AreasDML class is now loaded into the database. During the load, Oracle will create
multiple tables and Java objects within your schema.

NOTE
You can load Java files manually from local BFILE or LOB columns
via the create java [source | class | resource] commands.

If you are running your database on a standalone server and you have not defined a service
name for the database, you will need to specify a full connection specification for the loadjava
program call. The format will be

loadjava –u practice/practice@localhost:1521:orcl -v BookshelfDML.java

Option Description

resolver Binds newly created class schema objects to a user-defined resolver spec.

schema Specifies the schema for newly created objects.

stdout Causes the output to be directed to stdout, rather than to stderr.

synonym Automatically creates a public synonym for the uploaded classes.

tableschema Creates the loadjava internal tables within this specified schema, rather than
in the Java file destination schema.

thin Directs loadjava to communicate with the database using the thin JDBC driver.
This option and -oci8 are mutually exclusive.

time Prints a timestamp on every message.

unresolvedok When combined with -resolve, this option ignores unresolved errors.

user Specifies a user, password, and database connect string for the load.

verbose Enables the display of progress messages during loadjava execution.

TABLE 39-1. Loadjava Options (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

How to Access the Class
Now that the BookshelfDML class has been loaded into the database, you must create a procedure
to call each of the methods. The create procedure command in the following listing creates a
procedure called InsertBookshelfViaJava:

create or replace procedure InsertBookshelfViaJava
(Title VARCHAR2, Publisher VARCHAR2,
CategoryName VARCHAR2, Rating VARCHAR2)

as
language java
name 'BookshelfDML.insertBookshelf(java.lang.String, java.lang.String,
java.lang.String, java.lang.String)';
/

This brief procedure has four parameters—the four columns of the BOOKSHELF table. Its
language java clause tells Oracle that the procedure is calling a Java method. The name of the
method is specified in the name clause (be sure to be consistent with your use of capital letters).
The formats for the Java method call are then specified.

A separate procedure will delete the BOOKSHELF table’s records via a method call:

create or replace procedure DeleteBookshelfViaJava
(Title VARCHAR2)
as
language java
name 'BookshelfDML.deleteBookshelf(java.lang.String)';
/

A third procedure will update the Rating value based on Title:

create or replace procedure UpdateBookshelfViaJava
(Rating VARCHAR2, Title VARCHAR2)
as
language java
name 'BookshelfDML.updateBookshelf(java.lang.String, java.lang.String)';
/

Now, go into SQL*Plus and use the call command to execute the Java classes:

call InsertBookshelfViaJava('TEST','TESTPub','ADULTNF','2');

You will see this response:

Call completed.

Instead of using call, you can execute the procedure within a PL/SQL block:

begin
InsertBookshelfViaJava('TEST','TESTPub','ADULTNF','2');

end;
/

702 Part VI: Java in Oracle

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 39
Blind Folio 39:702

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 39: Java Stored Procedures 703

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 39
Blind Folio 39:703

The call command will pass the column values as parameters to the InsertBookshelfViaJava
stored procedure. It will format them according to the specifications in the name clause and will
pass them to the BookshelfDML.insertBookshelf method. That method will use your current
connection to execute its commands, and the row will be inserted. Most of these libraries and
classes will not have been loaded yet within the database. That’s a lot of steps to go through,
so performance will be affected the first time you run the Java stored procedure, but subsequent
executions will be much faster. You can verify its success by querying the BOOKSHELF table:

column Title format a10
select * from BOOKSHELF where Title like 'TEST';

TITLE PUBLISHER CATEGORYNAME RA
---------- -------------------- -------------------- --
TEST TESTPub ADULTNF 2

You can update the rating via UpdateBookshelfViaJava:

begin
UpdateBookshelfViaJava('3','TEST');

end;
/

select * from BOOKSHELF where Title like 'TEST';

TITLE PUBLISHER CATEGORYNAME RA
---------- -------------------- -------------------- --
TEST TESTPub ADULTNF 3

And you can delete that record via a call to DeleteBookshelfViaJava:

begin
DeleteBookshelfViaJava('TEST');

end;
/

select * from BOOKSHELF where Title like 'TEST';

no rows selected

The call to DeleteBookshelfViaJava will complete much faster than the call to
InsertBookshelfViaJava, because your Java libraries will have been loaded the first time
you executed InsertBookshelfViaJava.

If your insert is not acceptable—for example, if you attempt to insert a character string into a
NUMBER datatype column—Oracle will display an error. When debugging Java stored procedures,
you can call System.err.println from within your Java code, as shown in the BookshelfDML.java
listing earlier in this chapter. To display the output within your SQL*Plus session, you must first
execute the following commands:

set serveroutput on
call DBMS_JAVA.SET_OUTPUT(10000);

Calling DBMS_JAVA.SET_OUTPUT will redirect the output of System.out.println to DBMS_
OUTPUT.PUT_LINE.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Calling Java Stored Procedures Directly
As of Oracle Database 10g, Oracle provides an application programming interface (API) to support
direct invocation of static Java stored procedures. The classes for this method are found in the
oracle.jpub.reflect package, so you must import this package into your client-side code. The Java
interface for the API is

public class Client
{

public static String getSignature(Class[]);
public static Object invoke(Connection, String, String,

String, Object[]);
public static Object invoke(Connection, String, String,

Class[], Object[]);
}

When accessed via this API, the procedures’ arguments cannot be OUT or IN OUT. Returned
values must all be part of the function result. Note that the method invocation will use invoker’s
rights. See the Java developer’s guides that accompany the Oracle software installation for further
details on the API.

Where to Perform Commands
The BookshelfDML example is intended to provide an overview of the implementation of Java
stored procedures. Suppose you now want to make the procedures more complex, involving
additional tables and calculations. As shown in Chapters 29, 37, and 38, you can perform those
calculations either in Java or in PL/SQL.

Your choice of a platform and language for your data processing will impact your performance.
In general, you will pay a performance penalty the first time you execute a Java stored procedure
(as the classes are loaded), but subsequent executions will not pay the same penalty. If you repeatedly
execute the same commands, the performance impact of the first execution will be minimal.

Logging out and logging back in impacts your performance, but not nearly as much as the first
execution of the procedure. When you use Java stored procedures, you must be aware of the way
in which the application interacts with Oracle. If your users frequently log out and log back in,
they will pay a performance penalty the first time they execute the procedure following each login.
Furthermore, the first execution of the procedure following a database startup will pay the most
severe performance penalty. The performance impact of these actions must be taken into account
during the design stage of your application development.

Here are some tips to reduce the performance penalties associated with the Java stored
procedure calls:

■ Execute each Java stored procedure following database startup. In the case of the
BookshelfDML example, this may involve inserting and deleting a test record following
each startup.

■ Reduce the number of short-term database connections (for example, by connection
pooling).

■ Perform most of your direct database manipulation via standard SQL and PL/SQL.

704 Part VI: Java in Oracle

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 39
Blind Folio 39:704

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Java is an appropriate technology to use for many computational processes and for display
manipulation. In general, SQL and PL/SQL are slightly more efficient than Java for database
connections and data manipulation. However, the performance of Java within Oracle makes
it a strong alternative to PL/SQL; the primary source of the performance penalty for Java stored
procedures is the time required to go through the PL/SQL wrapper. When designing applications
that integrate Java, SQL, and PL/SQL, focus on using each language for the functions that it
performs best.

If your code involves many loops and manipulations of data, Java may outperform PL/SQL.
The costs of using Java—for Java object creation and the PL/SQL header interaction—may be
offset by the improved performance Java yields during the actual work. Note that the compiled
native PL/SQL available in Oracle Database 10g should provide a strong alternative to Java from
a performance perspective.

In general, actions that involve selecting data from the database and manipulating it are best
handled by PL/SQL and SQL. Computations on the selected data may be processed faster by
Java. In your application design, be sure to use the proper tool for the proper function, and avoid
unnecessary performance penalties.

Chapter 39: Java Stored Procedures 705

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 39
Blind Folio 39:705

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 39
Blind Folio 39:706

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 40
Blind Folio 40:707

PART
VII

Clustered Oracle—
The Grid

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 40
Blind Folio 40:708

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 40
Blind Folio 40:709

CHAPTER
40

Oracle Real
Application Clusters

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:51:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

710 Part VII: Clustered Oracle - The Grid

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 40
Blind Folio 40:710

I
n an Oracle Real Application Clusters (RAC) environment, multiple instances access
a single database. The instances are commonly created on separate servers that are
connected via a high-speed interconnect with access to a shared disk area. The database
files reside on a shared set of disks, and each instance has its own control files and
online redo log files that are also stored on the shared disks.

A user can be directed to connect to the database through one of the instances attached to it;
if an instance goes down, the connection may be dynamically reconnected to the database via
another instance in the cluster. RAC thus provides a high-availability solution (accounting for server
and instance failure) and a scalable high-performance solution (by increasing the memory and
processors available to the connecting processes).

In this chapter, you will see an overview of the installation and management of RAC. Many of
the details are operating-system–specific, but the configuration process flow will be the same across
platforms. The focus of this chapter will be the common processes and the features introduced in
Oracle Database 10g to enhance RAC management and implementation.

Preinstallation Steps
Before starting the Oracle RAC installation, you need to verify that your environment and cluster
are properly configured to support it. The servers that will host the instances are referred to as nodes
in the cluster. Each of the nodes should have external shared disks. Each node should have redundant
switches to support failover requirements. Each node should have one private Internet Protocol (IP)
address for private connections and one public IP address for client connections and connection
failovers from other nodes. Oracle Database 10g provides a tool called VIPCA (Virtual IP Configuration
Assistant) to support the configuration of your IP addresses.

Each node must support TCP/IP (Transmission Control Protocol/Internet Protocol) and a supported
interconnect software protocol.

NOTE
You must choose an interconnect that is supported by Oracle. See the
Metalink site (http://metalink.oracle.com) for the latest certification matrix.

Oracle provides clusterware, simplifying the installation and configuration process. Installation
steps related to the clusterware configuration are described in Chapter 41. For the shared disk area,
Oracle recommends the use of its Automatic Storage Management feature (see Chapter 46).

NOTE
Be sure to install all required patches on the operating system prior
to starting the installation process. As part of your standard Oracle
software installation procedures, you should review all required
operating system patch levels.

Installing RAC
The installation of RAC in Oracle Database 10g is a two-step process. In the first step, use the
Oracle Universal Installer (OUI) to install CRS (Cluster Ready Services). CRS, available as of Oracle

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Database 10g, provides an integrated set of solutions for cluster management. You can use CRS
to manage cluster membership, group services, group resource management, and high-availability
configuration. You can use CRS to define services that support distributing workload across servers.
The Automatic Workload Repository (AWR) collects statistics on the services; see Chapter 46 for
further details on AWR.

NOTE
RAC works with vendor-supported clusterware as well as Oracle’s
clusterware. While users of earlier versions of RAC may already have
a third-party solution in place, this chapter focuses on Oracle’s offering.

NOTE
RAC is available with both the Standard Edition and the Enterprise
Edition of Oracle Database 10g.

Both steps of the installation process use the OUI; see Chapter 2 for details on OUI. After
completing the first step (installation of the CRS), you can begin the second step of the installation:
installing the Oracle Database 10g software with RAC in a different Oracle home directory than you
used in the first step. You should also use the installer to create and configure services for your RAC
environment. After your software installation completes, OUI will start the Database Configuration
Assistant to complete environment configuration and create the RAC database.

NOTE
If you have installed a previous Oracle clustered database version,
the Database Upgrade Assistant (DBUA) will upgrade your database
to the Release 10g version of RAC.

Storage
As of Oracle Database 10g, you can use Automatic Storage Management (ASM) to create disk
groups and simplify their management. As described in Chapter 46, database administrators can
add new disks to disk groups; Oracle will manage the contents and the distribution of the files
among the disks involved.

You can use ASM to provide redundancy from within Oracle if there is no hardware redundancy
available. When you define the disk group, you can specify a failure group; Oracle will use the
failure group as a redundant version of the primary group of disks in the disk group. Oracle’s
installation programs refer to the software-based redundancy as “normal” redundancy. You can
specify multiple failure groups for additional redundant protection (at the cost of additional space).
If hardware mirroring is available, you can use external (file-system–based) redundancy.

Many RAC environments use a combination of raw devices and logical volume management
software. Logical volume management (LVM) provides a file-system management interface to raw
devices.

You can use ASM disk groups to further reduce the management complexity of the RAC
database—Oracle manages the files and the file systems. You can administer the files and disk groups
manually or via Oracle Enterprise Manager (OEM)’s Grid Control options (see Chapter 41).

Chapter 40: Oracle Real Application Clusters 711

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 40
Blind Folio 40:711

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Initialization Parameters
As part of configuring the instances, you must set values for the database initialization parameters
maintained in the server parameter file. RAC installations should use the server parameter file to
manage the set of parameters shared by the instances.

The initialization parameters listed in Table 40-1 must have the same value for all instances
in the RAC cluster, along with their descriptions from Oracle.

712 Part VII: Clustered Oracle - The Grid

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 40
Blind Folio 40:712

Parameter Description

ACTIVE_INSTANCE_COUNT Enables you to designate one instance in a two-instance cluster
as the primary instance and the other instance as the secondary
instance. This parameter has no functionality in a cluster with
more than two instances. When you set this parameter to 1,
the first instance you start up becomes the primary instance
and accepts client connections. The second instance starts up
as a secondary instance and can accept client connections
only if the first instance fails. In such an event, the secondary
instance becomes the primary instance.

CLUSTER_DATABASE True/false flag that specifies whether or not Real Application
Clusters is enabled. Set to TRUE.

CONTROL_FILES Specifies one or more names of control files, separated by
commas.

DB_BLOCK_SIZE Specifies (in bytes) the size of Oracle database blocks.

DB_DOMAIN Specifies the logical location of the database within the
network structure. The value consists of the extension
components of a global database name, consisting of
valid identifiers, separated by periods.

DB_FILES Specifies the maximum number of database files that can
be opened for this database. The maximum valid value is the
maximum number of files, subject to operating-system constraint,
that will ever be specified for the database, including files to
be added by add datafile commands. If you increase the value
of DB_FILES, then you must shut down and restart all instances
accessing the database before the new value can take effect.
If you have a primary and standby database, then they should
have the same value for this parameter.

DB_NAME Specifies a database identifier of up to eight characters. This
parameter must be specified and must correspond to the name
specified in the create database command.

DB_RECOVERY_FILE_DEST Specifies the default location for the flash recovery area. The
flash recovery area contains multiplexed copies of current
control files and online redo logs, as well as archived redo logs,
flashback logs, and RMAN backups. Specifying this parameter
without also specifying the DB_RECOVERY_FILE_DEST_SIZE
initialization parameter is not allowed.

TABLE 40-1. Initialization Parameters with the Same Values Across RAC Instances

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
The setting for DML_LOCKS must be identical for all instances
only if set to 0.

Table 40-2 lists the initialization parameters that must have unique values for each instance
in the RAC cluster, along with their descriptions from Oracle.

Chapter 40: Oracle Real Application Clusters 713

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 40
Blind Folio 40:713

Parameter Description

DB_RECOVERY_FILE_DEST_SIZE Specifies (in bytes) the hard limit on the total space to be used by
target database recovery files created in the flash recovery area.

DB_UNIQUE_NAME Specifies a globally unique name for the database. Every
database’s DB_UNIQUE_NAME must be unique within
the enterprise.

MAX_COMMIT_PROPAGATION_DELAY This initialization parameter should not be changed except under
a limited set of circumstances specific to the cluster database.
This parameter specifies the maximum amount of time allowed
before the system change number (SCN) held in the SGA of
an instance is refreshed by the log writer process (LGWR). It
determines whether the local SCN should be refreshed from the
lock value when getting the snapshot SCN for a query. Units are
in hundredths of seconds. Under very unusual circumstances
involving rapid updates and queries of the same data from
different instances, the SCN might not be refreshed in a timely
manner. Setting the parameter to zero causes the SCN to be
refreshed immediately after a commit. The default value (700
hundredths of a second, or seven seconds) is an upper bound
that allows the preferred existing high-performance mechanism
to remain in place.

SPFILE Names the current server parameter file (SPFILE) in use. This
parameter can be defined in a client-side PFILE to indicate the
name of the server parameter file to use. When the default server
parameter file is used by the server, the value of SPFILE is
internally set by the server.

TRACE_ENABLED True/false flag that ontrols tracing of the execution history, or
code path, of Oracle. When this parameter is set to TRUE, Oracle
records information in log files when errors occur. Oracle records
this information for all instances, even if only one instance
terminates.

UNDO_MANAGEMENT Specifies which undo space management mode the system
should use. When set to AUTO, the instance starts in automatic
undo management mode. In manual undo management mode,
undo space is allocated externally as rollback segments.

TABLE 40-1. Initialization Parameters with the Same Values Across RAC Instances (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

714 Part VII: Clustered Oracle - The Grid

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 40
Blind Folio 40:714

NOTE
Within an instance, set INSTANCE_NUMBER and THREAD
to the same value.

In addition to the parameters shown in the preceding tables, you should specify values for the
following initialization parameters:

Parameter Description

CLUSTER_DATABASE_INSTANCES Sets the number of instances in the RAC environment.

DISPATCHERS Sets DISPATCHERS to enable a shared server configuration
(in which multiple user processes connect to a dispatcher).

Starting and Stopping RAC Instances
You can use Grid Control to manage all of the instances associated with a RAC database. You can
stop, start, and monitor databases, instances, and their listeners via Grid Control. As with any non-
RAC database, you can use SQL*Plus to issue shutdown and startup commands. For RAC databases
you can also use the SRVCTL utility, as shown in the examples in this section.

Regardless of the tool used to shut down or start the instance, the following rules apply to RAC
clusters:

■ Shutting down an instance does not affect the operation of other running instances.

■ Shutting down a database mounted in shared mode requires that you shut down every
instance in the RAC cluster.

Parameter Description

INSTANCE_NUMBER Specifies a unique number that maps the instance to one free list
group for each database object created with storage parameter
FREELIST GROUPS.

ROLLBACK_SEGMENTS Allocates one or more rollback segments by name to this instance.
When UNDO_MANAGEMENT is set to AUTO, ROLLBACK_
SEGMENTS is ignored.

THREAD If specified, this parameter must have unique values on all instances.
The THREAD parameter specifies the number of the redo thread to
be used by an instance. You can specify any available redo thread
number as long as that thread number is enabled and is not used.

UNDO_TABLESPACE Specifies the undo tablespace to be used when an instance starts up.
If this parameter is specified when the instance is in manual undo
management mode, then an error will occur and startup will fail.

TABLE 40-2. Initialization Parameters with Distinct Values Across RAC Instances

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 40: Oracle Real Application Clusters 715

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 40
Blind Folio 40:715

■ After a shutdown normal or a shutdown immediate, no instance recovery is needed. If
you use shutdown abort on a RAC instance, a still-running instance performs instance
recovery for the shutdown instance. If the aborted instance was the last one running,
the next instance to start will perform the recovery.

■ If you use shutdown transactional with the local option, all transactions in the instance
will have to be either committed or rolled back prior to the shutdown. Transactions on
other instances do not impact the local shutdown transactional. If you do not specify the
local clause, then the shutdown transactional will wait for all transactions on all instances
that started prior to the shutdown command to complete.

You can use SQL*Plus commands to shut down and start up RAC databases one at a time until
the whole environment has started. See Chapter 46 for details on startup and shutdown commands.
You can start up an instance on your local node via the startup mount command.

You can use the SRVCTL utility to manage multiple instances in a single command. The syntax
to start instances is

srvctl start instance -d <db_name> -i <inst_name_list>
[-o <start_options>] [-c <connect_str> | -q]

The keyword following srvctl start specifies the service being started—instance, database,
service, nodeapps, or asm. Note that multiple instances can be passed as part of the inst_name_
list parameter value (via a comma-separated list). The start_options are open, mount, and nomount.
The connect_str parameter allows you to pass a connect string when connecting to the database. The
q parameter, if specified, tells SRVCTL to prompt for user connection information when SRVCTL
is run; by default SRVCTL will connect to the local database as SYSDBA.

The following command will start and open a local database named MYDB:

srvctl start –database –d mydb –o open

The following command will start two instances for the MYDB database:

srvctl start instance –d mydb –i mydb1,mydb2

For ASM instances, specify the node name (-n), the instance name (-i), and the startup
options (-o), as in the following example:

srvctl start asm -n mynode1 -i asm1 –o open

NOTE
To see the instances that are part of your cluster, you can either use
OEM or SQL*Plus. From within SQL*Plus, query the V$ACTIVE_
INSTANCES view. The view will display one row for each instance—
showing the instance number, the host name, and the instance name.

You can use the

srvctl stop {database | instance | service | nodeapps | asm }

command to stop databases, instances, and other services.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

716 Part VII: Clustered Oracle - The Grid

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 40
Blind Folio 40:716

Other available SRVCTL commands are listed in Table 40-3.

Transparent Application Failover
RAC provides support for transparent application failover (TAF) in the event of an instance failure.
To guard against hardware failure, the database file storage must be failure tolerant (usually through
the use of RAID arrays, mirroring, or ASM-enforced software mirroring). When a user connects to
the database through an instance, any transactions executed by the user are recorded in the redo
log thread for that instance.

If an instance fails (or is shut down via a shutdown abort), one of the surviving instances will
perform the needed recoveries. With TAF, the user’s connection will be reestablished via another
instance in the same cluster, connecting to the same database.

When you install and configure the RAC environment, Oracle configures the network services
for you. For example, if you create a service called db.us.acme.com, the service name entry in the
tnsnames.ora file may resemble this:

SRVCTL Command Description

srvctl add {database|instance|service|nodeapps|asm} Adds a configuration to your cluster database configuration.
srvctl add service adds services to a database and assigns
them to instances. You can use the srvctl add service
command to configure the Transparent Application Failover
(TAF) policy for a service.

srvctl config {database|service|nodeapps|asm} Displays the configuration information stored in the Oracle
Cluster Registry.

srvctl disable {database|instance|service|asm} Disables the named object and prevents it from being
started automatically.

srvctl enable {database|instance|service|asm} Enables the named object to be started automatically.

srvctl getenv {database|instance|service|nodeapps} Displays environment status.

srvctl modify {database|instance|service|nodeapps} Modifies the object configuration without removing
and adding the CRS resources.

srvctl relocate service Relocates the named service names from one named
instance to another named instance.

srvctl remove {database|instance|service|nodeapps|asm} Removes the named object from the cluster environment.

srvctl setenv {database|instance|service|nodeapps} Sets environment values in the configuration file.

srvctl start {database|instance|service|nodeapps|asm} Starts CRS-enabled, nonrunning applications for the
database, all or named instances, all or named service
names, or node-level applications.

srvctl status {database|instance|service|nodeapps|asm} Displays the current state of the named object.

srvctl stop {database|instance|service|nodeapps|asm} Stops the CRS applications for the database, all or named
instances, all or named service names, or node level
applications.

srvctl unsetenv {database|instance|service|nodeapps} Unsets environment values in the configuration file.

TABLE 40-3. SRVCTL Command Options

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 40: Oracle Real Application Clusters 717

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 40
Blind Folio 40:717

db.us.acme.com=
(description= (load_balance=on) (failover=on)
(address_list=
(address=(protocol=tcp)(host=db1-server)(port=1521))
(address=(protocol=tcp)(host=db2-server)(port=1521)))

(connect_data= (service_name=db.us.acme.com)))

The user can connect to the instance via the db.us.acme.com service name (for example, via
a remote SQL*Plus session) and execute queries. While the user is connected, you can shut down
the db1-server host. If the user—still in the same session—attempts to execute another query, the
session will be transparently reestablished via the db2-server host and the query will be executed.

The listener.ora file entry for the database will contain entries similar to the following listing:

listeners_db.us.acme.com=
(address=(protocol=tcp)(host=db1-server)(port=1521)) (address=(protocol=
tcp)(host=db2-server)(port=1521))

If the user has changed environment variables within the session (via alter session), or has set
session-specific variables, those values may need to be reestablished in the newly connected session.

Services
As described earlier in this chapter, you can create and manage services within your RAC cluster.
You can assign services to run on one or more instances; services integrate cluster database resources
to simplify cluster manageability.

As shown in Table 40-2, you can use SVRCTL to create and add services. You can assign
services to instances for preferred (normal) and available (recovery) processing. You can identify
other instances that are available to support the service levels change or for planned outages.

NOTE
You can use the DBCA to manage service assignments
and service preferences.

Adding Nodes and Instances to the Cluster
You can add nodes to an existing cluster and you can add instances to an existing RAC environment.
The nodes must meet the criteria listed earlier in this chapter—they must be configured with the
proper networking protocol configurations and they must support high-speed data transmissions
with the other nodes in the cluster. It is generally simplest to make the operating system on the new
node a copy of one of the existing nodes in the cluster. As described in Chapter 41, the nodes must
be able to execute remote commands via equivalence files.

The specific installation steps for the new node vary by operating system. In general, a UNIX
cluster administrator will add the new node to the clusterware configuration (based on directions
from its vendor). You can then start the Oracle Universal Installer (OUI) in addNode mode (in UNIX,
via <CRS_HOME>/OUI/bin/addNode.sh and in Windows via <CRS_HOME>\oui\bin\addNode.bat).
OUI will then present you with a series of prompts to add the new node to the cluster as it verifies
the configuration.

OUI will then begin the installation process, instantiating root scripts if needed, copying the CRS
files to the new nodes if needed, and then prompting you to run several scripts at the operating

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

system level. OUI then saves the cluster inventory. You can then execute the CRSSETUP utility to
add CRS information for the new nodes. You can then run one final utility, RACGONS, to configure
the Oracle Notification Services port for the new server. See the Oracle documentation for the
syntax of the CRSSETUP and RACGONS utilities, as they involve detailed configuration of node
names, node numbers, and ports.

Once the node has been added to the cluster, you can add an instance. Start the Database
Configuration Assistant (see Chapter 2) and choose “Real Application Clusters database”. You can
then select “Add Instance” and the name of the database the instance will access. Enter the instance
parameters where prompted and accept the summary information to initiate the instance creation.
Oracle will create the instance and its network services.

To remove an existing instance from a RAC cluster, start the DBCA on a node other than the
node hosting the instance that will be removed. The DBCA will display a list of the current instances
in the configuration; select the one to be removed from the list. DBCA will display a list of services
assigned to that instance so you can relocate them to other instances in the cluster. The selected
instance will be deregistered from the RAC cluster.

Managing the Cluster Registry and Services
The Oracle Cluster Registry (OCR) contains configuration details for the database, services, and
other cluster components. As shown in Table 40-2, you can use the srvctl config command to
display the configuration details stored in the OCR. You should make copies of the registry on a
regular basis to support any recovery needs you may have later.

One of the CRS-registered instances in the cluster will automatically back up the OCR every
four hours, retaining three backup copies. Additional backups are taken once per day and once
per week. You cannot modify the backup frequency or the number of backups retained. You can
take additional backups via the ocrconfig tool, allowing you to make backups before and after
significant changes to the cluster database environment. The OCRCONFIG options are shown in
Table 40-4.

718 Part VII: Clustered Oracle - The Grid

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 40
Blind Folio 40:718

Option Purpose

-export To export the contents of the OCR into a target file.

-import To import OCR contents from a previously exported OCR file.

-restore To restore the OCR from an automatically created OCR backup file.

-backuploc To change OCR backup file location. For this entry, use a full path that
is accessible by all nodes.

-showbackup To display the location, timestamp, and the node name of origin for the
last three automatically created backup files.

-upgrade To upgrade the OCR to a later version.

-downgrade To downgrade the OCR to an earlier version.

-help To display help for the ocrconfig commands.

TABLE 40-4. OCRCONFIG Options

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 41
Blind Folio 41:719

CHAPTER
41

Grid Architecture
and Management

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

720 Part VII: Clustered Oracle - The Grid

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 41
Blind Folio 41:720

T
he g in Oracle Database 10g stands for “grid.” Grid computing supports the ability
to treat the computing infrastructure as a shared service whose composition is
managed outside the view of the client applications. In this sense, the computing
service can be analogous to an electrical utility in which the systems that provide
the service are not directly seen by the end users. The source of the electrical power

and the systems used to manage it are unseen by the user.
In a grid architecture, you can manage resources to support end-user needs dynamically. The

grid architecture helps improve application availability and also supports resource provisioning to
handle changing workloads. Grid resources include servers, disks, and instances. In prior releases,
Oracle provided capabilities for some grid-related features—most notably Oracle9i Real Application
Clusters (RAC). Oracle Database 10g introduces additional tools that facilitate grid management
of your applications, providing a full set of options supporting grid computing. Features supporting
grid computing include:

■ Real Application Clusters You can create multiple instances that access the same
database, allowing you to distribute the memory workload across multiple servers. You
can add new instances to the cluster as needed.

■ Automated Storage Management You can create diskgroups (see Chapter 46) of available
disks and assign datafiles to the diskgroups. Oracle will then manage the I/O accesses to
the diskgroups and redistribute the files as necessary.

■ Replication technology Fast replication of data among databases supports the use of
databases as part of a grid of available data sources. Replication technology includes
transportable tablespaces (see Chapter 46), materialized views (see Chapter 24), Oracle
Streams (log-based replication), and distributed transactions (see Chapter 23).

■ Security technology You can support shared use of databases by different applications
or business processes. In a shared database, you may need to create virtual databases that
prevent unauthorized access of data belonging to other business areas or applications.
See Chapter 19 for details on Virtual Private Databases.

■ Resource scheduling via Oracle Enterprise Manager (OEM) You can use procedures
within the DBMS_SCHEDULER package to create programs in Oracle that support the
execution of shell scripts at the operating system level in addition to jobs that execute with
the database. You can create programs via the CREATE_PROGRAM procedure, schedule
them via CREATE_SCHEDULE, and submit the job via CREATE_JOB.

In this chapter, you will see an overview of grid features and how they fit into the grid computing
architecture. The implementation of the grid requires that the infrastructure be configured to support
the distributed and flexible architecture required. In the next section, you will see the critical
configuration elements for the hardware and operating systems components.

Hardware and Operating System
Configuration Issues
To support a grid architecture with multiple instances, you must be able to support instances on
separate servers. If the instances are part of an RAC environment, the environment must have a

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

shared disk area that is accessible via a high-speed network. Oracle runs on all major operating
systems, so its grid capabilities will not be hindered by restrictions to one particular operating system.
Note that RAC is not supported across operating systems in the grid environment.

Blade servers commonly are used in RAC and grid environments. A “blade” is a computing
system that includes processors and memory on a single board in the server, while other server
features are shared among a set of blades. You can install a new blade into a server, and the blade
will take advantage of the power, network access, storage, and infrastructure capabilities already
installed. Blade servers can be modified to support expanded processing requirements without
significantly impacting the area required to support the server.

The servers themselves must be accessed virtually—that is, a user application should be able
to connect to an IP address that in turn can connect to one of many servers in a set. If one of the
servers becomes unavailable, other servers in the set will be able to fulfill the request without
interrupting the application. Users who are already connected to the application will have their
connections redirected to an instance on a separate server. The servers should have external shared
disks, a private IP address, a public IP address, and redundant switches.

The storage architecture must also support the grid concept—multiple servers accessing a shared
disk service. The server architecture and operating system must support a storage technology that
supports concurrent access to the shared disk services. Oracle’s grid architecture supports Storage
Area Networks (SANs), Network Attached Storage (NAS), and iSCSI (a block-mode form of NAS).
When used in the grid, SANs and iSCSI require either a cluster file system or raw volumes. NAS
volumes can be shared among servers without the need for a cluster file system.

The shared storage will be used for the critical files in the database—the datafiles, control files,
online redo log files, and system parameter file—plus additional files used to manage the cluster
of instances. The files must all be accessible by all servers in the cluster. The Oracle software may
also be stored in the shared area.

Traditional file systems do not support the access requirements of grid architectures, so you need
to use a file system that supports the concurrent access requirements. The most common options
are raw devices and cluster file systems. Raw devices have been used for years to support Oracle
RAC environments because they support concurrent access by multiple processes. However, their
administration has traditionally been more complex than comparable file system administration.
Both raw devices and cluster file systems require block-mode storage such as SANs and iSCSI.

In general, file systems are simpler to manage than raw devices—they can be easily resized,
moved, and renamed. In general, the access speeds for raw devices and cluster file systems are
comparable. Unless you have a specific reason for using raw devices in your environment, you
should favor the use of cluster file systems in your grid. Oracle provides its own cluster file system,
the Oracle Cluster File System (OCFS) to support shared file access.

Oracle Cluster File System
Oracle Cluster File System (OCFS) is designed to support concurrent access to a shared set of database
files. To download and install OCFS, go to Oracle’s Metalink site (http://metalink.oracle.com).
Enter the following search terms within Metalink:

download oracle cluster file system

A list of related technical documents will be displayed. Choose the Metalink document that
matches your operating system and follow the instructions to find the download locations. For
example, for Linux, the downloads are available via http://oss.oracle.com, which in turn points to

Chapter 41: Grid Architecture and Management 721

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 41
Blind Folio 41:721

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

http://oss.oracle.com/projects/ocfs/. The download site also includes links to best-practices
documents, user guides, and design documentation.

In general, the OCFS installation process follows these steps:

1. Download the OCFS software for your environment.

2. Download the related installation documentation. Note that the installation process and
software is specific to the operating system and version.

3. Perform the installation.

4. Copy the OCFS utilities into a shared directory (in UNIX, /usr/sbin).

5. Use the ocfstool utility to create the configuration files (such as /etc/ocf.conf).

6. Make sure the load_ocfs command is automatically run at startup (in Oracle Database
10g, this should be performed during the installation).

7. Use the fdisk utility to create the appropriate partitions that will be formatted with the
Oracle Cluster File System. Use ocfstool to format the partitions.

8. Create mount points for the OCFS file systems (/u01, /u02, and so on) and mount each
file system.

9. Create entries in the /etc/fstab file for each OCFS file system.

As with network-attached storage, it is useful to reboot one or more RAC nodes following the
installation to verify that the correct number of OCFS volumes remounted.

NOTE
See your operating system–specific documentation for additional
installation steps, the version certification matrix, and other
requirements.

Accessing the Other Servers
In a RAC-ready environment, you should be able to run commands on all other servers in the
cluster without providing a password. For example, in UNIX you should be able to use the rsh
and rcp commands across the servers. You should work with your network managers and system
administrators to determine the proper technical solution for your environment. Your choices for
this requirement may be limited by your environment’s security policies and practices.

For example, you may be able to use /home/oracle/rhosts files to permit host equivalences for
the Oracle user. You can specify the hosts from which connections are permitted via the rhosts
access method. See Chapter 40 for additional details on RAC implementation details, including
recommended kernel configurations.

Oracle Cluster Manager
The Oracle Cluster Manager (OCM) is installed via the Oracle Universal Installer. OCM requires
that the public and private host names for each server in the cluster be entered in two separate

722 Part VII: Clustered Oracle - The Grid

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 41
Blind Folio 41:722

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

screens. Make sure those names exactly correspond (the first public server entered must be the
first private server entered) to avoid problems in later installation steps.

OCM features an agent that monitors the servers to determine if they are all still available.
Depending on the version of Oracle RAC you are using, this agent may be called watchdogd or
hangcheck-timer.

Create log directories (such as $ORACLE_HOME/oracm/log) for Oracle to use prior to starting
the OCM.

You can now start OCM and install the Oracle RAC software.

Adding Servers to the Grid
When a server is to be made available (“provisioned”) to an RAC database, the systems
administrator must perform several steps:

1. Bring the server into the same network as the other nodes in the cluster.

2. Enable the new server to access the shared storage.

3. Enable the new server to access the other servers in the cluster.

4. Install the clustering software on the server. The new server should be recognized as part
of the same cluster as the other servers, and it should have the proper access to the shared
storage. Ensure that the new server uses the same clustering software as the other servers
in the cluster.

5. Install the Oracle software on the server. Use the Oracle Universal Installer to install the
Oracle software and add the new server to the Oracle RAC database via the Database
Creation Assistant (DBCA). During the installation (which requires the Enterprise Edition),
select a Software Only installation, which does not create a database. Run the configuration
file (on UNIX, it’s root.sh) to complete the installation.

Adding Instances to the Grid
To create an instance on the new server, make sure the Global Services Daemon (GSD) is running
on all the servers. To start GSD on UNIX, enter the following command:

gsdctl start

Once GSD is running, start the OUI and choose the “Cluster database” options. You should
be taken to an Instance Management page from which you can choose to add instances to the
existing cluster. You will be prompted for information similar to that displayed during database
installation—redo log group details, tablespace information, and instance name. When you accept
the settings, the DBCA will start and will create the instance you requested.

To drop an instance from the grid, go through OUI to the Instance Management page. Select
“Delete Instance,” along with the name of the instance to remove from the cluster, and the DBCA
will delete the instance.

Chapter 41: Grid Architecture and Management 723

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 41
Blind Folio 41:723

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Sharing Data Across the Grid
To this point, the focus of this chapter has been on RAC databases—shared datafiles accessed by
multiple instances located within a cluster. The grid is bigger than just RAC. You may have multiple
RAC databases, or multiple single-instance databases, which you dynamically manage via grid
technologies.

To support multiple-database configurations, Oracle offers an array of technologies. Replication
technologies include:

■ Database links You can establish links between accounts in separate databases, for use
in replicating read-only or updateable copies of tables. See Chapter 23 for details on remote
access.

■ Procedures and triggers To maintain replicated data synchronously, you can create a
trigger that creates a transaction in a remote database when a transaction is committed
in a local database. If the transaction in the remote database fails, the local transaction
fails and the two databases stay synchronized. See Chapters 30 and 31.

■ Materialized views You can create materialized views based on remote objects.
Materialize views can be refreshed with data from the source system at commit time or
on a predetermined schedule. Through the use of materialized view logs, you can use
fast refreshes to send incremental changes from the source system to the materialized
view. See Chapter 24.

■ Transportable tablespaces You can move large volumes of data from one database to
another via transportable tablespaces. For example, you can “unplug” a tablespace from
a test environment and then rapidly plug it into multiple different databases. As of Oracle
Database 10g, the source and target databases can be on differing platforms. See Chapter 46.

■ External tables You can treat files outside the database as if they were tables, querying
them as if the lines in the files were rows in a table. The files can be located on shared
disks. See Chapter 26.

■ Oracle Streams Oracle Streams uses the redo log entries to generate the SQL needed
to replicate transactions across databases.

■ Data Pump Export and Import You can use Data Pump Export and Import to create
server-side jobs that extract and load data from your databases. See Chapter 22.

You can use all these technologies to make your data available across your grid. In the next
section, you will see further details on the management capabilities introduced to support the grid
architecture.

Managing the Grid
In Oracle Database 10g, Oracle Enterprise Manager (OEM) introduces or enhances a number of
components designed to support management of the grid. These components include the following:

724 Part VII: Clustered Oracle - The Grid

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 41
Blind Folio 41:724

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Grid Control Console An OEM interface that allows you to easily manage all hosts,
databases, listeners, and application servers in your computing environment.

■ Oracle Management Agent A process deployed on each monitored host. It’s responsible
for monitoring all targets on the host, for communicating that information to the middle-
tier Management Service, and for managing and maintaining the host and its targets. The
agent requires at least 360MB of initial disk space and 20MB of memory.

■ Oracle Management Service A J2EE application that displays the Grid Control Console,
works with all Management Agents to process monitoring and jobs information, and uses
the Management Repository as its data store. The Oracle Management Service is installed
with and deployed on the Oracle application server. The application server instance
Oracle creates to support the Oracle Management Service should not be used for any other
purpose. The service requires at least 240MB of disk space and 1GB of memory. The
application server requires 500MB of disk space and at least 512MB of memory.

■ Oracle Management Repository Two tablespaces in an Oracle database that store
information about the targets and applications managed within OEM. The Oracle
Management Agents collect the data and use the Oracle Management Service to load
data into the Oracle Management Repository. The Oracle Management Repository can be
accessed by multiple administrators in the grid. The recommended size for the repository
is 1GB of disk space and 2GB of memory.

When you install Oracle Enterprise Manager 10g Grid Control, you can use a new database
or an existing database for the repository. If you use an existing database, the database can be
local or remote to the server on which you are performing the installation. The repository must
be installed in a database for which fine-grained access control is enabled (check V$OPTION to
verify this setting).

NOTE
The Enterprise Manager Repository Configuration Assistant will fail
if the SYSMAN user already exists in the database you specify for
the repository, or if the repository already exists in that database.

NOTE
If you use an existing database, you may need to apply patches
for the repository to function properly.

To install the Oracle Management Agent, run the OUI on each server in the environment. During
the installation, choose Additional Management Agent as the installation type. Silent installation
options are also available; see the “Oracle 10g Grid Control Configuration and Installation” document
for silent installation guidelines. Oracle provides standard response files to use for silent installations.

Following the installation, run the root.sh command file as the root user to complete the post-
installation process.

Chapter 41: Grid Architecture and Management 725

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 41
Blind Folio 41:725

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Enabling Patch Searches and Downloads
You can use OEM to access Oracle Metalink to search for patches and downloads for your
environment. If you did not specify your connection information during installation, you can go
to the Grid Control page of OEM and access the Setup | Patching Setup page. On that page you
can enter your Metalink username and password and the Metalink patch search site:

http://oracle.com/support/metalink/index.html

You can use this configuration to search for and download patches from within your OEM
interface.

NOTE
If your network configuration prevents you from accessing
the Metalink site, you must set the proxy settings for OEM to
access Metalink. The proxy settings are in the /sysman/config/
emoms.properties file.

Setting Credentials for the Job System
In Windows-based systems (NT 4, Windows 2000, Windows 2003, and Windows XP), you must
set the proper credentials for the Jobs system to work properly in OEM. When submitting a job, the
user must have the “Log on as a batch job” privilege enabled. By default, the Management Agent
is installed as a LocalSystem user.

To enable this setting in Windows 2000 and Windows XP, start the Local Security Policy tool
located in the Control Panel. Choose Local Policies | User Rights Assignment. Double-click the
“Log on as a batch job” entry and add the name of the user. Restart the server for the change to
take effect.

In Windows NT 4, choose the User Manager tool within the Programs | Administrative Tools
option on the Start menu. Select Policies | User Rights and then click Show Advanced User Rights.
Select “Log on as a batch job” from the drop-down menu and add the name of the user who will
be submitting an OEM job.

Configuring Databases for Monitoring
To enable a database to be monitored, you must allow its DBSNMP account to be accessed. Because
this account may be locked in your environment, check that the account is accessible (you may
need to use the alter user dbsnmp account unlock command). You can then go to the Configure
Database | Properties page of the OEM Grid Control Console and configure the database for
monitoring. On that page, enter the password for the DBSNMP user in the targeted database.

For ASM monitoring targets, navigate to Targets | All Targets from the OEM Grid Control Console.
When you configure the target, you will be prompted for the SYS password to use in ASM monitoring.

Launching OEM
OEM is a graphical interface to the administration of the grid components. Its interface is largely
intuitive, but there are some things to be particularly aware of within OEM:

726 Part VII: Clustered Oracle - The Grid

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 41
Blind Folio 41:726

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ If you have configured a Management Agent on a server, supported targets on the same
server will be detected and will be monitored via OEM.

■ You can configure automatic e-mail notifications from OEM by default. You can configure
additional notification methods as needed.

■ You can group targets, create roles, and create administrators within OEM.

OEM relies on the Oracle Management Repository, Oracle Management Agent, and Oracle
Management Service to function properly.

Because the repository is a database, you can stop and start it via the shutdown and startup
commands in SQL*Plus. The Oracle Management Service, however, requires the use of the EMCTL
utility installed with Oracle. To start the Oracle Management Service, use the following command
in UNIX:

emctl start oms

And here’s how to stop the service:

emctl stop oms

You can verify its status via emctl status oms. Here’s how to start all components of the
Application Server, including the Management Service:

opmnctl startall

To stop all components, use opmnctl stopall.
Oracle Management Agents on Windows are managed via the Services control panel. To start

agents on UNIX platforms, use the emctl start agent command. You can stop an agent via emctl
stop agent and check its status via emctl status agent.

Once all the components have been started, you can access the OEM Grid Control Console
via the proper URL, which is generally in the following format:

http://mgmtserver_hostname.domain:port/em

Initialization Parameters for the Repository
Table 41-1 shows the minimum required database-initialization parameters for the database in
which the Oracle Management Repository is stored.

NOTE
Do not set a value for RESOURCE_MANAGER_PLAN.

Table 41-2 lists the additional recommended parameter settings for the Oracle Management
Repository.

Chapter 41: Grid Architecture and Management 727

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 41
Blind Folio 41:727

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

728 Part VII: Clustered Oracle - The Grid

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 41
Blind Folio 41:728

Parameter Minimum Value

job_queue_processes 10

db_block_size 8192

remote_login_passwordfile EXCLUSIVE

timed_statistics TRUE

open_cursors 300

shared_pool_size 67108864

dispatchers NULL or not present in the file

aq_tm_processes 1 or greater

compatible 9.0.1.3 or greater

TABLE 41-1. Required Minimum Values for the Oracle Management Repository

Parameter Value

db_cache_size 134217728

session_cached_cursors 200

large_pool_size 0

processes 150

fast_start_mttr_target 300

hash_area_size 1048576

sort_area_size 1048576

pga_aggregate_target 33554432

undo_management AUTO

undo_retention 10800

undo_tablespace UNDOTBS

TABLE 41-2. Recommended Parameters for the Oracle Management Repository Database

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:729

PART
VIII

Hitchhiker’s Guides

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Front Matter
Blind Folio FM:730

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:731

CHAPTER
42

The Hitchhiker’s
Guide to the Oracle

Data Dictionary

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

O
racle’s data dictionary stores all the information that is used to manage the objects
in the database. Although the data dictionary is usually the domain of database
administrators (DBAs), it also is a source of valuable information for developers
and end users.

In this chapter, you will see the data dictionary—Oracle’s internal directory—
from the perspective of an end user; the data dictionary tables and views are not listed alphabetically,
but rather are grouped by function (tables, security, and so on). This organization is designed to
let you quickly find your way to the information you need. The most-used data dictionary views
are all shown here, along with examples of their usage.

Depending on which Oracle configuration options you are using, some of the groups will not
apply to your database. The most commonly used views are listed first. The groupings used in this
chapter are, in order:

■ New Views Introduced in Oracle Database 10g

■ New Columns Introduced in Oracle Database 10g

■ The Road Maps: DICTIONARY (DICT) and DICT_COLUMNS

■ Things You Select From: Tables (and Columns), Views, Synonyms, and Sequences

■ Constraints and Comments

■ Indexes and Clusters

■ Abstract Datatypes, ORDBMS-Related Structures, and LOBs

■ Database Links and Materialized Views

■ Triggers, Procedures, Functions, and Packages

■ Dimensions

■ Space Allocation and Usage, Including Partitions and Subpartitions

■ Users and Privileges

■ Roles

■ Auditing

■ Miscellaneous

■ Monitoring: The V$ Dynamic Performance Tables

NOTE
As new features are added, it is expected that the data dictionary
will be modified with each future release of Oracle.

A Note about Nomenclature
With some exceptions, the names of the objects in the Oracle data dictionary begin with one of
three prefixes: “USER,” “ALL,” or “DBA.” Records in the “USER” views usually show information

732 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:732

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

about objects owned by the account performing the query. Records in the “ALL” views include the
“USER” records plus information about objects on which privileges have been granted to PUBLIC
or to the user. “DBA” views encompass all of the database objects, regardless of owner. For most
database objects, “USER,” “ALL,” and “DBA” views are available.

In keeping with the user focus of this guide, the emphasis will be on the “USER” views or
those that are accessible to all users. The “ALL” and “DBA” views will be described when they
are applicable.

New Views Introduced in Oracle Database 10g
For users familiar with the data dictionary in Oracle9i, Table 42-1 lists the views that are introduced
in Oracle Database 10g.

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 733

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:733

ALL_ Views DBA_ Views USER_ Views

DBA_ADVISOR_ACTIONS USER_ADVISOR_ACTIONS

DBA_ADVISOR_COMMANDS

DBA_ADVISOR_DEFINITIONS

DBA_ADVISOR_FINDINGS USER_ADVISOR_FINDINGS

DBA_ADVISOR_JOURNAL USER_ADVISOR_JOURNAL

DBA_ADVISOR_LOG USER_ADVISOR_LOG

DBA_ADVISOR_OBJECT_TYPES

DBA_ADVISOR_OBJECTS USER_ADVISOR_OBJECTS

DBA_ADVISOR_PARAMETERS USER_ADVISOR_PARAMETERS

DBA_ADVISOR_RATIONALE USER_ADVISOR_RATIONALE

DBA_ADVISOR_RECOMMENDATIONS USER_ADVISOR_RECOMMENDATIONS

DBA_ADVISOR_SQLA_REC_SUM USER_ADVISOR_SQLA_REC_SUM

DBA_ADVISOR_SQLA_WK_MAP USER_ADVISOR_SQLA_WK_MAP

DBA_ADVISOR_SQLA_WK_STMTS USER_ADVISOR_SQLA_WK_STMTS

DBA_ADVISOR_SQLW_JOURNAL USER_ADVISOR_SQLW_JOURNAL

DBA_ADVISOR_SQLW_PARAMETERS USER_ADVISOR_SQLW_PARAMETERS

DBA_ADVISOR_SQLW_STMTS USER_ADVISOR_SQLW_STMTS

DBA_ADVISOR_SQLW_SUM USER_ADVISOR_SQLW_SUM

DBA_ADVISOR_SQLW_TABLES USER_ADVISOR_SQLW_TABLES

DBA_ADVISOR_SQLW_TEMPLATES USER_ADVISOR_SQLW_TEMPLATES

DBA_ADVISOR_TASKS USER_ADVISOR_TASKS

DBA_ADVISOR_TEMPLATES USER_ADVISOR_TEMPLATES

DBA_ADVISOR_USAGE

TABLE 42-1. New Data Dictionary Views in Oracle Database 10g

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

734 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:734

ALL_ Views DBA_ Views USER_ Views

DBA_ALERT_HISTORY

ALL_APPLY_ENQUEUE DBA_APPLY_ENQUEUE

ALL_APPLY_EXECUTE DBA_APPLY_EXECUTE

DBA_APPLY_INSTANTIATED_GLOBAL

DBA_APPLY_INSTANTIATED_SCHEMAS

ALL_APPLY_TABLE_COLUMNS DBA_APPLY_TABLE_COLUMNS

ALL_AUDIT_POLICY_COLUMNS DBA_AUDIT_POLICY_COLUMNS USER_AUDIT_POLICY_COLUMNS

ALL_AW_PS

ALL_AWS

ALL_CAPTURE_EXTRA_ATTRIBUTES DBA_CAPTURE_EXTRA_ATTRIBUTES

DBA_COMMON_AUDIT_TRAIL

DBA_DATAPUMP_JOBS USER_DATAPUMP_JOBS

DBA_DATAPUMP_SESSIONS

DBA_ENABLED_AGGREGATIONS

DBA_ENABLED_TRACES

DBA_FEATURE_USAGE_STATISTICS

DBA_HIGH_WATER_MARK_STATISTICS

DBA_HIST_ACTIVE_SESS_HISTORY

DBA_HIST_BASELINE

DBA_HIST_BG_EVENT_SUMMARY

DBA_HIST_BUFFER_POOL_STAT

DBA_HIST_CR_BLOCK_SERVER

DBA_HIST_CURRENT_BLOCK_SERVER

DBA_HIST_DATABASE_INSTANCE

DBA_HIST_DATAFILE

DBA_HIST_DB_CACHE_ADVICE

DBA_HIST_DLM_MISC

DBA_HIST_ENQUEUE_STAT

DBA_HIST_EVENT_NAME

DBA_HIST_FILEMETRIC_HISTORY

DBA_HIST_FILESTATXS

DBA_HIST_INSTANCE_RECOVERY

DBA_HIST_JAVA_POOL_ADVICE

DBA_HIST_LATCH

DBA_HIST_LATCH_CHILDREN

TABLE 42-1. New Data Dictionary Views in Oracle Database 10g (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 735

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:735

ALL_ Views DBA_ Views USER_ Views

DBA_HIST_LATCH_MISSES_SUMMARY

DBA_HIST_LATCH_NAME

DBA_HIST_LATCH_PARENT

DBA_HIST_LIBRARYCACHE

DBA_HIST_LOG

DBA_HIST_METRIC_NAME

DBA_HIST_MTTR_TARGET_ADVICE

DBA_HIST_OPTIMIZER_ENV

DBA_HIST_OSSTAT

DBA_HIST_OSSTAT_NAME

DBA_HIST_PARAMETER

DBA_HIST_PARAMETER_NAME

DBA_HIST_PGA_TARGET_ADVICE

DBA_HIST_PGASTAT

DBA_HIST_RESOURCE_LIMIT

DBA_HIST_ROLLSTAT

DBA_HIST_ROWCACHE_SUMMARY

DBA_HIST_SEG_STAT

DBA_HIST_SEG_STAT_OBJ

DBA_HIST_SERVICE_NAME

DBA_HIST_SERVICE_STAT

DBA_HIST_SERVICE_WAIT_CLASS

DBA_HIST_SESSMETRIC_HISTORY

DBA_HIST_SGA

DBA_HIST_SGASTAT

DBA_HIST_SHARED_POOL_ADVICE

DBA_HIST_SNAP_ERROR

DBA_HIST_SNAPSHOT

DBA_HIST_SQL_PLAN

DBA_HIST_SQL_SUMMARY

DBA_HIST_SQL_WORKAREA_HSTGRM

DBA_HIST_SQLBIND

DBA_HIST_SQLSTAT

DBA_HIST_SQLTEXT

DBA_HIST_STAT_NAME

TABLE 42-1. New Data Dictionary Views in Oracle Database 10g (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

736 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:736

ALL_ Views DBA_ Views USER_ Views

DBA_HIST_SYS_TIME_MODEL

DBA_HIST_SYSMETRIC_HISTORY

DBA_HIST_SYSMETRIC_SUMMARY

DBA_HIST_SYSSTAT

DBA_HIST_SYSTEM_EVENT

DBA_HIST_TABLESPACE_STAT

DBA_HIST_TBSPC_SPACE_USAGE

DBA_HIST_TEMPFILE

DBA_HIST_TEMPSTATXS

DBA_HIST_THREAD

DBA_HIST_UNDOSTAT

DBA_HIST_WAITCLASSMET_HISTORY

DBA_HIST_WAITSTAT

DBA_HIST_WR_CONTROL

ALL_IND_STATISTICS DBA_IND_STATISTICS USER_IND_STATISTICS

ALL_INDEXTYPE_ARRAYTYPES DBA_INDEXTYPE_ARRAYTYPES USER_INDEXTYPE_ARRAYTYPES

DBA_LOGMNR_LOG

DBA_LOGMNR_PURGED_LOG

DBA_LOGMNR_SESSION

ALL_MVIEW_COMMENTS DBA_MVIEW_COMMENTS USER_MVIEW_COMMENTS

ALL_NESTED_TABLE_COLS DBA_NESTED_TABLE_COLS USER_NESTED_TABLE_COLS

DBA_OUTSTANDING_ALERTS

ALL_PLSQL_OBJECT_SETTINGS DBA_PLSQL_OBJECT_SETTINGS USER_PLSQL_OBJECT_SETTINGS

DBA_RECYCLEBIN USER_RECYCLEBIN

DBA_REDEFINITION_ERRORS

DBA_REDEFINITION_OBJECTS

DBA_REGISTERED_ARCHIVED_LOG

ALL_REWRITE_EQUIVALENCES DBA_REWRITE_EQUIVALENCES USER_REWRITE_EQUIVALENCES

DBA_RSRC_GROUP_MAPPINGS

DBA_RSRC_MAPPING_PRIORITY

ALL_SCHEDULER_JOB_ARGS DBA_SCHEDULER_JOB_ARGS USER_SCHEDULER_JOB_ARGS

ALL_SCHEDULER_JOB_CLASSES DBA_SCHEDULER_JOB_CLASSES

ALL_SCHEDULER_JOB_LOG DBA_SCHEDULER_JOB_LOG USER_SCHEDULER_JOB_LOG

ALL_SCHEDULER_JOB_RUN_DETAILS DBA_SCHEDULER_JOB_RUN_DETAILS USER_SCHEDULER_JOB_RUN_DETAILS

TABLE 42-1. New Data Dictionary Views in Oracle Database 10g (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 737

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:737

ALL_ Views DBA_ Views USER_ Views

ALL_SCHEDULER_JOBS DBA_SCHEDULER_JOBS USER_SCHEDULER_JOBS

ALL_SCHEDULER_PROGRAM_ARGS DBA_SCHEDULER_PROGRAM_ARGS USER_SCHEDULER_PROGRAM_ARGS

ALL_SCHEDULER_PROGRAMS DBA_SCHEDULER_PROGRAMS USER_SCHEDULER_PROGRAMS

ALL_SCHEDULER_RUNNING_JOBS DBA_SCHEDULER_RUNNING_JOBS USER_SCHEDULER_RUNNING_JOBS

ALL_SCHEDULER_SCHEDULES DBA_SCHEDULER_SCHEDULES USER_SCHEDULER_SCHEDULES

ALL_SCHEDULER_WINDOW_DETAILS DBA_SCHEDULER_WINDOW_DETAILS

ALL_SCHEDULER_WINDOW_GROUPS DBA_SCHEDULER_WINDOW_GROUPS

ALL_SCHEDULER_WINDOW_LOG DBA_SCHEDULER_WINDOW_LOG

ALL_SCHEDULER_WINDOWS DBA_SCHEDULER_WINDOWS

ALL_SCHEDULER_WINGROUP_MEMBERS DBA_SCHEDULER_WINGROUP_MEMBERS

ALL_SEC_RELEVANT_COLS DBA_SEC_RELEVANT_COLS USER_SEC_RELEVANT_COLS

DBA_SERVER_REGISTRY

ALL_SERVICES DBA_SERVICES

DBA_SQL_PROFILES

DBA_SQLSET USER_SQLSET

DBA_SQLSET_BINDS USER_SQLSET_BINDS

DBA_SQLSET_REFERENCES USER_SQLSET_REFERENCES

DBA_SQLSET_STATEMENTS USER_SQLSET_STATEMENTS

DBA_SQLTUNE_BINDS USER_SQLTUNE_BINDS

DBA_SQLTUNE_PLANS USER_SQLTUNE_PLANS

DBA_SQLTUNE_RATIONALE_PLAN USER_SQLTUNE_RATIONALE_PLAN

DBA_SQLTUNE_STATISTICS USER_SQLTUNE_STATISTICS

DBA_STREAMS_ADMINISTRATOR

ALL_STREAMS_MESSAGE_CONSUMERS DBA_STREAMS_MESSAGE_CONSUMERS

ALL_STREAMS_MESSAGE_RULES DBA_STREAMS_MESSAGE_RULES

ALL_STREAMS_NEWLY_SUPPORTED DBA_STREAMS_NEWLY_SUPPORTED

ALL_STREAMS_RULES DBA_STREAMS_RULES

ALL_STREAMS_TRANSFORM_FUNCTION DBA_STREAMS_TRANSFORM_FUNCTION

ALL_STREAMS_UNSUPPORTED DBA_STREAMS_UNSUPPORTED

ALL_TAB_STATISTICS DBA_TAB_STATISTICS USER_TAB_STATISTICS

DBA_TABLESPACE_GROUPS

DBA_THRESHOLDS

DBA_TUNE_MVIEW USER_TUNE_MVIEW

ALL_WARNING_SETTINGS DBA_WARNING_SETTINGS USER_WARNING_SETTINGS

TABLE 42-1. New Data Dictionary Views in Oracle Database 10g (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Some of the views introduced with Oracle Database 10g reflect dramatic functionality additions.
For example, USER_RECYCLEBIN (accessible via the RECYCLEBIN public synonym) supports the
re-creation of dropped objects. See Chapter 28 for examples of the flashback table command.
Other features supported by the new views include the enhanced advisor capabilities.

New Columns Introduced in Oracle Database 10g
For users familiar with the data dictionary in Oracle9i, Table 42-2 lists the columns that are
introduced to previously existing data dictionary views in Oracle Database 10g.

738 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:738

Static Data Dictionary View New Columns

ALL_ALL_TABLES DROPPED

ALL_APPLY PRECOMMIT_HANDLER
MAX_APPLIED_MESSAGE_NUMBER
NEGATIVE_RULE_SET_NAME
NEGATIVE_RULE_SET_OWNER
STATUS_CHANGE_TIME
ERROR_NUMBER
ERROR_MESSAGE

ALL_APPLY_DML_HANDLERS APPLY_NAME

ALL_APPLY_PROGRESS SOURCE_DATABASE

ALL_AUDIT_POLICIES SEL
INS
UPD
DEL
AUDIT_TRAIL
POLICY_COLUMN_OPTIONS

ALL_CAPTURE CAPTURE_USER
CAPTURED_SCN
APPLIED_SCN
USE_DATABASE_LINK
FIRST_SCN
SOURCE_DATABASE
SOURCE_DBID
SOURCE_RESETLOGS_SCN
SOURCE_RESETLOGS_TIME
LOGMINER_ID
NEGATIVE_RULE_SET_NAME
NEGATIVE_RULE_SET_OWNER
MAX_CHECKPOINT_SCN
REQUIRED_CHECKPOINT_SCN
LOGFILE_ASSIGNMENT
STATUS_CHANGE_TIME
ERROR_NUMBER
ERROR_MESSAGE
VERSION
CAPTURE_TYPE

ALL_DEF_AUDIT_OPTS FBK

ALL_DIM_ATTRIBUTES ATTRIBUTE_NAME

TABLE 42-2. New Data Dictionary Columns in Oracle Database 10g

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 739

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:739

Static Data Dictionary View New Columns

ALL_ERRORS ATTRIBUTE
MESSAGE_NUMBER

ALL_EXTERNAL_TABLES PROPERTY

ALL_INDEXES IOT_REDUNDANT_PKEY_ELIM
DROPPED

ALL_INDEXTYPES ARRAY_DML

ALL_LOBS TABLESPACE_NAME
FORMAT
PARTITIONED

ALL_LOG_GROUP_COLUMNS LOGGING_PROPERTY

ALL_LOG_GROUPS LOG_GROUP_TYPE
GENERATED

ALL_MVIEWS UNKNOWN_TRUSTED_FD
STALE_SINCE

ALL_OBJECT_TABLES DROPPED

ALL_OUTLINES COMPATIBLE
ENABLED
FORMAT

ALL_PART_COL_STATISTICS HISTOGRAM

ALL_POLICIES IDX
POLICY_TYPE
LONG_PREDICATE

ALL_PROPAGATION NEGATIVE_RULE_SET_OWNER
NEGATIVE_RULE_SET_NAME

ALL_SUBPART_COL_STATISTICS HISTOGRAM

ALL_SUBSCRIBED_COLUMNS SUBSCRIPTION_NAME

ALL_SUBSCRIBED_TABLES SUBSCRIPTION_NAME

ALL_SUBSCRIPTIONS SUBSCRIPTION_NAME

ALL_TAB_COL_STATISTICS HISTOGRAM

ALL_TAB_COLS HISTOGRAM
QUALIFIED_COL_NAME

ALL_TAB_COLUMNS HISTOGRAM

ALL_TAB_MODIFICATIONS DROP_SEGMENTS

ALL_TABLES DROPPED

DBA_ALL_TABLES DROPPED

DBA_APPLY PRECOMMIT_HANDLER
MAX_APPLIED_MESSAGE_NUMBER
NEGATIVE_RULE_SET_NAME
NEGATIVE_RULE_SET_OWNER
STATUS_CHANGE_TIME
ERROR_NUMBER
ERROR_MESSAGE

TABLE 42-2. New Data Dictionary Columns in Oracle Database 10g (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

740 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:740

Static Data Dictionary View New Columns

DBA_APPLY_DML_HANDLERS APPLY_NAME

DBA_APPLY_PROGRESS SOURCE_DATABASE

DBA_AUDIT_EXISTS EXTENDED_TIMESTAMP
PROXY_SESSIONID
GLOBAL_UID
INSTANCE_NUMBER
OS_PROCESS
TRANSACTIONID
SCN
SQL_BIND
SQL_TEXT

DBA_AUDIT_OBJECT EXTENDED_TIMESTAMP
PROXY_SESSIONID
GLOBAL_UID
INSTANCE_NUMBER
OS_PROCESS
TRANSACTIONID
SCN
SQL_BIND
SQL_TEXT

DBA_AUDIT_POLICIES SEL
INS
UPD
DEL
AUDIT_TRAIL
POLICY_COLUMN_OPTIONS

DBA_AUDIT_SESSION EXTENDED_TIMESTAMP
PROXY_SESSIONID

GLOBAL_UID

INSTANCE_NUMBER

OS_PROCESS

DBA_AUDIT_STATEMENT EXTENDED_TIMESTAMP
PROXY_SESSIONID
GLOBAL_UID
INSTANCE_NUMBER
OS_PROCESS
TRANSACTIONID
SCN
SQL_BIND
SQL_TEXT

DBA_AUDIT_TRAIL EXTENDED_TIMESTAMP
PROXY_SESSIONID
GLOBAL_UID
INSTANCE_NUMBER
OS_PROCESS
TRANSACTIONID
SCN
SQL_BIND
SQL_TEXT

TABLE 42-2. New Data Dictionary Columns in Oracle Database 10g (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 741

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:741

Static Data Dictionary View New Columns

DBA_AW_PS MAXPAGES

DBA_CAPTURE CAPTURE_USER
USE_DATABASE_LINK
FIRST_SCN
SOURCE_DATABASE
SOURCE_DBID
SOURCE_RESETLOGS_SCN
SOURCE_RESETLOGS_TIME
LOGMINER_ID
NEGATIVE_RULE_SET_NAME
NEGATIVE_RULE_SET_OWNER
MAX_CHECKPOINT_SCN
REQUIRED_CHECKPOINT_SCN
LOGFILE_ASSIGNMENT
STATUS_CHANGE_TIME
ERROR_NUMBER
ERROR_MESSAGE
VERSION
CAPTURE_TYPE

DBA_DIM_ATTRIBUTES ATTRIBUTE_NAME

DBA_ERRORS ATTRIBUTE
MESSAGE_NUMBER

DBA_EXTERNAL_TABLES PROPERTY

DBA_FGA_AUDIT_TRAIL STATEMENT_TYPE
EXTENDED_TIMESTAMP
PROXY_SESSIONID
GLOBAL_UID
INSTANCE_NUMBER
OS_PROCESS
TRANSACTIONID
STATEMENTID
ENTRYID

DBA_INDEXES IOT_REDUNDANT_PKEY_ELIM
DROPPED

DBA_INDEXTYPES ARRAY_DML

DBA_LOBS TABLESPACE_NAME
FORMAT
PARTITIONED

DBA_LOG_GROUP_COLUMNS LOGGING_PROPERTY

DBA_LOG_GROUPS LOG_GROUP_TYPE
GENERATED

DBA_LOGSTDBY_LOG APPLIED

DBA_LOGSTDBY_PROGRESS APPLIED_THREAD#
APPLIED_SEQUENCE#
READ_THREAD#
READ_SEQUENCE#
NEWEST_THREAD#
NEWEST_SEQUENCE#

TABLE 42-2. New Data Dictionary Columns in Oracle Database 10g (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

742 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:742

Static Data Dictionary View New Columns

DBA_LOGSTDBY_SKIP USE_LIKE
ESC

DBA_LOGSTDBY_UNSUPPORTED ATTRIBUTES
TPROP
SEGSPARE1
TFLAGS

DBA_MVIEWS UNKNOWN_TRUSTED_FD
STALE_SINCE

DBA_OBJ_AUDIT_OPTS FBK

DBA_OBJECT_TABLES DROPPED

DBA_OUTLINES COMPATIBLE
ENABLED
FORMAT

DBA_PART_COL_STATISTICS HISTOGRAM

DBA_POLICIES IDX
POLICY_TYPE
LONG_PREDICATE

DBA_PROPAGATION NEGATIVE_RULE_SET_OWNER
NEGATIVE_RULE_SET_NAME

DBA_PROXIES AUTHENTICATION

DBA_REGISTRY NAMESPACE

DBA_REGISTRY_HIERARCHY NAMESPACE

DBA_RSRC_PLAN_DIRECTIVES MAX_IDLE_TIME
MAX_IDLE_BLOCKER_TIME
SWITCH_TIME_IN_CALL

DBA_SUBPART_COL_STATISTICS HISTOGRAM

DBA_SUBSCRIBED_COLUMNS SUBSCRIPTION_NAME

DBA_SUBSCRIBED_TABLES SUBSCRIPTION_NAME

DBA_SUBSCRIPTIONS SUBSCRIPTION_NAME

DBA_TAB_COL_STATISTICS HISTOGRAM

DBA_TAB_COLS HISTOGRAM
QUALIFIED_COL_NAME

DBA_TAB_COLUMNS HISTOGRAM

DBA_TAB_MODIFICATIONS DROP_SEGMENTS

DBA_TABLES DROPPED

DBA_TABLESPACES RETENTION
BIGFILE

USER_ALL_TABLES DROPPED

TABLE 42-2. New Data Dictionary Columns in Oracle Database 10g (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 743

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:743

Static Data Dictionary View New Columns

USER_AUDIT_OBJECT EXTENDED_TIMESTAMP
PROXY_SESSIONID
GLOBAL_UID
INSTANCE_NUMBER
OS_PROCESS
TRANSACTIONID
SCN
SQL_BIND
SQL_TEXT

USER_AUDIT_POLICIES SEL
INS
UPD
DEL
AUDIT_TRAIL
POLICY_COLUMN_OPTIONS

USER_AUDIT_SESSION EXTENDED_TIMESTAMP
PROXY_SESSIONID
GLOBAL_UID
INSTANCE_NUMBER
OS_PROCESS

USER_AUDIT_STATEMENT EXTENDED_TIMESTAMP
PROXY_SESSIONID
GLOBAL_UID
INSTANCE_NUMBER
OS_PROCESS
TRANSACTIONID
SCN
SQL_BIND
SQL_TEXT

USER_AUDIT_TRAIL EXTENDED_TIMESTAMP
PROXY_SESSIONID
GLOBAL_UID
INSTANCE_NUMBER
OS_PROCESS
TRANSACTIONID
SCN
SQL_BIND
SQL_TEXT

USER_AW_PS MAXPAGES

USER_DIM_ATTRIBUTES ATTRIBUTE_NAME

USER_ERRORS ATTRIBUTE
MESSAGE_NUMBER

USER_EXTERNAL_TABLES PROPERTY

USER_INDEXES IOT_REDUNDANT_PKEY_ELIM
DROPPED

TABLE 42-2. New Data Dictionary Columns in Oracle Database 10g (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

744 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:744

Static Data Dictionary View New Columns

USER_INDEXTYPES ARRAY_DML

USER_LOBS TABLESPACE_NAME
FORMAT
PARTITIONED

USER_LOG_GROUP_COLUMNS LOGGING_PROPERTY

USER_LOG_GROUPS LOG_GROUP_TYPE
GENERATED

USER_MVIEWS UNKNOWN_TRUSTED_FD
STALE_SINCE

USER_OBJ_AUDIT_OPTS FBK

USER_OBJECT_TABLES DROPPED

USER_OUTLINES COMPATIBLE
ENABLED
FORMAT

USER_PART_COL_STATISTICS HISTOGRAM

USER_POLICIES IDX
POLICY_TYPE
LONG_PREDICATE

USER_PROXIES AUTHENTICATION

USER_PUBLISHED_COLUMNS CHANGE_SET_NAME
PUB_ID

USER_REGISTRY NAMESPACE

USER_SUBPART_COL_STATISTICS HISTOGRAM

USER_SUBSCRIBED_COLUMNS SUBSCRIPTION_NAME

USER_SUBSCRIBED_TABLES SUBSCRIPTION_NAME

USER_SUBSCRIPTIONS SUBSCRIPTION_NAME

USER_TAB_COL_STATISTICS HISTOGRAM

USER_TAB_COLS HISTOGRAM
QUALIFIED_COL_NAME

USER_TAB_COLUMNS HISTOGRAM

USER_TAB_MODIFICATIONS DROP_SEGMENTS

USER_TABLES DROPPED

USER_TABLESPACES RETENTION
BIGFILE

TABLE 42-2. New Data Dictionary Columns in Oracle Database 10g (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 745

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:745

The Road Maps: DICTIONARY
(DICT) and DICT_COLUMNS
Descriptions for the objects that make up the Oracle data dictionary are accessible via a view
named DICTIONARY. This view, also accessible via the public synonym DICT, queries the database
to determine which data dictionary views you can see. It also searches for public synonyms for
those views.

The following example queries DICT for the names of all data dictionary views whose names
include the string ‘VIEWS’. Selecting from DICT via a non-DBA account, as shown in the following
listing, returns the object name and comments for each data dictionary object that matches your
search criteria. There are only two columns in this view: Table_Name and the table’s associated
Comments.

column Comments format a35 word_wrapped
column Table_Name format a25

select Table_Name, Comments
from DICT
where Table_Name like '%VIEWS%'
order by Table_Name;

TABLE_NAME COMMENTS
------------------------- -----------------------------------
ALL_BASE_TABLE_MVIEWS All materialized views with log(s)

in the database that the user can
see

ALL_MVIEWS All materialized views in the
database

ALL_REGISTERED_MVIEWS Remote materialized views of local
tables that the user can see

ALL_VIEWS Description of views accessible to
the user

ALL_XML_VIEWS Description of all XMLType
views that the user has privileges
on

USER_BASE_TABLE_MVIEWS All materialized views with log(s)
owned by the user in the database

USER_MVIEWS All materialized views in the
database

USER_REGISTERED_MVIEWS Remote materialized views of local
tables currently using logs owned
by the user

USER_VIEWS Description of the user's own views
USER_XML_VIEWS Description of the user's own

XMLType views

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can query the columns of the dictionary views via the DICT_COLUMNS view. Like the
DICTIONARY view, DICT_COLUMNS displays the comments that have been entered into the
database for the data dictionary views. DICT_COLUMNS has three columns: Table_Name, Column_
Name, and Comments. Querying DICT_COLUMNS lets you determine which data dictionary views
would be most useful for your needs.

For example, if you want to view space allocation and usage information for your database
objects but are not sure which data dictionary views store that information, you can query DICT_
COLUMNS, as shown in the following example, which looks for all the dictionary tables that
have a column named Blocks:

select Table_Name
from DICT_COLUMNS
where Column_Name = 'BLOCKS'
and Table_Name like 'USER%'

order by Table_Name;

TABLE_NAME

USER_ALL_TABLES
USER_EXTENTS
USER_FREE_SPACE
USER_OBJECT_TABLES
USER_SEGMENTS
USER_TABLES
USER_TAB_PARTITIONS
USER_TAB_STATISTICS
USER_TAB_SUBPARTITIONS
USER_TS_QUOTAS

To list all of the available column names that you could have used in the last example, query
DICT_COLUMNS:

select distinct Column_Name
from DICT_COLUMNS
order by Column_Name;

Whenever you’re unsure about where to find the data you want, just check DICTIONARY and
DICT_COLUMNS. If it appears that a large number of views could be useful, query DICTIONARY
(as in the first example) to see the comments on each view.

Things You Select From: Tables (and Columns),
Views, Synonyms, and Sequences
A user’s catalog lists all of those objects that the user can select records from; that is, any object
that can be listed in the from clause of a query. Although sequences are not referenced directly
in from clauses, Oracle includes them in the catalog. In this section, you will see how to retrieve
information about tables, columns, views, synonyms, sequences, and the user catalog.

746 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:746

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Catalog: USER_CATALOG (CAT)
Querying USER_CATALOG will display all tables, views, synonyms, and sequences the user owns.
The Table_Name column shows the name of the object (even if it is not a table), and the Table_Type
column shows the type of object:

select Table_Name, Table_Type
from USER_CATALOG
where Table_Name like 'T%';

USER_CATALOG may also be referred to by the public synonym CAT.
Two additional catalogs are available. ALL_CATALOG lists everything in your USER_CATALOG

view plus any objects that you or PUBLIC have been granted access to. DBA_CATALOG is a DBA-
level version of the catalog showing all tables, views, sequences, and synonyms in the database.
In addition to the Table_Name and Table_Type columns shown in the USER_CATALOG query,
ALL_CATALOG and DBA_CATALOG include an Owner column.

Objects: USER_OBJECTS (OBJ)
USER_CATALOG only displays information for tables, views, sequences, and synonyms. To retrieve
information on all types of objects, query USER_OBJECTS. You can use this view to find out about
many types of objects, including clusters, database links, directories, functions, indexes, libraries,
packages, package bodies, Java classes, abstract datatypes, resource plans, sequences, synonyms,
tables, triggers, materialized views, LOBs, and views. USER_OBJECTS’ columns are listed in Table 42-3.

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 747

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:747

Column Name Description

Object_Name The name of the object

SubObject_Name The name of the subobject, such as a partition name

Object_ID A unique, Oracle-assigned ID for the object

Data_Object_ID The object number of the segment that contains the object’s data

Object_Type The object type (‘TABLE’, ‘INDEX’, ‘TABLE PARTITION’, and so on)

Created The timestamp for the object’s creation (a DATE column)

Last_DDL_Time The timestamp for the last DDL command used on the object, including alter, grant,
and revoke

Timestamp The timestamp for the object’s creation (same as Created, but stored as a character
column)

Status The status of the object (‘VALID’ or ‘INVALID’)

Temporary A flag to indicate whether the object is a temporary table

Generated A flag to indicate whether the object’s name was system generated

Secondary A flag to indicate whether the object is a secondary index created by a domain index

TABLE 42-3. Columns in USER_OBJECTS

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

USER_OBJECTS (also known by its public synonym OBJ) contains several vital pieces of
information that are not found in other data dictionary views. It records the creation date of objects
(the Created column) and the last time an object was altered (the Last_DDL_Time column). These
columns are very useful when trying to reconcile different sets of objects in the same application.

NOTE
If you re-create objects in any way, such as via the Import utility,
their Created values will change to the last time they were created.

Two additional object listings are available. ALL_OBJECTS lists everything in your USER_
OBJECTS view plus any objects for which access has been granted to you or PUBLIC. DBA_OBJECTS
is a DBA-level version of the object listing, showing all of the objects in the database. In addition
to the columns shown in the USER_OBJECTS view, ALL_OBJECTS and DBA_OBJECTS include an
Owner column.

Tables: USER_TABLES (TABS)
Although all of a user’s objects are shown in USER_OBJECTS, few attributes of those objects are
shown there. To get more information about an object, you need to look at the view that is specific
to that type of object. For tables, that view is USER_TABLES. It can also be referenced via the public
synonym TABS.

NOTE
Earlier versions of Oracle included a view called TAB. That view,
which is similar in function to TABS, is still supported because of
Oracle products that reference it. However, TAB does not contain
the columns that TABS contains. Use TABS in your data dictionary
queries.

The columns in USER_TABLES can be divided into four major categories (Identification, Space-
Related, Statistics-Related, and Other), as shown in Table 42-4.

The table’s name is shown in the Table_Name column. The Backed_Up column shows whether
or not the table has been backed up since its last modification. The Partitioned column will have
a value of ‘YES’ if the table has been partitioned (data dictionary views related to partitions are
described in the “Space Allocation and Usage, Including Partitions and Subpartitions” section of
this chapter).

The Space-Related columns, such as Pct_Free, Initial_Extent, Max_Extents, and Pct_Increase,
are described in the “Storage” entry of the Alphabetical Reference. The Statistics-Related columns,
such as Num_Rows, Blocks, Empty_Blocks, Avg_Row_Len, and Last_Analyzed, are populated
when the table is analyzed.

NOTE
As of Oracle Database 10g, you can use the USER_TAB_STATISTICS
view to access the statistics for your tables.

748 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:748

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 749

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:749

Querying the Table_Name column from USER_TABLES will display the names of all of the
tables in the current account. The following query lists all of the tables whose names begin with
the letter L:

select Table_Name from USER_TABLES
where Table_Name like 'L%';

The ALL_TABLES view shows all of the tables owned by the user as well as any to which the
user has been granted access (either directly or via grants to PUBLIC). Most third-party reporting
tools that list available tables for queries obtain that list by querying ALL_TABLES. Since ALL_TABLES
can contain entries for multiple users, it contains an Owner column in addition to the columns in
USER_TABLES. DBA_TABLES, which lists all tables in the database, has the same column definitions
as ALL_TABLES.

The Degree and Instances columns in USER_TABLES relate to how the table is queried during
parallel queries. For information on Degree, Instances, and the other table parameters, see CREATE
TABLE in the Alphabetical Reference.

NOTE
For external tables, see USER_EXTERNAL_TABLES
and USER_EXTERNAL_LOCATIONS.

Identification Space-Related Statistics-Related Other

Table_Name Tablespace_Name Num_Rows Degree

Backed_Up Cluster_Name Blocks Instances

Partitioned Pct_Free Empty_Blocks Cache

IOT_Name Pct_Used Avg_Space Table_Lock

Logging Ini_Trans Chain_Cnt Buffer_Pool

IOT_Type Max_Trans Avg_Row_Len Row_Movement

Temporary Initial_Extent Sample_Size Duration

Nested Next_Extent Last_Analyzed Skip_Corrupt

Secondary Min_Extents Avg_Space_
Freelist_Blocks

Monitoring

Max_Extents Num_Freelist_Blocks Cluster_Owner

Pct_Increase Global_Stats Dependencies

Freelists User_Stats Dropped

Freelist_Groups Compression

TABLE 42-4. Column in USER_TABLES.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

As of Oracle Database 10g, USER_TABLES and other data dictionary views contain a new
column named Dropped. That column will have a value of ‘YES’ or ‘NO’; see the section on the
recycle bin for information on descriptions of drop objects.

Columns: USER_TAB_COLUMNS (COLS)
Although users do not query from columns, the data dictionary view that shows columns is closely
tied to the data dictionary view of tables. This view, called USER_TAB_COLUMNS, lists information
specific to columns. USER_TAB_COLUMNS can also be queried via the public synonym COLS.

The columns you can query from USER_TAB_COLUMNS can be separated into three major
categories:

■ Identification, such as Table_Name, Column_Name, and Column_ID

■ Definition-Related, such as Data_Type, Data_Length, Data_Precision, Data_Scale, Nullable,
and Default_Length

■ Statistics-Related, such as Num_Distinct Low_Value, High_Value, Density, Num_Nulls,
and others

The Table_Name and Column_Name columns contain the names of your tables and columns.
The usage of the Definition-Related columns is described in the “Datatypes” entry in the
Alphabetical Reference. The Statistics-Related columns are populated when the table is analyzed.
Statistics for columns are also provided in the USER_TAB_COL_STATISTICS view (described shortly).

To see the column definitions for a table, query USER_TAB_COLUMNS, specifying the Table_
Name in the where clause:

select Column_Name, Data_Type
from USER_TAB_COLUMNS
where Table_Name = 'NEWSPAPER';

COLUMN_NAME DATA_TYPE
------------- ---------
FEATURE VARCHAR2
SECTION CHAR
PAGE NUMBER

The information in this example is also obtainable via the SQL*Plus describe command;
however, describe does not give you the option of seeing the column defaults and statistics. The
ALL_TAB_COLUMNS view shows the columns for all of the tables and views owned by the user
as well as any to which the user has been granted access (either via direct grants or via grants to
PUBLIC). Since ALL_TAB_COLUMNS can contain entries for multiple users, it contains an Owner
column in addition to the columns in USER_TAB_COLUMNS. DBA_TAB_COLUMNS, which lists
the column definitions for all tables and views in the database, has the same column definitions
as ALL_TAB_COLUMNS.

Column Statistics
Most of the column statistics are available in both USER_TAB_COLUMNS (their former home)
and USER_TAB_COL_STATISTICS. The columns available in USER_TAB_COL_STATISTICS are

750 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:750

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 751

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:751

the Statistics-Related columns of USER_TAB_COLUMNS plus the Table_Name and Column_
Name columns.

USER_TAB_COL_STATISTICS contains statistics columns that are also provided via USER_TAB_
COLUMNS for backward compatibility. You should access them via USER_TAB_COL_STATISTICS.

Column Value Histograms
You can use histograms to improve the analysis used by the cost-based optimizer. The USER_
TAB_HISTOGRAMS view contains information about each column’s histogram: the Table_Name,
Column_Name, Endpoint_Number, Endpoint_Value, and Endpoint_Actual_Value. The values in
USER_TAB_HISTOGRAMS are used by the optimizer to determine the distribution of the column
values within the table. “ALL” and “DBA” versions of USER_TAB_HISTOGRAMS are available.

Updatable Columns
You can update records in views that contain joins in their view queries, provided the join meets
certain criteria. The USER_UPDATABLE_COLUMNS view lists all columns you can update. You
can query the Owner, Table_Name, and Column_Name for the column; the Updatable column
will have a value of 'YES' if the column can be updated, and a value of 'NO' if the column cannot
be updated. You can also query to determine whether you can insert or delete records from the
view via the Insertable and Deletable columns.

Views: USER_VIEWS
The base query of a view is accessible via the USER_VIEWS data dictionary view, which contains
ten columns; the three main columns are as follows:

View_Name The name of the view

Text_Length The length of the view’s base query, in characters

Text The query that the view uses

The other columns, described later in this section, are related to object views.

NOTE
This section only applies to traditional views. For materialized views,
see “Database Links and Materialized Views” later in the chapter.

The Text column is a LONG datatype. This may cause a problem when querying USER_VIEWS
via SQL*Plus, because SQL*Plus truncates LONGs. The point at which truncation occurs, however,
can be changed via the set long command. USER_VIEWS provides a mechanism for determining
the proper setting for the LONG truncation point, as you’ll see in the following example.

The Text_Length column shows the length of the view’s query. Therefore, the SQL*Plus LONG
truncation point must be set to a value equal to or greater than the view’s Text_Length value.
For example, the following listing shows a view whose View_Name is AGING and whose Text_
Length is 355:

select View_Name, Text_Length
from USER_VIEWS
where View_Name = 'AGING';

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

View_Name Text_Length
---------------- -------------
AGING 355

Since the length of the view’s text is 355 characters, use the set long command to increase the
LONG truncation point to at least 355 (the default is 80) to see the full text of the view’s query:

set long 355

You can then query USER_VIEWS for the view’s Text, using the query shown in the following
listing:

select Text
from USER_VIEWS
where View_Name = 'AGING';

If you had not used the set long command, then the output would have been truncated at 80
characters, with no message telling you why the truncation occurred. Before querying other views,
you will need to recheck their Text_Length values.

NOTE
You can query the column definitions for views from USER_TAB_
COLUMNS, the same view you query for tables.

If you use column aliases in your views, and your column aliases are part of the view’s query,
then your data dictionary queries for information about views will be simplified. Since the entire
text of the view’s query is displayed in USER_VIEWS, the column aliases will be displayed as well.

You can create views using this format:

create view NEWSPAPER_VIEW (SomeFeature, SomeSection)
as select Feature, Section

from NEWSPAPER;

Listing the column names in the header of the create view command removes the column
aliases from the query and thus prevents you from seeing them via USER_VIEWS. The only way
to see the view’s column names would be to query USER_TAB_COLUMNS. If the column names
are in the query, then you only need to query one data dictionary view (USER_VIEWS) for both
the query and the column names.

For example, given the NEWSPAPER_VIEW view created in the last example, if you were to
query USER_VIEWS, you would see

select Text
from USER_VIEWS
where View_Name ='NEWSPAPER_VIEW';

TEXT

select Feature, Section from NEWSPAPER

752 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:752

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This query does not show you the new column names you assigned, since you did not make those
column names part of the view’s query. To make those column names show up in USER_VIEWS,
add them as column aliases in the view’s query:

create view NEWSPAPER_VIEW
as select Feature SomeFeature, Section SomeSection

from NEWSPAPER;

Now when you query USER_VIEWS, the column aliases will be displayed as part of the view’s
query text:

select Text
from USER_VIEWS
where View_Name ='NEWSPAPER_VIEW';

TEXT

select Feature SomeFeature, Section SomeSection
from NEWSPAPER

To support object views, USER_VIEWS contains the following columns:

Type_Text Type clause of the typed view

Type_Text_Length Length of the type clause of the typed view

OID_Text WITH OID clause of the typed view

OID_Text_Length Length of the WITH OID clause of the typed view

View_Type_Owner Owner of the view’s type for typed views

View_Type Type of the view

See Chapters 33 and 36 for information on object views and types.
The ALL_VIEWS view lists all of the views owned by the user as well as any views to which

the user has been granted access, either via direct grants or via grants to PUBLIC. Since ALL_VIEWS
can contain entries for multiple users, it contains an Owner column in addition to the columns listed
earlier in this section. DBA_VIEWS, which lists all views in the database, has the same column
definitions as ALL_VIEWS.

Synonyms: USER_SYNONYMS (SYN)
USER_SYNONYMS lists all of the synonyms that a user owns. The columns are as follows:

Synonym_Name The name of the synonym

Table_Owner The owner of the table that the synonym refers to

Table_Name The name of the table that the synonym refers to

DB_Link The name of the database link used in the synonym

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 753

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:753

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

USER_SYNONYMS is useful when debugging programs or resolving problems with users’ access
to objects within applications. USER_SYNONYMS is also known by the public synonym SYN.

The DB_Link column will be NULL if the synonym does not use a database link. Therefore, if
you want to see a list of the database links currently in use by the synonyms owned by your account,
execute this query:

select distinct DB_Link
from USER_SYNONYMS
where DB_Link is not null;

The ALL_SYNONYMS view lists all of the synonyms owned by the user, public synonyms, and
all synonyms to which the user has been granted access. Since ALL_SYNONYMS can contain
entries for multiple users, it contains an Owner column in addition to the columns listed earlier
in this section. DBA_SYNONYMS, which lists all synonyms in the database, has the same column
definitions as ALL_SYNONYMS.

Sequences: USER_SEQUENCES (SEQ)
To display the attributes of sequences, you can query the USER_SEQUENCES data dictionary view.
This view can also be queried using the public synonym SEQ. The columns of USER_SEQUENCES
are as follows:

Column Name Description

Sequence_Name Name of the sequence

Min_Value Minimum value of the sequence

Max_Value Maximum value of the sequence

Increment_By Increment between sequence values

Cycle_Flag A flag to indicate whether the value should cycle back to the Min_
Value once the Max_Value is reached

Order_Flag A flag to indicate whether sequence numbers are generated in order

Cache_Size The number of sequence entries cached in memory

Last_Number The last sequence number written to disk or cached

The Last_Number column is not updated during normal database operation; it is used during
database restart/recovery operations.

ALL_SEQUENCES lists all of the sequences owned by the user or to which the user or PUBLIC
has been granted access. Since ALL_SEQUENCES can contain entries for multiple users, it contains
a Sequence_Owner column in addition to the columns listed. DBA_SEQUENCES, which lists all
sequences in the database, has the same column definitions as ALL_SEQUENCES.

754 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:754

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Recycle Bin—USER_RECYCLEBIN
and DBA_RECYCLEBIN
As of Oracle Database 10g you can use the flashback table command to recover tables and
dependent objects that have been dropped. To see the objects presently in your recycle bin, query
USER_RECYCLEBIN. The public synonym RECYCLEBIN can be used in place of USER_RECYCLEBIN
in your queries. You will see the original object name, whether it can be recovered (the Can_Undrop
column), and whether it was dropped because it was related to a base object that was dropped
(the Base_Object column value).

Objects stay in the recycle bin until they are purged. Objects can be removed from the recycle
bin automatically if there is no longer any free space in the tablespace they were dropped from.
DBAs can see all objects in all users’ recycle bins via the DBA_RECYCLEBIN view. There is no
“ALL” version of this view. See the entry for the purge command for details on removing objects
from the recycle bin.

Constraints and Comments
Constraints and comments help you to understand how tables and columns relate to each other.
Comments are strictly informational; they do not enforce any conditions on the data stored in the
objects they describe. Constraints, on the other hand, define the conditions under which that data
is valid. Typical constraints include NOT NULL, UNIQUE, PRIMARY KEY, and FOREIGN KEY. In
the following sections, you will see how to retrieve data about constraints and comments from the
data dictionary.

Constraints: USER_CONSTRAINTS
Constraint information is accessible via the USER_CONSTRAINTS view. This information is very
useful when trying to alter data constraints or resolve problems with an application’s data. The
columns of this view are listed in Table 42-5.

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 755

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:755

Column Name Description

Owner The owner of the constraint.

Constraint_Name The name of the constraint.

Constraint_Type The type of constraint:
‘C’ CHECK constraint; includes NOT NULLs
‘P’ PRIMARY KEY constraint
‘R’ FOREIGN KEY (reference) constraint
‘U’ UNIQUE constraint
‘V’ WITH CHECK OPTION constraint (for views)
‘O’ WITH READ ONLY constraint (for views)

Table_Name The name of the table associated with the constraint.

TABLE 42-5. Columns in USER_CONSTRAINTS

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Although this is a “USER” view, it contains an Owner column. In this view, Owner refers to
the owner of the constraint, not the owner of the table (which is the user).

Valid values for the Constraint_Type column are shown in Table 42-5. Understanding the
constraint types is crucial when you are trying to get useful information about your constraints.

FOREIGN KEY constraints will always have values for the R_Owner and R_Constraint_Name
columns. These two columns will tell you which constraint the FOREIGN KEY references. A
FOREIGN KEY references another constraint, not another column. NOT NULL constraints on
columns are stored as CHECK constraints, so they have a Constraint_Type of ‘C’.

756 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:756

Column Name Description

Search_Condition The search condition used (for CHECK constraints).

R_Owner The owner of the table referenced by a FOREIGN KEY constraint.

R_Constraint_Name The name of the constraint referenced by a FOREIGN KEY constraint.

Delete_Rule The action to take on the FOREIGN KEY tables when a PRIMARY KEY
record is deleted (CASCADE or NO ACTION).

Status The status of the constraint (ENABLED or DISABLED).

Deferrable A flag to indicate whether the constraint can be deferred.

Deferred A flag to indicate whether the constraint was initially deferred.

Validated A flag (VALIDATED or NOT VALIDATED) to indicate whether all
data obeys the constraint.

Generated A flag to indicate whether the constraint name has been generated
by the database.

Bad A flag to indicate whether a date was used in the constraint creation
without specifying a century value for CHECK constraints, resulting
in ambiguous two-digit years; applies only to constraints in databases
upgraded from prior versions of Oracle. Such constraints may result
in ORA-02436 errors if not dropped and re-created properly.

Rely A flag to indicate if the constraint is enforced or unenforced.

Last_Change The date the constraint was last enabled or disabled.

Index_Owner Owner of the related index.

Index_Name Name of the related index.

Invalid Valid/invalid flag.

View_Related Yes/No flag to record if the constraint is view related.

TABLE 42-5. Columns in USER_CONSTRAINTS (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 757

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:757

Querying USER_CONSTRAINTS will give you the names of all the constraints on a table. This
is important when trying to interpret error messages that only provide the name of the constraint
that was violated.

Once you know the name and type of a constraint, you can check the columns associated
with it via the USER_CONS_COLUMNS view, described in the next section.

If you do not assign constraint names when creating them, Oracle will generate unique constraint
names. See “Integrity Constraint” in the Alphabetical Reference for further details. If a constraint name
has been system-generated, that fact will be indicated via the Generated column.

If you defer a constraint (as indicated by the Deferred column), the constraint will not be enforced
for the duration of a transaction. For example, if you were performing bulk updates on related tables
and could not guarantee the order of transactions, you may decide to defer constraint checking on
the tables until all of the updates have completed.

ALL_CONSTRAINTS lists the constraints on all of the tables that the user or PUBLIC can access.
DBA_CONSTRAINTS lists all of the constraints in the database. Each of these views has the same
set of columns as USER_CONSTRAINTS (since they all include the Owner column).

Constraint Columns: USER_CONS_COLUMNS
You can view the columns associated with constraints via the USER_CONS_COLUMNS data
dictionary view. If you have already queried USER_CONSTRAINTS to obtain the types and names
of the constraints involved, you can use USER_CONS_COLUMNS to determine which columns
are involved in the constraint. The columns in this view are the following:

Owner The owner of the constraint

Constraint_Name The name of the constraint

Table_Name The name of the table associated with the constraint

Column_Name The name of the column associated with the constraint

Position The order of the column within the constraint definition

There are only two columns in USER_CONS_COLUMNS that are not in USER_CONSTRAINTS:
Column_Name and Position. A sample query of this table is shown in the following listing:

select Column_Name, Position
from USER_CONS_COLUMNS
where Constraint_Name = 'SYS_C0008791';

COLUMN_NAME POSITION
------------ --------
FIRSTNAME 1
LASTNAME 2

As shown in the preceding listing, the combination of FirstName and LastName forms the constraint
(in this case, a primary key).

The Position column is significant. When you create a UNIQUE or PRIMARY KEY constraint,
Oracle automatically creates a unique index on the set of columns you specify. The index is created
based on the column order you specify. The column order, in turn, affects the performance of the
index. An index comprising multiple columns may be used most efficiently if the leading column

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

758 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:758

of that index (Position=1) is used in the query’s where clause. See Chapter 43 for further details on
the optimizer.

The ALL_CONS_COLUMNS and DBA_CONS_COLUMNS views have the same column
definitions as USER_CONS_COLUMNS. ALL_CONS_COLUMNS can be used to display column
information about constraints on all tables that the user can access regardless of owner. DBA_
CONS_COLUMNS lists the column-level constraint information for the entire database.

Constraint Exceptions: EXCEPTIONS
When enabling constraints on tables that already contain data, you may encounter constraint
violations within the data. For example, you may attempt to create a PRIMARY KEY constraint on
a column that contains the same value for multiple records, but such an attempt would fail due to
uniqueness constraint violations.

You can capture information about the rows that cause constraint creations to fail. First, create
a table called EXCEPTIONS in your schema; the SQL script that should be used to create this table
is named utlexcpt.sql, and is usually located in the /rdbms/admin directory under the Oracle home
directory.

The EXCEPTIONS table contains four columns: Row_ID (the ROWID of each row that violated
the constraint), Owner (the owner of the violated constraint), Table_Name (the table on which the
violated constraint was created), and Constraint (the constraint violated by the row). After creating
the EXCEPTIONS table, attempt to enable a PRIMARY KEY constraint:

alter table NEWSPAPER enable PRIMARY KEY
exceptions into EXCEPTIONS;

ORA-02437: cannot enable (NEWSPAPER.SYS_C00516) - primary key violated

The constraint creation fails, and a reference to all rows that violate the constraint is placed in
the EXCEPTIONS table. For example, if the PRIMARY KEY constraint in the last example generated
exceptions, then you could query the EXCEPTIONS table as shown in the following listing:

select Owner, Table_Name, Constraint from EXCEPTIONS;

OWNER TABLE_NAME CONSTRAINT
---------- ---------- ----------
PRACTICE NEWSPAPER SYS_C00516
PRACTICE NEWSPAPER SYS_C00516

Two rows violated the constraint named SYS_C00516 (which, in this example, is the constraint
name given to the PRIMARY KEY constraint for the NEWSPAPER table). You can determine which
rows of the NEWSPAPER table correspond to these exceptions by joining the Row_ID column of
the EXCEPTIONS table to the ROWID pseudo-column of the table on which the constraint was
being placed (in this example, the NEWSPAPER table):

select *
from NEWSPAPER
where RowID in

(select Row_ID from EXCEPTIONS);

The rows that caused the constraint violations will then be displayed.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
Row_ID is an actual column in the EXCEPTIONS table, with a
datatype of ROWID. It is joined to the ROWID pseudo-column
in the table from which the exceptions were generated.

NOTE
Flashback and recovery operations may change the ROWIDs
for rows previously inserted into tables.

Table Comments: USER_TAB_COMMENTS
You can add a comment to a table, view, or column after it has been created. Comments on
the data dictionary views are the basis for the records displayed via the DICTIONARY and DICT_
COLUMNS views. To display comments about your own tables, use the USER_TAB_COMMENTS
view.

USER_TAB_COMMENTS contains three columns:

Table_Name The name of the table or view

Table_Type The object type (table, object table, or view)

Comments Comments that have been entered for the object

To add a comment to a table, use the comment command, as shown in the following listing:

comment on table BIRTHDAY is 'Birthday list for Blacksburg
employees';

Query USER_TAB_COMMENTS by specifying the Table_Name you want to see the comments
for, as shown in the following listing:

select Comments
from USER_TAB_COMMENTS
where Table_Name = 'BIRTHDAY';

COMMENTS

Birthday list for Blacksburg

employees

To remove a comment, set the comment to two single quotes with no space between them:

comment on table BIRTHDAY is '';

You can view the comments on all of the tables you can access via the ALL_TAB_COMMENTS
view. ALL_TAB_COMMENTS has an additional column, Owner, which specifies the owner of the
table. DBA_TAB_COMMENTS lists all of the tables in the database, and it has an Owner column
as well.

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 759

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:759

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

760 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:760

Column Comments: USER_COL_COMMENTS
USER_COL_COMMENTS displays the comments that have been entered for columns within
your tables. These comments are added to the database via the comment command. USER_COL_
COMMENTS contains three columns:

Table_Name The name of the table or view

Column_Name The name of the column

Comments Comments that have been entered for the column

To add a comment to a column, use the comment command, as shown in the following listing:

comment on column BIRTHDAY.AGE is 'Age in years';

Query USER_COL_COMMENTS by specifying the Table_Name and Column_Name you want
to see the comments for.

select Comments
from USER_COL_COMMENTS
where Table_Name = 'BIRTHDAY'
and Column_Name = 'AGE';

To remove a comment, set the comment to two single quotes with no space between them:

comment on column BIRTHDAY.AGE is '';

You can view the column comments on all of the tables you can access via the ALL_COL_
COMMENTS view. ALL_COL_COMMENTS has an additional column, Owner, which specifies
the owner of the table. DBA_COL_COMMENTS lists all of the columns in all of the tables in the
database, and it has an Owner column as well.

Indexes and Clusters
Indexes and clusters do not change the data that is stored in tables; however, they do change the
way that data is accessed and stored. In the following sections, you will see data dictionary views
that describe indexes and clusters. You will see descriptions of the data dictionary views related
to partitioned indexes in “Space Allocation and Usage, Including Partitions and Subpartitions” in
this chapter.

Indexes: USER_INDEXES (IND)
In Oracle, indexes are very closely related to constraints. The PRIMARY KEY and UNIQUE constraints
always have associated unique indexes. As with constraints, two data dictionary views are used
to query information about indexes: USER_INDEXES and USER_IND_COLUMNS. USER_INDEXES
is also known by its public synonym, IND.

The columns in USER_INDEXES can be grouped into four categories, as shown in Table 42-6.
The name of the index is shown in the Index_Name column. The owner and name for the table

being indexed are in the Table_Owner and Table_Name columns. The Uniqueness column will

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 761

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:761

be set to UNIQUE for unique indexes and set to NONUNIQUE for nonunique indexes. Table_Type
records whether the index is on a ‘TABLE’ or a ‘CLUSTER’. The Dropped column, available as of
Oracle Database 10g, identifies indexes that are in the recycle bin.

The Space-Related columns are described in the “Storage” entry in the Alphabetical Reference.
The Statistics-Related columns are populated when the table is analyzed (see the analyze

command in the Alphabetical Reference). The Degree and Instances columns refer to the degree
of parallelism used when the index is created.

NOTE
As of Oracle Database 10g, you can use the USER_IND_STATISTICS
view to access the statistics for your indexes.To see all of the indexes
on a table, query USER_INDEXES using the Table_Owner and Table_
Name columns in the where clause, as shown in the following listing:

select Index_Name, Uniqueness
from USER_INDEXES

where Table_Owner = 'PRACTICE'
and Table_Name = 'BIRTHDAY';

INDEX_NAME UNIQUENES
---------------- ---------
PK_BIRTHDAY UNIQUE

Identification Space-Related Statistics-Related Other

Index_Name Tablespace_Name Blevel Degree

Table_Owner Ini_Trans Leaf_Blocks Instances

Table_Name Max_Trans Distinct_Keys Include_Column

Table_Type Initial_Extent Avg_Leaf_Blocks_Per_Key Buffer_Pool

Uniqueness Next_Extent Avg_Data_Blocks_Per_Key Duration

Status Min_Extents Clustering_Factor Pct_Direct_Access

Partitioned Max_Extents Num_Rows Parameters

Index_Type Pct_Increase Sample_Size Domidx_Status

Temporary Pct_Free Last_Analyzed Domidx_Opstatus

Generated Freelists User_Stats Funcidx_Status

Logging Freelist_Groups Global_Stats Join_Index

Compression Pct_Threshold IOT_Redundant_Pkey_Elim

Prefix_Length Dropped

Secondary

Ityp_Owner

Ityp_Name

TABLE 42-6. Columns in USER_INDEXES

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The Clustering_Factor column is not directly related to clusters, but rather represents the degree
to which the rows in the table are ordered. The more ordered those rows are, the more efficient
range queries will be (range queries are those in which a range of values is given for a column,
such as where LastName like ‘A%’).

To discover which columns are part of the index, and their order within the index, you need
to query the USER_IND_COLUMNS view, which is described in the next section.

ALL_INDEXES shows all of the indexes owned by the user as well as any created on tables
to which the user or PUBLIC has been granted access. Since ALL_INDEXES can contain entries
for multiple users, it contains an Owner column in addition to the columns shown in Table 42-6.
DBA_INDEXES, which lists all indexes in the database, has the same column definitions as ALL_
INDEXES.

NOTE
For function-based indexes, see USER_IND_EXPRESSIONS.

Indexed Columns: USER_IND_COLUMNS
You can determine which columns are in an index by querying USER_IND_COLUMNS. The
columns available via this view are as follows:

Index_Name The name of the index

Table_Name The name of the indexed table

Column_Name The name of a column within the index

Column_Position The column’s position within the index

Column_Length The indexed length of the column

Char_Length Maximum code point length of the column (Unicode)

Descend A Y/N flag to indicate whether or not the column is sorted in descending order

Five columns in this view are not in USER_INDEXES: Column_Name, Column_Position,
Column_Length, Char_Length, and Descend. Column_Length, like the Statistics-Related columns
in USER_INDEXES, is populated when the index’s base table is analyzed. A sample query of this
table, using the Index_Name from the USER_INDEXES example, is shown in the following listing
(in this example, the Column_Position column is given the alias Pos):

select Column_Name, Column_Position Pos
from USER_IND_COLUMNS
where Index_Name = 'PK_BIRTHDAY';

COLUMN_NAME POS
------------ ---
FIRSTNAME 1
LASTNAME 2

762 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:762

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

As you can see from this query, the PK_BIRTHDAY index consists of two columns: FirstName and
LastName, in that order. See Chapter 43 for details on how the optimizer uses multicolumn indexes.

ALL_IND_COLUMNS can be used to display column information about indexes on all tables
that the user can access regardless of owner. DBA_IND_COLUMNS lists the column-level index
information for the entire database.

Bitmap Join Index Columns: USER_JOIN_IND_COLUMNS
If you create a bitmap join index (introduced in Oracle9i), you can query USER_JOIN_IND_
COLUMNS for the join details. USER_JOIN_IND_COLUMNS records the names of the tables
involved in the join, the inner and outer join columns, and the dimension and fact tables involved.

Clusters: USER_CLUSTERS (CLU)
The storage and statistics parameters associated with clusters are accessible via USER_CLUSTERS
(also known by the public synonym CLU). The columns in this data dictionary view are shown in
Table 42-7, separated by type.

The Cluster_Name column contains the name of the cluster. Cluster_Type specifies whether
the cluster uses a standard B*-tree index or a hashing function for the cluster.

The usage of the Space-Related columns is described in the “Storage” entry in the Alphabetical
Reference. The Statistics-Related columns are populated when the table is analyzed.

ALL_CLUSTERS and DBA_CLUSTERS have an additional column, Owner, since they list clusters
in multiple schemas.

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 763

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:763

Identification Space-Related Statistics-Related Other

Cluster_Name Tablespace_Name Avg_Blocks_Per_Key Degree

Cluster_Type Pct_Free Hashkeys Instances

Function Pct_Used Cache

Key_Size Buffer_Pool

Ini_Trans Single_Table

Max_Trans Dependencies

Initial_Extent

Next_Extent

Min_Extents

Max_Extents

Pct_Increase

Freelists

Freelist_Groups

TABLE 42-7. Columns in USER_CLUSTERS

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Cluster Columns: USER_CLU_COLUMNS
To see the mapping of table columns to cluster columns, query USER_CLU_COLUMNS, whose
columns are the following:

Cluster_Name The name of the cluster

Clu_Column_Name The name of the key column in the cluster

Table_Name The name of a table within the cluster

Tab_Column_Name The name of the key column in the table

Since a single cluster can store data from multiple tables, USER_CLU_COLUMNS is useful for
determining which columns of which tables map to the cluster’s columns.

There is no “ALL” version of this view. There are only USER_CLU_COLUMNS for the user’s
cluster columns, and DBA_CLU_COLUMNS, which shows the column mappings for all clusters
in the database.

Abstract Datatypes,
ORDBMS-Related Structures, and LOBs
In the following sections, you will see the data dictionary views associated with object-relational
structures such as abstract datatypes, methods, and large objects (LOBs). “ALL” and “DBA” versions
of all of these data dictionary views are available. Because they contain records for multiple owners,
the “ALL” and “DBA” versions of these views contain Owner columns as well as the columns listed
in this section.

Abstract Datatypes: USER_TYPES
Abstract datatypes created within your schema are listed in USER_TYPES, which includes columns
for the Type_Name, number of attributes (Attributes), and number of methods (Methods) defined for
the datatype.

For example, the ANIMAL_TY datatype has three attributes and one method (methods are
defined via the create type body command), as shown in the following listing:

select Type_Name,
Attributes,
Methods

from USER_TYPES
where Type_Name = 'ANIMAL_TY';

TYPE_NAME ATTRIBUTES METHODS
------------------------------ ---------- ----------
ANIMAL_TY 3 1

Datatype Attributes: USER_TYPE_ATTRS
To see the attributes of a datatype, you need to query the USER_TYPE_ATTRS view. The columns
in USER_TYPE_ATTRS are shown in Table 42-8.

764 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:764

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 765

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:765

You can query USER_TYPE_ATTRS to see the relationships between nested abstract datatypes.
For example, the PERSON_TY datatype uses the ADDRESS_TY datatype, as shown in the following
listing:

select Attr_Name,
Length,
Attr_Type_Name

from USER_TYPE_ATTRS
where Type_Name = 'PERSON_TY';

ATTR_NAME LENGTH ATTR_TYPE_NAME
------------------------------ ---------- ------------------
NAME 25 VARCHAR2
ADDRESS ADDRESS_TY

Datatype Methods: USER_TYPE_METHODS and USER_METHOD_PARAMS
If a type has methods defined for it, then you query USER_TYPE_METHODS to determine the
methods’ names. USER_TYPE_METHODS contains columns showing the type name (Type_
Name), method name (Method_Name), method number (Method_No, used for overloaded
methods), and type of method (Method_Type). USER_TYPE_METHODS also includes columns
that show the number of parameters (Parameters) and results (Results) returned by the method.

For example, the ANIMAL_TY datatype has one method, a member function named AGE.
The AGE method has one input parameter (Birthdate) and one output result (the age, in days).

Column Name Description

Type_Name Name of the type

Attr_Name Name of the attribute

Attr_Type_Mod The type modifier of the attribute

Attr_Type_Owner Owner of the attribute’s type, if the attribute is based on another datatype

Attr_Type_Name Name of the type of the attribute

Length Length of the attribute

Precision Precision of the attribute

Scale Scale of the attribute

Character_Set_Name Character set of the attribute

Attr_No Ordinal position of the attribute within the type definition

Inherited Yes/No flag to indicate if the attribute is inherited from a supertype

TABLE 42-8. Columns in USER_TYPE_ATTRS

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Querying USER_TYPE_METHODS shows that two parameters are defined for AGE, not one as
expected:

select Parameters,
Results

from USER_TYPE_METHODS
where Type_Name = 'ANIMAL_TY'
and Method_Name = 'AGE';

PARAMETERS RESULTS
---------- ----------

2 1

Why does AGE have two parameters if it only has one input parameter defined? To find out,
you can query USER_METHOD_PARAMS, which describes the parameters for your methods:

select Param_Name, Param_No, Param_Type_Name
from USER_METHOD_PARAMS
order by Param_No;

PARAM_NAME PARAM_NO PARAM_TYPE_NAME
------------------------------ ---------- -----------------
SELF 1 ANIMAL_TY
BIRTHDATE 2 DATE

USER_METHOD_PARAMS shows that for each method, Oracle creates an implicit SELF
parameter. The results of your methods are shown in USER_METHOD_RESULTS:

select Method_Name,
Result_Type_Name

from USER_METHOD_RESULTS
where Type_Name = 'ANIMAL_TY';

METHOD_NAME RESULT_TYPE_NAME
------------------------------ ----------------------------
AGE NUMBER

Other Datatypes: USER_REFS, USER_COLL_TYPES, and USER_NESTED_TABLES
If you use REFs (see Chapter 36), you can query the USER_REFS data dictionary view to display the
REFs you have defined. USER_REFS will show the name of the table containing the REF column
(Table_Name) and the column name of the object column (Column_Name). The attributes of the
REF—such as whether or not it is stored with the ROWID—are also accessible via USER_REFS.

Collector types (nested tables and varying arrays) are described via the USER_COLL_TYPES
data dictionary view. The columns of USER_COLL_TYPES include Type_Name, Upper_Bound
(for varying arrays), and the Length and Precision of the elements. You can use USER_COLL_TYPES
in conjunction with the abstract datatype data dictionary views shown earlier in this section to
determine the type structure of a collector. You can also query USER_NESTED_TABLES and USER_
VARRAYS to see details for your collections.

766 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:766

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 767

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:767

LOBs: USER_LOBS
As described in Chapter 35, you can store large objects inside the database. The USER_LOBS view
provides information on the LOBs defined in your tables; a sample listing is shown here:

column column_name format A30

select Table_Name,
Column_Name

from USER_LOBS;

TABLE_NAME COLUMN_NAME
------------------------------ ----------------------------
PROPOSAL PROPOSAL_TEXT
PROPOSAL BUDGET

USER_LOBS also shows the names of the segments used to hold the LOB data when it grows
large; however, it does not show the datatypes of the LOB columns. To see the LOB datatypes, you
can either describe the table that includes the LOBs or query USER_TAB_COLUMNS (as shown
earlier in this chapter).

To use BFILE datatypes for LOBs, you have to create directories (see the entry for the create
directory command in the Alphabetical Reference). The ALL_DIRECTORIES data dictionary shows
the Owner, Directory_Name, and Directory_Path columns for each directory to which you have
been granted access. A “DBA” version of this view is also available. No “USER” version of this
view is available.

Database Links and Materialized Views
Database links and materialized views are used to manage access to remote data. Depending on
the type of materialized view you use, you may be able to use materialized view logs. In the
following sections, you will see descriptions of the data dictionary views you can use to display
information about database links and materialized views. For further information on database links,
see Chapter 23. For further information on materialized views, see Chapter 24.

Database Links: USER_DB_LINKS
To see the database links created under your account, query USER_DB_LINKS. The columns of
this view, including the link name (DB_Link), username to connect to (Username), the account
password (Password), and the connection string (Host), show the information about the remote
connection that the link will be used to establish. The Username and Password values will be used
to log in to the remote database defined by the Host value.

The Host column stores the Oracle Net service names. This column stores the exact character
string you specify during the create database link command, and does not alter its case. Therefore,
you should be careful with the case you use when creating database links. Otherwise, your queries
against USER_DB_LINKS will have to take into account inconsistencies in the case of the Host
column. For example, looking for a database link that uses the ‘HQ’ service descriptor would
require you to enter

Select * from USER_DB_LINKS
where UPPER(Host) = 'HQ';

since it is possible that there are entries with a Host value of ‘hq’ instead of ‘HQ’.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
If you are using default logins to the remote database,
then Password will be NULL.

The ALL_DB_LINKS view lists all of the database links that either are owned by the user or are
PUBLIC database links. DBA_DB_LINKS lists all database links in the database. ALL_DB_LINKS
and DBA_DB_LINKS share most of the same column definitions as USER_DB_LINKS; they have
an Owner column rather than the Password column.

See Chapter 23 for further information on the uses of database links.

Materialized Views
You can query USER_MVIEWS to display information about the materialized views owned by your
account. This view, whose columns are listed in Table 42-9, shows the structural information about
the materialized view as well as its refresh schedule.

NOTE
See Chapter 24 for details on materialized views.

The name of the materialized view is found in the Mview_Name column of USER_MVIEWS.
The local base table for the view is the Container_Name column. New USER_MVIEWS columns
are available as of Oracle Database 10g, including Stale_Since (when the materialized view became
stale).To determine which database links are being used by your materialized views, query the
Master_Link column, as shown in the following example:

select Master_Link
from USER_MVIEWS;

The names of the database links returned by this query can be used as input for queries against
USER_DB_LINKS. This query will display all of the database link information available for database
links used in your materialized views:

select *
from USER_DB_LINKS
where DB_Link in

(select Master_Link
from USER_MVIEWS);

Additional queries that are useful in the management of materialized views are provided in
Chapter 24.

The ALL_MVIEWS and DBA_MVIEWS views have the same column definitions as USER_
MVIEWS. You can use ALL_MVIEWS to display information about all materialized views that the
user can access regardless of owner. DBA_MVIEWS lists materialized view information for all users
in the database.

Two related views—USER_REFRESH and USER_REFRESH_CHILDREN—display information
about refresh groups. USER_MVIEW_REFRESH_TIMES shows the last time each materialized view

768 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:768

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

was refreshed. As of Oracle Database 10g, you can access comments on the materialized views via
USER_MVIEW_COMMENTS, and query rewrite details via USER_REWRITE_EQUIVALENCES.

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 769

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:769

Column Name Description

Owner The account that owns the materialized view

Mview_Name The name of the materialized view

Container_Name The base table (in the local database) for the materialized view’s data

Query The query that defines the materialized view

Query_Len The length of the materialized view’s base query

Updatable A flag to indicate whether the snapshot can be updated

Update_Log The name of the table that logs changes made to an updatable snapshot

Master_Rollback_Seg The rollback segment to use during snapshot population and refresh
operations

Master_Link The database link used to access the master database

Rewrite_Enabled A Yes/No flag to indicate if query rewrite is enabled for the view

Rewrite_Capability Rules and restrictions for query rewrites

Refresh_Mode DEMAND, COMMIT, or NEVER, depending on the refresh mode for
the view

Refresh_Method Values used to drive a fast refresh of the view (Complete, Fast, Never,
or Force)

Build_Mode IMMEDIATE, DEFERRED, or PREBUILT instantiation of the materialized
view data during its creation

Fast_Refreshable Methods available for fast refresh of the materialized view

Last_Refresh_Type The most recent refresh type used

Last_Refresh_Date A timestamp to record the last time the snapshot’s data was refreshed

Staleness The status of the materialized view’s data relative to its master tables

After_Fast_Refresh Staleness status following a fast refresh

Compile_State Validity of the materialized view

Use_No_Index Yes/No flag to indicate if the materialized view was created with the
USING NO INDEX clause

Unknown_Trusted_FD Indicates if the materialized view used trusted constraints for the refresh.

Stale_Since Time the materialized view became stale

TABLE 42-9. Columns in USER_MVIEWS

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Additional Materialized View Capabilities
You can query USER_MVIEW_ANALYSIS to see the materialized views that support query rewrite.
If a materialized view contains references to a remote table, it will not be listed in this view. You
can query the owner of the materialized view, its name (Mview_Name), and the owner of the base
table (Mview_Table_Owner). Many of the columns in this view are flags, such as Summary (‘Y’ if
the view contains an aggregation), Known_Stale (‘Y’ if the view’s data is inconsistent with the base
table), and Contains_Views (‘Y’ if the materialized view references a view).

If the materialized view contains aggregations, you can query USER_MVIEW_AGGREGATES
for details on the aggregations. Columns in this view are as follows:

Owner Owner of the materialized view

Mview_Name Name of the materialized view

Position_in_Select Position within the query

Container_Column Name of the column

Agg_Function Aggregate function

DistinctFlag ‘Y’ if the aggregation uses the DISTINCT function

Measure The SQL text of the measure, excluding the aggregate function

You can query details of the relations within materialized views from the USER_MVIEW_
DETAIL_RELATIONS and USER_MVIEW_KEYS data dictionary views. If the materialized view is
based on joins, see USER_MVIEW_JOINS for the join details. In general, USER_MVIEW_ANALYSIS
will be the most commonly used data dictionary view related to materialized views.

Materialized View Logs: USER_MVIEW_LOGS
Materialized view logs can be used by many materialized views to determine which records in
the master table need to be refreshed in the materialized view of that table. You can query USER_
MVIEW_LOGS for information about a user’s logs, including the name of the master table (Master),
the table holding the log records (Log_Table), and whether the materialized view is based on the
primary key or the ROWID (the Primary_Key and ROWIDs columns). USER_MVIEW_LOGS is
usually queried for maintenance purposes, such as to determine the name of the trigger used to
create the materialized view log records.

DBA_MVIEW_LOGS has the same column definitions as USER_MVIEW_LOGS, and shows all
materialized view logs in the database. You can query USER_BASE_TABLE_MVIEWS for a listing
of the materialized view master tables using materialized view logs.

Triggers, Procedures, Functions, and Packages
You can use procedures, packages, and triggers—blocks of PL/SQL code stored in the database—
to enforce business rules or to perform complicated processing. Triggers are described in Chapter 30.
Procedures, functions, and packages are described in Chapter 31. In the following sections, you
will see how to query the data dictionary for information about triggers, procedures, packages,
and functions.

770 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:770

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Triggers: USER_TRIGGERS
USER_TRIGGERS contains information about the triggers owned by your account. This view, whose
columns are listed in Table 42-10, shows the trigger type and body.

The ALL_TRIGGERS view lists the triggers for all tables to which you have access. DBA_
TRIGGERS lists all of the triggers in the database. Both of these views contain an additional column,
Owner, which records the owner of the trigger.

A second trigger-related data dictionary view, USER_TRIGGER_COLS, shows how columns
are used by a trigger. It lists the name of each column affected by a trigger, as well as how the
trigger is used. Like USER_TRIGGERS, “ALL” and “DBA” versions of this data dictionary view are
available.

Procedures, Functions, and Packages: USER_SOURCE
The source code for existing procedures, functions, packages, and package bodies can be queried
from the USER_SOURCE data dictionary view. The Type column in USER_SOURCE identifies the
procedural object as a ‘PROCEDURE’, ‘FUNCTION’, ‘PACKAGE’, ‘PACKAGE BODY’, ‘TRIGGER’,
‘TYPE’, ‘TYPE BODY’, or ‘JAVA SOURCE’. Each line of code is stored in a separate record in
USER_SOURCE.

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 771

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:771

Column Name Description

Trigger_Name Name of the trigger

Trigger_Type The type of trigger (BEFORE STATEMENT, BEFORE EACH ROW, and so on)

Triggering_Event The command that executes the trigger (INSERT, UPDATE, or DELETE)

Table_Owner The owner of the table that the trigger is defined for

Base_Object_Type The type of object on which the trigger is based (TABLE, VIEW, SCHEMA,
or DATABASE)

Table_Name The name of the table or view that the trigger is defined for

Column_Name For nested table triggers, the name of the nested table column

Referencing_Names Names used for referencing OLD and NEW values in the trigger

When_Clause The when clause used for the trigger

Status Whether the trigger is ENABLED or DISABLED

Description The description for the trigger

Action_Type Action type for the trigger body (CALL or PL/SQL)

Trigger_Body The trigger text

TABLE 42-10. Columns in USER_TRIGGERS

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

772 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:772

You can select information from USER_SOURCE via a query similar to the one shown in the
following listing. In this example, the Text column is selected and ordered by Line number. The
Name of the object and the object Type are used to specify which object’s source code to display.

select Text
from USER_SOURCE
where Name = '&procedure_name'
and Type = 'PROCEDURE'

order by Line;

NOTE
The sequence of the lines is maintained by the Line column;
therefore, the Line column should be used in the order by clause.

The ALL_SOURCE and DBA_SOURCE views have all of the columns found in USER_SOURCE
plus an additional Owner column (the owner of the object). ALL_SOURCE can be used to display
the source code for all procedural objects that the user can access regardless of owner. DBA_
SOURCE lists the source code for all users in the database.

NOTE
To see the persistent parameter settings for PL/SQL units, query
USER_STORED_SETTINGS.

Code Errors: USER_ERRORS
The show errors command in SQL*Plus checks the USER_ERRORS data dictionary view for the
errors associated with the most recent compilation attempt for a procedural object. show errors
will display the line and column number for each error, as well as the text of the error message.

To view errors associated with previously created procedural objects, you may query USER_
ERRORS directly. You may need to do this when viewing errors associated with package bodies,
since a package compilation that results in an error may not display the package body’s error when
you execute the show error command. You may also need to query USER_ERRORS when you
encounter compilation errors with multiple procedural objects.

The following are the columns available in USER_ERRORS:

Name The name of the procedural object

Type The object type (‘PROCEDURE’, ‘FUNCTION’, ‘PACKAGE’, ‘PACKAGE BODY’,
‘TRIGGER’, ‘TYPE’, ‘TYPE BODY’, ‘VIEW’, ‘JAVA CLASS’, or ‘JAVA SOURCE’)

Sequence The line sequence number, for use in the query’s order by clause

Line The line number within the source code at which the error occurs

Position The position within the Line at which the error occurs

Text The text of the error message

Attribute Flag to indicate whether the selected row is an error (‘ERROR’) or a warning
(‘WARNING’)

Message_Number Numerical error number, without prefix

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 773

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:773

Queries against this view should always include the Sequence column in the order by clause.
“ALL” and “DBA” versions of this view are also available; they feature an additional column, Owner,
which records the owner of the object.

Code Size: USER_OBJECT_SIZE
You can query the amount of space used in the SYSTEM tablespace for a procedural object from
the USER_OBJECT_SIZE data dictionary view. As shown in the following listing, the four separate
size areas can be added together to determine the total space used in the SYSTEM data dictionary
tables to store the object. The four Size columns, along with the Name and Type columns, constitute
all of the columns in this view.

select Source_Size+Code_Size+Parsed_Size+Error_Size Total
from USER_OBJECT_SIZE
where Name = '&procedure_name'
and Type = 'PROCEDURE';

There is also a “DBA” version of this view available: DBA_OBJECT_SIZE lists the sizes for all
objects in the database.

Dimensions
You can create and maintain dimensions and hierarchies.

You can query the Dimension_Name column of the USER_DIMENSIONS view to see the
names of your dimensions. USER_DIMENSIONS also contains columns for the dimension owner
(Owner), status (the Invalid column, set to ‘Y’ or ‘N’), and revision level (the Revision column).
The attributes of a dimension are accessed via additional data dictionary views.

To see the hierarchies within a dimension, query USER_DIM_HIERARCHIES. This view has
only three columns: Owner, Dimension_Name, and Hierarchy_Name. Querying USER_DIM_
HIERARCHIES for the GEOGRAPHY dimension returns the name of its hierarchies:

select Hierarchy_Name
from USER_DIM_HIERARCHIES;

HIERARCHY_NAME

COUNTRY_ROLLUP

You can see the hierarchy details for COUNTRY_ROLLUP by querying USER_DIM_CHILD_OF,
as shown in the following listing. The first command creates a dimension named GEOGRAPHY
that records the hierarchies of countries and continents.

create dimension GEOGRAPHY
level COUNTRY_ID is COUNTRY.Country
level CONTINENT_ID is CONTINENT.Continent
hierarchy COUNTRY_ROLLUP (

COUNTRY_ID child of
CONTINENT_ID

join key COUNTRY.Continent references CONTINENT_id);

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

column join_key_id format a4

select Child_Level_Name,
Parent_Level_Name,
Position, Join_Key_Id

from USER_DIM_CHILD_OF
where Hierarchy_Name = 'COUNTRY_ROLLUP';

CHILD_LEVEL_NAME PARENT_LEVEL_NAME POSITION JOIN
---------------------- ------------------------------ --------- ----
COUNTRY_ID CONTINENT_ID 1 1

To see the join key for a hierarchy, query USER_DIM_JOIN_KEY:

select Level_name, Child_Join_Column
from USER_DIM_JOIN_KEY
where Dimension_Name = 'GEOGRAPHY'
and Hierarchy_Name = 'COUNTRY_ROLLUP';

LEVEL_NAME CHILD_JOIN_COLUMN
------------------------------ ------------------------------
CONTINENT_ID CONTINENT

You can see the levels of a dimension by querying the USER_DIM_LEVELS data dictionary
view, and see the key columns for the levels via USER_DIM_LEVEL_KEY. Attribute information
for dimensions is accessible via USER_DIM_ATTRIBUTES.

There are “ALL” and “DBA” views of all of the data dictionary views related to dimensions.
Because the “USER” views for dimensions contain an Owner column, there are no additional
columns found in the corresponding “ALL” and “DBA” views.

Space Allocation and Usage,
Including Partitions and Subpartitions
You can query the data dictionary to determine the space that is available and allocated for database
objects. In the following sections, you will see how to determine the default storage parameters
for objects, your space usage quota, available free space, and the way in which objects are physically
stored. For information on Oracle’s methods of storing data, see Chapters 20 and 46.

Tablespaces: USER_TABLESPACES
You can query the USER_TABLESPACES data dictionary view to determine which tablespaces you
have been granted access to and the default storage parameters in each. A tablespace’s default
storage parameters will be used for each object stored within that tablespace unless the create or
alter command for that object specifies its own storage parameters. The Storage-Related columns
in USER_TABLESPACES, listed in Table 42-11, are very similar to the Storage-Related columns in
USER_TABLES. See the “Storage” entry of the Alphabetical Reference for further details.

There is no “ALL” version of this view. DBA_TABLESPACES shows the storage parameters for
all tablespaces.

774 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:774

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 775

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:775

Space Quotas: USER_TS_QUOTAS
USER_TS_QUOTAS is a very useful view for determining the amount of space you have currently
allocated and the maximum amount of space available to you by tablespace. A sample query of
USER_TS_QUOTAS is shown in the following listing:

select * from USER_TS_QUOTAS;

TABLESPACE_NAME BYTES MAX_BYTES BLOCKS MAX_BLOCKS
--------------- ---------- ---------- ---------- ----------
USERS 67584 0 33 0

Column Name Description

Tablespace_Name The name of the tablespace.

Block_Size Database block size in use for this tablespace.

Initial_Extent The default INITIAL parameter for objects in the tablespace.

Next_Extent The default NEXT parameter for objects in the tablespace.

Min_Extents The default MINEXTENTS parameter for objects in the tablespace.

Max_Extents The default MAXEXTENTS parameter for objects in the tablespace.

Pct_Increase The default PCTINCREASE parameter for objects in the tablespace.

Min_Extlen The minimum extent size for objects in the tablespace.

Status The tablespace’s status (‘ONLINE’, ‘OFFLINE’, ‘INVALID’, ‘READ
ONLY’). An “invalid” tablespace is one that has been dropped; its
record is still visible via this view.

Contents A flag to indicate whether the tablespace is used to store permanent
objects (‘PERMANENT’) or only temporary segments (‘TEMPORARY’).

Logging A flag to indicate the default LOGGING/NOLOGGING parameter
value for objects in the tablespace.

Extent_Management Where extent management is performed for the tablespace
(‘DICTIONARY’ or ‘LOCAL’).

Allocation_Type Type of extent allocation in effect.

Segment_Space_Management Flag to indicate if free space is managed via free lists (‘MANUAL’)
or bitmaps (‘AUTO’).

Retention Undo tablespace retention (‘GUARANTEE’,’NO GUARANTEE’,
or ‘NOT APPLY’).

Bigfile Indicates if the tablespace is a bigfile tablespace (‘YES’) or a smallfile
tablespace (‘NO’).

Force_Logging Yes/No flag to indicate if tablespace is in force logging mode.

TABLE 42-11. Columns in USER_TABLESPACES

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

USER_TS_QUOTAS contains one record for each Tablespace_Name. The Bytes column
reflects the number of bytes allocated to objects owned by the user. Max_Bytes is the maximum
number of bytes the user can own in that tablespace; if there is no quota for that tablespace, then
Max_Bytes will display a value of 0. The Bytes and Max_Bytes columns are translated into Oracle
blocks in the Blocks and Max_Blocks columns, respectively.

There is no “ALL” version of this view. DBA_TS_QUOTAS shows the storage quotas for all users
for all tablespaces and is a very effective way to list space usage across the entire database.

Segments and Extents:
USER_SEGMENTS and USER_EXTENTS
As described in Chapter 20, space is allocated to objects (such as tables, clusters, and indexes)
in segments, the physical counterparts to the logical objects created in the database. You can
query USER_SEGMENTS to see the current storage parameters and space usage in effect for your
segments. USER_SEGMENTS is very useful when you are in danger of exceeding one of the storage
limits; its columns are listed in Table 42-12.

776 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:776

Column Name Description

Segment_Name The name of the segment

Partition_Name NULL if the object is not partitioned; otherwise, the segment’s partition name

Segment_Type The type of segment (‘TABLE’, ‘CLUSTER’, ‘INDEX’, ‘ROLLBACK’, and so on)

Tablespace_Name The name of the tablespace in which the segment is stored

Bytes The number of bytes allocated to the segment

Blocks The number of Oracle blocks allocated to the segment

Extents The number of extents in the segment

Initial_Extent The size of thse initial extent in the segment

Next_Extent The value of the NEXT parameter for the segment

Min_Extents The minimum number of extents in the segment

Max_Extents The value of the MAXEXTENTS parameter for the segment

Pct_Increase The value of the PCTINCREASE parameter for the segment

Freelists The number of process freelists (lists of data blocks in the segment that can be
used during inserts) allocated to the segment; if a segment has multiple freelists,
then contention for free blocks during concurrent inserts will be lessened

Freelist_Groups The number of freelist groups allocated to the segment

Buffer_Pool Buffer pool into which the segment will be read (‘DEFAULT’, ‘KEEP’, or ‘RECYCLE’)
if you have defined multiple buffer pools

TABLE 42-12. Columns in USER_SEGMENTS

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Segments consist of contiguous sections called extents. The extents that constitute segments
are described in USER_EXTENTS. In USER_EXTENTS, you will see the actual size of each extent
within the segment; this is very useful for tracking the impact of changes to the next and pctincrease
settings. In addition to the Segment_Name, Segment_Type, and Tablespace_Name columns, USER_
EXTENTS has three new columns: Extent_ID (to identify the extent within the segment), Bytes (the
size of the extent, in bytes), and Blocks (the size of the extent, in Oracle blocks).

Both USER_SEGMENTS and USER_EXTENTS have “DBA” versions, which are useful for listing
the space usage of objects across owners. Both DBA_SEGMENTS and DBA_EXTENTS have an
additional Owner column. If you want to list all of the owners who own segments in a tablespace,
you can query based on the Tablespace_Name column in DBA_SEGMENTS, and list all of the
owners of segments in that tablespace. There are no “ALL” versions of these views.

Partitions and Subpartitions
A single table’s data can be stored across multiple partitions. See Chapter 17 for examples of
partitions and descriptions of the indexing options available. To see how a table is partitioned, you
should query the USER_PART_TABLES data dictionary view, whose columns are listed, by category,
in Table 42-13.

Most of the columns of USER_PART_TABLES define the default storage parameters for the table
partitions. When a partition is added to the table, it will by default use the storage parameters shown
in USER_PART_TABLES. USER_PART_TABLES also shows the number of partitions in the table
(Partition_Count), the number of columns in the partition key (Partitioning_Key_Count), and the
type of partitioning (Partitioning_Type).

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 777

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:777

Identification Storage-Related

Table_Name Def_Tablespace_Name

Partitioning_Type Def_Pct_Free

Subpartitioning_Type Def_Pct_Used

Partition_Count Def_Ini_Trans

Def_Subpartition_Count Def_Max_Trans

Partitioning_Key_Count Def_Initial_Extent

Subpartitioning_Key_Count Def_Next_Extent

Def_Logging Def_Min_Extents

Def_Buffer_Pool Def_Max_Extents

Def_Pct_Increase

Def_Freelists

Def_Freelist_Groups

Def_Compression

TABLE 42-13. Columns in USER_PART_TABLES

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

USER_PART_TABLES stores a single row for each table that has been partitioned. To see
information about each of the individual partitions that belong to the table, you can query
USER_TAB_PARTITIONS. In USER_TAB_PARTITIONS, you will see one row for each of the table’s
partitions. The columns of USER_TAB_PARTITIONS are shown, by category, in Table 42-14.

USER_TAB_PARTITIONS contains columns that identify the table to which the partition belongs
and shows the partition’s storage parameters and the statistics for the partition. The Statistics-
Related columns are populated when the table is analyzed. The Identification columns show the
high value for the range used to define the partition (High_Value) and the position of the partition
within the table (Partition_Position).

The columns used for the partition key are accessible via the USER_PART_KEY_COLUMNS
data dictionary view. USER_PART_KEY_COLUMNS contains only four columns:

Name The name of the partitioned table or index

Object_Type Object type (TABLE or INDEX)

Column_Name The name of the column that is part of the partition key

Column_Position The position of the column within the partition key

Statistics for the partition columns are accessible via the USER_PART_COL_STATISTICS data
dictionary view. The columns in USER_PART_COL_STATISTICS closely mirror those in USER_
TAB_COL_STATISTICS.

778 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:778

Identification Storage-Related Statistics-Related

Table_Name Tablespace_Name Num_Rows

Composite Pct_Free Blocks

Partition_Name Pct_Used Empty_Blocks

Subpartition_Count Ini_Trans Avg_Space

High_Value Max_Trans Chain_Cnt

High_Value_Length Initial_Extent Avg_Row_Len

Partition_Position Next_Extent Sample_Size

Logging Min_Extent Last_Analyzed

Buffer_Pool Max_Extent Global_Stats

Pct_Increase User_Stats

Freelists

Freelist_Groups

Compression

TABLE 42-14. Columns in USER_TAB_PARTITIONS

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Data histogram information for partitions is accessible via the USER_PART_HISTOGRAMS data
dictionary view. The columns of this view display the endpoint values for each of the buckets in
the histogram. The columns are Table_Name, Partition_Name, Column_Name, Bucket_Number,
Endpoint_Value, and Endpoint_Actual_Value.

Since indexes may be partitioned, there is a USER_IND_PARTITIONS data dictionary view
available. The columns in USER_IND_PARTITIONS can be grouped into three categories, as shown
in Table 42-15.

The columns in USER_IND_PARTITIONS parallel those in USER_INDEXES, with a few
modifications to the Identification columns. The Identification columns for partitioned indexes
include the name of the partition, the high value for the partition, and the position of the partition
within the table. The Statistics-Related columns are populated when the partition is analyzed.
The Space-Related columns describe the space allocation for the index; see the “Storage” entry in
the Alphabetical Reference for information on storage parameters.

If a partition has subpartitions, you can see the details for the subpartitions via data dictionary
views. USER_IND_SUBPARTITIONS contains the Space-Related and Statistics-Related columns of
USER_IND_PARTITIONS, along with columns to identify the subpartition (Subpartition_Name and
Subpartition_Position). Similarly, USER_TAB_SUBPARTITIONS contains the Space-Related and
Statistics-Related columns of USER_TAB_PARTITIONS, along with Subpartition_Name and
Subpartition_Position columns. Thus, you can determine the space definitions of each of your
partitions and subpartitions.

As shown earlier in this section, you can query the USER_PART_COL_STATISTICS and USER_
PART_HISTOGRAMS data dictionary views for statistical information regarding partitions. For

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 779

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:779

Identification Space-Related Statistics-Related

Index_Name Tablespace_Name Blevel

Composite Ini_Trans Leaf_Blocks

Partition_Name Max_Trans Distinct_Keys

Subpartition_Count Initial_Extent Avg_Leaf_Blocks_Per_Key

High_Value Next_Extent Avg_Data_Blocks_Per_Key

High_Value_Length Min_Extent Clustering_Factor

Partition_Position Max_Extent Num_Rows

Status Pct_Increase Sample_Size

Logging Pct_Free Last_Analyzed

Buffer_Pool Freelists User_Stats

Compression Freelist_Groups Pct_Direct_Access

Domidx_Opstatus Global_Stats

Parameters

TABLE 42-15. Columns in USER_IND_PARTITIONS

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

780 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:780

subpartitions, you can query USER_SUBPART_COL_STATISTICS and USER_SUBPART_HISTOGRAMS,
whose structures mirror that of the partition statistics views. To see the subpartition key columns,
you can query USER_SUBPART_KEY_COLUMNS, whose column structure is identical to that of
USER_PART_KEY_COLUMNS.

Free Space: USER_FREE_SPACE
In addition to viewing the space you have used, you can also query the data dictionary to see how
much space is currently marked as “free” space. USER_FREE_SPACE lists the free extents in all
tablespaces accessible to the user. It lists by Tablespace_Name the File_ID, Block_ID, and relative
file number of the starting point of the free extent. The size of the free extent is listed in both bytes
and blocks. DBA_FREE_SPACE is frequently used by DBAs to monitor the amount of free space
available and the degree to which it has become fragmented.

Users and Privileges
Users and their privileges are recorded within the data dictionary. In the following sections, you
will see how to query the data dictionary for information about user accounts, resource limits, and
user privileges.

Users: USER_USERS
You can query USER_USERS to list information about your account. The USER_USERS view includes
your Username, User_ID (a number assigned by the database), Default_Tablespace, Temporary_
Tablespace, and Created date (when your account was created). The Account_Status column in
USER_USERS displays the status of your account, whether it is locked, unlocked (‘OPEN’), or
expired. If the account is locked, the Lock_Date column will display the date the account was locked
and the Expiry_Date column will display the date of expiration. You can also query information
about the resource consumer group (Initial_Rsrc_Consumer_Group) assigned to you by the DBA,
and your External_Name value.

ALL_USERS contains only the Username, User_ID, and Created columns from USER_USERS,
but it lists that information for all accounts in the database. ALL_USERS is useful when you need
to know the usernames that are available (for example, during grant commands). DBA_USERS
contains all of the columns in USER_USERS, plus two additional columns: Password (the encrypted
password for the account) and Profile (the user’s resource profile). DBA_USERS lists this information
for all users in the database.

Resource Limits: USER_RESOURCE_LIMITS
In Oracle, profiles can be used to place limits on the amount of system and database resources
available to a user. If no profiles are created in a database, the default profile, which specifies
unlimited resources for all users, will be used. The resources that can be limited are described in
the create profile entry of the Alphabetical Reference. Profiles enforce additional security measures,
such as expiration dates on accounts and the minimum length of passwords.

To view the limits that are in place for your current session, you can query USER_RESOURCE_
LIMITS. Its columns are the following:

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Resource_Name The name of the resource (for example, SESSIONS_PER_USER)

Limit The limit placed on this resource

USER_PASSWORD_LIMITS describes the password profile parameters for the user. It has the
same columns as USER_RESOURCE_LIMITS.

There is no “ALL” or “DBA” version of this view; it is limited to the user’s current session. To
see the cost associated with each available resource, you can query the RESOURCE_COST view.
DBAs can access the DBA_PROFILES view to see the resource limits for all profiles. The Resource_
Type column of DBA_PROFILES indicates whether the resource profile is a ‘PASSWORD’ or
‘KERNEL’ profile.

Table Privileges: USER_TAB_PRIVS
To view grants for which you are the grantee, the grantor, or the object owner, query USER_TAB_
PRIVS (user table privileges). In addition to its Grantee, Grantor, and Owner columns, this view
contains columns for the Table_Name, Hierarchy, Privilege, and a flag (set to ‘YES’ or ‘NO’) to
indicate whether the privilege was granted with admin option (Grantable).

USER_TAB_PRIVS_MADE displays the USER_TAB_PRIVS records for which the user is the owner
(it therefore lacks an Owner column). USER_TAB_PRIVS_RECD (user table privileges received)
displays the USER_TAB_PRIVS records for which the user is the grantee (it therefore lacks a Grantee
column). Since both USER_TAB_PRIVS_MADE and USER_TAB_PRIVS_RECD are simply subsets
of USER_TAB_PRIVS, you can duplicate their functionality simply by querying against USER_TAB_
PRIVS with an appropriate where clause to view the subset you want.

There are “ALL” versions available for USER_TAB_PRIVS, USER_TAB_PRIVS_MADE, and USER_
TAB_PRIVS_RECD. The “ALL” versions list those objects for which either the user or PUBLIC is the
grantee or grantor. There is a “DBA” version of USER_TAB_PRIVS named DBA_TAB_PRIVS that
lists all object privileges granted to all users in the database. DBA_TAB_PRIVS has the same column
definitions as USER_TAB_PRIVS. Instead of an Owner column, ALL_TAB_PRIVS has a Table_Schema
column that displays the schema of the object.

Column Privileges: USER_COL_PRIVS
In addition to granting privileges on tables, you can also grant privileges at the column level. For
example, you can grant users the ability to update only certain columns in a table. See Chapter 18
and the grant command in the Alphabetical Reference for further details.

The data dictionary views used to display column privileges are almost identical in design to
the table privileges views described in the previous section. There is an additional Column_Name
column in each of the COL views, and the Hierarchy column is not found there. USER_COL_PRIVS
is analogous to USER_TAB_PRIVS, USER_COL_PRIVS_MADE is analogous to USER_TAB_PRIVS_
MADE, and USER_COL_PRIVS_RECD is analogous to USER_TAB_PRIVS_RECD.

“ALL” versions are available for all of the column privileges views. DBA_COL_PRIVS lists all
column privileges that have been granted to users in the database (just as DBA_TAB_PRIVS lists
all table privileges granted to users).

System Privileges: USER_SYS_PRIVS
USER_SYS_PRIVS lists the system privileges that have been granted to the user. Its columns are
Username, Privilege, and Admin_Option (a flag set to ‘YES’ or ‘NO’ to indicate whether the privilege

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 781

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:781

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

was granted with admin option). All system privileges directly granted to a user are displayed via
this view. System privileges granted to a user via a role are not displayed here. The following query
shows sample output for the PRACTICE account:

select Username, Privilege * from USER_SYS_PRIVS;

USERNAME PRIVILEGE
------------------------------ -----------------------
PRACTICE CREATE DIMENSION
PRACTICE UNLIMITED TABLESPACE

There is no “ALL” version of this view. To see the system privileges granted to all users in the
database, query DBA_SYS_PRIVS, which has nearly the same column definitions as USER_SYS_
PRIVS (the DBA version has a Grantee column, while the USER version has a Username column).

Roles
In addition to privileges granted directly to users, sets of privileges may be grouped into roles. Roles
may be granted to users or to other roles, and may consist of both object and system privileges. For
information on the use and management of roles, see Chapter 18.

To see which roles have been granted to you, query the USER_ROLE_PRIVS data dictionary
view. Any roles that have been granted to PUBLIC will also be listed here. The available columns
for USER_ROLE_PRIVS are as follows:

Username The username (may be ‘PUBLIC’)

Granted_Role The name of the role granted to the user

Admin_Option A flag to indicate whether the role was granted with admin option (‘YES’ or ‘NO’)

Default_Role A flag to indicate whether the role is the user’s default role (‘YES’ or ‘NO’)

OS_Granted A flag to indicate whether the operating system is being used to manage roles
(‘YES’ or ‘NO’)

To list all of the roles available in the database, you need to have DBA authority; you can then
query DBA_ROLES to list all roles. DBA_ROLE_PRIVS lists the assignment of those roles to all of
the users in the database.

Roles may receive three different types of grants, and each has a corresponding data dictionary
view:

Table/column grants ROLE_TAB_PRIVS. Similar to USER_TAB_PRIVS and USER_COL_PRIVS,
except that it has a Role column instead of a Grantee column and does
not have a Grantor column.

System privileges ROLE_SYS_PRIVS. Similar to USER_SYS_PRIVS, except that it has a Role
column instead of a Username column.

Role grants ROLE_ROLE_PRIVS. Lists all roles that have been granted to other roles.

782 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:782

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
If you are not a DBA, these data dictionary views list only those roles
that have been granted to you.

In addition to these views, there are two views, each with a single column, that list the
privileges and roles enabled for the current session:

SESSION_PRIVS The Privilege column lists all system privileges available to the session,
whether granted directly or via roles.

SESSION_ROLES The Role column lists all roles that are currently enabled for the session.

SESSION_PRIVS and SESSION_ROLES are available to all users.

NOTE
See Chapter 18 for information on enabling and disabling roles
and the setting of default roles.

Auditing
As a non-DBA user within an Oracle database, you cannot enable the database’s auditing features.
If auditing has been enabled, there are data dictionary views that anyone can use to view the audit
trail.

Many different audit trail data dictionary views are available. Most of these views are based
on a single audit trail table in the database (SYS.AUD$). The most generic of the audit trail views
available is named USER_AUDIT_TRAIL. Its columns are described in Table 42-16. Since this view

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 783

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:783

Column Name Description

OS_Username The audited user’s operating system account

Username The Oracle username of the audited user

UserHost A numeric ID for the instance used by the audited user

Terminal The user’s operating-system terminal identifier

TimeStamp The date and time the audit record was created

Owner The owner of the object affected by an action (for action audits)

Obj_Name The name of the object affected by an action (for action audits)

Action The numeric code for the audited action

Action_Name The name of the audited action

New_Owner The owner of the object named in the New_Name column

TABLE 42-16. Columns in USER_AUDIT_TRAIL

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

784 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:784

Column Name Description

New_Name The new name of an object that has been renamed

Obj_Privilege The object privilege that has been granted or revoked

Sys_Privilege The system privilege that has been granted or revoked

Admin_Option A flag to indicate whether the role or system privilege was granted with admin
option (‘Y’ or ‘N’)

Grantee The username specified in a grant or revoke command

Audit_Option The auditing options set via an audit command

Ses_Actions A string of characters serving as a session summary, recording success and failure
for different actions

Logoff_Time The date and time the user logged off

Logoff_LRead The number of logical reads performed during the session

Logoff_PRead The number of physical reads performed during the session

Logoff_LWrite The number of logical writes performed during the session

Logoff_DLock The number of deadlocks detected during the session

Comment_Text A text comment on the audit trail entry

SessionID The numeric ID for the session

EntryID A numeric ID for the audit trail entry

StatementID The numeric ID for each command that was executed

ReturnCode The return code for each command that was executed; if the command was
successful, then the ReturnCode will be 0

Priv_Used The system privilege used to execute the action

Client_ID Client ID

Session_CPU Session CPU used

Extended_Timestamp Timestamp of the creation of the audit trail entry in session’s time zone

Proxy_SessionID Proxy session serial number, if enterprise user has logged through a proxy
mechanism

Global_UID Global user identifier for the user, if the user had logged in as an enterprise user

Instance_Number Instance number as specified in the initialization parameter file

OS_Process Operating-system process identifier of the Oracle server process

TransactionID Transaction identifier of the transaction in which the object is accessed or modified

SCN SCN of the query

SQL_Bind Bind variable data of the query

SQL_Text SQL text of the query

TABLE 42-16. Columns in USER_AUDIT_TRAIL (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 785

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:785

shows the audit records for many different types of actions, many of the columns may be inapplicable
for any given row. The “DBA” version of this view, DBA_AUDIT_TRAIL, lists all entries from the
audit trail table; USER_AUDIT_TRAIL lists only those that are relevant to the user.

As of Oracle Database 10g, a number of new columns are available in USER_AUDIT_TRAIL,
including SQL_Text, SQL_Bind, OS_Process, and SCN. See the chapters related to flashback query
usage for details on the uses of SCN (System Change Number) values.

As shown in Table 42-16, a vast array of auditing capabilities is available (see the audit command
in the Alphabetical Reference for a complete listing). Each type of audit can be accessed via its own
data dictionary view. The following are the available views:

USER_AUDIT_OBJECT For statements concerning objects

USER_AUDIT_SESSION For connections and disconnections

USER_AUDIT_STATEMENT For grant, revoke, audit, noaudit, and alter system commands
issued by the user

There are “DBA” versions available for each of the “USER” views in the previous list; the “DBA”
versions show all of the audit trail records that fit into the view’s category.

You can view the auditing options that are currently in effect for your objects by querying
USER_OBJ_AUDIT_OPTS. For each object listed in USER_OBJ_AUDIT_OPTS, the audit options
for each command that may be performed on that object (identified by the Object_Name and
Object_Type columns) are listed in USER_OBJ_AUDIT_OPTS. The column names of USER_OBJ_
AUDIT_OPTS correspond to the first three letters of the command (for example, Alt for alter, Upd
for update, and so on). Each column will record whether that command is audited for that object
when the command is successful (‘S’), unsuccessful (‘U’), or both. The default auditing options in
effect for any new objects in the database can be displayed via the ALL_DEF_AUDIT_OPTS view,
which has the same column naming conventions as USER_OBJ_AUDIT_OPTS. USER_OBJ_AUDIT_
OPTS includes Object_Name and Object_Type columns.

The commands that can be audited are stored in a reference table named AUDIT_ACTIONS,
which has two columns: Action (the numeric code for the action) and Name (the name of the
action/command). Action and Name correspond to the Action and Action_Name columns of
USER_AUDIT_TRAIL.

DBAs can use several additional auditing views that do not have “USER” counterparts, including
DBA_AUDIT_EXISTS, DBA_PRIV_AUDIT_OPTS, DBA_STMT_AUDIT_OPTS, and STMT_AUDIT_
OPTION_MAP. See the Oracle Database Reference for details on these DBA-only views.

Miscellaneous
In addition to the data dictionary views described earlier in this chapter, several miscellaneous
views and tables may be available within your data dictionary. These views and tables include
DBA-only views and the table used when the explain plan command is executed. In the following
sections, you will see brief descriptions for each of the miscellaneous view types.

Monitoring: The V$ Dynamic Performance Tables
The views that monitor the database environment performance are called the dynamic performance
views. The dynamic performance views are commonly referred to as the V$ (pronounced “Vee-
Dollar”) tables, because they all begin with the letter V followed by the dollar sign ($).

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The definitions and usage of columns within the monitoring views are subject to change with
each version of the database that is released. Correctly interpreting the results of ad hoc queries
against views usually requires referring to the Oracle Database Administrator’s Guide. The V$
tables are normally used only by the DBA. Consult the Oracle Database Reference and the
Oracle DBA Handbook for details on the use of the V$ views.

CHAINED_ROWS
The analyze command can be used to generate a listing of the chained or migrated rows within a
table. This listing of chained rows can be stored in a table called CHAINED_ROWS. To create the
CHAINED_ROWS table in your schema, run the utlchain.sql script (usually found in the /rdbms/
admin subdirectory under the Oracle home directory).

To populate the CHAINED_ROWS table, use the list chained rows into clause of the analyze
command, as shown in the following listing:

analyze TABLE BIRTHDAY list chained rows into CHAINED_ROWS;

The CHAINED_ROWS table lists the Owner_Name, Table_Name, Cluster_Name (if the table
is in a cluster), Partition_Name (if the table is partitioned), Subpartition_Name (if the table contains
subpartitions), Head_RowID (the ROWID for the row), and an Analyze_TimeStamp column that
shows the last time the table or cluster was analyzed. You can query the table based on the Head_
RowID values in CHAINED_ROWS, as shown in the following example:

select * from BIRTHDAY
where RowID in

(select Head_RowID
from CHAINED_ROWS

where Table_Name = 'BIRTHDAY');

If the chained row is short in length, then it may be possible to eliminate the chaining by deleting
and reinserting the row.

PLAN_TABLE
When tuning SQL statements, you may want to determine the steps that the optimizer will take to
execute your query. To view the query path, you must first create a table in your schema named
PLAN_TABLE. The script used to create this table is called utlxplan.sql, and is usually stored in the
/rdbms/admin subdirectory of the Oracle software home directory.

After you have created the PLAN_TABLE table in your schema, you can use the explain plan
command, which will generate records in your PLAN_TABLE, tagged with the Statement_ID value
you specify for the query you want to have explained. See Chapter 43 for details on the generation
of the explain plan listings.

The ID and Parent_ID columns in PLAN_TABLE establish the hierarchy of steps (Operations)
that the optimizer will follow when executing the query. See Chapter 43 for details on the Oracle
optimizer and the interpretation of PLAN_TABLE records.

786 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:786

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Interdependencies: USER_DEPENDENCIES and IDEPTREE
Objects within Oracle databases can depend upon each other. For example, a stored procedure
may depend upon a table, or a package may depend upon a package body. When an object within
the database changes, any procedural object that depends upon it will have to be recompiled. This
recompilation can take place either automatically at run time (with a consequential performance
penalty) or manually (see Chapter 31 for details on compiling procedural objects).

Two sets of data dictionary views are available to help you track dependencies. The first is
USER_DEPENDENCIES, which lists all direct dependencies of objects. However, this only goes one
level down the dependency tree. To fully evaluate dependencies, you must create the recursive
dependency-tracking objects in your schema. To create these objects, run the utldtree.sql script
(usually located in the /rdbms/admin subdirectory of the Oracle home directory). This script creates
two objects you can query: DEPTREE and IDEPTREE. They contain identical information (although
their column definitions differ), but IDEPTREE is indented based on the pseudo-column Level, and
is thus easier to read and interpret.

DBA-Only Views
Since this chapter is intended for use by developers and end users, the data dictionary views available
only to DBAs are not covered here. The DBA-only views are used to provide information about
distributed transactions, lock contention, rollback segments, and other internal database functions.
For information on the use of the DBA-only views, see the Oracle Database Administrator’s Guide.

Oracle Label Security
Users of Oracle Label Security can view additional data dictionary views, including ALL_SA_
GROUPS, ALL_SA_POLICIES, ALL_SA_USERS, and ALL_SA_USER_PRIVS. For details on the usage
of these views, see the Oracle Label Security Administrator’s Guide.

SQL*Loader Direct Load Views
To manage the direct load option within SQL*Loader, Oracle maintains a number of data dictionary
views. These generally are only queried for debugging purposes, upon request from Oracle
Customer Support. The SQL*Loader direct load option is described under the “SQLLDR” entry
in the Alphabetical Reference; its supporting data dictionary views are listed here:

■ LOADER_COL_INFO

■ LOADER_CONSTRAINT_INFO

■ LOADER_FILE_TS

■ LOADER_PARAM_INFO

■ LOADER_PART_INFO

■ LOADER_REF_INFO

■ LOADER_TAB_INFO

■ LOADER_TRIGGER_INFO

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 787

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:787

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

For details on the use of these views, see the catldr.sql script, usually located in the /rdbms/
admin subdirectory of the Oracle home directory.

Globalization Support Views
Three data dictionary views are used to display information about the Globalization Support
parameters currently in effect in the database. Nonstandard values for the NLS parameters (such
as NLS_DATE_FORMAT and NLS_SORT) can be set via the database’s parameter file or via the
alter session command. (See the alter session command in the Alphabetical Reference for further
information on NLS settings.) To see the current NLS settings for your session, instance, and database,
query NLS_SESSION_PARAMETERS, NLS_INSTANCE_PARAMETERS, and NLS_DATABASE_
PARAMETERS, respectively.

Libraries
Your PL/SQL routines (see Chapter 31) can call external C programs. To see which external C
program libraries are owned by you, you can query USER_LIBRARIES, which displays the name of
the library (Library_Name), the associated file (File_Spec), whether or not the library is dynamically
loadable (Dynamic), and the library’s status (Status). ALL_LIBRARIES and DBA_LIBRARIES are also
available; they include an additional Owner column to indicate the owner of the library. For further
information on libraries, see the entry for the create library command in the Alphabetical Reference.

Heterogeneous Services
To support the management of heterogeneous services, Oracle provides a number of data dictionary
views. All of the views in this category begin with the letters “HS” instead of “DBA.” In general,
these views are used primarily by DBAs. For details on the “HS” views, see the Oracle Database
Reference.

Indextypes and Operators
Operators and indextypes are closely related. You can use the create operator command to create
a new operator and define its bindings. You can reference operators in indextypes and in SQL
statements. The operators, in turn, reference functions, packages, types, and other user-defined
objects.

You can query the USER_OPERATORS view to see each operator’s Owner, Operator_Name, and
Number_of_Binds values. Ancillary information for operators is accessible via USER_OPANCILLARY,
and you can query USER_OPARGUMENTS to see the operator arguments. You can query USER_
OPBINDINGS to see the operator bindings.

USER_INDEXTYPE_OPERATORS lists the operators supported by indextypes. Indextypes, in
turn, are displayed via USER_INDEXTYPES. There are “ALL” and “DBA” views of all the operator
and indextype views. As of Oracle Database 10g, you can see the indextype arraytypes via the
USER_INDEXTYPE_ARRAYTYPES view.

Outlines
When you use stored outlines, you can retrieve the names of, and details for, the outlines via the
USER_OUTLINES data dictionary views. To see the hints that make up the outlines, query USER_
OUTLINE_HINTS. There are “ALL” and “DBA” versions of USER_OUTLINES and USER_OUTLINE_
HINTS.

788 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:788

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Advisors
As of Oracle Database 10g, users can access data dictionary views related to tuning recommendations.
These views begin with “USER_ADVISOR_” and there is a matching set of views at the “DBA_”
level, and there are DBA-only advisor views as well (such as DBA_ADVISOR_DEFINITIONS).

For example, USER_ADVISOR_ACTIONS contains data about the actions associated with all
recommendations in the database. Each action is specified in the Command column, with six
related attribute columns. USER_ADVISOR_LOG displays information about the current state of
all the tasks, as well as execution-specific data such as progress monitoring and completion status.
Parameters for the advisors are accessible via USER_ADVISOR_PARAMETERS; you can see the
rationale for recommendations via the USER_ADVISOR_RATIONALE view.

For the results of an analysis of all recommendations in the database, see the USER_ADVISOR_
RECOMMENDATIONS view. A recommendation can have multiple actions associated with it (see
USER_ADVISOR_ACTIONS) based on the rationales used.

Schedulers
As of Oracle Database 10g, you can access a set of views related to Scheduler jobs in the database.
These include USER_SCHEDULER_JOBS (all Scheduler jobs owned by the user), USER_SCHEDULER_
PROGRAMS (the scheduler programs), and USER_SCHEDULER_PROGRAM_ARGS (the arguments
for the scheduler programs). You can see the execution details for the jobs via the USER_SCHEDULER_
JOB_LOG, USER_SCHEDULER_JOB_RUN_DETAILS, and USER_SCHEDULER_RUNNING_JOBS
views. You can see the schedules via USER_SCHEDULER_SCHEDULES.

Chapter 42: The Hitchhiker’s Guide to the Oracle Data Dictionary 789

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:789

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 42
Blind Folio 42:790

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:791

CHAPTER
43

The Hitchhiker’s
Guide to Tuning

Applications and SQL

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

792 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:792

W
ith each new release of its products, Oracle adds features to enhance the
performance of your applications. These features may include new options
that you must manually implement (such as partitioning) or under-the-cover
changes that provide a performance benefit without your making any changes
to your application.

Do not approach tuning as something done after an application goes into production, or after
a system test has been performed. As you will see, planning for the performance of an application
must be part of the design process.

In this chapter, you will see a description of the major new tuning changes introduced with
Oracle Database 10g. A set of guidelines and best practices related to tuning Oracle applications
is also provided. The final section of the chapter is dedicated to integrating those features with the
recommended best practices. You will also see guidelines for generating and interpreting explain
plans and stored outlines.

New Tuning Features in Oracle Database 10g
Oracle Database 10g introduces a number of new features aimed at simplifying and automating
the tuning process. DBAs and developers who previously had to perform manual steps related to
tuning will now find that the database performs some of these steps with no intervention. Note
that the database cannot redesign your application; it can only make the commands it receives
complete as quickly as possible. Please see the “Tuning—Best Practices” section for the principles
of sound performance design. As this book is intended for all users, the DBA-specific tools are not
the focus here; rather, the focus is on designing and developing systems whose performance can
be easily administered.

The following performance-related features are new as of Oracle Database 10g. For further
details on all tuning-related features, see the Performance Tuning Guide that comes as part of
the Oracle documentation set.

Automatic Tools
Oracle Database 10g introduces a number of tools designed to automate performance management.
These features include Automatic Statistics Collection, Automatic Database Diagnostic Monitoring
(ADDM), and Automatic SQL Tuning. To support these tools, the Automatic Workload Repository
collects, processes, and maintains performance statistics for problem detection and self-tuning
purposes.

ADDM reduces the amount of effort that is required to diagnose and tune Oracle systems. The
SQL Tuning Advisor feature provides a quick and efficient technique for optimizing SQL statements.
See the Oracle Enterprise Manager toolset and related documentation regarding the use of these tools.

The Automatic Statistics Collection feature automates the collection of optimizer statistics for
objects. Objects with stale or no statistics are automatically analyzed, so administrators no longer
need to keep track of what does and what does not need to be analyzed, nor to perform analysis
by hand. The GATHER_STATS_JOB job is automatically scheduled to gather statistics for objects
whose statistics are either missing or stale.

As of Oracle9i, you can alter the sizes of some of the caches and pools in the SGA while the
database is running. In Oracle Database 10g, those changes can be made automatically by Oracle
without your intervention. To enable Automatic Shared Memory Management, set the SGA_TARGET
initialization parameter to a nonzero value and set the STATISTICS_LEVEL parameter to ‘TYPICAL’
or ‘ALL’.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

End-to-End Tracing
Application end-to-end tracing identifies the source of an excessive workload, such as an expensive
SQL statement, by client identifier, service, module, or action. Workload problems can be identified
by client identifier, service (a group of applications with common attributes), application module,
or action. Service names are set via DBMS_SERVICE.CREATE_SERVICE or the SERVICE_NAMES
initialization parameter. Set the module and action names via the SET MODULE and SET ACTION
procedures of DBMS_APPLICATION_INFO.

The trcsess Utility
The trcsess command-line utility consolidates trace information from selected trace files based on
specified criteria (Session ID, Client ID, Service name, Action name, or Module name). Trcsess
merges the trace information into a single output file, which can then be processed via TKPROF.

Optimizer Modifications
Within the optimizer, the major changes in Oracle Database 10g include:

■ Obsolescence of the rule-based optimizer.

■ Changed parameters for the OPTIMIZER_MODE initialization parameter. CHOOSE and
RULE are no longer valid; ALL_ROWS is the default.

■ Dynamic sampling set via OPTIMIZER_DYNAMIC_SAMPLING now defaults to 2.

■ CPU Costing has been added to the cost calculations. The cost unit is time.

■ New hints available for queries include SPREAD_MIN_ANALYSIS, USE_NL_WITH_INDEX,
QB_NAME, NO_QUERY_TRANSFORMATION, NO_USE_NL, NO_USE_MERGE,
NO_USE_HASH, NO_INDEX_FFS, NO_INDEX_SS, NO_STAR_TRANSFORMATION,
INDEX_SS, INDEX_SS_ASC, and INDEX_SS_DESC.

■ Hints that have been renamed include NO_PARALLEL (formerly NOPARALLEL),
NO_PARALLEL_INDEX (formerly NOPARALLEL_INDEX), and NO_REWRITE (formerly
NOREWRITE).

■ The AND_EQUAL, HASH_AJ, MERGE_AJ, NL_AJ, HASH_SJ, MERGE_SJ, NL_SJ, ORDERED_
PREDICATES, ROWID, and STAR hints have been deprecated and should not be used.

■ Hash-partitioned global indexes can improve performance of indexes where a small
number of leaf blocks in the index have high contention in multiuser OLTP environments.

■ Obsolescence of Oracle Trace; use TKPROF or SQL Trace instead.

■ Additional V$ views are available, such as V$OSSTAT for operating-system statistics and
the views related to the metrics, thresholds, and advisors related to the advisors available
via Oracle Enterprise Manager.

Regardless of the tuning options you use for the database or individual SQL statements, the
performance of your application may be determined in large part by the extent to which you comply
with best practices related to the design of the application. In the following section you will see
common design pitfalls and solutions.

Chapter 43: The Hitchhiker’s Guide to Tuning Applications and SQL 793

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:793

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Tuning—Best Practices
At least 50% of the time—conservatively—performance problems are designed into an application.
During the design of the application and the related database structures, the application architects
may not know all the ways in which the business will use the application data over time. As a
result, there may always be some components whose performance is poor during the initial release,
while other problems will appear later as the business usage of the application changes.

In some cases, the fix will be relatively straightforward—changing an initialization parameter,
adding an index, or rescheduling large operations. In other cases, the problem cannot be fixed
without altering the application architecture. For example, an application may be designed to
heavily reuse functions for all data access—so that functions call other functions, which call
additional functions even to perform the simplest database actions. As a result, a single database
call may result in tens of thousands of function calls and database accesses. Such an application
will usually not scale well; as more users are added to the system, the burden of the number of
executions per user will slow the performance for the individual users. Tuning the individual SQL
statements executed as part of that application may yield little performance benefit; the statements
themselves may be well tuned already. Rather, it is the sheer number of executions that leads to
the performance problem.

The following best practices may seem overly simplistic—but they are violated over and over
in database applications, and those violations directly result in performance problems. There are
always exceptions to the rules—the next change to your software or environment may allow you
to violate the rules without affecting your performance. In general, though, following these rules
will allow you to meet performance requirements as the application usage increases.

Do as Little as Possible
End users do not care, in general, if the underlying database structures are fully normalized to Third
Normal Form or if they are laid out in compliance with object-oriented standards. Users want to
perform a business process, and the database application should be a tool that helps that business
process complete as quickly as possible. The focus of your design should not be the achievement
of theoretical design perfection; it should always be on the end user’s ability to do his or her job.
Simplify the processes involved at every step in the application.

In Your Application Design, Strive to Eliminate Logical Reads
In the past, there was a heavy focus on eliminating physical reads—and while this is still a good
idea, no physical reads occur unless logical reads require them.

Let’s take a simple example. Select the current time from DUAL. If you select down to the
second level, the value will change 86,400 times per day. Yet there are application designers who
repeatedly perform this query, executing it millions of times per day. Such a query likely performs
few physical reads throughout the day—so if you are focused solely on tuning the physical I/O, you
would likely disregard it. However, it can significantly impact the performance of the application.
How? By using the CPU resources available. Each execution of the query will force Oracle to
perform work, using processing power to find and return the correct data. As more and more users
execute the command repeatedly, you may find that the number of logical reads used by the query
exceeds all other queries. In some cases, multiple processors on the server are dedicated to servicing
repeated small queries of this sort. What business benefit do they generate? Little to none.

Consider the following real-world example. A programmer wanted to implement a pause in a
program, forcing it to wait 30 seconds between the completion of two steps. Since the performance

794 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:794

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

of the environment would not be consistent over time, the programmer coded the routine in the
following format (shown in pseudo-code):

perform Step 1
select SysDate from DUAL into a StartTime variable
begin loop

select SysDate from DUAL in a CurrentTime variable;
Compare CurrentTime with the StartTime variable value.
If 30 seconds have passed, exit the loop;

Otherwise repeat the loop, calculating SysDate again.
end loop
perform Step 2.

Is that a reasonable approach? Absolutely not! It will do what the developer wanted, but at a
significant cost to the application and there is nothing a database administrator can do to improve
its performance. In this case the cost will not be due to I/O activity—the DUAL table will stay in
the instance’s memory area—but rather in CPU activity. Every time this program is run, by every
user, the database will spend 30 seconds consuming as many CPU resources as the system can
support. In this particular case the select SysDate from DUAL query accounted for over 40% of
all of the CPU time used by the application. All of that CPU time was wasted. Tuning the individual
SQL statement will not help; the application design must be revised to eliminate the needless
execution of commands.

For those who favor tuning based on the buffer cache hit ratio, this database had a hit ratio
of almost 100% due to the high number of completely unnecessary logical reads without related
physical reads. The buffer cache hit ratio compares the number of logical reads to the number
of physical reads; if 10% of the logical reads require physical reads, the buffer cache hit ratio is 100
less 10, or 90%. Low hit ratios identify databases that perform a high number of physical reads;
extremely high hit ratios such as found in this example may identify databases that perform an
excessive number of logical reads.

In Your Application Design, Strive to Avoid Trips to the Database
Remember that you are tuning an application, not a query. You may need to combine multiple
queries into a single procedure so that the database can be visited once rather than multiple times
for each screen. This bundled-query approach is particularly relevant for “thin-client” applications
that rely on multiple application tiers. Look for queries that are interrelated based on the values
they return, and see if there are opportunities to transform them into single blocks of code. The
goal is not to make a monolithic query that will never complete; the goal is to avoid doing work
that does not need to be done. In this case, the constant back-and-forth communication between
the database server, the application server, and the end user’s computer is targeted for tuning.

This problem is commonly seen on complex data-entry forms in which each field displayed on
the screen is populated via a separate query. Each of those queries is a separate trip to the database.
As with the example in the previous section, the database is forced to execute large numbers of
related queries. Even if each of those queries is tuned, the burden of the number of commands—
multiplied by the number of users—will consume the CPU resources available on the server. Such
a design may also impact the network usage, but the network is seldom the problem—the issue
is the number of times the database is accessed.

Within your packages and procedures, you should strive to eliminate unnecessary database
accesses. Store commonly needed values in local variables instead of repeatedly querying the

Chapter 43: The Hitchhiker’s Guide to Tuning Applications and SQL 795

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:795

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

database. If you don’t need to make a trip to the database for information, don’t make it. That sounds
simple, but you would be amazed at how often applications fail to consider this advice.

There is no initialization parameter that can make this change take effect. It is a design issue
and requires the active involvement of developers, designers, DBAs, and application users in the
application performance planning and tuning process.

For Reporting Systems, Store the Data the Way the Users Will Query It
If you know the queries that will be executed—such as via parameterized reports—you should
strive to store the data so that Oracle will do as little work as possible to transform the format of
the data in your tables into the format presented to the user. This may require the creation and
maintenance of materialized views or reporting tables. That maintenance is of course extra work
for the database to perform—but it is performed in batch mode and does not directly affect the
end user. The end user, on the other hand, benefits from the ability to perform the query faster.
The database as a whole will perform fewer logical and physical reads because the accesses to
the base tables to populate and refresh the materialized views are performed infrequently when
compared to the end-user queries against the views.

Avoid Repeated Connections to the Database
Opening a database connection is one of the slowest operations you can perform. If you need to
connect to the database, keep the connection open and reuse the connection. At the application
level, you may be able to use connection pooling to support this need. Within the database you
may be able to use stored procedures, packages, and other methods to maintain connections while
you are performing your processing.

Another real-life example: An application designer wanted to verify that the database was running
prior to executing a report. The solution was to open a session and execute the following query:
select count(*) from DUAL. If the query came back with the proper result (1), then the database
was running, a new connection would be opened, and the report query would be executed. What
is wrong with that approach? In small systems you may be able to survive such a design decision.
In OLTP systems with a high number of concurrent users, you will encounter significant performance
problems as the database spends most of its time opening and closing connections. Within the
database, the select count(*) from DUAL query will be executed millions of times per day—Oracle
will spend the bulk of the resources available to the application opening and closing connections
and returning the database status to the application. The query performs little I/O but its impact is
seen in its CPU usage and the constant opening of connections.

Why is such a step even needed? If you properly handle the errors from the report queries
themselves, it would be obvious that the database connection is not functioning properly in the
event of a failure. The unnecessary database availability check is made worse by the failure to
reuse the same connection. No DBA action can correct this; the application must be designed
from the start to reuse connections properly.

Use the Right Indexes
In an effort to eliminate physical reads, some application developers create many indexes on every
table. Aside from their impact on data load times (discussed in the “Test Correctly” section later
in this chapter), it is possible that many of the indexes will never be needed. In OLTP applications,
you should not use bitmap indexes; if a column has few distinct values, you should consider leaving
it unindexed. As of Oracle9i, the optimizer supports skip-scan index accesses, so you may use

796 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:796

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

an index on a set of columns even if the leading column of the index is not a limiting condition
for the query.

Do It as Simply as Possible
Now that you have eliminated the performance costs of unnecessary logical reads, unneeded
database trips, unmanaged connections, and inappropriate indexes, take a look at the commands
that remain.

Go Atomic
You can use SQL to combine many steps into one large query. In some cases, this may benefit your
application—you can create stored procedures and reuse the code and reduce the number of
database trips performed. However, you can take this too far, creating large queries that fail to
complete quickly enough. These queries commonly include multiple sets of grouping operations,
inline views, and complex multi-row calculations against millions of rows.

If you are performing batch operations, you may be able to break such a query into its atomic
components, creating temporary tables to store the data from each step. If you have an operation
that takes hours to complete, you almost always can find a way to break it into smaller component
parts. Divide and conquer the performance problem.

For example, a batch operation may combine data from multiple tables, perform joins and sorts,
and then insert the result into a table. On a small scale this may perform satisfactorily. On a large
scale, you may have to divide this operation into multiple steps:

1. Create a work table. Insert rows into it from one of the source tables for the query, selecting
only those rows and columns that you care about later in the process.

2. Create a second work table for the columns and rows from the second table.

3. Create any needed indexes on the work tables. Note that all of the steps to this point can be
parallelized—the inserts, the queries of the source tables, and the creation of the indexes.

4. Perform the join, again parallelized. The join output may go into another work table.

5. Perform any sorts needed. Sort as little data as possible.

6. Insert the data into the target table.

Why go through all of those steps? Because you can tune them individually, you may be able
to tune them to complete much faster individually than Oracle can complete them as a single
command. For batch operations, you should consider making the steps as simple as possible.
You will need to manage the space allocated for the work tables, but this approach can generate
significant benefits to your batch-processing performance.

Eliminate Unnecessary Sorts
As part of the example in the preceding section, the sort operation was performed last. In general,
sort operations are inappropriate for OLTP applications. Sort operations do not return any rows to
the user until the entire set of rows is sorted. Row operations, on the other hand, return rows to the
user as soon as those rows are available.

Consider the following simple test: Perform a full table scan of a large table. As soon as the
query starts to execute, the first rows are displayed. Now, perform the same full table scan but

Chapter 43: The Hitchhiker’s Guide to Tuning Applications and SQL 797

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:797

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

add an order by clause on an unindexed column. No rows will be displayed until all of the rows
have been sorted. Why does this happen? Because for the second query Oracle performs a SORT
ORDER BY operation on the results of the full table scan. As it is a set operation, the set must be
completed before the next operation is performed.

Now, imagine an application in which there are many queries executed within a procedure.
Each of the queries has an order by clause. This turns into a series of nested sorts—no operation
can start until the one before it completes.

Note that union operations perform sorts. If it is appropriate for the business logic, use a
union all operation in place of a union, as a union all does not perform a sort (because it does
not eliminate duplicates).

During index creations, you may be able to eliminate subsequent sorts by using the compute
statistics clause of the create index command and gathering the statistics as the index is created.

Eliminate the Need to Query Undo Segments
When performing a query, Oracle will need to maintain a read-consistent image of the rows queried.
If a row is modified by another user, the database will need to query the undo segment to see the
row as it existed at the time your query began. Application designs that call for queries to frequently
access data that others may be changing at the same time force the database to do more work—it
has to look in multiple locations for one piece of data. Again, this is a design issue. DBAs may be
able to configure the undo segment areas to reduce the possibility of queries encountering errors,
but correcting the fundamental problem requires a change to the application design.

Tell the Database What It Needs to Know
Oracle’s optimizer relies on statistics when it evaluates the thousands of possible paths to take
during the execution of a query. How you manage those statistics can significantly impact the
performance of your queries.

Keep Your Statistics Updated
How often should you gather statistics? With each major change to the data in your tables, you
should reanalyze the tables. If you have partitioned the tables, you can analyze them on a partition-
by-partition basis. As of Oracle Database 10g, you can use the Automatic Statistics Gathering
feature to automate the collection of statistics. By default, that process gathers statistics during a
maintenance window from 10 P.M. to 6 A.M. each night and all day on weekends.

Since the analysis job is usually a batch operation performed after hours, you can tune it by
improving sort and full table scan performance at the session level. If you are performing the analysis
manually, use the alter session command to dramatically increase the settings for the DB_FILE_
MULTIBLOCK_READ_COUNT and SORT_AREA_SIZE parameters prior to gathering the statistics. The
result will be greatly enhanced performance for the sorts and full table scans the analysis performs.

Hint Where Needed
In most cases, the cost-based optimizer (CBO) selects the most efficient execution path for queries.
However, you may have information about a better path. For example, you may be querying tables
in remote databases, in which case you would want to avoid constantly connecting to the remote
account. You may give Oracle a hint to influence the join operations, the overall query goal, the
specific indexes used, or the parallelism of the query. See the “Related Hints” sections later in this
chapter for an overview of the major hints.

798 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:798

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 43: The Hitchhiker’s Guide to Tuning Applications and SQL 799

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:799

Maximize the Throughput in the Environment
In an ideal environment, there is never a need to query information outside the database; all of the
data stays in memory all of the time. Unless you are working with a very small database, however,
this is not a realistic approach. In this section, you will see guidelines for maximizing the throughput
of the environment.

Use Disk Caching
If Oracle cannot find the data it needs in the database, it performs a physical read. But how many
of the physical reads actually reach the disk? If you use disk caching, you may be able to prevent
as much as 90% of the access requests for the most-needed blocks. If the database buffer cache
hit ratio is 90%, you are accessing the disks 10% of the time—and if the disk cache prevents 90%
of those requests from reaching the disk, your effective hit ratio is 99%. Oracle’s internal statistics
do not reflect this improvement; you will need to work with your disk administrators to configure
and monitor the disk cache.

Use a Larger Database Block Size
There is only one reason not to use the largest block size available in your environment for a new
database: if you cannot support a greater number of users performing updates and inserts against
a single block. Other than that, increasing the database block size should improve the performance
of almost everything in your application. Larger database block sizes help keep indexes from splitting
levels and help keep more data in memory longer. To support many concurrent inserts and updates,
increase the settings for the freelists and pctfree parameters at the object level.

Store Data Efficiently at the Block Level
Oracle stores blocks of data in memory. It is in your best interest to make sure those blocks are as
densely packed with data as possible. If your data storage is inefficient at the block level, you will
not gain as much benefit as you can from the caches available in the database.

If the rows in your application are not going to be updated, set the pctfree as low as possible.
For partitioned tables, set the pctfree value for each partition to maximize the row storage within
blocks. Set a low pctfree value for indexes.

By default, the pctused parameter is set to 40 for all database blocks, and pctfree is set to 10.
If you use the defaults, then as rows are added to the table, rows will be added to a block until the
block is 90% full; at that point the block will be removed from the “free list” and all new inserts
will use other blocks in the table. Updates of the rows in the block will use the space reserved by
the pctfree setting. Rows may then be deleted from the block, but the block will not be added back
to the free list until the space usage within the block drops below the pctused setting. This means
that in applications that feature many deletes and inserts of rows, it is common to find many blocks
using just slightly above the pctused value of each block. In that case, each block is just over 40%
used, so each block in the buffer cache is only that full—resulting in a significant increase in the
number of blocks requested to complete each command. If your application performs many deletes
and inserts, you should consider increasing pctused so the block will be readded to the free list
as quickly as possible.

If the pctfree setting is too low, updates may force Oracle to move the row (called a migrated
row). In some cases row chaining is inevitable, such as when your row length is greater than your
database block size. When row chaining and migration occur, each access of a row will require
accessing multiple blocks, impacting the number of logical reads required for each command. You
can detect row chaining by analyzing the table and then checking its statistics via USER_TABLES.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

800 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:800

Designing to Throughput, Not Disk Space
Take an application that is running on eight 9GB disks and move it to a single 72GB disk. Will the
application run faster or slower? In general, it will run slower, since the throughput of the single
disk is unlikely to be equal to the combined throughput of the eight separate disks. Rather than
designing your disk layout based on the space available (a common method), design it based on
the throughput of the disks available. You may decide to use only part of each disk. The remaining
space on the disk will not be used by the production application unless the throughput available
for that disk improves.

Avoid the Use of the Temporary Segments
Whenever possible, perform all sorts in memory. Any operation that writes to the temporary segments
is potentially wasting resources. Oracle uses temporary segments when the SORT_AREA_SIZE
parameter does not allocate enough memory to support the sorting requirements of operations.
Sorting operations include index creations, order by clauses, statistics gathering, group by operations,
and some joins. As noted earlier in this chapter, you should strive to sort as few rows as possible.
When performing the sorts that remain, perform them in memory. Note that you can alter the
SORT_AREA_SIZE setting for your session via the alter session command.

Favor Fewer, Faster Processors
Given the choice, use a small number of fast processors in place of a larger number of slower
processors. The operating system will have fewer processing queues to manage and will generally
perform better.

Divide and Conquer Your Data
If you cannot avoid performing expensive operations on your database, you can attempt to split
the work into more manageable chunks. Often you can severely limit the number of rows acted
on by your operations, substantially improving performance.

Use Partitions
Partitions can benefit end users, DBAs, and application support personnel. For end users there are
two potential benefits: improved query performance and improved availability for the database.
Query performance may improve because of partition elimination. The optimizer knows what
partitions may contain the data requested by a query. As a result, the partitions that will not participate
are eliminated from the query process. Since fewer logical and physical reads are needed, the query
should complete faster.

The availability improves because of the benefits partitions generate for DBAs and application
support personnel. Many administrative functions can be performed on single partitions, allowing
the rest of the table to be unaffected. For example, you can truncate a single partition of a table.
You can split a partition, move it to a different tablespace, or switch it with an existing table (so
that the previously independent table is then considered a partition). You can gather statistics on
one partition at a time. All of these capabilities narrow the scope of administrative functions,
reducing their impact on the availability of the database as a whole.

Use Materialized Views
You can use materialized views to divide the types of operations users perform against your tables.
When you create a materialized view, you can direct users to query the materialized view directly
or you can rely on Oracle’s query rewrite capability to redirect queries to the materialized view.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

As a result, you will have two copies of the data—one that services the input of new transactional
data, and a second, the materialized view, that services queries. As a result, you can take one of
them offline for maintenance without affecting the availability of the other. Also note that you can
index the base table and the materialized view differently, with each having the structures needed
for the specific data access types it is intended for.

See Chapter 24 for details on the implementation of materialized views.

Use Parallelism
Almost every major operation can be parallelized—including queries, inserts, object creations,
and data loads. The parallel options allow you to involve multiple processors in the execution of
a single command, effectively dividing the command into multiple smaller coordinated commands.
As a result, the command may perform better. You can specify a degree of parallelism at the object
level and can override it via hints in your queries.

Test Correctly
In most development methodologies, application testing has multiple phases, including module
testing, full system testing, and performance stress testing. Many times, the full system test and
performance stress test are not performed adequately due to time constraints as the application
nears its delivery deadline. The result is that applications are released into production without any
way to guarantee that the functionality and performance of the application as a whole will meet
the needs of the users. This is a serious and significant flaw and should not be tolerated by any
user of the application. Users do not need just one component of the application to function properly;
they need the entire application to work properly in support of a business process. If they cannot
do a day’s worth of business in a day, the application fails.

This is a key tenet regarding identifying the need for tuning: If the application slows the speed
of the business process, it should be tuned. The tests you perform must be able to determine if the
application will hinder the speed of the business process under the expected production load.

Test with Large Volumes of Data
As described earlier in this chapter, objects within the database function differently after they have
been used for some time. For example, the pctfree and pctused settings may make it likely that
blocks will be only half-used or rows will be chained. Each of these causes performance problems
that will only be seen after the application has been used for some time.

A further problem with data volume concerns indexes. As B*-tree indexes grow in size, they
may split internally—the level of entries within the index increases. As a result, you can picture
the new level as being an index within the index. The additional level in the index increases the
effect of the index on data load rates. You will not see this impact until after the index is split.
Applications that work acceptably for the first week or two in production, only to suddenly falter
after the data volume reaches critical levels, do not support the business needs. In testing, there
is no substitute for production data loaded at production rates while the tables already contain
a substantial amount of data.

Test with Many Concurrent Users
Testing with a single user does not reflect the expected production usage of most database
applications. You must be able to determine if concurrent users will encounter deadlocks, data
consistency issues, or performance problems. For example, suppose an application module uses
a work table during its processing. Rows are inserted into the table, manipulated, and then queried.

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:801

Chapter 43: The Hitchhiker’s Guide to Tuning Applications and SQL 801

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

802 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:802

A separate application module does similar processing—and uses the same table. When executed
at the same time, the two processes attempt to use each other’s data. Unless you are testing with
multiple users executing multiple application functions simultaneously, you may not discover this
problem and the business data errors it will generate.

Testing with many concurrent users will also help to identify areas in the application in which
users frequently use undo segments to complete their queries, impacting performance.

Test the Impact of Indexes on Your Load Times
Every insert, update, or delete of an indexed column may be about three times slower than the
same transaction against an unindexed table. There are some exceptions—sorted data has much
less of an impact, for example—but the rule is generally true. If you can load three thousand rows
per second into an unindexed table in your environment, adding a single index to the table should
slow your insert speed to around a thousand rows per second. The impact is dependent on your
operating environment, the data structures involved, and the degree to which the data is sorted.

How many rows per second can you insert in your environment? Perform a series of simple
tests. Create a table with no indexes and insert a large number of rows into it. Repeat the tests to
reduce the impact of physical reads on the timing results. Calculate the number of rows inserted
per second. In most environments you can insert tens of thousands of rows per second into the
database. Perform the same test in your other database environments so you can identify any that
are significantly different than the others.

Now consider your application. Are you able to insert rows into your tables via your application
at anywhere near the rate you just calculated? Many applications run at less than 5% of the rate
the environment will support. They are bogged down by unneeded indexes or the type of code
design issues described earlier in this chapter. If their load rate decreases—say from 40 rows per
second to 20 rows per second—the tuning focus should not be solely on how that decrease occurred
but also on how the application managed to get only 40 rows per second inserted in an environment
that supports thousands of rows inserted per second.

Make All Tests Repeatable
Most regulated industries have standards for tests. Their standards are so reasonable that all testing
efforts should follow them. Among the standards is that all tests must be repeatable. To be compliant
with the standards, you must be able to re-create the data set used, the exact action performed, the
exact result expected, and the exact result seen and recorded. Preproduction tests for validation
of the application must be performed on the production hardware. Moving the application to
different hardware requires retesting the application. The tester and the business users must sign
off on all tests.

Most people, on hearing those restrictions, would agree that they are good steps to take in any
testing process. Indeed, your business users may be expecting that the people developing the
application are following such standards even if they are not required by the industry. But are
they followed, and if not, then why not? There are two commonly cited reasons for not following
such standards: time and cost. Such tests require planning, personnel resources, business user
involvement, and time for execution and documentation. Testing on production-caliber hardware
may require the purchase of additional servers. Those are the most evident costs—but what is the
business cost of failing to perform such tests? The testing requirements for validated systems in the
U.S. pharmaceutical industry were implemented because those systems directly impact the integrity
of critical products such as the safety of the blood supply. If your business has critical components
served by your application (and if it does not, then why are you building the application?), you
must consider the costs of insufficient, rushed testing and communicate those potential costs to the

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 43: The Hitchhiker’s Guide to Tuning Applications and SQL 803

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:803

business users. The evaluation of the risks of incorrect data or unacceptably slow performance must
involve the business users. In turn, that may lead to an extended deadline to support proper testing.

In many cases, the rushed testing cycle occurs because there was not a testing standard in place
at the start of the project. If there is a consistent, thorough, and well-documented testing standard in
place at the enterprise level when the project starts, then the testing cycle will be shorter when it
is finally executed. Testers will have known long in advance that repeatable data sets will be needed.
Templates for tests will be available. If there is an issue with any test result, or if the application
needs to be retested following a change, the test can be repeated. And the application users will
know that the testing is robust enough to simulate the production usage of the application. If the
system fails the tests for performance reasons, the problem may be a design issue (as described
in the previous sections) or a problem with an individual query. In the following sections you will
see how to display the execution path for a SQL statement, the major operations involved, and the
related hints you can employ when tuning SQL.

Generating and Reading Explain Plans
You can display the execution path for a query in either of two ways:

■ The set autotrace on command

■ The explain plan command

In the following sections, both commands are explained; for the remainder of the chapter, the
set autotrace on command will be used to illustrate execution paths as reported by the optimizer.

Using set autotrace on
You can have the execution path automatically displayed for every transaction you execute within
SQL*Plus. The set autotrace on command will cause each query, after being executed, to display
both its execution path and high-level trace information about the processing involved in resolving
the query.

To use the set autotrace on command, you must have first created a PLAN_TABLE table within
your account. The PLAN_TABLE structure may change with each release of Oracle, so you should
drop and re-create your copy of PLAN_TABLE with each Oracle upgrade. The commands shown
in the following listing will drop any existing PLAN_TABLE and replace it with the current version.

NOTE
In order for you to use set autotrace on, your DBA must have first
created the PLUSTRACE role in the database and granted that role to
your account. The PLUSTRACE role gives you access to the underlying
performance-related views in the Oracle data dictionary. The script to
create the PLUSTRACE role is called plustrce.sql, usually found in the
/sqlplus/admin directory under the Oracle software home directory.

The file that creates the PLAN_TABLE table is located in the /rdbms/admin subdirectory under
the Oracle software home directory.

drop table PLAN_TABLE;
@$ORACLE_HOME/rdbms/admin/utlxplan.sql

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

804 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:804

When you use set autotrace on, records are inserted into your copy of the PLAN_TABLE to
show the order of operations executed. After the query completes, the selected data is displayed.
After the query’s data is displayed, the order of operations is shown followed by statistical information
about the query processing. The following explanation of set autotrace on focuses on the section
of the output that displays the order of operations.

NOTE
To show the explain plan output without running the query,
use the set autotrace on trace explain command.

If you use the set autotrace on command with its default options, you will not see the explain
plan for your queries until after they complete. The explain plan command (described next) shows
the execution paths without running the queries first. Therefore, if the performance of a query is
unknown, you may choose to use the explain plan command before running it. If you are fairly
certain that the performance of a query is acceptable, use set autotrace on to verify its execution path.

NOTE
When you use the set autotrace on command, Oracle will automatically
delete the records it inserts into PLAN_TABLE once the execution path
has been displayed.

If you use the parallel query options or query remote databases, an additional section of the
set autotrace on output will show the text of the queries executed by the parallel query server
processes or the query executed within the remote database.

To disable the autotrace feature, use the set autotrace off command.
In order to use set autotrace, you must be able to access the database via SQL*Plus. If you

have SQL access but not SQL*Plus access, you can use explain plan instead, as described in the
next section.

In the following example, a full table scan of the BOOKSHELF table is executed. The rows of
output are not displayed in this output, for the sake of brevity. The order of operations is displayed
below the query.

select *
from BOOKSHELF;

Execution Plan
--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=1 Card=31 Bytes=12
40)

1 0 TABLE ACCESS (FULL) OF 'BOOKSHELF' (TABLE) (Cost=4 Card=31
Bytes=1240)

The “Execution Plan” shows the steps the optimizer will use to execute the query. Each step
is assigned an ID value (starting with 0). The second number shows the “parent” operation of the

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 43: The Hitchhiker’s Guide to Tuning Applications and SQL 805

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:805

current operation. Thus, for the preceding example, the second operation—the TABLE ACCESS
(FULL) OF ‘BOOKSHELF’—has a parent operation (the select statement itself). Each step displays
a cumulative cost for that step plus all of its child steps.

You can generate the order of operations for DML commands, too. In the following example,
a delete statement’s execution path is shown:

delete
from BOOKSHELF_AUTHOR;

Execution Plan
--

0 DELETE STATEMENT Optimizer=ALL_ROWS (Cost=4 Card=37 Bytes=12
58)

1 0 DELETE OF 'BOOKSHELF_AUTHOR'
2 1 TABLE ACCESS (FULL) OF 'BOOKSHELF_AUTHOR' (TABLE) (Cost=

4 Card=37 Bytes=1258)

The delete command, as expected, involves a full table scan. If you have analyzed your tables,
the Execution Plan column’s output shows the number of rows from each table, the relative cost
of each step, and the overall cost of the operation. The costs shown at the steps are cumulative;
they are the costs of that step plus all of its child steps. You could use that information to pinpoint
the operations that are the most costly during the processing of the query.

In the following example, a slightly more complex query is executed. An index-based query
is made against the BOOKSHELF table, using its primary key index.

select /*+ INDEX(bookshelf) */ *
from BOOKSHELF
where Title like 'M%';

Execution Plan
--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=3 Card=2 Bytes=80)
1 0 TABLE ACCESS (BY INDEX ROWID) OF 'BOOKSHELF' (TABLE) (Cost

=3 Card=2 Bytes=80)
2 1 INDEX (RANGE SCAN) OF 'SYS_C004834' (INDEX (UNIQUE)) (Co

st=1 Card=2)

This listing includes three operations. Operation #2, the INDEX RANGE SCAN of the
BOOKSHELF primary key index (its name was system-generated) provides data to operation #1,
the TABLE ACCESS BY INDEX ROWID operation. The data returned from the TABLE ACCESS BY
INDEX ROWID is used to satisfy the query (operation #0).

The preceding output also shows that the optimizer is automatically indenting each successive
step within the execution plan. In general, you should read the list of operations from the inside
out and from top to bottom. Thus, if two operations are listed, the one that is the most indented
will usually be executed first. If the two operations are at the same level of indentation, then the
one that is listed first (with the lowest operation number) will be executed first.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

806 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:806

In the following example, BOOKSHELF and BOOKSHELF_AUTHOR are joined without the
benefit of indexes. Oracle will use a join operation called a merge join, in which each table is
separately sorted prior to the two sorted row sets being joined:

select /*+ USE_MERGE (bookshelf, bookshelf_author)*/
BOOKSHELF_AUTHOR.AuthorName

from BOOKSHELF, BOOKSHELF_AUTHOR
where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title;

Execution Plan
--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=7 Card=5 Bytes=320)
1 0 MERGE JOIN (Cost=7 Card=5 Bytes=320)
2 1 INDEX (FULL SCAN) OF 'SYS_C004834' (INDEX (UNIQUE)) (Cos

t=1 Card=31)
3 1 SORT (JOIN) (Cost=5 Card=37 Bytes=1258)
4 3 TABLE ACCESS (FULL) OF 'BOOKSHELF_AUTHOR' (TABLE) (Cos

t=1 Card=37 Bytes=1258)

The indentation here may seem confusing at first, but the operational parentage information
provided by the operation numbers clarifies the order of operations. The innermost operations are
performed first—the TABLE ACCESS FULL and INDEX FULL SCAN operations. Next, the full table
scan’s data is processed via a SORT JOIN operation (in operation #4), while the output from
the index scan (which is sorted already) is used as the basis for a TABLE ACCESS BY INDEX
ROWID (step 2). Both step 2 and step 4 have operation #1, the MERGE JOIN, as their parent
operations. The MERGE JOIN operation provides data back to the user via the select statement.

If the same query were run as a NESTED LOOPS join, a different execution path would be
generated. As shown in the following listing, the NESTED LOOPS join would be able to take
advantage of the primary key index on the Title column of the BOOKSHELF table.

NOTE
Based on the size of the tables and the available statistics, Oracle may
choose to perform a different type of join, called a hash join, instead of
a NESTED LOOPS join.

select /*+ INDEX(bookshelf) */
BOOKSHELF_AUTHOR.AuthorName

from BOOKSHELF, BOOKSHELF_AUTHOR
where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title

Execution Plan
--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=4 Card=37 Bytes=19
24)

1 0 NESTED LOOPS (Cost=4 Card=37 Bytes=1924)
2 1 TABLE ACCESS (FULL) OF 'BOOKSHELF_AUTHOR' (TABLE) (Cost=

4 Card=37 Bytes=1258)
3 1 INDEX (UNIQUE SCAN) OF 'SYS_C004834' (INDEX (UNIQUE)) (C

ost=1 Card=1 Bytes=18)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 43: The Hitchhiker’s Guide to Tuning Applications and SQL 807

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:807

NESTED LOOPS joins are among the few execution paths that do not follow the “read from the
inside out” rule of indented execution paths. To read the NESTED LOOPS execution path correctly,
examine the order of the operations that directly provide data to the NESTED LOOPS operation
(in this case, operations #2 and #3). Of those two operations, the operation with the lowest number
(#2, in this example) is executed first. Thus, the TABLE ACCESS FULL of the BOOKSHELF_AUTHOR
table is executed first (BOOKSHELF_AUTHOR is the driving table for the query).

Once you have established the driving table for the query, the rest of the execution path can be
read from the inside out and from top to bottom. The second operation performed is the INDEX
UNIQUE SCAN of the BOOKSHELF primary key index. The NESTED LOOPS operation is then
able to return rows to the user.

If a hash join had been selected instead of a NESTED LOOPS join, the execution path would
have been

select /*+ USE_HASH (bookshelf) */
BOOKSHELF_AUTHOR.AuthorName

from BOOKSHELF, BOOKSHELF_AUTHOR
where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title;

Execution Plan
--

0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=6 Card=37 Bytes=19
24)

1 0 HASH JOIN (Cost=6 Card=37 Bytes=1924)
2 1 INDEX (FULL SCAN) OF 'SYS_C004834' (INDEX (UNIQUE)) (Cos

t=2 Card=31 Bytes=558)
3 1 TABLE ACCESS (FULL) OF 'BOOKSHELF_AUTHOR' (TABLE) (Cost=

1 Card=37 Bytes=1258)

The hash join execution path shows that two separate scans are performed. Since the two operations
are listed at the same level of indentation, the BOOKSHELF table’s primary key index is scanned
first (since it has the lower operation number).

Using explain plan
You can use the explain plan command to generate the execution path for a query without first
running the query. To use the explain plan command, you must first create a PLAN_TABLE table
in your schema (see the previous instructions on creating the table). To determine the execution
path of a query, prefix the query with the following SQL:

explain plan
for

An example of the execution of the explain plan command is shown in the following listing:

explain plan
for
select /*+ USE_HASH (bookshelf) */

BOOKSHELF_AUTHOR.AuthorName
from BOOKSHELF, BOOKSHELF_AUTHOR

where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When the explain plan command is executed, records will be inserted into PLAN_TABLE. You
can query PLAN_TABLE directly or you can use the DBMS_XPLAN package to format the results
for you. The use of the DBMS_XPLAN package is shown in the following listing:

select * from table(DBMS_XPLAN.Display);

The result is a formatted explain plan listing:

PLAN_TABLE_OUTPUT
--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		37	1924	4 (25)	00:00:01
* 1	HASH JOIN		37	1924	4 (25)	00:00:01
2	INDEX FULL SCAN	SYS_C004834	32	608	1 (100)	00:00:01
3	TABLE ACCESS FULL	BOOKSHELF_AUTHOR	37	1258	4 (25)	00:00:01

Predicate Information (identified by operation id):

1 - access("BOOKSHELF"."TITLE"="BOOKSHELF_AUTHOR"."TITLE")

The output includes the Cost column, which displays the relative “cost” of each step and its
child steps. It also includes the ID values, indenting to show the relationships between steps, and
an additional section listing the limiting conditions applied at each step.

When tuning a query, you should watch for steps that scan many rows but only return a small
number of rows. For example, you should avoid performing a full table scan on a multimillion row
table in order to return three rows. You can use the explain plan output to identify those steps that
deal with the greatest number of rows.

Major Operations Within Explain Plans
As illustrated in the preceding listings, the explain plan for a query provides insight into the methods
Oracle uses to retrieve and process rows. In the following sections you will see descriptions of the
most commonly used operations.

TABLE ACCESS FULL
A full table scan sequentially reads each row of a table. The optimizer calls the operation used
during a full table scan a TABLE ACCESS FULL. To optimize the performance of a full table scan,
Oracle reads multiple blocks during each database read.

A full table scan may be used whenever there is no where clause on a query. For example,
the following query selects all of the rows from the BOOKSHELF table:

select *
from BOOKSHELF;

To resolve the preceding query, Oracle will perform a full table scan of the BOOKSHELF table.
If the BOOKSHELF table is small, a full table scan of BOOKSHELF may be fairly quick, incurring
little performance cost. However, as BOOKSHELF grows in size, the cost of performing a full table

808 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:808

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:809

scan grows. If you have multiple users performing full table scans of BOOKSHELF, then the cost
associated with the full table scans grows even faster.

With proper planning, full table scans need not be performance problems. You should work
with your database administrators to make sure the database has been configured to take advantage
of features such as Parallel Query and multiblock reads. Unless you have properly configured your
environment for full table scans, you should carefully monitor their use.

NOTE
Depending on the data being selected, the optimizer may choose
to use a full scan of an index in place of a full table scan.

TABLE ACCESS BY INDEX ROWID
To improve the performance of table accesses, you can use Oracle operations that access rows by
their ROWID values. The ROWID records the physical location where the row is stored. Oracle
uses indexes to correlate data values with ROWID values—and thus with physical locations of the
data. Given the ROWID of a row, Oracle can use the TABLE ACCESS BY INDEX ROWID operation
to retrieve the row.

When you know the ROWID, you know exactly where the row is physically located. You can
use indexes to access the ROWID information, as described in the next major section, “Operations
That Use Indexes.” Because indexes provide quick access to ROWID values, they help to improve
the performance of queries that make use of indexed columns.

Related Hints
Within a query, you can specify hints that direct the CBO in its processing of the query. To specify
a hint, use the syntax shown in the following example. Immediately after the select keyword, enter
the following string:

/*+

Next, add the hint, such as

FULL(bookshelf)

Close the hint with the following string:

*/

Hints use Oracle’s syntax for comments within queries, with the addition of the + sign at the
start of the hint. Throughout this chapter, the hints relevant to each operation will be described.
For table accesses, the FULL hint tells Oracle to perform a full table scan (the TABLE ACCESS FULL
operation) on the listed table, as shown in the following listing:

select /*+ FULL(bookshelf) */ *
from BOOKSHELF
where Title like 'T%';

If you did not use the FULL hint, Oracle would normally plan to use the primary key index on the
Title column to resolve this query. Since the table is presently small, the full table scan is not costly.
As the table grows, you would probably favor the use of a ROWID-based access for this query.

Chapter 43: The Hitchhiker’s Guide to Tuning Applications and SQL 809

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Operations That Use Indexes
Within Oracle are two major types of indexes: unique indexes, in which each row of the indexed
table contains a unique value for the indexed column(s), and nonunique indexes, in which the rows’
indexed values can repeat. The operations used to read data from the indexes depend on the type
of index in use and the way in which you write the query that accesses the index.

Consider the BOOKSHELF table:

create table BOOKSHELF
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK foreign key (CategoryName)
references CATEGORY(CategoryName));

The Title column is the primary key for the BOOKSHELF table—that is, it uniquely identifies each
row, and each attribute is dependent on the Title value.

Whenever a PRIMARY KEY or UNIQUE constraint is created, Oracle creates a unique index
to enforce uniqueness of the values in the column. As defined by the create table command, a
PRIMARY KEY constraint will be created on the BOOKSHELF table. The index that supports
the primary key will be given a system-generated name, since the constraint was not explicitly
named.

You can create indexes on other columns of the BOOKSHELF table manually. For example, you
could create a nonunique index on the CategoryName column via the create index command:

create index I_BOOKSHELF_CATEGORY
on BOOKSHELF(CategoryName)

tablespace INDEXES
compute statistics;

The BOOKSHELF table now has two indexes on it: a unique index on the Title column, and a
nonunique index on the CategoryName column. One or more of the indexes could be used during
the resolution of a query, depending on how the query is written and executed. As part of the index
creation, its statistics were gathered via the compute statistics clause. Since the table is already
populated with rows, you do not need to execute a separate command to analyze the index.

INDEX UNIQUE SCAN
To use an index during a query, your query must be written to allow the use of an index. In most
cases, you allow the optimizer to use an index via the where clause of the query. For example, the
following query could use the unique index on the Title column:

select *
from BOOKSHELF
where Title = 'INNUMERACY';

Internally, the execution of the preceding query will be divided into two steps. First, the Title
column index will be accessed via an INDEX UNIQUE SCAN operation. The ROWID value that

810 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:810

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 43: The Hitchhiker’s Guide to Tuning Applications and SQL 811

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:811

matches the title ‘INNUMERACY’ will be returned from the index; that ROWID value will then be
used to query BOOKSHELF via a TABLE ACCESS BY INDEX ROWID operation.

If all of the columns selected by the query had been contained within the index, then Oracle
would not have needed to use the TABLE ACCESS BY INDEX ROWID operation; since the data would
be in the index, the index would be all that is needed to satisfy the query. Because the query selected
all columns from the BOOKSHELF table, and the index did not contain all of the columns of the
BOOKSHELF table, the TABLE ACCESS BY INDEX ROWID operation was necessary.

INDEX RANGE SCAN
If you query the database based on a range of values, or if you query using a nonunique index, then
an INDEX RANGE SCAN operation is used to query the index.

Consider the BOOKSHELF table again, with a unique index on its Title column. A query of
the form

select Title
from BOOKSHELF
where Title like 'M%';

would return all Title values beginning with ‘M’. Since the where clause uses the Title column, the
primary key index on the Title column can be used while resolving the query. However, a
unique value is not specified in the where clause; a range of values is specified. Therefore, the unique
primary key index will be accessed via an INDEX RANGE SCAN operation. Because INDEX RANGE
SCAN operations require reading multiple values from the index, they are less efficient than INDEX
UNIQUE SCAN operations.

In the preceding example, only the Title column was selected by the query. Since the values for
the Title column are stored in the primary key index—which is being scanned—there is no need
for the database to access the BOOKSHELF table directly during the query execution. The INDEX
RANGE SCAN of the primary key index is the only operation required to resolve the query.

The CategoryName column of the BOOKSHELF table has a nonunique index on its values.
If you specify a limiting condition for CategoryName values in your query’s where clause, an INDEX
RANGE SCAN of the CategoryName index may be performed. Since the BOOKSHELF$CATEGORY
index is a nonunique index, the database cannot perform an INDEX UNIQUE SCAN on
BOOKSHELF$CATEGORY, even if CategoryName is equated to a single value in your query.

When Indexes Are Used
Since indexes have a great impact on the performance of queries, you should be aware of the
conditions under which an index will be used to resolve a query. The following sections describe
the conditions that can cause an index to be used while resolving a query.

If You Set an Indexed Column Equal to a Value
In the BOOKSHELF table, the CategoryName column has a nonunique index named
BOOKSHELF$CATEGORY. A query that compares the CategoryName column to a value will
be able to use the BOOKSHELF$CATEGORY index.

The following query compares the CategoryName column to the value ‘ADULTNF’:

select Title
from BOOKSHELF
where CategoryName = 'ADULTNF';

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Since the BOOKSHELF$CATEGORY index is a nonunique index, this query may return multiple
rows, and an INDEX RANGE SCAN operation may be used when reading data from it. Depending
on the table’s statistics, Oracle may choose to perform a full table scan instead.

If it uses the index, the execution of the preceding query may include two operations: an INDEX
RANGE SCAN of BOOKSHELF$CATEGORY (to get the ROWID values for all of the rows with
‘ADULTNF’ values in the CategoryName column), followed by a TABLE ACCESS BY INDEX ROWID
of the BOOKSHELF table (to retrieve the Title column values).

If a column has a unique index created on it, and the column is compared to a value with an
= sign, then an INDEX UNIQUE SCAN will be used instead of an INDEX RANGE SCAN.

If You Specify a Range of Values for an Indexed Column
You do not need to specify explicit values in order for an index to be used. The INDEX RANGE
SCAN operation can scan an index for ranges of values. In the following query, the Title column
of the BOOKSHELF table is queried for a range of values (those that start with M):

select Title
from BOOKSHELF
where Title like 'M%';

A range scan can also be performed when using the > or < operators:

select Title
from BOOKSHELF
where Title > 'M';

When specifying a range of values for a column, an index will not be used to resolve the query
if the first character specified is a wildcard. The following query will not perform an INDEX RANGE
SCAN on the available indexes:

select Publisher
from BOOKSHELF
where Title like '%M%';

Since the first character of the string used for value comparisons is a wildcard, the index cannot
be used to find the associated data quickly. Therefore, a full table scan (TABLE ACCESS FULL
operation) will be performed instead. Depending on the statistics for the table and the index, Oracle
may choose to perform a full scan of the index instead. In this example, if the selected column is
the Title column, the optimizer may choose to perform a full scan of the primary key index rather
than a full scan of the BOOKSHELF table.

If No Functions Are Performed on the Column in the where Clause
Consider the following query, which will use the BOOKSHELF$CATEGORY index:

select COUNT(*)
from BOOKSHELF
where CategoryName = 'ADULTNF';

812 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:812

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

What if you did not know whether the values in the CategoryName column were stored as uppercase,
mixed case, or lowercase values? In that event, you may write the query as follows:

select COUNT(*)
from BOOKSHELF
where UPPER(CategoryName) = 'ADULTNF';

The UPPER function changes the Manager values to uppercase before comparing them to the
value ‘ADULTNF’. However, using the function on the column may prevent the optimizer from
using an index on that column. The preceding query (using the UPPER function) will perform a
TABLE ACCESS FULL of the BOOKSHELF table unless you have created a function-based index
on UPPER(CategoryName); see Chapter 17 for details on function-based indexes.

If you concatenate two columns together or a string to a column, then indexes on those columns
will not be used. The index stores the real value for the column, and any change to that value will
prevent the optimizer from using the index.

If No IS NULL or IS NOT NULL Checks Are Used for the Indexed Column
NULL values are not stored in indexes. Therefore, the following query will not use an index; there
is no way the index could help to resolve the query:

select Title
from BOOKSHELF
where CategoryName is null;

Since CategoryName is the only column with a limiting condition in the query, and the limiting
condition is a NULL check, the BOOKSHELF$CATEGORY index will not be used and a TABLE
ACCESS FULL operation will be used to resolve the query.

What if an IS NOT NULL check is performed on the column? All of the non-NULL values for
the column are stored in the index; however, the index search would not be efficient. To resolve the
query, the optimizer would need to read every value from the index and access the table for each
row returned from the index. In most cases, it would be more efficient to perform a full table scan
than to perform an index scan (with associated TABLE ACCESS BY INDEX ROWID operations) for
all of the values returned from the index. Therefore, the following query may not use an index:

select Title
from BOOKSHELF
where CategoryName is not null;

If the selected columns are in an index, the optimizer may choose to perform a full index scan
in place of the full table scan.

If Equivalence Conditions Are Used
In the examples in the prior sections, the Title value was compared to a value with an = sign,
as in this query:

select *
from BOOKSHELF
where Title = 'INNUMERACY';

Chapter 43: The Hitchhiker’s Guide to Tuning Applications and SQL 813

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:813

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

What if you wanted to select all of the records that did not have a Title of ‘INNUMERACY’?
The = would be replaced with !=, and the query would now be

select *
from BOOKSHELF
where Title != 'INNUMERACY';

When resolving the revised query, the optimizer may not use an index. Indexes are used when
values are compared exactly to another value—when the limiting conditions are equalities, not
inequalities. The optimizer would only choose an index in this example if it decided the full index
scan (plus the TABLE ACCESS BY INDEX ROWID operations to get all the columns) would be
faster than a full table scan.

Another example of an inequality is the not in clause, when used with a subquery. The following
query selects values from the BOOKSHELF table for books that aren’t written by Stephen Jay Gould:

select *
from BOOKSHELF
where Title NOT IN

(select Title
from BOOKSHELF_AUTHOR

where AuthorName = 'STEPHEN JAY GOULD');

In some cases, the query in the preceding listing would not be able to use an index on the Title
column of the BOOKSHELF table, since it is not set equal to any value. Instead, the BOOKSHELF.Title
value is used with a not in clause to eliminate the rows that match those returned by the subquery.
To use an index, you should set the indexed column equal to a value. In many cases, Oracle will
internally rewrite the not in as a not exists clause, allowing the query to use an index. The following
query, which uses an in clause, could use an index on the BOOKSHELF.Title column or could
perform a nonindexed join between the tables; the optimizer will choose the path with the lowest
cost based on the available statistics:

select *
from BOOKSHELF
where Title IN

(select Title
from BOOKSHELF_AUTHOR

where AuthorName = 'STEPHEN JAY GOULD');

If the Leading Column of a Multicolumn Index Is Set Equal to a Value
An index can be created on a single column or on multiple columns. If the index is created on
multiple columns, the index will be used if the leading column of the index is used in a limiting
condition of the query.

If your query specifies values for only the nonleading columns of the index, the index can be
used via the index skip-scan feature introduced in Oracle9i. Skip-scan index access enables the
optimizer to potentially use a concatenated index even if its leading column is not listed in the where
clause. You may need to use the INDEX hint (described in the next section) to tell the optimizer to
use the index for a skip-scan access. As of Oracle Database 10g, you can use the INDEX_SS hint
to suggest a skip-scan index access.

814 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:814

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If the MAX or MIN Function Is Used
If you select the MAX or MIN value of an indexed column, the optimizer may use the index
to quickly find the maximum or minimum value for the column.

If the Index Is Selective
All of the previous rules for determining whether an index will be used consider the syntax of the
query being performed and the structure of the index available. The optimizer can use the selectivity
of the index to judge whether using the index will lower the cost of executing the query.

In a highly selective index, a small number of records are associated with each distinct column
value. For example, if there are 100 records in a table and 80 distinct values for a column in that
table, the selectivity of an index on that column is 80 / 100 = 0.80. The higher the selectivity, the
fewer the number of rows returned for each distinct value in the column.

The number of rows returned per distinct value is important during range scans. If an index has
a low selectivity, then the many INDEX RANGE SCAN operations and TABLE ACCESS BY INDEX
ROWID operations used to retrieve the data may involve more work than a TABLE ACCESS FULL
of the table.

The selectivity of an index is not considered by the optimizer unless you have analyzed the
index. The optimizer can use histograms to make judgments about the distribution of data within
a table. For example, if the data values are heavily skewed so that most of the values are in a very
small data range, the optimizer may avoid using the index for values in that range while using the
index for values outside the range.

Related Hints
Several hints are available to direct the optimizer in its use of indexes. The INDEX hint is the most
commonly used index-related hint. The INDEX hint tells the optimizer to use an index-based scan
on the specified table. You do not need to mention the index name when using the INDEX hint,
although you can list specific indexes if you choose.

For example, the following query uses the INDEX hint to suggest the use of an index on the
BOOKSHELF table during the resolution of the query:

select /*+ index(bookshelf bookshelf$category) */ Title
from BOOKSHELF
where CategoryName = 'ADULTNF';

According to the rules provided earlier in this section, the preceding query should use the
index without the hint being needed. However, if the index is nonselective or the table is small,
the optimizer may choose to ignore the index. If you know that the index is selective for the data
values given, you can use the INDEX hint to force an index-based data access path to be used.

In the hint syntax, name the table (or its alias, if you give the table an alias) and, optionally,
the name of the suggested index. The optimizer may choose to disregard any hints you provide.

If you do not list a specific index in the INDEX hint, and multiple indexes are available for the
table, the optimizer evaluates the available indexes and chooses the index whose scan is likely to
have the lowest cost. The optimizer could also choose to scan several indexes and merge them via
the AND-EQUAL operation described in the previous section.

A second hint, INDEX_ASC, functions the same as the INDEX hint: It suggests an ascending
index scan for resolving queries against specific tables. A third index-based hint, INDEX_DESC,
tells the optimizer to scan the index in descending order (from its highest value to its lowest).

Chapter 43: The Hitchhiker’s Guide to Tuning Applications and SQL 815

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:815

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

816 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:816

To suggest an index fast full scan, use the INDEX_FFS hint. The ROWID hint is similar to the INDEX
hint, suggesting the use of the TABLE ACCESS BY INDEX ROWID method for the specified table.
The AND_EQUAL hint suggests the optimizer merge the results of multiple index scans.

Additional Tuning Issues for Indexes
When you’re creating indexes on a table, two issues commonly arise: Should you use multiple
indexes or a single concatenated index, and if you use a concatenated index, which column should
be the leading column of the index?

In general, it is faster for the optimizer to scan a single concatenated index than to scan and
merge two separate indexes. The more rows returned from the scan, the more likely the concatenated
index scan will outperform the merge of the two index scans. As you add more columns to the
concatenated index, it becomes less efficient for range scans.

For the concatenated index, which column should be the leading column of the index? The
leading column should be very frequently used as a limiting condition against the table, and it
should be highly selective. In a concatenated index, the optimizer will base its estimates of the
index’s selectivity (and thus its likelihood of being used) on the selectivity of the leading column
of the index. Of these two criteria—being used in limiting conditions and being the most selective
column—the first is more important.

A highly selective index based on a column that is never used in limiting conditions will never
be used. A poorly selective index on a column that is frequently used in limiting conditions will
not benefit your performance greatly. If you cannot achieve the goal of creating an index that is
both highly selective and frequently used, then you should consider creating separate indexes for
the columns to be indexed.

Many applications emphasize online transaction processing over batch processing; there may
be many concurrent online users but a small number of concurrent batch users. In general, index-
based scans allow online users to access data more quickly than if a full table scan had been
performed. When creating your application, you should be aware of the kinds of queries executed
within the application and the limiting conditions in those queries. If you are familiar with the
queries executed against the database, you may be able to index the tables so that the online users
can quickly retrieve the data they need. When the database performance directly impacts the online
business process, the application should perform as few database accesses as possible.

Operations That Manipulate Data Sets
Once the data has been returned from the table or index, it can be manipulated. You can group
the records, sort them, count them, lock them, or merge the results of the query with the results
of other queries (via the union, minus, and intersect operators). In the following sections, you will
see how the data manipulation operations are used.

Most of the operations that manipulate sets of records do not return records to the users until
the entire operation is completed. For example, sorting records while eliminating duplicates (known
as a SORT UNIQUE NOSORT operation) cannot return records to the user until all of the records
have been evaluated for uniqueness. On the other hand, index scan operations and table access
operations can return records to the user as soon as a record is found.

When an INDEX RANGE SCAN operation is performed, the first row returned from the query
passes the criteria of the limiting conditions set by the query—there is no need to evaluate the next
record returned prior to displaying the first record. If a set operation—such as a sorting operation—
is performed, then the records will not be immediately displayed. During set operations, the user
will have to wait for all rows to be processed by the operation. Therefore, you should limit the

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

number of set operations performed by queries used by online users (to limit the perceived response
time of the application). Sorting and grouping operations are most common in large reports and
batch transactions.

Ordering Rows
Three of Oracle’s internal operations sort rows without grouping the rows. The first is the SORT
ORDER BY operation, which is used when an order by clause is used in a query. For example,
the BOOKSHELF table is queried and sorted by Publisher:

select Title from BOOKSHELF
order by Publisher;

When the preceding query is executed, the optimizer will retrieve the data from the BOOKSHELF
table via a TABLE ACCESS FULL operation (since there are no limiting conditions for the query,
all rows will be returned). The retrieved records will not be immediately displayed to the user; a
SORT ORDER BY operation will sort the records before the user sees any results.

Occasionally, a sorting operation may be required to eliminate duplicates as it sorts records.
For example, what if you only want to see the distinct Publisher values in the BOOKSHELF table?
The query would be as follows:

select DISTINCT Publisher from BOOKSHELF;

As with the prior query, this query has no limiting conditions, so a TABLE ACCESS FULL operation
will be used to retrieve the records from the BOOKSHELF table. However, the distinct keyword
tells the optimizer to only return the distinct values for the Publisher column.

To resolve the query, the optimizer takes the records returned by the TABLE ACCESS FULL
operation and sorts them via a SORT UNIQUE NOSORT operation. No records will be displayed
to the user until all of the records have been processed.

In addition to being used by the distinct keyword, the SORT UNIQUE NOSORT operation is
invoked when the minus, intersect, and union (but not union all) functions are used.

A third sorting operation, SORT JOIN, is always used as part of a MERGE JOIN operation and
is never used on its own. The implications of SORT JOIN on the performance of joins are described
in “Operations That Perform Joins,” later in this chapter.

Grouping Rows
Two of Oracle’s internal operations sort rows while grouping like records together. The two
operations—SORT AGGREGATE and SORT GROUP BY—are used in conjunction with grouping
functions (such as MIN, MAX, and COUNT). The syntax of the query determines which operation
is used.

In the following query, the maximum Publisher value, alphabetically, is selected from the
BOOKSHELF table:

select MAX(Publisher)
from BOOKSHELF;

To resolve the query, the optimizer will perform two separate operations. First, a TABLE ACCESS
FULL operation will select the Publisher values from the table. Second, the rows will be analyzed
via a SORT AGGREGATE operation, which will return the maximum Publisher value to the user.

Chapter 43: The Hitchhiker’s Guide to Tuning Applications and SQL 817

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:817

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

818 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:818

If the Publisher column were indexed, the index could be used to resolve queries of the maximum
or minimum value for the index (as described in “Operations That Use Indexes,” earlier in this
chapter). Since the Publisher column is not indexed, a sorting operation is required. The maximum
Publisher value will not be returned by this query until all of the records have been read and the
SORT AGGREGATE operation has completed.

The SORT AGGREGATE operation was used in the preceding example because there is no
group by clause in the query. Queries that use the group by clause use an internal operation named
SORT GROUP BY.

What if you want to know the number of titles from each publisher? The following query selects
the count of each Publisher value from the BOOKSHELF table using a group by clause:

select Publisher, COUNT(*)
from BOOKSHELF
group by Publisher;

This query returns one record for each distinct Publisher value. For each Publisher value, the number
of its occurrences in the BOOKSHELF table will be calculated and displayed in the COUNT(*)
column.

To resolve this query, Oracle will first perform a full table scan (there are no limiting conditions
for the query). Since a group by clause is used, the rows returned from the TABLE ACCESS FULL
operation will be processed by a SORT GROUP BY operation. Once all the rows have been sorted
into groups and the count for each group has been calculated, the records will be returned to the
user. As with the other sorting operations, no records are returned to the user until all of the records
have been processed.

The operations to this point have involved simple examples—full table scans, index scans,
and sorting operations. Most queries that access a single table use the operations described in the
previous sections. When tuning a query for an online user, avoid using the sorting and grouping
operations that force users to wait for records to be processed. When possible, write queries that
allow application users to receive records quickly as the query is resolved. The fewer sorting and
grouping operations you perform, the faster the first record will be returned to the user. In a batch
transaction, the performance of the query is measured by its overall time to complete, not the time
to return the first row. As a result, batch transactions may use sorting and grouping operations
without impacting the perceived performance of the application.

If your application does not require all of the rows to be sorted prior to presenting query output,
consider using the FIRST_ROWS hint. FIRST_ROWS tells the optimizer to favor execution paths
that do not perform set operations.

UNION, MINUS, and INTERSECT
The union, minus, and intersect clauses allow the results of multiple queries to be processed and
compared. Each of the functions has an associated operation—the names of the operations are
UNION, MINUS, and INTERSECTION.

The following query selects all of the Title values from the BOOKSHELF table and from the
BOOK_ORDER table:

select Title
from BOOKSHELF
UNION

select Title
from BOOK_ORDER;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When the preceding query is executed, the optimizer will execute each of the queries separately,
and then combine the results. The first query is

select Title
from BOOKSHELF

There are no limiting conditions in the query, and the Title column is indexed, so the primary key
index on the BOOKSHELF table will be scanned.

The second query is

select Title
from BOOK_ORDER

There are no limiting conditions in the query, and the Title column is indexed, so the primary key
index on the BOOK_ORDER table will be scanned.

Since the query performs a union of the results of the two queries, the two result sets will
then be merged via a UNION-ALL operation. Using the union operator forces Oracle to eliminate
duplicate records, so the result set is processed by a SORT UNIQUE NOSORT operation before the
records are returned to the user. If the query had used a union all clause in place of union, the SORT
UNIQUE NOSORT operation would not have been necessary. The query would be

select Title
from BOOKSHELF
UNION ALL

select Title
from BOOK_ORDER;

When processing the revised query, the optimizer would perform the scans required by the
two queries, followed by a UNION-ALL operation. No SORT UNIQUE NOSORT operation would
be required, since a union all clause does not eliminate duplicate records.

When processing the union query, the optimizer addresses each of the unioned queries
separately. Although the examples shown in the preceding listings all involved simple queries with
full table scans, the unioned queries can be very complex, with correspondingly complex execution
paths. The results are not returned to the user until all of the records have been processed.

NOTE
UNION ALL is a row operation. UNION, which includes
a SORT UNIQUE NOSORT, is a set operation.

When a minus clause is used, the query is processed in a manner very similar to the execution
path used for the union example. In the following query, the Title values from the BOOKSHELF
and BOOK_ORDER tables are compared. If a Title value exists in BOOK_ORDER but does not
exist in BOOKSHELF, then that value will be returned by the query. In other words, we want to
see all of the Titles on order that we don’t already have.

select Title
from BOOK_ORDER

Chapter 43: The Hitchhiker’s Guide to Tuning Applications and SQL 819

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:819

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

820 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:820

MINUS
select Title
from BOOKSHELF;

When the query is executed, the two minused queries will be executed separately. The first
of the queries,

select Title
from BOOK_ORDER

requires an index scan based on the BOOK_ORDER primary key. The second query,

select Title
from BOOKSHELF

requires a full index scan of the BOOKSHELF primary key index.
To execute the minus clause, each of the sets of records returned by the full table scans is sorted

via a SORT UNIQUE NOSORT operation (in which rows are sorted and duplicates are eliminated).
The sorted sets of rows are then processed by the MINUS operation. The MINUS operation is not
performed until each set of records returned by the queries is sorted. Neither of the sorting operations
returns records until the sorting operation completes, so the MINUS operation cannot begin until
both of the SORT UNIQUE NOSORT operations have completed. Like the union query example,
the example query shown for the MINUS operation will perform poorly for online users who
measure performance by the speed with which the first row is returned by the query.

The intersect clause compares the results of two queries and determines the rows they have in
common. The following query determines the Title values that are found in both the BOOKSHELF
and BOOK_ORDER tables:

select Title
from BOOK_ORDER

INTERSECT
select Title
from BOOKSHELF;

To process the INTERSECT query, the optimizer starts by evaluating each of the queries
separately. The first query,

select Title
from BOOK_ORDER

requires a full scan against the BOOK_ORDER primary key index. The second query,

select Title
from BOOKSHELF

requires a full scan of the BOOKSHELF primary key index. The results of the two table scans
are each processed separately by SORT UNIQUE NOSORT operations. That is, the rows from
BOOK_ORDER are sorted, and the rows from BOOKSHELF are sorted. The results of the two sorts
are compared by the INTERSECTION operation, and the Title values returned from both sorts are
returned by the intersect clause.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 43: The Hitchhiker’s Guide to Tuning Applications and SQL 821

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:821

The execution path of a query that uses an intersect clause requires SORT UNIQUE NOSORT
operations to be used. Since SORT UNIQUE NOSORT operations do not return records to the user
until the entire set of rows has been sorted, queries using the intersect clause will have to wait
for both sorts to complete before the INTERSECTION operation can be performed. Because of the
reliance on sort operations, queries using the intersect clause will not return any records to the user
until the sorts complete.

The union, minus, and intersect clauses all involve processing sets of rows prior to returning
any rows to the user. Online users of an application may perceive that queries using these functions
perform poorly, even if the table accesses involved are tuned; the reliance on sorting operations
will affect the speed with which the first row is returned to the user.

Selecting from Views
When you create a view, Oracle stores the query that the view is based on. For example, the
following view is based on the BOOKSHELF table:

create or replace view ADULTFIC as
select Title, Publisher
from BOOKSHELF
where CategoryName = 'ADULTFIC';

When you select from the ADULTFIC view, the optimizer will take the criteria from your
query and combine them with the query text of the view. If you specify limiting conditions in
your query of the view, those limiting conditions will—if possible—be applied to the view’s query
text. For example, if you execute the query

select Title, Publisher
from ADULTFIC
where Title like 'T%';

the optimizer will combine your limiting condition

where Title like 'T%';

with the view’s query text, and it will execute the query

select Title, Publisher
from BOOKSHELF
where CategoryName = 'ADULTFIC'
and Title like 'T%';

In this example, the view will have no impact on the performance of the query. When the
view’s text is merged with your query’s limiting conditions, the options available to the optimizer
increase; it can choose among more indexes and more data access paths.

The way that a view is processed depends on the query on which the view is based. If the
view’s query text cannot be merged with the query that uses the view, the view will be resolved
first before the rest of the conditions are applied. Consider the following view:

create or replace view PUBLISHER_COUNT as
select Publisher, COUNT(*) Count_Pub

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

822 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:822

from BOOKSHELF
group by Publisher;

The PUBLISHER_COUNT view will display one row for each distinct Publisher value in the
BOOKSHELF table along with the number of records that have that value. The Count_Pub column
of the PUBLISHER_COUNT view records the count per distinct Publisher value.

How will the optimizer process the following query of the PUBLISHER_COUNT view?

select *
from PUBLISHER_COUNT
where Count_Pub > 1;

The query refers to the view’s Count_Pub column. However, the query’s where clause cannot be
combined with the view’s query text, since Count_Pub is created via a grouping operation. The
where clause cannot be applied until after the result set from the PUBLISHER_COUNT view has
been completely resolved.

Views that contain grouping operations are resolved before the rest of the query’s criteria are
applied. Like the sorting operations, views with grouping operations do not return any records
until the entire result set has been processed. If the view does not contain grouping operations, the
query text may be merged with the limiting conditions of the query that selects from the view. As
a result, views with grouping operations limit the number of choices available to the optimizer and
do not return records until all of the rows are processed—and such views may perform poorly when
queried by online users.

When the query is processed, the optimizer will first resolve the view. Since the view’s query is

select Publisher, COUNT(*) Count_Pub
from BOOKSHELF
group by Publisher;

the optimizer will read the data from the BOOKSHELF table via a TABLE ACCESS FULL operation.
Since a group by clause is used, the rows from the TABLE ACCESS FULL operation will be processed
by a SORT GROUP BY operation. An additional operation—FILTER—will then process the data.
The FILTER operation is used to eliminate rows based on the criteria in the query:

where Count_Pub > 1

If you use a view that has a group by clause, rows will not be returned from the view until all
of the rows have been processed by the view. As a result, it may take a long time for the first row
to be returned by the query, and the perceived performance of the view by online users may be
unacceptable. If you can remove the sorting and grouping operations from your views, you increase
the likelihood that the view text can be merged with the text of the query that calls the view—and
as a result, the performance may improve (although the query may use other set operations that
negatively impact the performance).

When the query text is merged with the view text, the options available to the optimizer increase.
For example, the combination of the query’s limiting conditions with the view’s limiting conditions
may allow a previously unusable index to be used during the execution of the query.

The automatic merging of the query text and view text can be disabled via the NO_MERGE
hint. The PUSH_PRED hint forces a join predicate into a view; PUSH_SUBQ causes nonmerged
subqueries to be evaluated as early as possible in the execution path.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 43: The Hitchhiker’s Guide to Tuning Applications and SQL 823

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:823

Selecting from Subqueries
Whenever possible, the optimizer will combine the text from a subquery with the rest of the query.
For example, consider the following query:

select Title
from BOOKSHELF
where Title in

(select Title from BOOK_ORDER);

The optimizer, in evaluating the preceding query, will determine that the query is functionally
equivalent to the following join of the BOOKSHELF and BOOK_ORDER tables:

select BOOKSHELF.Title
from BOOKSHELF, BOOK_ORDER
where BOOKSHELF.Title = BOOK_ORDER.Title;

With the query now written as a join, the optimizer has a number of operations available
to process the data (as described in the following section, “Operations That Perform Joins.”

If the subquery cannot be resolved as a join, it will be resolved before the rest of the query
text is processed against the data—similar in function to the manner in which the FILTER operation
is used for views. As a matter of fact, the FILTER operation is used for subqueries if the subqueries
cannot be merged with the rest of the query!

Subqueries that rely on grouping operations have the same tuning issues as views that contain
grouping operations. The rows from such subqueries must be fully processed before the rest of the
query’s limiting conditions can be applied.

Operations That Perform Joins
Often, a single query will need to select columns from multiple tables. To select the data from
multiple tables, the tables are joined in the SQL statement—the tables are listed in the from clause,
and the join conditions are listed in the where clause. In the following example, the BOOKSHELF and
BOOK_ORDER tables are joined, based on their common Title column values:

select BOOKSHELF.Title
from BOOKSHELF, BOOK_ORDER
where BOOKSHELF.Title = BOOK_ORDER.Title;

which can be rewritten as:

select Title
from BOOKSHELF inner join BOOK_ORDER
using (Title);

or:

select Title
from BOOKSHELF natural inner join BOOK_ORDER;

The join conditions can function as limiting conditions for the join. Since the BOOKSHELF.Title
column is equated to a value in the where clause in the first listing, the optimizer may be able to use

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

824 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:824

an index on the BOOKSHELF.Title column during the execution of the query. If an index is available
on the BOOK_ORDER.Title column, that index would be considered for use by the optimizer as well.

Oracle has three main methods for processing joins: MERGE JOIN operations, NESTED LOOPS
operations, and HASH JOIN operations. Based on the conditions in your query, the available indexes,
and the available statistics, the optimizer will choose which join operation to use. Depending on
the nature of your application and queries, you may want to force the optimizer to use a method
different from its first choice of join methods. In the following sections, you will see the characteristics
of the different join methods and the conditions under which each is most useful.

How Oracle Handles Joins of More than Two Tables
If a query joins more than two tables, the optimizer treats the query as a set of multiple joins. For
example, if your query joined three tables, then the optimizer would execute the joins by joining
two of the tables together, and then joining the result set of that join to the third table. The size of
the result set from the initial join impacts the performance of the rest of the joins. If the size of the
result set from the initial join is large, then many rows will be processed by the second join.

If your query joins three tables of varying size—such as a small table named SMALL, a medium-
sized table named MEDIUM, and a large table named LARGE—you need to be aware of the order
in which the tables will be joined. If the join of MEDIUM to LARGE will return many rows, then the
join of the result set of that join with the SMALL table may perform a great deal of work. Alternatively,
if SMALL and MEDIUM were joined first, then the join between the result set of the SMALL-MEDIUM
join and the LARGE table may minimize the amount of work performed by the query.

MERGE JOIN
In a MERGE JOIN operation, the two inputs to the join are processed separately, sorted, and
joined. MERGE JOIN operations are commonly used when there are no indexes available for
the limiting conditions of the query.

In the following query, the BOOKSHELF and BOOKSHELF_AUTHOR tables are joined. If
neither table has an index on its Title column, then there are no indexes that can be used during
the query (since there are no other limiting conditions in the query). The example uses a hint to
force a merge join to be used:

select /*+ USE_MERGE (bookshelf, bookshelf_author)*/
BOOKSHELF_AUTHOR.AuthorName

from BOOKSHELF, BOOKSHELF_AUTHOR
where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title
and BOOKSHELF.Publisher > 'T%';

or

select /*+ USE_MERGE (bookshelf, bookshelf_author)*/
BOOKSHELF_AUTHOR.AuthorName

from BOOKSHELF inner join BOOKSHELF_AUTHOR
on BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title

where BOOKSHELF.Publisher > 'T%';

To resolve the query, the optimizer may choose to perform a MERGE JOIN of the tables. To
perform the MERGE JOIN, each of the tables is read individually (usually by a TABLE ACCESS FULL
operation or a full index scan). The set of rows returned from the table scan of the BOOKSHELF_

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 43: The Hitchhiker’s Guide to Tuning Applications and SQL 825

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:825

AUTHOR table is sorted by a SORT JOIN operation. The set of rows returned from the INDEX FULL
SCAN and TABLE ACCESS BY INDEX ROWID of the BOOKSHELF table is already sorted (in the
index), so no additional SORT JOIN operation is needed for that part of the execution path. The data
from the SORT JOIN operations is then merged via a MERGE JOIN operation.

When a MERGE JOIN operation is used to join two sets of records, each set of records is
processed separately before being joined. The MERGE JOIN operation cannot begin until it has
received data from both of the SORT JOIN operations that provide input to it. The SORT JOIN
operations, in turn, will not provide data to the MERGE JOIN operation until all of the rows have
been sorted. If indexes are used as data sources, the SORT JOIN operations may be bypassed.

If the MERGE JOIN operation has to wait for two separate SORT JOIN operations to complete,
a join that uses the MERGE JOIN operation will typically perform poorly for online users. The
perceived poor performance is due to the delay in returning the first row of the join to the users.
As the tables increase in size, the time required for the sorts to be completed increases dramatically.
If the tables are of greatly unequal size, then the sorting operation performed on the larger table
will negatively impact the performance of the overall query.

Since MERGE JOIN operations involve full scanning and sorting of the tables involved, you
should only use MERGE JOIN operations if both tables are very small or if both tables are very
large. If both tables are very small, then the process of scanning and sorting the tables will complete
quickly. If both tables are very large, then the sorting and scanning operations required by MERGE
JOIN operations can take advantage of Oracle’s parallel options.

Oracle can parallelize operations, allowing multiple processors to participate in the execution
of a single command. Among the operations that can be parallelized are the TABLE ACCESS FULL
and sorting operations. Since a MERGE JOIN uses the TABLE ACCESS FULL and sorting operations,
it can take full advantage of Oracle’s parallel options. Parallelizing queries involving MERGE JOIN
operations frequently improves the performance of the queries (provided there are adequate system
resources available to support the parallel operations).

NESTED LOOPS
NESTED LOOPS operations join two tables via a looping method: The records from one table are
retrieved, and for each record retrieved, an access is performed of the second table. The access of
the second table is performed via an index-based access.

A form of the query from the preceding MERGE JOIN section is shown in the following listing.
A hint is used to recommend an index-based access of the BOOKSHELF table:

select /*+ INDEX(bookshelf) */
BOOKSHELF_AUTHOR.AuthorName

from BOOKSHELF, BOOKSHELF_AUTHOR
where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title;

Since the Title column of the BOOKSHELF table is used as part of the join condition in the
query, the primary key index can resolve the join. When the query is executed, a NESTED LOOPS
operation can be used to execute the join.

To execute a NESTED LOOPS join, the optimizer must first select a driving table for the join,
which is the table that will be read first (usually via a TABLE ACCESS FULL operation, although
index scans are commonly seen). For each record in the driving table, the second table in the
join will be queried. The example query joins BOOKSHELF and BOOKSHELF_AUTHOR, based
on values of the Title column. During the NESTED LOOPS execution, an operation will select all
of the records from the BOOKSHELF_AUTHOR table. The primary key index of the BOOKSHELF

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

826 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:826

table will be probed to determine whether it contains an entry for the value in the current record
from the BOOKSHELF_AUTHOR table. If a match is found, then the Title value will be returned from
the BOOKSHELF primary key index. If other columns were needed from BOOKSHELF, the row would
be selected from the BOOKSHELF table via a TABLE ACCESS BY INDEX ROWID operation.

At least two data access operations are involved in the NESTED LOOPS join: an access of the
driving table and an access, usually index-based, of the driven table. The data access methods most
commonly used—TABLE ACCESS FULL, TABLE ACCESS BY INDEX ROWID, and index scans—
return records to successive operations as soon as a record is found; they do not wait for the whole
set of records to be selected. Because these operations can provide the first matching rows quickly
to users, NESTED LOOPS joins are commonly used for joins that are frequently executed by
online users.

When implementing NESTED LOOPS joins, you need to consider the size of the driving table.
If the driving table is large and is read via a full table scan, then the TABLE ACCESS FULL operation
performed on it may negatively affect the performance of the query. If indexes are available on
both sides of the join, Oracle will select a driving table for the query. The optimizer will check
the statistics for the size of the tables and the selectivity of the indexes and will choose the path
with the lowest overall cost.

When joining three tables together, Oracle performs two separate joins: a join of two tables to
generate a set of records, and then a join between that set of records and the third table. If NESTED
LOOPS joins are used, then the order in which the tables are joined is critical. The output from
the first join generates a set of records, and that set of records is used as the driving table for the
second join.

The size of the set of records returned by the first join impacts the performance of the second
join—and thus may have a significant impact on the performance of the overall query. You should
attempt to join the most selective tables first so that the impact of those joins on future joins will
be negligible. If large tables are joined in the first join of a multijoin query, then the size of the
tables will impact each successive join and will negatively impact the overall performance of the
query. The optimizer should select the proper join path; you can confirm the costs and join path
by generating the explain plan.

NESTED LOOPS joins are useful when the tables in the join are of unequal size—you can use
the smaller table as the driving table and select from the larger table via an index-based access.
The more selective the index is, the faster the query will complete.

HASH JOIN
The optimizer may dynamically choose to perform joins using the HASH JOIN operation in place
of either MERGE JOIN or NESTED LOOPS. The HASH JOIN operation compares two tables in
memory. During a hash join, the first table is scanned and the database applies “hashing” functions
to the data to prepare the table for the join. The values from the second table are then read (typically
via a TABLE ACCESS FULL operation), and the hashing function compares the second table with
the first table. The rows that result in matches are returned to the user.

The optimizer may choose to perform hash joins even if indexes are available. In the sample
query shown in the following listing, the BOOKSHELF and BOOKSHELF_AUTHOR tables are
joined on the Title column:

select /*+ USE_HASH (bookshelf) */
BOOKSHELF_AUTHOR.AuthorName

from BOOKSHELF, BOOKSHELF_AUTHOR
where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 43: The Hitchhiker’s Guide to Tuning Applications and SQL 827

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:827

The BOOKSHELF table has a unique index on its Title column. Since the index is available and
can be used to evaluate the join conditions, the optimizer may choose to perform a NESTED LOOPS
join of the two tables as shown in the previous section. If a hash join is performed, then each table
will be read via a separate operation. The data from the table and index scans will serve as input
to a HASH JOIN operation. The hash join does not rely on operations that process sets of rows.
The operations involved in hash joins return records quickly to users. Hash joins are appropriate
for queries executed by online users if the tables are small and can be scanned quickly.

Processing Outer Joins
When processing an outer join, the optimizer will use one of the three methods described in
the previous sections. For example, if the sample query were performing an outer join between
BOOK_ORDER and CATEGORY (to see which categories had no books on order), a NESTED LOOPS
OUTER operation may be used instead of a NESTED LOOPS operation. In a NESTED LOOPS OUTER
operation, the table that is the “outer” table for the outer join is typically used as the driving table
for the query; as the records of the inner table are scanned for matching records, NULL values are
returned for rows with no matches.

Related Hints
You can use hints to override the optimizer’s selection of a join method. Hints allow you to specify
the type of join method to use or the goal of the join method.

In addition to the hints described in this section, you can use the FULL and INDEX hints,
described earlier, to influence the way in which joins are processed. For example, if you use
a hint to force a NESTED LOOPS join to be used, then you may also use an INDEX hint to specify
which index should be used during the NESTED LOOPS join and which table should be accessed
via a full table scan.

Hints About Goals
You can specify a hint that directs the optimizer to execute a query with a specific goal in mind.
The available goals related to joins are the following:

■ ALL_ROWS Execute the query so that all of the rows are returned as quickly as possible.

■ FIRST_ROWS Execute the query so that the first row will be returned as quickly as
possible.

By default, the optimizer will execute a query using an execution path that is selected to
minimize the total time needed to resolve the query. Thus, the default is to use ALL_ROWS as the
goal. If the optimizer is only concerned about the total time needed to return all rows for the query,
then set-based operations such as sorts and MERGE JOIN can be used. However, the ALL_ROWS
goal may not always be appropriate. For example, online users tend to judge the performance of
a system based on the time it takes for a query to return the first row of data. The users thus have
FIRST_ROWS as their primary goal, with the time it takes to return all of the rows as a secondary goal.

The available hints mimic the goals: the ALL_ROWS hint allows the optimizer to choose from
all available operations to minimize the overall processing time for the query, and the FIRST_ROWS
hint tells the optimizer to select an execution path that minimizes the time required to return the
first row to the user.

If you use the FIRST_ROWS hint, the optimizer will be less likely to use MERGE JOIN and more
likely to use NESTED LOOPS.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

828 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:828

Hints About Methods
In addition to specifying the goals the optimizer should use when evaluating join method alternatives,
you can list the specific operations to use and the tables to use them on. If a query involves only
two tables, you do not need to specify the tables to join when providing a hint for a join method
to use.

The USE_NL hint tells the optimizer to use a NESTED LOOPS operation to join tables. In the
following example, the USE_NL hint is specified for the join query example. Within the hint,
the BOOKSHELF table is listed as the inner table for the join.

select /*+ USE_NL(bookshelf) */
BOOKSHELF_AUTHOR.AuthorName

from BOOKSHELF, BOOKSHELF_AUTHOR
where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title;

If you want all of the joins in a many-table query to use NESTED LOOPS operations, you could
just specify the USE_NL hint with no table references. In general, you should specify table names
whenever you use a hint to specify a join method, because you do not know how the query may
be used in the future. You may not even know how the database objects are currently set up—for
example, one of the objects in your from clause may be a view that has been tuned to use MERGE
JOIN operations.

If you specify a table in a hint, you should refer to the table alias or the unqualified table name.
That is, if your from clause refers to a table as

from FRED.HIS_TABLE, ME.MY_TABLE

then you should not specify a hint such as

/*+ USE_NL(ME.MY_TABLE) */

Instead, you should refer to the table by its name, without the owner:

/*+ USE_NL(my_table) */

If multiple tables have the same name, then you should assign table aliases to the tables and
refer to the aliases in the hint. For example, if you join a table to itself, then the from clause may
include the text shown in the following listing:

from BOOKSHELF B1, BOOKSHELF B2

A hint forcing the BOOKSHELF-BOOKSHELF join to use NESTED LOOPS would be written
to use the table aliases, as shown in the following listing:

/*+ USE_NL(b2) */

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 43: The Hitchhiker’s Guide to Tuning Applications and SQL 829

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:829

The optimizer will ignore any hint that isn’t written with the proper syntax. Any hint with
improper syntax will be treated as a comment (since it is enclosed within the /* and */ characters).

If you are using NESTED LOOPS joins, then you need to be concerned about the order in which
the tables are joined. The ORDERED hint, when used with NESTED LOOPS joins, influences the
order in which tables are joined.

When you use the ORDERED hint, the tables will be joined in the order in which they are listed
in the from clause of the query. If the from clause contains three tables, such as

from BOOK_ORDER, BOOKSHELF, BOOKSHELF_AUTHOR

then the first two tables will be joined by the first join, and the result of that join will be joined
to the third table.

Since the order of joins is critical to the performance of NESTED LOOPS joins, the ORDERED
hint is often used in conjunction with the USE_NL hint. If you use hints to specify the join order,
you need to be certain that the relative distribution of values within the joined tables will not change
dramatically over time; otherwise, the specified join order may cause performance problems in
the future.

You can use the USE_MERGE hint to tell the optimizer to perform a MERGE JOIN between
specified tables. In the following listing, the hint instructs the optimizer to perform a MERGE JOIN
operation between BOOKSHELF and BOOKSHELF_AUTHOR:

select /*+ USE_MERGE (bookshelf, bookshelf_author)*/
BOOKSHELF_AUTHOR.AuthorName

from BOOKSHELF, BOOKSHELF_AUTHOR
where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title
and BOOKSHELF.Publisher > 'T%';

You can use the USE_HASH hint to tell the optimizer to consider using a HASH JOIN method.
If no tables are specified, then the optimizer will select the first table to be scanned into memory
based on the available statistics.

select /*+ USE_HASH (bookshelf) */
BOOKSHELF_AUTHOR.AuthorName

from BOOKSHELF, BOOKSHELF_AUTHOR
where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title;

Additional Tuning Issues
As noted in the discussions of NESTED LOOPS and MERGE JOIN operations, operations differ in the
time they take to return the first row from a query. Since MERGE JOIN relies on set-based operations,
it will not return records to the user until all of the rows have been processed. NESTED LOOPS,
on the other hand, can return rows to the user as soon as rows are available.

Because NESTED LOOPS joins are capable of returning rows to users quickly, they are often
used for queries that are frequently executed by online users. Their efficiency at returning the first

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

row, however, is often impacted by set-based operations applied to the rows that have been selected.
For example, adding an order by clause to a query adds a SORT ORDER BY operation to the end
of the query processing—and no rows will be displayed to the user until all of the rows have been
sorted.

As described in “Operations That Use Indexes,” earlier in this chapter, using functions on a
column prevents the database from using an index on that column during data searches unless
you have created a function-based index.

Some techniques that were used in previous versions of Oracle to disable indexes no longer
are available. For example, some developers would append a null string to each column involved
in a join in an effort to suppress index usage:

select BOOKSHELF_AUTHOR.AuthorName
from BOOKSHELF, BOOKSHELF_AUTHOR
where BOOKSHELF.Title||'' = BOOKSHELF_AUTHOR.Title||'';

In Oracle Database 10g, the optimizer does not allow the null strings to block the index usage—
the query uses the index on the BOOKSHELF.Title column as part of a HASH JOIN execution.

As noted during the discussion of the NESTED LOOPS operation, the order of joins is as
important as the join method selected. If a large or nonselective join is the first join in a series, the
large data set returned will negatively impact the performance of the subsequent joins in the query
as well as the performance of the query as a whole.

Depending on the hints, optimizer goal, and statistics, the optimizer may choose to use a
variety of join methods within the same query. For example, the optimizer may evaluate a three-
table query as a NESTED LOOPS join of two tables, followed by a MERGE JOIN of the NESTED
LOOPS output with the third table. Such combinations of join types are usually found when the
ALL_ROWS optimizer goal is in effect.

To see the order of operations, you can use the set autotrace on command to see the execution
path, as described earlier in this chapter.

Parallelism and Cache Issues
In addition to the operations and hints listed in the previous sections, you can use two other sets of
hints to influence the query processing. The additional hints allow you to control the parallelism
of queries and the caching of data within the data buffer cache.

If your server has multiple processors, and the data being queried is distributed across multiple
devices, then you may be able to improve the processing of your queries by parallelizing the data
access and sorting operations. When a query is parallelized, multiple processes are run in parallel,
each of which accesses or sorts data. A query coordinator process distributes the workload and
assembles the query results for the user.

The degree of parallelism—the number of scanning or sorting processes started for a query—
can be set at the table level (see the create table command in the Alphabetical Reference). The
optimizer will detect the table-level settings for the degree of parallelism and will determine the
number of query server processes to be used during the query. The optimizer will dynamically
check the number of processors and devices involved in the query and will base its parallelism
decisions on the available resources.

You can influence the parallelism of your queries via the PARALLEL hint. In the following
example, a degree of parallelism of 4 is set for a query of the BOOKSHELF table:

830 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:830

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

select /*+ PARALLEL (bookshelf,4) */ *
from BOOKSHELF;

If you are using the Real Application Clusters option, you can specify an “instances” parameter
in the PARALLEL hint. In the following query, the full table scan process will be parallelized, with
a proposed degree of parallelism of 4 across two instances:

select /*+ PARALLEL(bookshelf,4,2) */ *
from BOOKSHELF
order by Publisher;

In the preceding query, a second operation—the SORT ORDER BY operation for the order by
Publisher clause—was added. Because the sorting operation can also be parallelized, the query
may use nine query server processes instead of five (four for the table scan, four for the sort, and
one for the query coordinator). The optimizer will dynamically determine the degree of parallelism
to use based on the table’s settings, the database layout, and the available system resources.

If you want to disable parallelism for a query, you can use the NO_PARALLEL hint (called
NOPARALLEL in versions prior to Oracle Database 10g). The NO_PARALLEL hint may be used
if you want to serially execute a query against a table whose queries are typically executed in a
parallelized fashion.

If a small, frequently accessed table is read via a full table scan, that table’s data can be kept
in the SGA for as long as possible. You can mark the table as belonging to the “Keep” pool, using
the buffer_pool clause of the create table or alter table command. If the table has been designated
for storage in the Keep pool, its blocks in memory are kept apart from the main cache. If the Keep
pool is sized adequately, the blocks will remain in memory until the database is shut down.

If a table is commonly used by many queries or users, and there is no appropriate indexing
scheme available for the query, then you should use the Keep pool to improve the performance
of accesses to that table. This approach is most useful for static tables.

Implementing Stored Outlines
As you migrate from one database to another, the execution paths for your queries may change.
Your execution paths may change for several reasons:

■ You may be using a different optimizer in different databases (cost-based in one, rule-
based in another).

■ You may have enabled different optimizer features in the different databases.

■ The statistics for the queried tables may differ in the databases.

■ The frequency with which statistics are gathered may differ among the databases.

■ The databases may be running different versions of the Oracle kernel.

The effects of these differences on your execution paths can be dramatic and can have a
significant negative impact on your query performance as you migrate or upgrade your application.
To minimize the impact of these differences on your query performance, Oracle introduced a
feature called a stored outline in Oracle8i.

Chapter 43: The Hitchhiker’s Guide to Tuning Applications and SQL 831

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:831

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:52:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

832 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:832

A stored outline stores a set of hints for a query. Those hints will be used every time the query
is executed. Using the stored hints will increase the likelihood that the query will use the same
execution path each time. Hints do not mandate an execution path (they’re hints, not commands)
but do decrease the impact of database moves on your query performance.

To start creating hints for all queries, set the CREATE_STORED_OUTLINES initialization
parameter to TRUE; thereafter, all the outlines will be saved under the DEFAULT category. As an
alternative, you can create custom categories of outlines and use the category name as a value in
the initialization parameter file, as shown in the following listing:

CREATE_STORED_OUTLINES = development

In this example, stored outlines will be stored for queries within the DEVELOPMENT category.
You must have the CREATE ANY OUTLINE system privilege in order to create an outline. Use

the create outline command to create an outline for a query, as shown in the following listing:

create outline REORDERS
for category DEVELOPMENT
on

select BOOKSHELF.Title
from BOOKSHELF, BOOK_ORDER

where BOOKSHELF.Title = BOOK_ORDER.Title;

NOTE
If you do not specify a name for your outline, the outline will be given
a system-generated name.

If you have set CREATE_STORED_OUTLINES to TRUE in your initialization parameter file, the
RDBMS will create stored outlines for your queries; using the create outline command gives you
more control over the outlines that are created.

NOTE
You can create outlines for DML commands and for create table
as select commands.

Once an outline has been created, you can alter it. For example, you may need to alter the
outline to reflect significant changes in data volumes and distribution. You can use the rebuild
clause of the alter outline command to regenerate the hints used during query execution:

alter outline REORDERS rebuild;

NOTE
You need the ALTER ANY OUTLINE system privilege to use this
command.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can also rename an outline via the rename clause of the alter outline command:

alter outline REORDERS rename to BOOK_REORDERS;

You can change the category of an outline via the change category clause of the alter outline
command.

You can enable the usage of stored outlines by setting the USE_STORED_OUTLINES parameter
to TRUE within your session (via alter session) or within your database (via alter system).

To manage stored outlines, use the OUTLN_PKG package, which gives you three capabilities:

■ Drop outlines that have never been used

■ Drop outlines within a specific category

■ Move outlines from one category to another

Each of these three capabilities has a corresponding procedure within OUTLN_PKG. To drop
outlines that have never been used, execute the DROP_UNUSED procedure, as shown in the
following listing:

execute OUTLN_PKG.DROP_UNUSED;

To drop all of the outlines within a category, execute the DROP_BY_CAT procedure, which
has the name of the category as its only input parameter. The following example drops all of the
outlines within the DEVELOPMENT category:

execute OUTLN_PKG.DROP_BY_CAT -
(cat => 'DEVELOPMENT');

To reassign outlines from an old category to a new category, use the UPDATE_BY_CAT
procedure, as shown in the following example.

execute OUTLN_PKG.UPDATE_BY_CAT -
(old_cat => 'DEVELOPMENT', -
new_cat => 'TEST');

To drop a specific outline, use the drop outline command.

Review
The preceding sections have shown the methods used by the optimizer to access and manipulate
data. When tuning queries, you need to keep in mind several factors:

■ The goal of the user Do you want rows to be quickly returned, or do you care more
about the total throughput time for the query?

■ The application design How does this query fit within the overall design of the
application? How is it executed? Are there external factors that affect its performance?

Chapter 43: The Hitchhiker’s Guide to Tuning Applications and SQL 833

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:833

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ The type of joins used Are the tables properly indexed?

■ The size of the tables How large are the tables that are being queried? If there are
multiple joins, how large is the set of data returned from each join?

■ The selectivity of the data How selective are the indexes in use?

■ The sorting operations How many sorting operations are performed? Are nested
sorting operations being performed?

If you can carefully manage the issues related to performance, then the number of “problem”
queries within your database should diminish. If a query appears to be taking more resources than
it should, then you should use the set autotrace on or explain plan command to determine the
order of operations used for the query. You can use the tips and discussions provided throughout
this chapter to then tune the operations or the set of operations.

834 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 43
Blind Folio 43:834

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 44
Blind Folio 44:835

CHAPTER
44

Case Studies
in Tuning

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A
s described in Chapter 43, performance tuning begins with design. In many
cases, the core performance problem in a database application has been designed
into the system. You may be able to identify the most resource-intensive parts
of the application, focusing future tuning efforts on specific database parameters
or SQL statements. In this chapter, you will see case studies related to different

performance problems and their resolutions. The case studies present three common problem
areas—environmental issues, problem queries, and application architecture—from an application
tuner’s perspective.

Case Study 1: Waits, Waits, and More Waits
A large online transaction-processing system experienced significant performance problems as
the number of concurrent users increased. At times of intense batch activity, such as month-end
closing processes, the system performance was unacceptable for the online users. Is the problem
with the environment, the application, or the implementation of the application in the environment?
To identify the core problems and develop a path toward improved performance, the database
statistics were reviewed. The system was complex, but the core problems from Oracle’s perspective
were similar to those described in Chapter 43—the database was being asked to execute a large
number of slow commands.

The first step in tuning the database involved looking at the dynamic performance statistics
during times when the application was performing acceptably and then again when the performance
was unacceptable. The Statspack utility was used to gather the statistics. For these intervals, the
following statistics were examined in detail:

■ Number of executions per second

■ Number of logical reads per second

■ Number of waits per physical reads

■ Number of waits during data writes

■ Number of waits for undo segment headers and blocks

■ Number of physical reads per second

■ Number of sorts performed on disk and in memory

Capturing these statistics is important, both to identify problem areas and to measure the
impact on performance as the database environment and application SQL are changed during
the tuning process. Each of these statistics—or components of it—is reported via Statspack. You
can select the statistics for the database because it was last started from the dynamic performance
views, such as V$SYSSTAT and V$WAITSTAT, but those statistics will be skewed by other activity
in the database unassociated with your application. The following table shows the initial statistics
gathered over a three-hour test. The results are shown here in the format provided at the start of a
Statspack report:

836 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 44
Blind Folio 44:836

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Statistic Value

Test duration 10,800 seconds (3 hours)

Executions per second 1,700

Logical reads per second 67,000

Physical reads per second 6,300

DB writer waits 600,000

Undo header waits 300

Sorts in memory 800,000

Sorts on disk 200

Physical read waits that occurred:
Db file sequential read (1 block reads)
Db file scattered read (multiblock reads)

32,700,000
4,500,000

Transactions per second 10

Physical writes per second 100

Given this information, what is the first area to focus on? The system was very active—1,700
executions per second and 67,000 logical reads per second were evidence of a large number of
database requests executed constantly over a three-hour period. To properly analyze the statistics,
you should start by transforming them into a consistent set of units. In this example, let’s consider
all the activity on a per-second basis. Divide the statistics that were previously presented at the
interval level by 10,800 to see their per-second values:

Statistic Value (per Second)

Executions 1,700

Logical reads 67,000

Physical reads 6,300

DB writer waits 55

Undo header waits 0.03

Sorts in memory 74

Sorts on disk 0.02

Physical read waits that occurred:
Db file sequential read (1 block reads)
Db file scattered read (multiblock reads)

3,028
416

Transactions 10

Physical writes 100

Chapter 44: Case Studies in Tuning 837

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 44
Blind Folio 44:837

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

With all the statistics presented in the same units, you can quickly develop an overview of what
an average second looks like in the database. The total number of physical read waits occurring
during a typical second was 3,028 + 416 = 3,444. Those waits were incurred when the database
attempts to resolve a request for a physical read—and in a typical second, there are 6,300 such
requests. Therefore, a physical read event had to wait, on average, almost 55 percent of the time
(3,444 / 6,300). Only about 45 percent of the read requests were completed without a wait occurring.

At the same time, writes were also waiting. There were 55 data block waits per second as the
database attempted to perform 100 physical writes—again, a 55 percent wait ratio. A review of the
datafile I/O statistics (available via Statspack and via queries against V$FILESTAT) showed that
the database I/O was distributed evenly across the most active tablespaces. If the I/O were not
evenly distributed, it is likely that a single disk or set of disks encountering problems would be
the main source of the I/O waits.

How could you reduce the number of physical waits? If you only considered the queries that
are performing full table scans as possible causes of performance problems, you would very likely
have little impact on this application. Full table scans led to the scattered read waits shown in the
prior table—and they account for only 12 percent (416 / 3,444) of the physical read waits that
occurred. If you completely removed all the waits generated by full table scans, you probably
would not have a significant impact on the performance of the application.

Given this scenario, the following hypotheses can be developed:

■ The application requirements exceeded the I/O capacity of the system as it is configured.

■ The application generated a large number of SQL command executions.

■ Most of the SQL commands executed do not generate physical reads. The data block
buffer cache hit ratio is over 90 percent (1 – 6,300 / 67,000, in this case).

■ The application may be consuming large amounts of CPU resources as well, because it is
executing many commands and very actively managing the I/O queue.

Given those hypotheses, where should the tuning effort start? The application profile was of a
read-intensive application (there are 6,300 physical reads per second to go with only 100 physical
writes). The queries themselves appeared to be fairly well tuned (as judged by the overall hit ratio;
there were likely to be individual queries that were not properly tuned). Both reads and waits were
reporting the same problem—they could not access the disks fast enough to avoid waits. As a result,
the focus should first be on stabilizing the I/O environment. Is it performing well? If there is no
problem found with the I/O system and the application SQL cannot be changed, the environment
might have to be upgraded or enhanced to support the loads generated by the application.

In most modern enterprise-scale configurations, a buffer area is available for the disk environment.
As a result, most physical read requests do not reach the disk; the buffer services the read requests.
In this study, around 10 percent of logical reads generated physical read requests. The I/O
environment was intended to handle 90 percent of those physical read requests via its buffer.
Because the buffer in this environment was not properly configured to support this volume
activity, most physical read requests were reaching the disk. Improving the use of the buffer
improved all I/O in the environment and eliminated many of the disk accesses.

As a side effect of the I/O improvement, the CPU requirements of the application may be
reduced. The CPU requirements may be lowered because the system does not have to spend so
much time managing I/O queues—and those resources are now available to user processes instead.

838 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 44
Blind Folio 44:838

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

It is possible that some other process on the system may now be free to take more of the available
resources, illustrating the need to continue monitoring the system even after the tuning effort has
been completed.

To further reduce the system load, operations that could be performed in batch mode were
removed from the online processing portion of the application. For comparison, the following
table shows the statistics following the tuning of the I/O environment and the modification of
the application:

Statistic Value (per Second)

Logical reads 67,000

Physical reads 3,830 (was 6,300)

DB writer waits 25 (was 55)

Physical read waits that occurred:
Db file sequential read (1-block reads)
Db file scattered read (multiblock reads)

466 (was 3,028)
173 (was 416)

Transactions 10

Physical writes 115

In the revised environment, the number of physical reads was reduced by 40 percent, but
the number of waits was reduced by over 80 percent. The database was able to support the
same number of logical reads, transactions, and physical writes (with fewer waits during writes)—
and the end-user performance is now acceptable.

This is not the end of the story—there are still waits occurring, the database will grow over
time, users will develop new queries, and application modules will be added over time. During
those changes, you should track the critical statistics over time so you can isolate the impact of
changes on the environment, identify problem areas, and forecast future performance.

Case Study 2: Application-Killing Queries
Almost every database will eventually support a query that consumes many more resources than
it should. The query may be performing multiple full table scans (in the event that indexes are
missing). The query may be generating Cartesian products (when multiple tables are listed in the
from clause but their join syntax is not specified). The query may be performing multiple nested
sorts of millions of rows.

In general, when tuning SQL you should strive to work with as few rows as possible. If you
only need ten rows out of a ten-million-row table, try to use an index that returns as few rows as
possible for your where clause criteria, and then filter through those rows for the ten rows you want.

Although this approach may seem straightforward, it is repeatedly violated. When developing
an application, you should consider how each of the SQL statements you write will be executed—
its frequency, its performance requirements for each execution, its dependencies on other commands,
the indexes it will use, and so on. The goal is to support the business process as efficiently as
possible. If you fail to consider how the code will be used, the application may suffer and the
speed of the application may drive the speed of the business process—an unacceptable condition.

Chapter 44: Case Studies in Tuning 839

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 44
Blind Folio 44:839

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In a large online processing application, queries of the following format were the most
frequently executed commands (based on the statistics in the Executions column of V$SQL).
Because the query performs a full table scan, the cumulative number of physical reads (the Disk_
Reads column) approaches the cumulative number of logical reads (the Buffer_Gets column) in
its V$SQL entry:

select T35.C1
from T35
where (lower(T35.C4) like '%tom clark%');

There are at least three things wrong with this query if it is to be used in a production application.
If you were to run this query one time, the performance might be acceptable—you’ll be performing
a full table scan of the T35 table because of the reasons listed in the next paragraph. But what
happens when many users concurrently execute similar queries, and the T35 table contains millions
of rows? What if you make this kind of query available to a world of users via a Web interface?
The application performance suffers and adversely impacts the very process the application is
supposed to support.

The problems with the query include the following:

■ There’s no use of bind variables. Every execution of the query will be parsed separately
unless the database administrator has set the CURSOR_SHARING initialization parameter
to FORCE or SIMILAR (the preferred setting). If CURSOR_SHARING is set to EXACT, the
shared SQL area will be filled with thousands of almost identical commands, separately
parsed and differing only in the literal value passed in as the search string.

■ No function-based index was defined on the C4 column, but the query is performing a
LOWER function on the column. If there is only a standard index available, Oracle may
not be able to use the index to support this query.

■ The search string begins with a percent wildcard. As a result, you would expect Oracle
to perform a full table scan in order to find values that meet the criteria.

NOTE
You should generate the explain plan for any queries that are targeted
for tuning.

Let’s consider one possible solution to the third problem—the content of the search string.
In this application, the user typed in the name (“tom clark” in this case) and the application code
put wildcards in front and behind the name, trying to maximize the number of potential matches
that would be found. The application developer presented the user with all the potential values that
could possibly match the exact search string.

From the database administration side, you can make sure CURSOR_SHARING is properly
configured, and you can create a function-based index on the C4 column so index scans may be
chosen instead of table scans. But the core problem remains—how can the query be rewritten to
select as few rows as possible in order to generate its result set?

The answer lies in the use of Oracle Text. As described in Chapter 25, you can create text
indexes on columns to support searches for strings, wildcards, text expansions, and more. In this

840 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 44
Blind Folio 44:840

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

case, you will pass the name as the search string, and the text index will search its indexed values
for matches—taking into account the wildcards. The application developer will have to change
the query to use the Oracle Text syntax, and the database administrator will need to create and
maintain the text index objects. However, the performance benefits are significant—the full text
scans on the large table are eliminated.

NOTE
If you use indexes to index names, you need to create an empty
stoplist. Otherwise, Oracle will skip common words (such as ‘AN’)
that may be real names.

In this particular case, the use of text indexes for this query dramatically reduced the search
times for the Web-based users. The number of physical and logical reads against the search table
was cut significantly and remained low as the application grew. The database administrator and
application maintenance team had additional text index objects to manage as a trade-off for the
performance benefit gained.

Text indexes are not the solution to every problem. In most situations, a standard index
containing multiple columns will be the solution. The important step is to identify the most
resource-intensive queries (by querying V$SQL or using Statspack) and reviewing them from an
application architecture perspective. For each query, ask what it is used for and why it is doing
what it is doing. Consider a simple query such as the following:

select COUNT(*) from COUNTRIES;

Individually, each execution of this query will complete very quickly—there are only several
hundred countries, and the table can be cached in the data block buffer cache. But if this query
is executed several million times a day, it may perform more logical reads than any other query
in the database. Those logical reads translate into CPU resources allocated for repeated queries
of static data that could be spent on more useful queries of dynamic data. When looking for
problem queries, be sure to check for queries that are executed many times in addition to those
that are expensive for each execution.

Case Study 3: Long-Running Batch Jobs
A company was planning to move a large volume of data on a repeated basis from a transactional
system to a reporting system. The transactional system was outside of their control, so there was
no opportunity to use database links, materialized views, or other replication methods directly
interacting with the source system. Instead, the data source was a single large file sent each day
from the transactional system.

Attempting to load the large file into the reporting system repeatedly caused availability
problems—the time needed to load the data through conventional inserts exceeded the available
time window for the operation. Any failures during the loading process created even greater problems
because the partially loaded data was deleted and reloaded. As a result, the performance of the
load job affected the availability of the entire reporting application. Based on the current and
anticipated data volumes, the amount of data loaded daily is expected to triple within 12 months.

Chapter 44: Case Studies in Tuning 841

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 44
Blind Folio 44:841

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Assuming the database is properly configured so there are no I/O or memory issues to resolve,
several approaches are available to resolve this type of problem:

■ Even though the source system provides the data in one set, you may not have to insert
it all at once. Instead of loading data into the reporting system once each day, consider
sending incremental loads throughout the day. If the loading process does not impact
the queries (for example, by invalidating indexes during the load or causing irregularities
in the reported data), these small loads may be able to work alongside user queries.

■ Don’t load the data; use external tables instead. This approach is ideal for situations in
which a small number of well-defined queries report against the data a small number of
times.

■ Parallelize all operations. Use all the available resources on the server. Although this
may help the current performance problems, it may affect the application’s ability to
scale well with increased data volumes.

■ Load the data into temporary work tables; then treat them as partitions of existing tables.

Each of these options involves at least a minor design change, and you cannot select the
proper solution and make the change without understanding how the end users use the data.
Is the data loaded into a single table or into multiple tables? Do the end users directly access
the tables the data is loaded into? How stale can the data in the tables be?

Let’s first consider the worst-case scenario: The users need all the data available at once, so
no incremental feed is available. The loaded data is inserted into multiple related tables. Further,
the load should have minimal impact on the availability of the rest of the data in the database.
Lastly, the end users query the loaded tables directly.

In such a scenario, you should consider partitioning the table being loaded. For each day’s
data load, create a new table whose structure is the same as the table the users will be querying.
Load the data into the table, index it, analyze it, and perform whatever transforms are necessary
to properly format the data for the user. When the data is ready for presentation to the user,
execute the alter table exchange partition command, telling Oracle to treat the table you have
created as a partition of the table the users will query. Because you only touch the application’s
tables when you add the new partition, the downtime for the application is minimal—particularly
if you are able to use only local indexes on the partitioned table.

The exchange partition approach effectively divides the two operations being performed on
the table—its loading by you and its querying by the users. Once you are able to separate those
two operations, your design and maintenance capabilities increase dramatically.

Consider a slightly better scenario: The users need all the data available at once, but they do
not directly query the table being loaded. The users query materialized views based on the table.
You should tune the materialized views to make the materialized views fast-refreshable, allowing
changes to the loaded table to be incrementally applied to the objects the users will be querying.
Again, separating the bulk load operation from the queries of the same objects significantly enhances
your maintenance options. See Chapter 24 for details on the configuration of materialized view
refresh options.

If the users always query materialized views that aggregate the data, you should consider
not loading the data at all. Instead, use external tables (see Chapter 26) to reference the data file
during an insert as select operation into a summary table. External tables cannot be indexed and

842 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 44
Blind Folio 44:842

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

will therefore result in a full scan of the file—but because you are not loading the raw data, the
insert as select of the summary may complete faster than if you had loaded the data and then
aggregated it. As a side benefit, you only have to store the raw data once (at the file system level)
rather than twice.

Regardless of which of these options you choose, you should investigate the use of options
that exploit the available system resources—including parallel query, parallel DML, parallel
loading, partitioning, and bulk processing. In terms of improving the performance of the load
itself, there are many features available: using nologging during loads, using SQL*Loader Direct
Path loads, and starting parallel Data Pump jobs. Note that many of these options can be applied
on a partition-by-partition level.

Tuning batch loads requires you to make an educated judgment about the degree to which
set processing will be used. You can configure the application to process one row at a time. For
example, you can insert one row into a master table and then insert all its children rows into other
tables before inserting a second row into the master table and repeating the process. That row-
based approach will suffer as the volume of rows increases. The row-based approach guarantees
read consistency across the loaded tables, but if the job is executed during off hours (or the exchange
partition method is used), that benefit may not be realized by the users.

By comparison, you can create set operations that process huge volumes of rows at once. It is
likely that at some point the number of rows processed in a set will impact the performance of the
load, particularly if complex sorts are involved. In such a case, you may need to break the large batch
process into smaller steps and process smaller groups. For example, the operation flow may be

1. Select 100,000 rows from the input tables.

2. Perform the aggregations and transforms on those rows.

3. Store the results of those aggregations and transforms in a temporary work table.

4. Select the next 100,000 rows from the input tables.

5. Repeat until all the rows have been processed and inserted into the temporary work table.

6. Properly index and analyze the temporary work table.

7. Perform additional operations on the data in the temporary work table (such as generating
grand totals or new columns or performing joins with other tables).

8. Insert rows from the temporary work table into the production table.

9. Drop or truncate the temporary work table.

Such a sequence of operations attempts to gain the benefits of both approaches—a procedural
approach that operates on sets of rows. How large should each set of rows be? That depends on
your operating environment, the operations performed, and the data itself. You should properly
test the process to make sure the more procedural approach completes faster than the single batch
operation. You should take into consideration the greater number of potential points of failure in
the procedural approach, and handle exceptions accordingly.

In this example, the original daily load job took 12 hours to complete. By breaking it into
smaller pieces, the total time was reduced to three hours—long enough to run the job multiple
times within the load window if required.

Chapter 44: Case Studies in Tuning 843

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 44
Blind Folio 44:843

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Those design decisions require you to know your data, how it is used, and how it affects the
business process. Regardless of your architecture, you need to be able to test the application while
simulating a real-life workload under repeatable conditions. During the tests and during production
usage, you must be able to monitor the environment and the application for performance problems
as the data volumes grow.

During the tuning process, you may have to make trade-offs. For example, in the batch-process
tuning effort, you may allocate more disk space to the database (for the temporary work table)
in order to improve overall performance. Each part of the application should be considered as a
critical part of the whole application, and developed and planned accordingly. When the application
performance affects the business process performance, you should identify the problem areas—
such as the environment, particular queries, or the data-flow architecture—and implement a design
more in tune with the application’s needs.

844 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 44
Blind Folio 44:844

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:845

CHAPTER
45

The Hitchhiker’s
Guide to Oracle

Application Server 10g
Adapted from Oracle Application Server 10g Web Development by Chris Ostrowski,
(Oracle Press, 2004).

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D
eveloping applications for the Web is a complex process. The number of
programming languages, APIs, frameworks, and development platforms continues
to grow at a lightning pace. IT departments wanting to maintain their competitive
advantage are asked to evaluate and embrace new technologies faster than ever
before, leading to shorter development times for projects and less time for

developers to absorb new technologies. These factors—coupled with the fact that developers are
increasingly called upon to have a working knowledge of and provide input on things such as
database design, networking, development methodologies, code-generating tools, Java frameworks,
and source code management—have led to a crisis in the development world: Developers don’t
have enough hours in the day to learn all the aspects of the tasks they need to be productive
members of their IT departments. Luckily for Oracle developers, Oracle has provided a series of
products that allow you to create and test applications quickly, interface with the Oracle database
seamlessly, and deploy those applications to the Web securely and with minimal effort. Oracle’s
development and Application Server products have the added advantage of maturity: They are stable,
proven technologies, used in a wide range of production environments throughout the world.

At the core of your development efforts is the Application Server, sometimes incorrectly referred
to as a Web server (Web servers are a subcomponent of an Application Server). The Application
Server takes requests from a client application (most likely a Web browser), processes these requests,
and returns the results. The Application Server, depending on the type of request it receives, can
call other programs or speak to databases to satisfy the client’s request. Application Servers use
TCP/IP, the protocol defining the rules for establishing connections between computers, and HTTP
(Hypertext Transfer Protocol) to control the communication between a Web browser and a Web
Server.

Oracle Application Server 10g is a product designed to meet all the challenges your organization
faces when putting your applications on the Web. Although the details of installation and
administration of the Application Server are beyond the scope of this chapter, all Oracle developers
can benefit from an understanding of the basic framework of Web development and Oracle’s
solutions for each of these framework pieces. In the language used in Oracle’s documentation,
the implementations of these solutions are called services, and they are integrated into the Oracle
Application Server 10g product stack.

NOTE
For more information regarding the installation and administration of
Oracle Application Server 10g, see the Oracle Application Server 10g
Administration Handbook by John Garmany and Donald K. Burleson
(Oracle Press, 2004).

The number of tools and services provided by Oracle Application Server 10g can seem
overwhelming. You are certainly not required to implement every service provided by Oracle
Application Server 10g. Services that are installed and configured but not used waste resources,
so choose your installation options carefully. Organizations can pick and choose those services
they wish to exploit. Even if a particular service is not selected during installation, you can go back
and add that functionality to Oracle Application Server 10g at a later date without affecting your
current production setup.

A good example of this would be the Forms Server that is part of Oracle Application Server 10g.
Forms Server allows you to take existing Oracle Forms and serve them up over the Web. Perhaps

846 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:846

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

your organization has begun by using Oracle Portal to quickly develop some forms and reports
that are published over the Web to the employees. This initial project has proven to be so popular
that the decision has been made to move Oracle Forms, Oracle Reports, and Oracle Discoverer
Worksheets (which have richer feature sets than their equivalent components in Oracle Portal)
to the Web and to integrate some of those components with Oracle Portal. An administrator can
reconfigure the Application Server to add the necessary functionality without affecting any of the
work performed up to this point.

Your organization can thus move to a Web-based model without losing the time and effort
already invested in Oracle Forms, Oracle Reports, or Oracle Discoverer development. As your
needs grow, you can augment your development efforts with PL/SQL server pages (PSPs) or a tool
such as JDeveloper to implement technologies such as JavaServer pages (JSPs), Enterprise JavaBeans
(EJBs), Struts, or Java applets. As the site traffic grows, you can increase performance by implementing
the Web Cache service to cache the most heavily used pages. Power users can create their own
ad hoc reports using Discoverer. You can expand your portal to integrate content, Web-based
components (such as forms, reports, or XML-based portlets), and content from external sites with
a minimal investment in development and design time. The feature set of Oracle Application
Server 10g can tackle virtually any development challenge organizations face today.

The architecture of Oracle Application Server 10g allows you to scale by adding more
Application Servers (called mid-tiers in Oracle’s documentation) and more Web Cache servers.
You can even allow others to incorporate your content through the use of XML and Enterprise
JavaBeans. All of this is managed through a single Web interface—the Enterprise Manager Web
Site Application Server Control.

One could argue that it is not necessary for developers to understand the architecture of
Oracle Application Server 10g. However, I strongly urge you to make the effort to understand the
fundamentals of how the Application Server does its basic functions. The administrative details of
Oracle Application Server 10g will probably be handled by a systems administrator or a DBA, but
there are many steps that fall upon the developer’s shoulders.

What Is Oracle Application Server 10g?
Oracle Application Server 10g is an Application Server designed to support all major Web
development languages and frameworks. It is a collection of services designed together to integrate
seamlessly with Oracle databases and deliver content dynamically over the Web. Here’s a list of
some of its features:

■ Oracle HTTP Server Oracle Application Server 10g includes an HTTP server based
on the Apache HTTP Server, version 1.3.28. The Apache server is the most popular
Web server in use today. It is highly customizable, and its architecture fully supports
enhancements via modules.

■ Oracle Portal A complete, Web-based development environment that allows you
to develop and implement production-quality applications quickly and easily.

■ Oracle Wireless Offers complete support for enabling your applications on a multitude
of wireless devices.

■ Oracle Identity Management Security features that can be applied across all types
of applications served up by Oracle Application Server 10g.

Chapter 45: The Hitchhiker’s Guide to Oracle Application Server 10g 847

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:847

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ PL/SQL Integration The ability to call PL/SQL stored procedures directly from your
HTML-based applications via the PL/SQL Web Toolkit and the mod_plsql module included
with Apache.

■ Forms, Reports, and Discoverer Servers Give you the ability to serve Oracle Forms,
Oracle Reports, and Oracle Discoverer Workbooks and Worksheets over the Web and
integrate those components with Oracle Portal.

On top of all these features, Oracle Application Server 10g also supports the full Java 2 Enterprise
Edition technology stack, including the following:

■ Enterprise JavaBeans (EJBs) EJBs enable applications to use entity, session, and message-
driven beans. EJB comes with an EJB container that provides services for you. Services
include transaction, persistence, and lifecycle management.

■ Servlets Servlets can generate dynamic responses to Web requests.

■ JavaServer Pages (JSPs) JSPs enable you to mix Java and HTML to author Web applications
easily. JSPs also enable you to generate dynamic responses to Web requests. Servlets and
JSPs run within a “Web container,” which also provides services similar to those provided
by the EJB container.

■ Java Authentication and Authorization Service (JAAS) JAAS enables you to authenticate
users (ensuring that users are who they claim to be) and authorizes users (checking that
the users have access to an object before executing or returning the object).

■ Java Message Service (JMS) JMS enables you to send and receive data and events
asynchronously.

■ Java Transaction API (JTA) JTA enables your applications to participate in distributed
transactions and access transaction services from other components.

■ J2EE Connector Architecture The J2EE Connector Architecture enables you to connect
and perform operations on enterprise information systems.

Out of the box, Oracle Application Server 10g includes programs and Web pages for the
administration of this complex environment. The Enterprise Manager Web Site Application Server
Control provides numerous pages for monitoring the various services in Oracle Application
Server 10g and gives administrators the ability to edit configuration files and review log files via a
Web browser. This is invaluable for remote administration of Application Server instances when it is
difficult to provide direct access to a server, and it simplifies the administrator’s job by not having
to make him or her remember the filenames and directory paths of the many log and configuration
files used by Oracle Application Server 10g. Certain configuration editor pages even have syntax-
checking functionality built into them, allowing administrators to verify their changes before
attempting to implement modifications to components on the server. Most of the tasks that can be
performed on these pages are administrative and are of little interest to the developer, but there are
pages devoted to the creation and maintenance of containers, which give developers the ability
to deploy their applications quickly and easily through a graphical interface.

The power of Oracle Application Server 10g lies in its seamless integration with various Internet
and programmatic standards and the Oracle database. It has evolved into a product that enables

848 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:848

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

you and your organization to benefit from the true power of the Internet by providing a reliable,
scalable, and secure deployment platform. Figure 45-1 provides a visual representation of the
Oracle Application Server 10g product.

Chapter 45: The Hitchhiker’s Guide to Oracle Application Server 10g 849

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:849

FIGURE 45-1. Oracle Application Server 10g architecture

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The boxes at the top of each section represent the different categories of services. The ovals
represent Oracle’s implementation of those services. This chapter discusses, at a high level, the
various services that Oracle Application Server 10g provides and why you, as a developer, are
interested in them. The architecture of Oracle Application Server 10g may seem overly complex,
but this is necessary because it reflects Oracle’s commitment to the numerous open standards and
frameworks that constitute modern Web development. The architecture also gives Oracle Application
Server 10g a level of scalability and reliability not seen in most application servers.

The two major pieces of Oracle Application Server 10g are the middle tier, which provides
components for deploying and running applications over the Web, and the infrastructure, which
maintains security and clustering information. In a one-to-many relationship, a single infrastructure
can maintain security and clustering information for one or many middle tiers. When you install
Oracle Application Server 10g, you must decide if you’ll need an infrastructure, because that piece
needs to be installed first. The different types of middle-tier installations—and whether they are
dependant on an infrastructure—are discussed next.

What are an infrastructure and middle tier composed of? Each piece is composed of a series
of programs that provide various services to the Apache server. As an analogy, think of the
services that run on a Windows machine—they are programs that provide various services to the
operating system. In the same way, the programs that constitute the infrastructure and middle tiers
provide services to the Application Server instance. The middle tier has three different versions
that you can install, depending on your needs and licensing:

■ J2EE and Web Cache

■ Portal and Wireless

■ Business Intelligence and Forms

Table 45-1 lists the different middle-tier components of Oracle Application Server 10g configured
with each type of installation.

850 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:850

Component J2EE and Web Cache Portal and Wireless Business Intelligence and Forms

Oracle HTTP Server X X X

OC4J X X X

OracleAS Web Cache X X X

Oracle Enterprise Manager Web Site X X X

OracleAS TopLink X X X

OracleAS Portal X X

OracleAS Wireless X X

OracleAS Personalization X

OracleAS Discoverer X

OracleAS Reports Services X

OracleAS Forms Services X

TABLE 45-1. Middle-Tier Components by Installation Type

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Based on this table, if you plan to serve Oracle Forms, Oracle Reports, and/or Oracle Discoverer
Workbooks and Worksheets over the Web, you should install the Business Intelligence and Forms
option. If you want to use Oracle Portal and/or develop applications to be used with wireless
(hand-held) devices, select the Portal and Wireless option. If you only need a Web server to deploy
J2EE applications, select the J2EE and Web Cache option. When you install the middle tier, you
are creating an OracleAS “instance.”

NOTE
The meaning of the word “instance” in this context is different from
the more general use of “instance,” which is commonly used to refer
to an Oracle database instance.

Figure 45-2 shows the administration page with all the services for a middle tier installed with
the Business Intelligence and Forms option.

As of 8.1.7, the Oracle database includes an HTTP server as part of its installation. It provides
only the first two components in Table 45-1: an HTTP server and OC4J containers.

Chapter 45: The Hitchhiker’s Guide to Oracle Application Server 10g 851

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:851

FIGURE 45-2. Middle tier administration screen

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The second major piece of Oracle Application Server 10g is called the infrastructure. The
infrastructure is an instance of Oracle Application Server 10g that maintains security and clustering
information. In Oracle’s documentation, the different types of security components provided by
Oracle are called “Identity Management.” The Identity Management components provide directory,
security, and user management functionality. The Identity Management components are as follows:

■ Oracle Internet Directory

■ OracleAS Single Sign-On

■ Oracle Delegated Administration Services

■ Oracle Directory Integration and Provisioning

■ OracleAS Certificate Authority

For both the Business Intelligence and Forms option and the Portal and Wireless option, an
infrastructure is required. The infrastructure, by default, uses an Oracle 9i database to store Identity
Management information, but an Oracle9i or Oracle10g database can be manually specified. The
Identity Management information is referenced through an LDAP (Lightweight Directory Access
Protocol) server provided by Oracle called Oracle Internet Directory (OID). You can instruct the
installer to use an existing Oracle9i or Oracle10g database instance or have the installer create a
new database instance for you. Figure 45-3 shows the administration page with all the services
for an infrastructure.

NOTE
Technically, the Forms and Reports Servers can be configured to not
use an infrastructure in Oracle Application Server 10g, but it is far
more common to use one.

“Topology” describes the layout of Oracle Application Server 10g instances installed in your
organization. Oracle Application Server 10g can be installed in so many different ways, there is
an entire chapter, titled “Recommended Topologies,” in the installation guide. The most common
topology involves installing the infrastructure on one machine and the middle tier on another. You
can install both the infrastructure and middle tier on the same machine, provided you have enough
disk and memory resources (because each instance needs to be installed in its own ORACLE_HOME)
or numerous middle tiers on numerous servers. Figure 45-4 lists some common topologies. In an
effort to provide organizations with a high amount of flexibility, the infrastructure and middle tiers
do not have to be running on the same hardware or operating system platform. They do, however,
have to be running the same version of the Oracle Application Server 10g software.

NOTE
Because all instances must be running the same version of the
software, any patch applied to an Oracle Application Server 10g
instance must be applied to all instances, even if they’re running
on the same machine.

The different categories of the Application Server architecture (see Figure 45-1) discussed in this
chapter are grouped according to the type of function they provide:

852 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:852

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Communication services Handle requests to and from the Web

■ Business Logic services The development tools and languages for building applications

■ Presentation services Development tools and languages for building dynamic Web pages

■ Caching services Tools for improving Web site performance

■ Content Management services Tools for managing documents in the database

■ Portal services Provide publishing features for content and portlets

■ Business Intelligence services Provide reports and ad hoc queries

■ Database services The Oracle database for storing application data

■ Persistence Layer services Provide an object-relational framework

■ Developer’s toolkits Application programming interfaces (APIs) to aid in the creation
of applications

Chapter 45: The Hitchhiker’s Guide to Oracle Application Server 10g 853

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:853

FIGURE 45-3. Administration screen for the infrastructure

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Communication Services
Communication services provide connectivity between clients and servers over the Internet or,
more accurately, over a TCP/IP connection. The most common way of interaction is through a
Web browser, which uses the Hypertext Transfer Protocol (HTTP). HTTP can handle multimedia
communication services such as audio, video, and data. Tools such as Oracle Portal take advantage
of these features to seamlessly store and retrieve almost any type of data from an Oracle database.
For the purposes of Oracle Web development, the communication services are the Web Server.

Starting with Oracle9iAS Release 1, Oracle has used Apache as its Web server, referred to in
the Oracle documentation as the HTTP Server. Apache has a large base of knowledge available
for its administration because it is the most popular Web server used today. By standardizing on
the Apache Web server, Oracle has provided a great amount of flexibility to administrators and
organizations that wish to move their Oracle-based applications to the Web.

The designers of Apache were smart enough to know that there was no way they could anticipate
every conceivable way people might want to use their Web server, so they designed it with an
open-ended interface that incorporates a modular architecture through which additional functionality
can be added. These enhancements are commonly referred to as mods (modules), and they all
begin with the prefix “mod_”. Modules may be linked statically to the Web server or may be loaded

854 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:854

FIGURE 45-4. Common topologies

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

dynamically at run time using Dynamic Shared Object (DSO) support on UNIX or dynamically
linked libraries (DLLs) on Windows. The API for these modular components is based on the C
programming language. Table 45-2 lists the mods that come with the Apache server provided with
Oracle Application Server 10g.

For more information about Apache, go to http://www.apache.org.

Chapter 45: The Hitchhiker’s Guide to Oracle Application Server 10g 855

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:855

Module Functionality Provided to the Apache Server Provided by Oracle? Supported by Oracle?

mod_access The directives provided by mod_access are
used in <Directory>, <Files>, and <Location>
sections as well as .htaccess files to control
access to particular parts of the server.

No Yes

mod_actions The Action directive lets you run CGI scripts
whenever a file of a certain type is requested.
The Script directive lets you run CGI scripts
whenever a particular method is used in a
request.

No Yes

mod_alias The directives contained in this module allow
for manipulation and control of URLs as
requests arrive at the server. The Alias and
ScriptAlias directives are used to map between
URLs and file system paths.

No Yes

mod_asis This module provides the handler send-as-is,
which causes Apache to send the document
without adding most of the usual HTTP headers.

No Yes

mod_auth This module allows the use of HTTP Basic
Authentication to restrict access by looking up
users in plain-text password and group files.

No Yes

mod_auth_anon This module does access control in a manner
similar to anonymous-ftp sites; that is, have
a “magic” user ID of “anonymous” and the
e-mail address as a password.

No Yes

mod_auth_db This module provides an alternative to DBM
files for those systems that support DB and
not DBM.

No No

mod_auth_dbm This module provides for HTTP Basic
Authentication, where the usernames and
passwords are stored in DBM-type database files.

No No

mod_auth_digest This is an updated version of mod_digest
using MD5 authentication (experimental).

No No

mod_autoindex This module provides for automatic directory
indexing.

No Yes

mod_cern_meta This module emulates the CERN HTTPD
metafile semantics. Metafiles are HTTP headers
that can be output in addition to the normal
range of headers for each file accessed.

No No

TABLE 45-2. Apache Modules Provided in Oracle Application Server 10g

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

856 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:856

Module Functionality Provided to the Apache Server Provided by Oracle? Supported by Oracle?

mod_cern_headers This module allows reverse proxies that
terminate SSL connections in front of Oracle
HTTP Server to transfer information regarding
an SSL connection to Oracle HTTP Server.

No Yes

mod_cgi Any file that has the MIME type application
/x-httpd-cgi or handler cgi-script is treated
as a CGI script, and run by the server, with
its output being returned to the client.

No Yes

mod_define Provides support for Distributed Authoring
and Versioning.

No Yes (UNIX only)

mod_digest This module implements an older version
of the MD5 Digest Authentication.

No Yes

mod_dir The DirectoryIndex directive sets the name
of a file written by the user, typically called
index.html, used as the index of a directory.

No Yes

mod_dms Enables you to monitor the performance
of site components with Oracle’s Dynamic
Monitoring Service (DMS).

Yes Yes

mod_env This module allows for control of the
environment that will be provided to
CGI scripts and SSI pages.

No Yes

mod_example The files in the src/modules/example directory
under the Apache distribution directory tree are
provided as an example to those who wish to
write modules that use the Apache API.

No No

mod_expires This module provides for the generation of
Expires HTTP headers (an instruction to the
client about the document’s validity and
persistence) according to user-specified
criteria.

No Yes

mod_fastcgi Routes requests to fastcgi modules. No Yes

mod_headers This module provides for the customization
of HTTP response headers.

No Yes

mod_imap This module processes .map files, thereby
replacing the functionality of the imagemap
CGI program.

No No

mod_include This module provides a handler that will process
files before they are sent to the client.

No Yes

mod_info This module provides a comprehensive
overview of the server configuration,
including all installed modules and
directives in the configuration files.

No Yes

mod_isapi This module implements the Internet Server
extension API. It allows Internet Server
extensions (for example, ISAPI DLL modules)
to be served by Apache for Windows.

No No

TABLE 45-2. Apache Modules Provided in Oracle Application Server 10g (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 45: The Hitchhiker’s Guide to Oracle Application Server 10g 857

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:857

Module Functionality Provided to the Apache Server Provided by Oracle? Supported by Oracle?

mod_jserv Converts HTTP requests to servlet requests,
returning HTTP responses to the client. This
is disabled by default in the Oracle HTTP
Server distribution; use mod_oc4j instead.

No Yes

mod_log_config This module provides for logging of the
requests made to the server, using the Common
Log Format or a user-specified format.

No Yes

mod_mime This module is used to determine various
bits of “meta information” about documents.
The directives AddCharset, AddEncoding,
AddHandler, AddLanguage, and AddType are
all used to map file extensions onto the meta-
information for that file.

No Yes

mod_mime_magic This module provides for determining the
MIME type of a file by looking at a few bytes
of its contents. It is intended as a “second line
of defense” for cases that mod_mime can’t
resolve.

No Yes

mod_mmap_static This module maps a list of statically
configured files into memory. This is an
experimental module and should be used
with care.

No No

mod_negotiation This module provides for content selection;
it’s defined as the selection of a document
that best matches the client’s capabilities.

No Yes

mod_oc4j Routes requests to the OC4J instances. Yes Yes

mod_onsint Provides integration support with Oracle
Notification Service (ONS) and Oracle
Process Manager and Notification Server
(OPMN).

Yes Yes

mod_oprocmgr Provides process management and load-
balancing services to JServ processes. It is
provided for legacy users of JServ. JServ is
disabled by default in the Oracle HTTP Server
configuration. Oracle recommends using OC4J
and mod_oc4j (which are both enabled by
default).

Yes Yes

mod_oradav Enhancement to mod_dav to allow Oracle
DB as a backing store.

Yes Yes

mod_ossl Enables strong cryptography for Oracle HTTP
Server. It is very similar to mod_ssl; mod_ossl
is based on the Oracle implementation of SSL,
which supports SSL, version 3.

Yes Yes

mod_osso Supports single sign-on across sites and across
applications.

Yes Yes

mod_perl Runs Perl programs. No Yes

TABLE 45-2. Apache Modules Provided in Oracle Application Server 10g (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

858 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:858

Module Functionality Provided to the Apache Server Provided by Oracle? Supported by Oracle?

mod_plsql Routes requests to PL/SQL programs in a
database and enables making requests to
database stored procedures from the browser.

Yes Yes

mod_proxy This module implements proxying capabilities
for FTP, CONNECT (for SSL), HTTP/0.9,
HTTP/1.0, and (as of Apache 1.3.23) HTTP/1.1.

No Yes

mod_rewrite This module uses a rule-based rewriting engine
(based on a regular-expression parser) to rewrite
requested URLs on the fly.

No Yes

mod_setenvif This module allows you to set environment
variables according to whether different
aspects of the request match regular
expressions you specify.

No Yes

mod_so On selected operating systems, this module
can be used to load modules into Apache
at run time via the Dynamic Shared Object
(DSO) mechanism, rather than requiring
a recompilation (experimental).

No Yes

mod_speling This module attempts to correct misspellings
of URLs that users might have entered, by
ignoring capitalization and by allowing up
to one misspelling.

No Yes

mod_status This module allows a server administrator
to find out how well his or her server is
performing. An HTML page is presented that
gives the current server statistics in an easily
readable form.

No Yes

mod_unique_id This module provides a magic token for each
request, which is guaranteed to be unique
across “all” requests under very specific
conditions. The unique identifier is even
unique across multiple machines in a
properly configured cluster of machines.

No Yes

mod_userdir This module provides for user-specific
directories. The UserDir directive sets the
real directory in a user’s home directory
to use when a request for a document for
a user is received.

No Yes

mod_usertrack This module uses cookies to provide for
a clickstream log of user activity on a site.
Oracle Application Server 10g contains a
service called Clickstream Intelligence that
enhances this functionality.

No Yes

mod_vhost_alias This module creates dynamically configured
virtual hosts by allowing the IP address and/or
the Host: header of the HTTP request to be
used as part of the pathname to determine
what files to serve.

No Yes

TABLE 45-2. Apache Modules Provided in Oracle Application Server 10g (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 45: The Hitchhiker’s Guide to Oracle Application Server 10g 859

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:859

Content Management Services
All organizations have different types of data they use on a regular basis in the course of their
activities. Some of this data is in spreadsheets, some in Oracle databases, some in non-Oracle
databases, some in picture and sound files—the list goes on and on. Content management refers
to the process of capturing, storing, sorting, codifying, integrating, updating, and protecting any and
all of an organization’s information. Oracle Application Server 10g provides content management
services that allow organizations to store, manage, and retrieve all different types of data in a central
place—namely, an Oracle database.

Storing disparate data is not the only objective, however. For any content management
service to be truly useful, it must also take into account such factors as connecting to other people’s
information, approval and publication processes, indexing, search and retrieval capabilities, security,
collaboration, accessibility, reuse, and digital rights management. In Oracle9iAS Release 1, Oracle
introduced the Oracle Internet File System (iFS), which stores files in an Oracle8i or 9i database.
iFS, in effect, made all content available in a file hierarchy that could be accessed through a Web
browser, Windows networking, or FTP (File Transfer Protocol), independent of platform (except for
Windows networking, of course). Oracle Application Server 10g has added many new features to
its content management capabilities and renamed it the Oracle Content Management Software
Development Kit. The Content Manager SDK has support for all major content-management services
listed previously.

Oracle Ultra Search can be used to search across corporate Web servers, databases, mail
servers, file servers, and Oracle10g Portal instances. Ultra Search is based on Oracle10g Text
technology and is an out-of-the box solution that requires no SQL coding. It uses a crawler to index
documents (the documents stay in their own repositories), and the crawled information is used to
build an index that stays within your firewall in an Oracle database.

Business Logic Services
Not every technology is appropriate for every circumstance, and no one tool is the “right” one to
go with. Some of the technologies are good for displaying (or presenting) data and are generally
classified under the category “presentation services.” Other technologies are better for holding
application logic and are generally classified under “business logic services.” That’s not to say these
technologies are mutually exclusive—you could put your business logic into a technology designed
for presenting data (such as a JSP application) if you wanted to—but the presentation and business
logic services were designed with the idea of separating the code that drives the business from the
code that controls how the end user interacts with data, with the intent of making applications
easier to maintain and enhance, particularly in a collaborative environment where numerous
programmers with different skills sets will be working on a single project.

Traditionally, the technology used for Web-based business logic services was Enterprise
JavaBeans. The Enterprise JavaBeans (EJB) technology is the server-side component architecture
for the Java 2 Enterprise Edition (J2EE) platform. EJB technology enables development of distributed,
transactional, secure, and portable applications based on Java technology. The EJB specification
is one of the several Java APIs in the J2EE platform. The specification details how an Application
Server provides server-side objects with

■ Web Services

■ Persistence

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

860 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:860

■ Transactions

■ Concurrency control

■ Events using Java Messaging Service (JMS)

■ Naming and Directory Services

■ Security

■ Deployment of components in an Application Server

Search for a definition of “persistence” on the Internet and you’ll find so many different variations
that you’ll probably be more confused after searching than you were before. The one that most
closely matches my idea of persistence comes from the unlikely source www.posc.org:

“That quality of an instance of data related to its existence beyond and outside of the life of
its creating process or the lives of other processes that use it. In this context, persistence is
normally used in describing the life of objects relative to sessions, i.e., whether or not they
live beyond sessions.”

See the discussion of TopLink later in this chapter under the section “Persistence Layer Services” for
more information regarding Oracle’s strategic direction regarding persistence implementation
for OC4J.

Additionally, the Enterprise JavaBean specification defines the roles played by the EJB container
and the EJBs as well as how to deploy the EJBs in a container.

Central to the understanding of EJBs is the concept of patterns. Sun defines a pattern as follows:

“A recurring solution to a problem in a context. A context is the environment, surroundings,
situation, or interrelated conditions within which something exists. A problem is an unsettled
question, something that needs to be investigated and solved. A problem can be specified by
a set of causes and effects. Typically, the problem is constrained by the context in which it
occurs. Finally, the solution refers to the answer to the problem in a context that helps resolve
the issues.”

A solution to a problem is not considered a pattern unless there is some way to show that the
solution can be applied to recurring types of problems in the solution’s definition. Patterns are
described by five main characteristics: context, problem, solution, forces, and consequences.

EJBs, however, are notoriously difficult to program and maintain. In response to this, Oracle
created a business logic service framework called Business Components for Java (BC4J), which
seeks to remove much of the complexity of EJB while continuing to provide all its functionality.
With BC4J, developers can author and test object-oriented business logic in components that
automatically integrate with relational databases, reuse business logic through multiple views of
data, and access and update those views from servlets or JSPs.

You may be asking yourself why it is even necessary to store business logic in the middle tier.
After all, don’t most Oracle-based applications store their business logic in database packages,
procedures, functions, and triggers? There are several reasons for implementing business logic via BC4J:

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 45: The Hitchhiker’s Guide to Oracle Application Server 10g 861

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:861

■ You do not want to mix object-oriented and relational paradigms in your application.

■ You will be accessing the database only through clients using BC4J.

■ Your programming staff is skilled in Java, and not in PL/SQL.

■ You will be accessing both Oracle and non-Oracle databases.

Some companies may not want to be “locked into Oracle.” In other words, they want to have
database vendor freedom. This is generally a bad practice—you won’t maximize the performance
of your Oracle application.

Designing, authoring, debugging, documenting, delivering, and maintaining a J2EE design
patterns framework takes a significant amount of time and effort. BC4J implements patterns for
developers, giving them a significant advantage in getting their J2EE applications built, deployed,
and enhanced more quickly.

It is not a requirement, of course, to store your business logic in the middle tier. Traditionally,
Oracle developers have stored their business logic inside the Oracle database in the form of
packages, procedures, functions, triggers, and constraints. To assist in the development of Web-
based applications, Oracle provides an Apache module called mod_plsql that allows you to make
requests to stored procedures in the database directly from the browser. As of Oracle 8.1.7, a group
of packages called the PL/SQL Web Toolkit has been included as part of the built-in packages in
the database. By using the toolkit, you can generate Web pages; query, retrieve, and display data
from an Oracle database; dynamically calculate the contents of Web pages; and much more.

You can also store business logic within an Oracle Form. Oracle Application Server 10g, when
installed with the Business Intelligence and Forms option, can serve Oracle Forms over the Web
to a client’s Web browser, where the form is displayed as a Java applet containing the user interface
for the form’s run-time engine. When you submit a URL to launch an Oracle Forms–based application,
the Web listener accepts the request and downloads the Oracle Forms applet to your browser. The
Oracle Forms applet then establishes a persistent connection to an Oracle Forms run-time engine.
All processing takes place between the Oracle Forms applet and the Oracle Forms Services run-
time engine, which seamlessly handles any queries or commits to the database. The Oracle Forms
Server can be configured to use Oracle Application Server 10g’s Single Sign-On (SSO) and Oracle
Internet Directory (OID) capabilities to secure access. Oracle Forms can also be integrated into
Oracle Portal to use its publishing capabilities.

Presentation Services
As discussed in prior sections, technologies such as BC4J and Oracle Forms are good for writing,
testing, and maintaining your business logic. Other technologies, however, are better suited for
displaying your applications. Presentation Services deliver dynamic content to client browsers,
supporting servlets, business intelligence, PL/SQL Server Pages, JavaServer Pages, Perl/CGI scripts,
and PHP. You can use Presentation Services to build your presentation layer for your Web applications.
Although Oracle puts these services into a separate group, you can think of them grouped with
the Business Logic Services, in that your application logic can reside within these components.
I recommend, however, that you break your business logic into executable components, which
can then be called or invoked by these services.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Apache JServ (mod_jserv) is a module for the Apache Web server that implements Sun’s Java
Servlet API for running server-side Java code. Java servlets must be executed from within a Java
Virtual Machine (JVM), and hence any servlet execution environment must include a JVM. The
complexity of adding a JVM to the Apache server would degrade the Apache architecture, so the
solution adopted for Apache JServ was to separate the JVM from the Apache server. This separation
provides several benefits:

■ It allows the use of any compatible JVM from any vendor. No modifications need be
made to the Web server when a change is made to the JVM (such as by an upgrade).

■ It improves stability by separating the processes, allowing process-level protections by
the operating system. If the JVM should crash or be misconfigured, the Web server will
still operate normally.

■ It allows for advanced functionality, including automatic startup, separate JVMs for different
configurations, and the ability to support load balancing on high-traffic sites.

Although the Apache module for handling servlet requests (mod_jserv) is still available in Oracle
Application Server 10g, it is provided for backward compatibility only. Oracle recommends
converting your legacy applications to use Oracle Application Server Containers for J2EE (OC4J).

OC4J is the core J2EE run-time component of Oracle Application Server 10g implemented as
a module (mod_oc4j) in the Apache Web server. OC4J is J2EE 1.3 compatible and runs on standard
J2SE distributions, making it easy to use and highly productive for developers, while at the same
time offering outstanding performance and scalability for production environments. OC4J provides
complete support for the technologies listed in Table 45-3.

JavaServer Pages is a server-side technology that is an extension to the Java servlet technology.
JSPs have a dynamic scripting capability that works in tandem with HTML code, separating the

862 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:862

Java Technology
Version of Specification Supported in
Oracle Application Server 10g Release 1

JSPs 1.2

Servlets 2.3

EJBs 2.0

JMS 1.0.2b

JDBC 2.0

SOAP 1.1

WSDL 1.1

UDDI 2.0

TABLE 45-3. Java Technologies Supported by OC4J

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 45: The Hitchhiker’s Guide to Oracle Application Server 10g 863

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:863

user interface from content generation, enabling designers to change the overall page layout without
altering the underlying dynamic content. Developers can benefit by using JSP technology without
having to learn the Java language. They can also extend the JSP language through the use of simple
tag handlers and easily maintain pages through the use of the JSP Standard Tag Library (JSTL).

PL/SQL Server Pages (PSPs) is a technology provided by Oracle. It works on the same principles
as JSPs, except that it uses PL/SQL as its scripting language. This can be beneficial for shops with
minimal Java expertise. PSPs are compiled components executed as Oracle Stored Procedures. The
Oracle PSP service includes the PSP Compiler and the PL/SQL Web Toolkit. Existing Web pages
can be made dynamic by embedding PL/SQL tags to perform database operations and display the
results. Because PSPs are executed as stored procedures, it is important to note that the processing
of PSPs occurs on the Database Server; the other technologies discussed in this chapter execute on
the Application Server.

Business Intelligence Services
Business Intelligence Services can help you gain insight into internal business operations, customers,
and suppliers. The basic business intelligence requirements usually include data quality, data
analysis, and information access. The ultimate goal of Business Intelligence Services is to provide
up-to-the-second business insight, most commonly provided with reporting tools. Oracle provides
two enterprise-quality reporting tools: Oracle Reports and Oracle Discoverer. The choice of which
tool to implement (or the decision to implement both) will be based on the needs and skill level
of the employees in your organization. Both of these tools, in conjunction with Oracle Application
Server 10g, provide the ability to easily make reports available over the Web.

Similar to the Forms Server discussed earlier, the Reports Server allows you to publish Oracle
Reports on an internal company intranet, an external company extranet, or over the Web. In addition,
the Reports Server can interface with a mail server to automatically deliver reports to the mailbox
of selected users or groups. The Reports Server consists of the server component, run-time engines,
and the servlet runner. When a client submits a request for a report, the Oracle HTTP Server Web
listener routes that request to the Oracle Reports Services server component. The server then routes
the request to the Oracle Reports Services run-time engine, which runs the report. The report output
is then sent back to the client through the Oracle HTTP Server Web listener. Reports can be formatted
as HTML, XML, .pdfs (Adobe Acrobat), or as plain text for the user. Developers can also easily
customize the report for import into Microsoft Excel or any other commonly supported document
Multipurpose Internet Mail Extensions (MIME) types. The Oracle Reports Server can be configured
to use Oracle Application Server 10g’s Single Sign-On (SSO) and Oracle Internet Directory (OID)
capabilities to secure access. Reports can also be integrated easily with Oracle Portal so that they
can take advantage of Portal’s publishing, security, and visual template features.

Oracle Discoverer is a reporting tool that gives ad hoc query capabilities to your end users.
Targeted at power users, Discoverer enables you to access information from the database and
create dynamic reports that accept parameters and have drill-down or data-pivoting capabilities,
all without the need to learn SQL. Invoking a Discoverer Workbook or Worksheet over the Web
can be made as simple as clicking a URL that invokes the Discoverer Web component called
Discoverer Viewer. This link can be constructed to invoke a particular Workbook query automatically,
giving the user the results in a Web browser with the ability to interact with the query results to

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

drill up or down, enter values into optional parameters, or to follow links to other Workbooks or
applications. Figure 45-5 shows an Oracle Discoverer Workbook displayed in Discoverer Plus.

There is no environment in Oracle Application Server 10g to develop Oracle Forms and Reports.
The Forms Server and Reports Server components exist solely to take Oracle Forms and Oracle
Reports and serve them up on the Web. Oracle Discoverer Server has the ability to serve Discoverer
Workbooks and Worksheets over the Web, but it also has the ability to develop Workbooks
and Worksheets using a Web browser as its interface. This piece of the Discoverer Server,
called Discoverer Plus, can be used as a replacement to the Oracle Discoverer Desktop. By using the
Discoverer Plus Web interface, you will no longer have to install the Discoverer Desktop software
on every client that needs to create and manage Workbooks and Worksheets. The Discoverer
Administrator program, which is used to administer End-User Layers (EULs) and Discoverer privileges,
is still required. Figure 45-6 shows an Oracle Discoverer Worksheet displayed over the Web in the
Discoverer Plus environment.

864 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:864

FIGURE 45-5. An Oracle Discoverer Workbook viewed through a Web browser

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 45: The Hitchhiker’s Guide to Oracle Application Server 10g 865

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:865

Portal Services
An enterprise portal is an application that enables organizations to unlock internally and externally
stored information and provide users a single gateway to personalized information needed to make
informed business decisions. By providing end users with relevant data from across multiple data
sources and presenting that information in a context that is meaningful to the user, portals offer the
promise of providing competitive advantage through new business processes, increasing productivity
by putting more power into the hands of business users and increasing effectiveness through
knowledge sharing and reduced search time.

Oracle Portal can handle and display virtually any type of data, giving you the ability to create
portals that give users access to Web applications, business documents, business intelligence reports,
charts, and links to other forms of data that can exist both inside and outside your corporate intranet.
Portal pages contain regions, which can hold items of content such as spreadsheet or word processor
files, or portlets, which provide access to Web resources such as applications or other Web pages.

FIGURE 45-6. The Discoverer Plus development environment

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

866 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:866

After portlets are written and tested, they can be published to pages where they will be viewable
by those users who have access to the pages. Depending on the level of expertise of your end users
and the amount of flexibility you’re willing to give them, the Portal page can be set up so that the
end users can modify their page by adding, removing, or modifying content, similar to a site such
as http://my.yahoo.com. Oracle Portal is unique in the sense that its development environment is
itself a Portal application. Once your developers and administrators become comfortable with the
Portal environment, it will be easy for them to understand the mechanics of Portal development.
Combined with the wizard-based approach to developing Portal applications, your developers can
be productive in a very short period of time. Figure 45-7 shows a Portal development screen.

Web Services
Web Services are Web-based applications that dynamically interact with other Web applications
using open standards that include XML (eXtensible Markup Language), SOAP (Simple Object Access
Protocol), and UDDI (Universal Description, Discovery, and Integration). Such applications typically
run behind the scenes, with one program “talking to” another (server to server). Using the UDDI
discovery system, the goal of Web Services is to register a service on the Internet, allow an application
to search for and find the service, and then to seamlessly exchange data with it. Web Services are
either “request-and-response” or “one-way” style, and they can use either synchronous or asynchronous
communication. The fundamental unit of exchange between Web Services clients and Web Services,
of either style or type of communication, is a message.

FIGURE 45-7. Screen of the Portal development environment

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 45: The Hitchhiker’s Guide to Oracle Application Server 10g 867

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:867

Web Services enable software components to interact around the world. Because Web Services
use open, XML-based protocols that are lightweight and simple, their acceptance and use have
gained a tremendous amount of support in recent years. A Web Service does the following things:

■ Exposes and describes itself A Web Service defines its functionality and attributes so
that other applications can understand it. By providing a WSDL file, a Web Service makes
its functionality available to other applications.

■ Allows other services to locate it on the Web A Web Service can be registered in a UDDI
Registry so that applications can locate it.

■ Can be invoked Once a Web Service has been located and examined, the remote
application can invoke the service using an Internet standard protocol (such as HTTP
or SMTP).

Developer Toolkits
To support application development and deployment, Oracle provides several toolkits containing
libraries and tools. OracleAS Developer Kits 10g provide APIs (application programming interfaces)
that enable you to develop OracleAS Portal, OracleAS Wireless, XML, and LDAP applications.
Developer kits are used in development environments, not in staging or production environments. The
code in a developer kit is deployed in production. It is possible to develop your own developer kits.

XML Toolkit
Oracle XML Developer’s Kit 10g (XDK) is a set of components, tools, and utilities in Java, C, and C++
(available in Oracle Database 10g and Oracle Application Server 10g) that eases the task of building
and deploying XML-enabled applications. The production Oracle XDK is fully supported and comes
with a commercial redistribution license. Oracle XDK consists of the following components:

■ XML parsers Create and parse XML using the DOM (Document Object Model), SAX
(Simple API for XML), and JAXP (Java API for XML Processing) interfaces. Directly access
XMLType in Oracle Database 10g with unified C DOM interfaces. DOM support includes
the 3.0 specification.

■ XSLT (eXtensible Stylesheet Language Transformation) processors Transform or render
XML (now with XSLT 2.0 Java support).

■ XSLT VM and compiler Provide a high-performance C XSLT transformation engine using
compiled stylesheets.

■ XML schema processors Support XML schema validation. Now include validator
interfaces for stream-based processing.

■ XML JavaBeans Parse, transform, diff, retrieve, and compress XML documents via Java
components.

■ XML class generator Now supporting JAXP, the XML class generator automatically
generates classes from DTDs (Document Type Definitions) and XML schemas to send XML
from Web forms or applications.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ XML SQL utility Generates XML documents, DTDs, and XML schemas from SQL queries
in Java and inserts XML documents into Oracle databases.

■ XSQL servlet Combines XML, SQL, and XSLT in the server to deliver dynamic Web
content and build sophisticated database-backed Web sites and services.

■ XML pipeline processor Invokes Java processes through XML control files.

■ TransX utility Makes it easier to load globalized seed data and messages into Oracle
databases.

Content Management Toolkit
The Oracle Content Management SDK provides a set of Java APIs for folders, versioning, check-in/
check-out, security, searching, extensible metadata, and other standard operations for the development
of content-oriented applications. You can access your content with your choice of tools through
the following protocols:

■ FTP The File Transfer Protocol allows the transfer of one or more files from one machine
to another across the Internet.

■ SMB Server Message Block is a protocol for sharing files, printers, serial ports, and
communications abstractions such as named pipes and mail slots between computers.

■ WebDAV Web Distributed Authoring and Versioning is a mechanism that supports the
collaborative development of Web pages.

■ NFS The Network File System is a protocol suite developed and licensed by Sun
Microsystems that allows different makes of computers running different operating systems
to share files and disk storage.

■ AFP The Apple Filing Protocol is Apple’s network protocol for providing file server/
client access in an AppleShare network.

■ IMAP4 Internet Messaging Access Protocol 4 is a network standard that allows users
to manage e-mail messages and folders from multiple locations and systems. Users can
choose to store their messages on their own local computer (or client) or on a server.

■ SMTP The Simple Mail Transfer Protocol is a protocol used to send e-mail on the Internet.
SMTP is a set of rules regarding the interaction between a program sending e-mail and
a program receiving e-mail.

Developers can also create custom/proprietary protocol servers. The Oracle Content
Management SDK is fully integrated with Oracle Text, Oracle Workflow, Oracle interMedia, Oracle
Advanced Queuing, and other Oracle API products. It is also integrated with Oracle platform
infrastructure products such as Oracle Internet Directory. It was formerly known as Oracle Internet
File System.

Oracle Application Server MapViewer Toolkit
Both geographic and location data are managed in a native type within Oracle Database 10g.
Oracle provides the following technologies to make use of geographic information:

868 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:868

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 45: The Hitchhiker’s Guide to Oracle Application Server 10g 869

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:869

■ Oracle Locator Provides core location functionality to support a variety of Location-
Based Services (LBS) and third-party GIS solutions.

■ Oracle Spatial A database option for Oracle9i and Oracle10g Enterprise Edition that
provides advanced spatial features to support high-end GIS and LBS solutions.

■ Oracle MapViewer An Oracle Application Server Java component and JDeveloper
extension used for map rendering and viewing geospatial data managed by Oracle Spatial
or Locator.

Wireless Toolkit
Oracle Application Server Wireless (OracleAS Wireless) is a comprehensive and flexible wireless
and voice platform. Enterprises can deploy wireless browser-based applications, voice applications,
notifications, Java 2 Micro Edition (J2ME), and two-way messaging applications. OracleAS Wireless
helps enterprises and service providers efficiently build, manage, and maintain wireless and voice
applications. Some of the main features of OracleAS Wireless include the following:

■ Multi-Channel Server Enables applications to be accessed through multiple delivery
methods such as SMS, voice access, WAP, Pocket PCs, and so on. Developers can focus
on creating mobile applications for any channel in one future-proof, open-standards
language.

■ J2ME support Java 2 Micro Edition provides a lightweight run-time environment for
mobile devices, enabling client-side development based on industry standards instead
of proprietary device interfaces.

■ J2ME Developer’s Kit Offers the ability to extend Web Services to J2ME devices.

■ J2ME Provisioning System This Web-based application manager allows users to upload
J2ME applications to the database repository for efficient management and secure storage.

■ Notifications and Multi-Media Messaging This feature enhances intelligent messaging
with new functionality for actionable alerts, message adaptation, and failover delivery
control.

■ Web Clipping Allows clipping and scraping of existing Web content to create wireless
applications that reuse existing PC browser-based applications.

■ Location Services Give access to the full Location-Based Service (LBS) functionality,
such as user positioning, geo-coding, mapping, driving directions, and business directory
lookup.

To develop mobile applications, Oracle has created the Wireless Developer’s Kit, a download
that provides developers with documentation, samples, code templates, and wizards for common
mobile user interface constructs. The Wireless Development Kit can be used on any PC or laptop—
connected or disconnected—to build and test wireless and voice applications. Developers can use
any IDE to develop their mobile application, including Oracle JDeveloper. The JDeveloper Wireless
Extension includes built-in simulators that allow developers to preview the mobile application, code
templates, wizards, code insight, and automatic deployment to Oracle Application Servers.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

870 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:870

Wireless applications can be deployed in the following ways:

■ Hosted Services Oracle provides a hosting service that maintains logins and allows access
to a secure repository. This is the fastest way to implement your wireless development.

■ In-house deployment Corporations deploy and maintain their own firewall-based
security infrastructure.

■ In-house with hosted Web Services Corporations install the Oracle9iAS Wireless
infrastructure within their own premises while using the desired features as a Web Service.

Security is provided through a number of different protocols, depending on the type of wireless
application:

■ Browser-based applications Secured via the IEEE 802.11 protocol: HTTPS, WAP 1.2,
WAP 2.0.

■ SMS (Short Message Service) Secured via GPRS (General Packet Radio Service) protocol
security; applications can use Symmetric Shared Encryption Keys.

■ E-mail Security is usually guaranteed in the domain if the e-mail server and application
server are located at the mobile operator. If the servers reside at the enterprise, a secure
channel (Secure Sockets Layer [SSL] or Transport Layer Security [TLS]) needs to be used.

■ Voice HTTPS can secure the channel between the voice gateway and the application
server.

OracleAS Wireless supports the following messaging capabilities:

■ Push messaging Messages are sent to mobile users using the notifications engine
or a custom application.

■ Mobile-initiated pull messaging Mobile users send a message to invoke a server-side
application, which replies by sending a message to the mobile user.

■ Server-initiated pull messaging The server sends a message to which the mobile user
can respond.

Out of the box, the following channels and protocols are supported in OracleAS Wireless:

■ SMS, EMS, and SmartMessages SMPP (Logica, CMG, Comverse), UCP (CMG), CIMD
(Nokia), Nokia GSM Phone Modems with data cable, Mobileway V-SMSC, and
Vodafone VVSP

■ MMS SMTP (Ericsson, LogicaCMG), EAIF (Nokia), and MM7 (Ericsson, LogicaCMG)

■ E-mail IMAP, POP3, and SMTP

■ Fax Captaris RightFax

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Voice notifications VoiceGenie Voice Gateway

■ Pagers WCTP

■ Instant messaging (IM) Jabber (also as a gateway to AOL, MSN, Yahoo!, ICQ, and so on)

Portal Development Kit
The wizard-based approach to developing Portal components allows developers to create and
deploy Web-based components and applications extremely quickly. There are, however, serious
limitations to any type of wizard-based development environment. The ability to customize and
extend the functionality of components generated through a wizard-based development environment
is arduous at best—and impossible in many cases.

The Portal Development Kit (PDK) provides developers with tools and articles providing
advanced techniques for extending the functionality of Portal components beyond what is available
through the component wizards in Portal. The PDK is a framework that enables the development
of portlets for seamless integration with OracleAS Portal. Using the PDK, developers can create
portlets either as PL/SQL stored procedures (Database Providers) or in any other Web language,
including Java, Web Services, XML, ASP, Perl, and so on (Web Providers). The PDK includes the
following:

■ JPDK Provides APIs for creating Java-based and Web Services–based portlets.

■ Java Portlet Container Provides a run-time environment for portlets coded to the JPDK
Portlet API.

■ OmniPortlet Provides wizards that enable Portal page designers to publish SQL, XML,
Web Services, spreadsheet, and existing Web page data directly to a Portal page.

■ Web Clipping Portlet Enables page designers to collect existing Web content into
centralized Portal pages as a means of content consolidation. Page designers can clip
page content from an existing Web site and deliver it as a portlet to a Portal page.

■ PL/SQL Development Kit Provides APIs for developing Database Providers.

■ Utilities Used to simplify the development and testing of portlets.

■ Java Portlet Wizard A JDeveloper add-in that provides a wizard-based utility for creating
JPDK-based portlets.

■ PL/SQL Generator A hosted utility that simplifies the creation of PL/SQL-based portlets.

■ Test Suite Includes the Provider Test and Test Harness utilities for testing Web Providers
without having an installation of the OracleAS Portal.

■ Samples Various code samples highlighting development solutions.

■ Articles Development white papers explaining development issues in depth.

Go to http://portalstudio.oracle.com for more information about downloading and installing
the Portal Development Kit.

Chapter 45: The Hitchhiker’s Guide to Oracle Application Server 10g 871

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:871

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Persistence Layer Services
When you’re developing Java applications that interface with Oracle, the integration between Java’s
object-oriented features, such as object references, business rules, complex relationships, and
inheritance, and Oracle’s relational database features, such as stored procedures, tables, rows,
columns, and foreign keys (referred to as object-relational [O-R] mapping) requires an effort that
is commonly underestimated by both developers and project managers. The problem of bridging
object-oriented and relational technologies is referred to as object-relational impedance mismatch,
and the fundamental differences in modeling, design, and skill sets can prolong development work.
This can lead to deployed applications that are at best difficult to maintain and, at worst, unreliable
and impossible to enhance. In addition to these issues, developers also need the ability to translate
object-oriented data into relational data, referred to as object-relational mapping. A product that
easily enables the integration of relational database and Java technologies, while allowing database
designers and Java developers to maintain database and application design principles, would be
invaluable. Oracle recognized the developer’s need for these features and has created a product
that not only addresses all the complex issues mentioned previously, but also adds features such
as the following:

■ A query framework that allows developers to define queries using various technologies

■ A transaction framework that provides object-level transaction support

■ Performance enhancements that include a fully configurable cache that ensures object
identity

OracleAS TopLink integrates the object and relational worlds. It allows applications and
application developers to manage Java objects using relational databases. OracleAS TopLink is
robust enough to work with any Java-supporting database and any Application Server that supports
Java and J2EE containers. Here are some of the major features of OracleAS TopLink:

■ The OracleAS Mapping Workbench A visual tool that creates and maps metadata
describing the relationship between Java classes and relational tables.

■ Advanced mapping support This includes support for the following mappings:

■ Direct-to-Field

■ One-to-One

■ Variable One-to-One

■ One-to-Many

■ Many-to-Many

■ Aggregate Object

■ Aggregate-Collection

■ Transformation

■ Object Type

872 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:872

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Type Conversion

■ Serialized Object

■ Direct Collection

■ Nested Tables

■ VArrays and OREFs

■ Multi-Table

■ Inheritance

■ Object caching Stores data returned as objects from the database for future use,
minimizing database and network access. The following cache types are supported:

■ Soft Objects are maintained through garbage collection sweeps until memory
is at a premium.

■ Hard Objects are not garbage collected.

■ Weak Objects exist in the cache as long as they are being used.

■ Full All objects are cached and not removed.

■ Query flexibility Developers can define queries using the following items:

■ An object-oriented expression framework

■ Query By Example (QBE)

■ Enterprise JavaBeans Query Language (EJB QL)

■ SQL

■ Stored procedures

■ Object-level transaction support Transactions are supported through the “Unit of Work,”
a Java-based transaction. During a Unit of Work, the application modifies business objects;
when the Unit of Work is committed, OracleAS TopLink updates the database, based
on what has changed, thereby executing the minimally required SQL.

OracleAS TopLink consists of three main components:

■ Development tools Consist of the OracleAS Mapping Workbench, which creates and
manages the mapping metadata that describes the relationship between Java classes
and relational tables, and the OracleAS Sessions Editor, which describes how TopLink
communicates with the data source at run time by creating the session.xml file.

■ Run-time tools Consist of the Web client, an interface that interacts with any OracleAS
TopLink ServerSession, and the Performance Profiler, which provides performance-tuning
and run-time diagnostics.

■ Class libraries Consist of the TopLink API, which is called at run time to retrieve and
store Java objects.

Chapter 45: The Hitchhiker’s Guide to Oracle Application Server 10g 873

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:873

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Caching Services
Web caching is the process of keeping frequently used pages in memory so that the HTTP Server
can display them quickly instead of repeatedly processing requests for those URLs. By implementing
caching, you allow your clients to experience faster page retrievals, and you greatly reduce the load
on the Web Server. It is one of the most effective ways to scale your application without the need
for recoding or purchasing new hardware.

Oracle Application Server 10g contains a component called the Web Cache. It is a content-
aware service that improves the performance, scalability, and availability of Web sites. OracleAS
Web Cache 10g uses caching and compression technologies to optimize application performance
and more efficiently utilize low-cost, existing hardware resources. Built-in workload management
features ensure application reliability and help maintain quality of service under heavy loads. And
new in this release, end-user performance-monitoring features provide unparalleled insight into
end-user service levels. The real power of OracleAS Web Cache is its ability to cache both static
and dynamically generated pages.

The Web Cache can be configured to run on its own server or on the middle-tier server (see
Figure 45-8). In either configuration, the Web Cache is placed in front of the Web Server to cache
pages and provide content to those browsers that request it. If the Web Cache, acting as a virtual
server or virtual request router, can satisfy these requests, it will provide content to the clients. If
the requested content is not cached by the Web Cache or has been marked invalid for any reason,
the content is retrieved from the Web Server and cached in the Web Cache. OracleAS Web Cache
allows you to define invalidation rules, which can be used to control the amount and types of
cached content in your server. Some of the key benefits of OracleAS Web Cache can be measured
by dramatic improvements in the following areas:

■ Resource usage Higher throughput and scalability.

■ User experience Faster response times without sacrificing personalization.

■ Availability Intelligent workload management.

■ Productivity No need to roll your own cache means faster time-to-market.

■ Bottom line Reduced infrastructure load translates into cost savings.

■ Intelligence Better visibility into end-user service levels.

Some of the key features of OracleAS Web Cache include

■ Efficient use of low-cost hardware

■ Fine-grained cache control

■ Workload management and reliability

■ End-user experience management

■ Advanced networking

■ Single-vendor manageability and integration

■ Flexible deployments

874 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:874

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 45: The Hitchhiker’s Guide to Oracle Application Server 10g 875

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:875

The new features of OracleAS Web Cache include enhancements in the following categories:

■ End-user performance management This is the most significant new Web Cache feature.
Administrators can configure OracleAS Web Cache to measure end-user response times
for individual URLs, sets of URLs, or even entire Web-based applications, regardless of
whether the URLs are cached. The Analyze functionality lets you view detailed reports
in context by group, URL, domain, visitor, or application, as well as in a daily, weekly, or
monthly context. Further drill-downs provide you with response time and load distribution
information to help balance Web server resources.

■ Security Web Cache now supports applications that require client-side SSL certificates for
PKI-based authentication. Oracle Application Server now supports nCipher’s BHAPI-compliant
hardware for deployment on servers running Web Cache and/or Oracle HTTP Server.

FIGURE 45-8. Possible Web Cache topologies

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

876 Part VIII: Hitchhiker’s Guides

■ Caching Previously, administrators could either cache one version of a page for all
browsers or cache one version for each browser type and version. Now, administrators
can customize the caching rules to define groups of browsers that will share a cached
version of a page.

■ Invalidation The 9.0.4 release of Web Cache introduces an inline invalidation mechanism
as an additional means of managing content freshness. Inline invalidation provides a useful
way for origin servers to “piggyback” invalidation messages on transactional responses
sent to Web Cache. In previous releases of Web Cache, the URL-based cache key was the
unique identifier for a cached document. Invalidation requests needed to specify either
exact URLs or a set of URLs and headers matching a regular expression in order to invalidate
cached objects. Because it can be difficult for applications to map URLs to the underlying
data used to generate those URLs, Web Cache invalidation has been extended in 9.0.4
to support search keys. Cached objects can now be associated with multiple application-
specified search keys, with the URL-based key being the primary key.

■ Compression The Web Cache compression engine now supports self-describing
compression policies and more compressible content by compressing documents
containing session-encoded URLs, ESI tags, or the <!--WEBCACHETAG--> and
<!--WEBCACHEEND--> tags.

■ Load balancing and request routing Support for session binding in a cache cluster allows
Web Cache to bind a user session to a particular origin Web server. This feature is used
to consecutively route requests for a unique session to the same origin server, allowing
stateful load balancing.

■ HTTP protocol support OracleAS Web Cache now supports chunked transfer encoding.
HTTP 1.0 (with connection keep-alive) was used in prior releases of Web Cache, which
caused problems for servers that generated dynamic content with unknown content length.
OracleAS’s support for HTTP 1.1 allows for a persistent connection to the Web Cache,
even when content length is undetermined.

■ Usability and manageability OracleAS Web Cache now includes improved access
logging, event logging and diagnostics, reporting on popular cache misses, integration
with Oracle Process Management and Notification (OPMN), and dynamic configuration
for select parameters.

Figure 45-9 shows the administration screen for the Web Cache Server. The Database Cache,
introduced in Oracle9iAS Release 1, has been discontinued.

System Services
Oracle provides numerous system services to help make your interaction with Oracle Application
Server 10g easier. Most of the system services made available through the Enterprise Manager
Application Server Control Web pages are of interest mainly to administrators, but developers
will benefit from an understanding of the Application Server Control pages when the deployment
of applications is discussed.

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:876

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 45: The Hitchhiker’s Guide to Oracle Application Server 10g 877

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:877

Enterprise Manager 10g Grid Control
Oracle Application Server 10g is supported by a Web-based management system—Oracle Enterprise
Manager 10g. Enterprise Manager provides both a simple, out-of-box application server administration
interface and a comprehensive system for managing and monitoring large-scale Oracle systems.

The Application Server administration interface, known as Application Server Control, is
automatically installed with Oracle Application Server 10g. It is designed to help you manage your
individual Application Server instances, Application Server farms (an Application Server grouped
with its corresponding infrastructure), and Oracle Application Server clusters. From the Application
Server Control, you can monitor the entire Oracle Application Server platform (including J2EE,
Portal, Wireless, and Business Intelligence components) and perform administrative tasks, such as
configuration changes to your application server components and real-time monitoring of all services

FIGURE 45-9. The Web Cache administration screen

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

configured in your Oracle Application Server 10g instances. With Enterprise Manager 10g Application
Server Control, administrators can do the following:

■ Manage and configure Application Server components.

■ Monitor server performance and Application Server logs.

■ Create and configure J2EE services.

■ Deploy and monitor J2EE applications.

The complete Enterprise Manager 10g Grid Control product is provided as an optional installation
with the Application Server. The two can be used together as an integrated system for complete
Application Server system management. Grid Control is a Web-based system for central management
of Oracle products, host systems, and applications. It provides a central console for monitoring
distributed Application Servers and is integrated with the Application Server Control for performing
administration operations. With Grid Control, Application Server administrators can do the following:

■ Monitor the status and performance of servers across the business enterprise.

■ Maintain service-level requirements for Web applications.

■ Maintain system and software configurations.

■ Manage the entire system stack employed by the application server system.

Figures 45-2 and 45-3, shown previously, are screens for administering the middle tier and
infrastructure instances, respectively, via the Enterprise Manager Application Server Control Web site.

Development Tools
Does your Web application have to be written in Java? Many developers believe that to be true, but
as you will see, you have many options available to you as an Oracle developer. Oracle provides
numerous tools that allow you to leverage existing (or legacy) code into applications that can be
deployed over the Web with minimal effort. In general, there are two types of Web applications:

■ HTML-based Application code (residing on the server or in an Oracle database) that
produces a series of HTML pages. There is no limitation as to what language is used to
generate these pages.

■ Applet-based Java code downloaded to the client’s browser and executed there. Applets
give the developer full control of the interface, but at a price—the time needed to download
the applet may be prohibitive for all but the most trivial of applications.

Except for Discoverer Plus and Portal, there is no development environment provided with
Oracle Application Server 10g. You will have to make a decision as to what technology to use when
beginning your development. No “one” tool is perfect for solving all your development needs, and
virtually all organizations use a combination of different tools and technologies. The most valuable
developers in modern IT shops are those who are fluent in numerous technologies.

878 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:878

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Choosing the right development tool is not an easy task, and it is not a decision to be made
lightly. Human nature being what it is, people tend to gravitate to things they know and feel
comfortable with. Some hard questions need to be answered before deciding on a technology—
or a combination of technologies.

How Will Your Application Be Accessed?
It is not enough to deploy an application over the Web and then not worry about how users will
access it, although this was the original promise of browser-based applications. There are three
basic ways of delivering your application, and each one of these will affect the development
decisions you will need to make:

■ Intranet In this environment, users access the application over a network inside
a company or organization, which uses software like that used on the Internet but is
for internal use only and not accessible to the public. This option gives you the most
flexibility in your development decisions because there is some likelihood that users
of your application will have fast network connections and a single browser.

■ Extranet In this environment, users access the application over a private network that
uses the Internet protocols and the public telecommunications system to share a business’s
information, data, or operations with external suppliers, vendors, or customers. An extranet
can be viewed as the external part of a company’s intranet. Here, your development
options begin to decrease because there will be questions regarding browser types and
firewall issues, which may block certain types of communications between the clients
and the server.

■ Internet In this environment, users can access the application from anywhere in the
world. This option has the least amount of flexibility in terms of your development decisions,
because the application will have to be “generic” enough to support all types of browsers
and all types of access (dial-up, broadband, and so on). It will be almost impossible to
deliver any applet-based application via this method.

How Complex Is the User Interface?
Applets give the developer the greatest control over the look and feel of the user interface. As
mentioned before, this comes at a great price—namely, the time required to download the applet
to the browser. In an intranet or extranet setting, this may be acceptable, but it will be virtually
impossible to serve applets over the Internet. If it is decided to go with an HTML-based application,
it must be determined whether users can be productive with a standard interface, or if sophisticated
HTML tools (such as Dreamweaver) will need to be utilized to create something more complex.

What Types of Users Will Be Using Your Application?
In general, users can be broken into three categories:

■ Casual users For these users, speed is the most important factor. Casual users will
probably demand that an application start with minimal load time and provide data
access immediately. These users will usually be satisfied with HTML-based applications.

Chapter 45: The Hitchhiker’s Guide to Oracle Application Server 10g 879

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:879

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ “Heads-down” users These users work with an application for an extended period of
time, and a startup period of a minute will probably be acceptable in a trade-off to the
productivity gains realized throughout the day. These users may benefit from an Applet-
based application.

■ Power users These users demand applications they can customize—either the interface
of the application or the types of queries and data used in the application. For these users,
flexibility and interaction are the most important features, which will probably require an
Applet-based application.

Oracle Forms
Oracle Forms is one of Oracle’s oldest and most mature development products. It has been
traditionally used to create client/server applications. It is similar in design and philosophy to
Microsoft’s Visual Basic development environment. Countless Forms-based applications are still
in production environments around the world today.

As development efforts started moving toward Web- and browser-based deployments, the
demand to create an environment that still supports Forms-based development (preserving legacy
code and knowledge) and introduces Web deployment (eliminating the high cost of maintaining
clients with multiple operating systems, nonstandard configurations, and so on) began to grow.

Oracle Application Server 10g includes a service called the Forms Server that is installed with
the Business Intelligence and Forms option. It handles serving Oracle Forms over the Web, gathering
metrics to assist in administration and tuning, and integrating with Oracle’s Identity Management
features. There are numerous configuration parameters to modify virtually every aspect of the Forms
environment on the Web.

Starting with Oracle Forms 9i (the current version is Oracle Forms 10g), Oracle no longer
provides the Forms run-time environment to deploy Forms in a traditional client-server environment.
The only way to test an Oracle Form you have developed is to run it as a Web form through a
Forms Server provided with the Oracle Forms 10g development environment.

Oracle Reports
Much of what has been said about Oracle Forms also applies to Oracle Reports. It is a mature and
stable product that allows developers to create reports quickly and easily. It also suffers from the
high administration costs of deployment because Reports run-time libraries need to be installed
and maintained on every machine that needs to run an Oracle Report.

The Reports Server can be configured to integrate with Oracle’s Identity Management features
for security. Like Oracle Forms 9i, every version of Oracle Reports since 9i (the current version is
Oracle Reports 10g) no longer provides the Reports run-time environment to run Oracle Reports
in a traditional client-server environment. The only way to test a report you have developed is to
run it as a Web report through a Reports Server provided with the Oracle Reports 10g development
environment.

Multiple Reports Servers can be defined for each middle tier in Oracle Application Server 10g.
This gives another layer of scalability for your environment. If you wish to integrate Reports with
Oracle Portal, you can create calendars in Portal to limit the access times for certain reports, Report
Servers, and printers. You can also use the Portal security model to limit access to any of these
components.

880 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:880

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Oracle Discoverer
As mentioned earlier in this chapter, Oracle Discoverer Server contains a component to view and
interact with Discoverer Worksheets over the Web (Discoverer Viewer) and a component to create
and modify Worksheets (Discoverer Plus). The ad hoc capabilities of Oracle Discoverer can allow
your development staff to offload reports design and generation to power users. By putting the full
capabilities of the Discoverer desktop onto the Web, Oracle makes the implementation of Discoverer
a simple experience for most organizations.

Discoverer also integrates seamlessly with Oracle Portal via an internal portlet provided by
Oracle called the Discoverer portlet. This portlet allows you define the Workbook and Worksheet
you wish to display, any parameters to be passed to the Worksheet, and a Refresh Options setting
that allows you to specify the length of time a particular report will be cached (in Portal’s Cache,
not the Web Cache). The Discoverer Worksheet becomes a portlet and can have any of Portal’s
security and display properties applied to it.

Java Tools
In an integrated development environment (IDE), the tools have been integrated to collaborate
with each other (for example, the output of one tool can be used as the input for another tool).
Attempting to build Java applications without an IDE using the free Java compiler provided in the
Java Software Development Kit from Sun is possible, but it’s a less-than-optimal environment.
Oracle’s Java IDE, JDeveloper, has so many essential tools, only the hardiest of Java programmers
would ever attempt to build production-quality Java applications without it. Here’s a quick list of
JDeveloper’s most prominent features:

■ Three profiling modes These modes enable you to create a statistical analysis of the
performance of your application with respect to its functionality, both at compile time
and run time; its use of memory in the Java heap; and the occurrence and duration of
various events.

■ A public Extension SDK This enables the development environment to be extended
and customized.

■ Native support for SQL, PL/SQL, and XML This support includes syntax highlighting
and code insight, as well as PL/SQL development, PL/SQL debugging, and SQL tuning.
Additionally, JDeveloper provides direct access to the database, allowing you to create,
view, modify, and delete tables, views, triggers, indexes, sequences, and more.

■ Robust debugging support for both Java and PL/SQL Debugging in these two
environments is seamlessly integrated when an Oracle9i or later database is used, giving
you the ability to step from Java code directly into PL/SQL code within the same
debugging session.

■ Class diagrams The goal of class modeling is to visualize classes or components—and
the relationships between them—that compose all or part of a system design. Classes
and components modeled on a class diagram are synchronized to ensure that changes
made to modeled elements are reflected in their implementation files and that changes
to the implementation files are visualized on the diagram.

Chapter 45: The Hitchhiker’s Guide to Oracle Application Server 10g 881

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:881

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Activity diagrams Processes performed in a business or system can be visualized using
modeled activities, flows, and states on activity diagrams. An activity can represent a
single process, or it can represent a subactivity model (that is, the activity can be broken
down into a set of subactivities, which themselves form an activity model).

■ All aspects of EJB development, from conception to implementation EJB support
includes modeling and wizard-based development of EJB sessions; entity and message-
driven beans; the ability to add, edit, and delete EJBs and EJB properties using the EJB
Module Editor; reverse-engineering of database tables and foreign key relationships as
CMP (Container-Managed Persistence) entity beans and CMRs (Container Managed
Relationships); the ability to test EJBs locally in the IDE; and the ability to check EJBs for
deployment errors and inconsistencies using the EJB Verifier.

■ J2EE deployment Allows developers to package and assemble J2EE modules into
standard archives such as EJBs, JARs, WARs, and EARs. These archives can be deployed
with a single click to Oracle Application Server Containers for J2EE (OC4J).

■ Built-in J2EE Applications Framework Oracle Business Components for Java (BC4J) is a
standards-based, server-side framework for creating scalable, high-performance J2EE
applications. The framework provides design-time facilities and run-time services to simplify
the task of building, debugging, customizing, and reusing business components.

■ Application Development Framework (ADF) This is the most exciting new feature of
JDeveloper for developers. The ADF is Oracle’s solution to the ever-increasing complexity
of the J2EE platform. Based on the Model-View-Controller (MVC) architecture, Oracle ADF
lets application developers focus on the business domain rather than on the underlying
technologies. By using visual, declarative, and guided-coding techniques, the framework
allows application developers who are not J2EE experts to quickly become productive.
The framework is based on industry standards, allowing applications built with ADF to
be deployed on any J2EE server and connect to any SQL database.

■ Integration of the TopLink Mapping Workbench Oracle JDeveloper 10g seamlessly
integrates with the Mapping Workbench, giving developers the ability to do the following:

■ Automatically map descriptors

■ Generate database schemas from object models

■ Generate object models from database schemas

■ Generate both CMP (Container-Managed Persistence) and BMP (Bean-Managed
Persistence) entity beans

■ Import an object model from any IDE or UML modeling tool

■ Connect and interact with any relational database with a JDBC-compliant driver

HTML DB
HTML DB occupies a unique space in the world of Oracle Web development. It is a Web
development tool, but it is not part of the Oracle Application Server 10g product stack. The Oracle
HTML DB engine is stored in the database, and is accessible via the HTTP Server that comes

882 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:882

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

standard with the Oracle10g database. It is intended primarily for simple Web-based applications
that do not require the sophisticated features provided with Oracle Application Server 10g. HTML DB
is composed of three main pieces:

■ Application Builder Helps you assemble an HTML user interface on top of database
objects. The Oracle HTML DB engine takes care of presenting your application using
templates and UI elements.

■ SQL Workshop Enables you to interact with the database through a Web browser. With
it, you can view or create database objects, run SQL commands, and query by example.

■ Data Workshop Helps you import plain-text and spreadsheet data into database tables
and export data from database tables.

All HTML DB applications are displayed in your browser from data queried from the database,
called application definitions. This metadata provides information about your application to the
HTML DB engine, and therefore no code is generated (or needed). The Oracle HTML DB rendering
engine reads the application definition and displays the application accordingly.

Chapter 45: The Hitchhiker’s Guide to Oracle Application Server 10g 883

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:883

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 45
Blind Folio 45:884

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:885

CHAPTER
46

The Hitchhiker’s
Guide to Database

Administration

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

886 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:886

I
n this chapter, you will see the basic steps involved in administering an Oracle
Database 10g database. There are many components to the database administrator
(DBA) job, and there are books written specifically for DBAs. This chapter will
provide an overview of the tasks of a DBA, along with guidance on the usage of
standard DBA tools. This chapter does not provide a full, detailed description of

every DBA task.
In earlier chapters, you have already seen many of the functions of a DBA, such as creating

tables, indexes, views, users, synonyms, database links, and packages. The DBA topics described
in this chapter will therefore focus on the production-control functions of the DBA role:

■ Creating a database

■ Starting and stopping the database

■ Sizing and managing the memory areas for the database

■ Allocating and managing space for the objects

■ Creating and managing undo

■ Performing backups

For each of these topics, many options are available to developers and DBAs. The following
sections of this chapter should provide you with enough information to get started, and to learn
what questions to ask of your DBAs and system administrators. For further details on all of these
topics, see Oracle DBA Handbook.

Creating a Database
The simplest way to generate a create database script is via the Oracle Universal Installer (OUI).
When you install Oracle, OUI gives you the option to create a database. If you use that option,
OUI will create a small database that is useful for practice or as the basis for application development.
The create database scripts provided by Oracle give you a solid template for your standard create
database scripts. A sample create database script is shown in Chapter 2. See the create database
entry in the Alphabetical Reference for the full command syntax.

The create database command is issued from within SQL*Plus, via an account with the SYSDBA
system privilege:

connect system/manager as sysdba
startup nomount
create database...

To issue connect as SYSDBA successfully, you must have the proper authorization at the
operating-system and database levels. See your operating-system–specific Oracle documentation
for information on the operating-system rights needed.

Using the Oracle Enterprise Manager
Oracle Enterprise Manager (OEM), a graphical user interface (GUI) tool, is supplied as part of
the standard Oracle toolset to enable DBAs to manage databases from a personal computer.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The OEM toolset provides a robust interface for remote database administration. All DBAs can
use the same central OEM repository (a set of tables created in a database) to perform their work.
In addition to those changes, OEM includes task scheduling and assignment features to enable
around-the-clock database coverage.

You must make several key decisions before installing and configuring OEM. You need to
decide where the OEM repository is to be created and how and when you are going to perform
backups to protect this repository. Since you can use OEM as an interface to Oracle Recovery
Manager (RMAN), recovery information can be stored in the OEM repository. You may want to
create a small, separate database in which to store the OEM repository. You should ensure that
this database is backed up frequently so that recovery of the repository itself is assured.

If you are the only DBA working with the OEM toolset, you will not have to consider who
will handle administration of specific databases in your environment. If there are several DBAs
at the site, you will need to determine task definitions, database responsibilities, and schedules.
With OEM, you can grant levels of access and privilege to each DBA in the group on a task-by-
task basis. You can configure OEM to enable you to send e-mail requests and assignments to
other DBAs or take control of a problem to speed resolution.

If you have a previous version of OEM installed, migrate that repository to the newest version
to take advantage of the new features. If you have more than one repository on your system, you
will need to take precautions to ensure that you migrate each version of the repository without
damaging currently stored information.

Oracle supports the Simple Network Messaging Protocol (SNMP). By supporting SNMP, Oracle
products can be easily integrated into monitoring tools for systems and networks.

Although you do not have to use OEM, it provides a common GUI for managing your databases.
As your enterprise grows in size (and in number of databases and DBAs), the consistency of the
DBA interface will support consistent implementation of your change-control and production-
control processes.

OEM enables you to manage Real Application Clusters (RAC) environments and Grid
environments. By providing a graphical interface to the administration or the database, OEM
simplifies the learning curve for new DBAs and allows very complex functions to be performed
easily.

Starting and Stopping the Database
To start a database, issue the startup command from within SQL*Plus, as shown in the following
listing. In the examples in this chapter, the name of the database is MYDB.

connect system/manager as sysdba;
startup open MYDB;

Alternatively, you can mount the database:

connect system/manager as sysdba;
startup mount MYDB;

When the database is mounted but not open, you can manage its files. For example, if you
moved some of the database’s files while the database was shut down, you need to let Oracle know
where to find them before it will restart. To give the new locations of the files, you can mount the

Chapter 46: The Hitchhiker’s Guide to Database Administration 887

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:887

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

888 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:888

database (as shown in the preceding listing) and then use the alter database command to rename
the old files to their new locations. Once you have finished telling Oracle the new locations for the
files, you can open the database via the alter database open command.

Four primary options are available for shutting down the database. In a normal shutdown
(the default), Oracle waits for all users to log out of the database before shutting down. In a
transactional shutdown, Oracle waits for active transactions to complete before shutting down.
In an immediate shutdown, Oracle rolls back all existing uncommitted transactions and logs out
any users currently logged in. In an abort shutdown, the database immediately shuts down, and
all uncommitted transactions are lost.

NOTE
While the database is in the process of shutting down or starting up,
no new logins are permitted.

To perform a normal shutdown, use the shutdown command. For a transactional shutdown,
use shutdown transactional. An immediate shutdown, as shown in the following listing, uses the
shutdown immediate version of the shutdown command. To abort the database, use shutdown
abort.

connect system/manager as sysdba;
shutdown immediate

If you use shutdown abort, Oracle will automatically perform recovery operations during
the next database startup. A shutdown abort may also be useful in situations where the database
needs to be stopped in the shortest possible time, for example, for an impending power failure.
During the subsequent startup, Oracle will perform any necessary recovery operations.

You may also use OEM to start up and shut down the instance, via the General tab on the
Instance Manager/Configuration screen.

Sizing and Managing Memory Areas
When you start a database, Oracle allocates a memory area (the System Global Area, or SGA)
shared by all of the database users. The two largest areas of the SGA are usually the database
buffer cache and the shared pool; their size will directly impact the memory requirements for the
database and the performance of database operations. Their sizes are controlled by parameters in
the database’s initialization file.

The database buffer cache is an area in the SGA used to hold the data blocks that are read from
the data segments in the database, such as tables and indexes. The size of the database buffer cache
is determined by the DB_CACHE_SIZE parameter (expressed in terms of number of bytes) in the
initialization parameter file for the database. The default size for the database blocks is set via the
DB_BLOCK_SIZE parameter specified in the parameter file during database creation. Managing
the size of the database buffer cache is an important part of managing and tuning the database.

The database has a default block size, but you can establish cache areas for different database
block sizes and then create tablespaces to use those caches. For example, you can create a 4KB block
size database with some tablespaces set to 8KB. The size of the 8KB cache would be set via the

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 46: The Hitchhiker’s Guide to Database Administration 889

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:889

DB_8K_CACHE_SIZE parameter. To create tablespaces to use that cache, specify blocksize 8K as
part of the create tablespace command. If the default block size for the database is 4KB, you would
not set a value for DB_4K_CACHE_SIZE; the size specified for DB_CACHE_SIZE would be used for
the 4KB cache.

NOTE
The cache for the block size must exist before you create a tablespace
that uses that block size.

The different cache areas can be resized while the database is running. The caches must be
increased or decreased in granules. For a database with an SGA less than 128M, the granule size
is 4M—so DB_8K_CACHE_SIZE can be 4M, 8M, 12M, and so on. If you attempt to use any other
setting, Oracle will round it up to the next granule size. The following listing shows the setting of
the DB_8K_CACHE_SIZE parameter.

alter system set DB_8K_CACHE_SIZE = 8m;

If you create a tablespace that uses a non-default database block size, you must be sure that
the related cache size parameter (such as DB_8K_CACHE_SIZE) is updated in your database
parameter file. If you are using an init.ora file, you must update it with the new value. If you are
using a system parameter file (the preferred method), it will be automatically updated when you
execute the alter system command with the scope=both clause.

NOTE
You cannot alter the SGA_MAX_SIZE or JAVA_POOL_SIZE parameter
values while the database is open.

Oracle will manage the space in the buffer caches by using an algorithm that keeps the most
actively used blocks in memory for as long as possible. When free space is needed in the cache,
the new data blocks will either use the space occupied by infrequently accessed blocks or the
space occupied by a modified block once it has been written out to disk.

If the SGA is not large enough to hold the most frequently used data, different objects will
contend for space within the data block buffer cache. Contention is particularly likely when
multiple applications use the same database and thus share the same SGA. In that case, the most
recently used tables and indexes from each application constantly contend for space in the SGA
with the most recently used objects from other applications. As a result, requests for data from the
data block buffer cache will result in a lower ratio of “hits” to “misses.” Data block buffer cache
misses result in physical I/Os for data reads, resulting in performance degradation.

The shared pool stores the data dictionary cache (information about the database structures)
and the library cache (information about statements that are run against the database). While the
data block buffer and dictionary cache enable sharing of structural and data information among
users in the database, the library cache allows the sharing of commonly used SQL statements.

The shared pool contains the execution plan and parse tree for SQL statements run against
the database. The second time that an identical SQL statement is run (by any user), Oracle is able
to take advantage of the parse information available in the shared pool to expedite the statement’s

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

execution. Like the data block buffer cache, the shared pool is managed via an LRU algorithm.
As the shared pool fills, less recently used execution paths and parse trees will be removed from
the library cache to make room for new entries. If the shared pool is too small, statements will
be continually reloaded into the library cache, affecting performance.

The size (in bytes) of the shared pool is set via the SHARED_POOL_SIZE initialization parameter.
Like the other caches, the shared pool size can be altered while the database is open.

As of Oracle Database 10g, you can use Automatic Shared Memory Management (ASMM).
To activate ASMM, set a nonzero value for the SGA_TARGET database initialization parameter.
After you set SGA_TARGET to the size of the SGA you want (that is, all of the caches added together),
you then set the other cache-related parameters (DB_CACHE_SIZE, SHARED_POOL_SIZE, JAVA_
POOL_SIZE, and LARGE_POOL_SIZE) each to 0. Shut down and restart the database for those
changes to take effect; the database will then begin actively managing the sizes of the different caches.
You can monitor the sizes of the caches at any time via the V$SGASTAT dynamic performance view.

NOTE
While the database is running, you can alter the SGA_TARGET
parameter value and Oracle will automatically alter the sizes
of the related caches.

As the workload in the database changes, the database will alter the cache sizes to reflect the
needs of the application. For example, if there is a heavy batch-processing load at night and a more
intensive online transaction load during the day, the database may alter the cache sizes as the load
changes. These changes occur automatically, without DBA intervention. If you specify a value for a
pool in your initialization parameter file, then Oracle will use that as the minimum value for that pool.

NOTE
DBAs can create KEEP and RECYCLE pools in the buffer cache. KEEP
and RECYCLE pools are not affected by the dynamic cache resizing.

From within OEM, you can see if dynamic memory management is enabled by clicking on the
Memory Parameters option; the Automatic Shared Memory Management button can be set to
Enabled or Disabled.

The Initialization Parameter File
The characteristics of the database instance—such as the size of the SGA and the number of
background processes—are specified during startup. These parameters are stored in a binary file
called the system parameter file. To generate the system parameter file for an open database, use the
create spfile command. You can generate a readable version of the system parameter file via
the create pfile from spfile command. See the Alphabetical Reference for the command syntax
for these commands. The “pfile” version of the parameter file, formerly known as the init.ora file,
usually contains the database name as part of the filename. For example, a database named MYDB
may have a pfile file named initmydb.ora. In general, you should use the server parameter
file option for managing your parameter settings because it supports dynamic changes to the
parameters while the database is running.

890 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:890

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:891

Allocating and Managing Space for the Objects
When a database is created, it is divided into multiple logical sections called tablespaces. The
SYSTEM tablespace is the first tablespace created, and the SYSAUX tablespace is created as part of
every Oracle Database 10g database. You can then create additional tablespaces to hold different
types of data (such as tables, indexes, and undo segments). As of Oracle Database 10g, tablespaces
can be renamed via the rename to clause of the alter tablespace command.

When a tablespace is created, datafiles are created to hold its data. These files immediately
allocate the space specified during their creation. Each datafile can support only one tablespace.
Datafiles can be set to automatically extend when they run out of space; you can set the increment
by which they extend and their maximum size. Each user’s schema is a collection of logical database
objects, such as tables and indexes, that refer to physical data structures that are stored in tablespaces.
Objects from a user’s schema may be stored in multiple tablespaces, and a single tablespace can
contain objects from multiple schemas.

When a database object (such as a table or index) is created, it is assigned to a tablespace
via user defaults or specific instructions. A segment is created in that tablespace to hold the data
associated with that object.

A segment is made up of sections called extents—contiguous sets of Oracle blocks. Once the
existing extents can no longer hold new data, the segment will obtain another extent. If a segment is
composed of multiple extents, there is no guarantee that those extents will be contiguous.

Tablespaces can be created as locally managed (the default) or dictionary managed. In a
dictionary-managed tablespace, the extent location information is stored in the data dictionary.
In a locally managed tablespace, that data is stored in the datafile headers. Oracle encourages
the use of locally managed tablespaces. To review, databases have one or more tablespaces, and
tablespaces consist of one or more datafiles. Within those tablespaces, Oracle stores segments for
database objects. Each segment can have multiple extents.

Managing the space used by tablespaces, datafiles, segments, and database objects is one of
the basic functions of the DBA. The intent of this overview is to aid you in the planning of their
physical storage. As you will see, Oracle Database 10g adds new features that simplify space planning
and management.

Implications of the storage Clause
The amount of space used by a segment is determined by its storage parameters. These parameters
are determined by the database at segment-creation time; if no specific storage parameters are
given in the create table, create index, or create cluster command, then the database will use the
default storage parameters for the tablespace in which the segment is to be stored.

NOTE
You can assign default tablespaces to users, and assign space quotas
within those tablespaces, via the create user, alter user, and grant
commands. See the Alphabetical Reference for the command syntax.

When you create a table, index, or other segment, you can use the default values for a locally
managed tablespace (the recommended option) or specify a storage clause as part of the create

Chapter 46: The Hitchhiker’s Guide to Database Administration 891

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

command. You can also specify a tablespace clause, enabling you to direct Oracle to store the
data in a particular tablespace. For example, a create table command in a dictionary-managed
tablespace may include the following clauses:

tablespace USERS
storage (initial 1M next 1M pctincrease 0
minextents 1 maxextents 200)

If no storage clause is specified, the tablespace’s default storage parameters will be used. For a
locally managed USERS tablespace, the create table command would only need to include

tablespace USERS

The storage parameters specify the initial extent size, the next extent size, the pctincrease
(a factor by which each successive extent will geometrically grow), the maxextents (maximum
number of extents), and the minextents (minimum number of extents). After the segment has been
created, the initial and minextents values cannot be altered unless you perform a reorganization
of the object. The default values for the storage parameters for each tablespace are available in
the DBA_TABLESPACES and USER_TABLESPACES views.

When you create a tablespace, you specify its default storage parameters. The following
command creates a locally managed tablespace and specifies its default storage parameters.
See the syntax for create tablespace in the Alphabetical Reference.

create tablespace CODES_TABLES
datafile '/u01/oracle/VLDB/codes_tables.dbf' size 10M
extent management local uniform size 256K;

When a segment is created, it will acquire at least one extent. The initial extent will be used
to store data until it no longer has any free space available (the pctfree clause can be used to
reserve a percentage of space within each block in the segment to remain available for updates
of existing rows). If you create a dictionary-managed tablespace, the extent sizes may not be uniform;
the segment will extend by obtaining a second extent of the size specified by the next parameter.
By default, tablespaces will be created with local extent management.

Assuming that the block size for the database in which this tablespace is created is 4KB in
this example, the tablespace is created with the extent management declared as local and with
a uniform size of 256KB. Each bit in the bitmap describes 64 blocks (256/4). If the uniform size
clause is omitted, the default is autoallocate. The default size for uniform is 1MB.

NOTE
If you specify local in a create tablespace command, you cannot
specify a default storage clause, minextents, or temporary.

Locally managed tablespaces can take over some of the space management tasks performed
by DBAs in dictionary-managed tablespaces. Because of their architecture, they are less likely to
be fragmented, and their objects are less likely to have space-related problems.

892 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:892

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 46: The Hitchhiker’s Guide to Database Administration 893

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:893

NOTE
As of Oracle9i Release 2 (version 9.2), you can create a locally
managed SYSTEM tablespace.

You can create a set of locally managed tablespaces with a small number of storage parameters
and resolve most of the space requests in your database. For example, you could create three DATA
tablespaces as shown here:

create tablespace DATA_SMALL
datafile '/u01/oracle/VLDB/data_small.dbf'
size 10M
extent management local uniform size 1M;

create tablespace DATA_MEDIUM
datafile '/u01/oracle/VLDB/data_medium.dbf'
size 100M
extent management local uniform size 4M;

create tablespace DATA_LARGE
datafile '/u01/oracle/VLDB/data_large.dbf'
size 1000M
extent management local uniform size 16M;

In this example, the DATA_SMALL tablespace creates objects with extent sizes that are each
1MB; DATA_MEDIUM uses 4MB extent sizes, and DATA_LARGE uses 16MB extent sizes. If you
have a small table, simply place it in the DATA_SMALL tablespace. If it grows significantly in
size, you can move it to the DATA_MEDIUM or DATA_LARGE tablespace.

Within each of these example tablespaces, all objects will have the same storage parameters,
simplifying any future maintenance you perform. Using consistent extent sizes also improves the
reuse of space once an object has been dropped from the tablespace or moved.

The following sections describe space management of each major object type. Note that if
you use locally managed tablespaces, many of the storage clause issues do not apply; you rely
on the tablespace to manage the space based on the parameters defined at the tablespace level.
Although this may result in some overallocation of space, it will greatly simplify the space
management operations in your database.

Table Segments
Table segments, also called data segments, store the rows of data associated with tables or clusters.
Each data segment contains a header block that serves as a space directory for the segment.

Once a data segment acquires an extent, it keeps that extent until the segment is either
dropped, truncated, or compressed via the Oracle Database 10g options. Deleting rows from a
table via the delete command has no impact on the amount of space that has been allocated to
that table. The number of extents will increase until either (1) the maxextents value is reached
(if one is set), (2) the user’s quota in the tablespace is reached, or (3) the tablespace runs out of
space (if the datafiles cannot autoextend).

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To minimize the amount of wasted space in a data block, tune the pctfree parameter. The pctfree
parameter specifies the amount of space that will be kept free within each datablock. The free
space can then be used when NULL-valued columns are updated to have values, or when updates
to other values in the row force the total length of the row to increase. The proper setting of pctfree
is application-specific since it is dependent on the nature of the updates that are being performed.

You can use the alter table command to alter most storage parameters for an existing table.
You can use the move option of the alter table command to change the tablespace assignment
for a table.

Index Segments
Like table segments, index segments hold the space that has been allocated to them until they are
dropped; however, they can also be indirectly dropped if the table or cluster they index is dropped.
To minimize contention, indexes should be stored in a tablespace that is different from the tablespace
that holds their associated tables.

Index segments in dictionary-managed tablespaces have storage clauses that specify their initial,
next, minextents, maxextents, and pctincrease values, and they are as likely to be fragmented as their
tables are.

You can use the rebuild option of the alter index command to alter the storage and tablespace
settings for an index. In the following listing, the JOB_PK index is rebuilt in the INDEXES tablespace.

alter index JOB_PK rebuild
tablespace INDEXES;

During the index rebuild process, both the old and the new indexes will temporarily coexist
in the database. Therefore, you must have enough space available to store both indexes prior to
executing the alter index rebuild command.

While the index is being built, the optimizer can gather statistics about the index’s contents.
Use the compute statistics clause of the create index and alter index rebuild commands to
generate the statistics while the index is being built; the combined operation will be faster than
separate creation and statistics-gathering commands.

Rollback Segments and System-Managed Undo
Rollback segments can dynamically shrink to a specified size, or they can be manually shrunk
to a size of your choosing. The optimal clause, which allows rollback segments to shrink to an
optimal size after extending, helps to provide interim support to systems that have not been
properly implemented for the way they are being used. For system-managed undo (SMU), Oracle
automatically allocates and deallocates undo segments as processing requires.

You can use Automatic Undo Management to place all undo data in a single tablespace. When
you create an undo tablespace, Oracle manages the storage, retention, and space utilization for your
rollback data via SMU.

To start using SMU, you must first create an undo tablespace using the following command:

create undo tablespace undo_tablespace datafile 'filespec' size n;

Next, set the UNDO_MANAGEMENT initialization parameter in your system parameter file
or init.ora file to AUTO. Specify your undo tablespace via the UNDO_TABLESPACE initialization
parameter. You will not need to create or manage any rollback segments within the undo tablespace.

894 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:894

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 46: The Hitchhiker’s Guide to Database Administration 895

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:895

Setting Undo Retention
You can explicitly manage how long Oracle retains undo data in the undo tablespace via the UNDO_
RETENTION initialization parameter. Retaining undo serves two purposes: it supports the retention
of inactive, in-use data for long-running queries, and it supports queries that show the prior state of
current data (see Chapter 27).

For example, if you set

UNDO_RETENTION=600

then Oracle will make a best effort to retain all committed undo data in the database for 600 seconds.
With that setting, any query taking less than 10 minutes should not result in an ORA-1555 (“Snapshot
too old”) error. While the database is running, you can change the UNDO_RETENTION parameter
value via the alter system command. As of Oracle Database 10g, you can use the create tablespace
and alter tablespace commands to force Oracle to guarantee that the requested undo retention is
maintained even at the expense of current transactions.

Creating an Undo Tablespace
You can create an undo tablespace during the database creation process, as shown in the
following listing:

create database UNDODB
undo tablespace UNDO_TBS
...

In an existing database, you can use the create tablespace command to create an undo
tablespace:

create undo tablespace UNDO_TBS
datafile '/u01/oracle/undodb/undo_tbs_1.dbf'
size 100m;

See the Alphabetical Reference for the full syntax of the create tablespace command.
Once you have created an undo tablespace, you can manage it via the alter tablespace

command. For example, you can add datafiles to the undo tablespace or rename existing
datafiles the same as you would for any other tablespace. To stop using a tablespace as your
undo tablespace, use the alter system command to set a new value for the UNDO_TABLESPACE
initialization parameter, or change that parameter during a database shutdown/startup.

Temporary Segments
Temporary segments store temporary data during sorting operations (such as large queries, index
creations, and unions). Each user has a temporary tablespace specified when the account is created
via create user, or altered via alter user. The user’s temporary tablespace must be a tablespace
that has been designated as a temporary tablespace; as of Oracle9i, permanent tablespaces cannot
be used for this purpose.

When you create a database, you can specify a default temporary tablespace for all users.
For an existing database, you can change the default tablespace via the alter database command,
as shown in the following listing:

alter database default temporary tablespace TEMP;

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When you alter the database’s default temporary tablespace assignment, users who had been
assigned the old default temporary tablespace will be redirected to the new default temporary
tablespace. To see the current default temporary tablespace, execute the following query:

select Property_Value
from DATABASE_PROPERTIES
where Property_Name = 'DEFAULT_TEMP_TABLESPACE';

You can specify a tablespace as a “temporary” tablespace via the create temporary tablespace
command. A temporary tablespace cannot be used to hold any permanent segments, only temporary
segments created during operations. The first sort to use the temporary tablespace allocates a
temporary segment within the temporary tablespace; when the query completes, the space used
by the temporary segment is not dropped. Instead, the space used by the temporary segment is
available for use by other queries, allowing the sorting operation to avoid the costs of allocating
and releasing space for temporary segments. If your application frequently uses temporary segments
for sorting operations, the sorting process should perform better if a dedicated temporary tablespace
is used.

As of Oracle Database 10g, you can create multiple temporary tablespaces and group them.
Assign the temporary tablespaces to tablespace groups via the tablespace group clause of the
create temporary tablespace or alter tablespace command. You can then specify the group as
a user’s default tablespace. Tablespace groups can help to support parallel operations involving
sorts.To dedicate an existing tablespace for temporary segments, specify the temporary clause
of the create tablespace or alter tablespace command, as shown in the following listing:

alter tablespace TEMP temporary;

NOTE
If there are any permanent segments (tables or indexes, for example)
stored in TEMP, the command shown in the preceding listing will fail.

To enable the TEMP tablespace to store permanent (nontemporary) objects, use the permanent
clause of the create tablespace or alter tablespace command, as shown in the following listing:

alter tablespace TEMP permanent;

The Contents column in the DBA_TABLESPACES data dictionary view displays the status of
the tablespace as either “TEMPORARY” or “PERMANENT.”

Free Space
A free extent in a tablespace is a collection of contiguous free blocks in the tablespace. A tablespace
may contain multiple data extents and free extents. When a segment is dropped, its extents are
not, by default, deallocated and marked as free. As of Oracle Database 10g, the default behavior
is for the space to be retained while the object moves to the user’s recycle bin. You can recover
the object from the recycle bin via the flashback table to before drop command (see Chapter 28).
Space can be freed from the recycle bin via the purge command (see the Alphabetical Reference).

896 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:896

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In dictionary-managed tablespaces, free extents are not always recombined with neighboring
free extents; the barriers between these free extents may be maintained. The SMON (System Monitor)
background process periodically coalesces neighboring free extents, provided the default pctincrease
for the tablespace is nonzero.

NOTE
The SMON background process only coalesces tablespaces whose
default pctincrease value is nonzero. A pctincrease of any non-
zero value will force SMON to coalesce the adjacent free space in
a tablespace but will only coalesce eight areas of adjoining extents
at a time. Each of the eight coalesces will join two or more extents
together to create one larger extent. For best space management, use
locally managed tablespaces so that you never have to worry about
coalescing. If you must use dictionary-managed tablespaces, maintain
a pctincrease of 0 and periodically coalesce any dropped extents
manually.

To force the tablespace to coalesce its free space, use the coalesce clause of the alter tablespace
clause, as shown in the following listing:

alter tablespace DATA coalesce;

The preceding command will force the neighboring free extents in the DATA tablespace to be
coalesced into larger free extents. The command will coalesce up to eight separate areas, just like
SMON.

NOTE
The alter tablespace command will not coalesce free extents that are
separated by data extents.

Locally managed tablespaces do not require the same degree of free space management. Since
locally managed tablespaces can be configured to have consistent extent sizes for all segments,
dropped extents are easily reused.

When allocating a new extent, Oracle will not merge contiguous free extents unless there is
no alternative. In dictionary-managed tables, this can result in the large free extent at the rear of
the tablespace being used while the smaller free extents toward the front of the tablespace are
relatively unused. The small free extents become “speed bumps” in the tablespace because they
are not, by themselves, of adequate size to be of use. As this usage pattern progresses, the amount
of space wasted in the tablespace increases.

In an ideal database, all objects are created at their appropriate size, and all free space
is always stored together, a resource pool waiting to be used. If you can avoid dynamic space
allocation during application usage, you remove both a performance impact and a source of
potential application failure.

Chapter 46: The Hitchhiker’s Guide to Database Administration 897

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:897

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Sizing Database Objects
Choosing the proper space allocation parameters for database objects is critical. Developers should
begin estimating space requirements before the first database objects are created. Afterward, the
space requirements can be refined based on actual usage statistics. The following sections discuss
the space estimation methods for tables, indexes, and clusters.

Why Size Objects?
You should size your database objects for three reasons:

■ To preallocate space in the database, thereby minimizing the amount of future work
required to manage object space requirements

■ To reduce the amount of space wasted due to overallocation of space

■ To improve the likelihood of a dropped free extent being reused by another segment

You can accomplish all of these goals by following the sizing methodology shown in the
following sections. This methodology is based on Oracle’s internal methods for allocating
space to database objects. Rather than rely on detailed calculations, the methodology relies on
approximations that will dramatically simplify the sizing process while simplifying the long-term
maintainability of the database.

The Golden Rule for Space Calculations
Keep your space calculations simple, generic, and consistent across databases. There are far more
productive ways to spend your work time than performing extremely detailed space calculations
that Oracle may ignore anyway. Even if you follow the most rigorous sizing calculations, you
cannot be sure how Oracle will load the data into the table or index.

Consider an index on a table with 100,000 rows. During tests, loading the data into the table
in sorted order required 920 blocks for the index. The table and index were then truncated and
the data was reloaded in a nonsorted order; the index now required 1,370 blocks. The 49 percent
increase in space required by the index was due to Oracle’s internal index management processes.
If you can’t reliably be within 49 percent of the correct answer, why spend a lot of time on sizing
exercises?

In the following section, you’ll see how to simplify the space estimation process, freeing you
to perform much more useful DBA functions. These processes should be followed whether you
are generating the default storage values for a dictionary-managed tablespace or the extent sizes
for locally managed tablespaces.

The Ground Rules for Space Calculations
Oracle follows a set of internal rules when allocating space:

■ Oracle only allocates whole blocks, not parts of blocks.

■ Oracle allocates sets of blocks.

■ Oracle may allocate larger or smaller sets of blocks depending on the available free
space in the tablespace.

898 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:898

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The first two rules can serve as the basis for fairly exact space estimates, but the third overrides
the first two. Even if you try to allocate exactly 20 blocks for a table, Oracle may find a free extent
that is 22 blocks and use it rather than leave a 2-block free extent.

Your goal should be to work with Oracle’s space allocation methods instead of against them.
If you use consistent extent sizes, you can largely delegate the space allocation to Oracle.

The Impact of Extent Size on Performance
No direct performance benefit is gained by reducing the number of extents in a table. In some
situations (such as in parallel query environments), having multiple extents in a table can reduce
I/O contention and enhance your performance. To simplify management, the extents need to be
properly sized.

Oracle reads data from tables in two ways: by RowID (usually immediately following an index
access) and via full table scans. If the data is read via RowID, then the number of extents in the
table is not a factor in the read performance. Oracle will read each row from its physical location
(as specified in the RowID) and retrieve the data.

To avoid paying any possible performance penalties for your extent sizes, you must choose
between one of the following strategies:

1. Create extents that are significantly larger than the I/O buffer size for your operating
system. If the extents are very large, then very few additional reads will be necessary
even if the extent size is not a multiple of the I/O buffer size.

2. Set DB_FILE_MULTIBLOCK_READ_COUNT to take full advantage of the I/O buffer
size for your operating system. Note that setting it too high may make the optimizer
think that full table scans are more efficient than they actually are, resulting in changes
to existing execution plans.

3. If you must create small extents, choose extent sizes that are a multiple of the I/O
buffer size for your operating system.

To maximize the reuse of dropped free extents in dictionary-managed tablespaces, use a pool
of extent sizes that meets the following criterion: every extent size will hold an integral multiple of
every smaller extent size. The simplest implementation of this rule is to create extent sizes that
increase by doubling: 1MB, 2MB, 4MB, 8MB, 16MB, 32MB. To reduce the number of extent sizes
to manage, you can quadruple the values instead of doubling: 1MB, 4MB, 16MB, and so on.
Using those values for extent sizes will eliminate I/O problems and will enhance the likelihood
that dropped extents will be reused.

Sizing the Objects
To effectively manage your space, all you need to do is select a set of space values that meet the
criteria described in the preceding sections. Once the space allocations are finalized, separate
them by tablespace. For example:

create tablespace DATA_1M
datafile '/u01/oracle/VLDB/data_1m.dbf'
size 100M
extent management local uniform size 1M;

Chapter 46: The Hitchhiker’s Guide to Database Administration 899

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:899

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

create tablespace DATA_4M
datafile '/u02/oracle/VLDB/data_4m.dbf'
size 400M
extent management local uniform size 4M;

create tablespace DATA_16M
datafile '/u03/oracle/VLDB/data_16m.dbf'
size 16000M
extent management local uniform size 16M;

In this example, three separate DATA tablespaces are created, with extent sizes of 1MB, 4MB,
and 16MB. If you need to create a table 3MB in size, you can either create it with three 1MB
extents in DATA_1M or with one 4MB extent in DATA_4M. A table that will grow to 10MB can
be placed in DATA_16M.

As your tables grow in size, your default storage clauses will grow in a consistent fashion,
following the space rules and your standards for extent sizes. DATA_64M would be next, followed
by DATA_256M and DATA_1G. Use the same extent sizes across your databases to ease space
management of your entire database environment.

As the extent sizes grow, the distribution of extent sizes across tablespaces will usually result
in a separation of table types—small static tables will be isolated in the tablespaces with small
extent sizes. Large transaction processing tables (or their partitions) will be segregated to the
large extent size tables, simplifying later management and tuning activities.

NOTE
As of Oracle9i, the database block size may change at the tablespace
level. Be sure the extent sizes you choose account for the largest block
size in use in the database. Limiting the usage of nonstandard block sizes
in the database will simplify cross-database maintenance and your
sizing procedures.

Monitoring an Undo Tablespace
As described in Chapter 27, you can use system-managed undo (SMU) to simplify transaction
management. Specify values for the UNDO_TABLESPACE, UNDO_RETENTION, and UNDO_
MANAGEMENT initialization parameters.

NOTE
If you are using rollback segments instead of SMU, see the entries for
create rollback segment, alter rollback segment, and set transaction
in the Alphabetical Reference.

The primary view for gathering statistics on the undo tablespace usage is V$UNDOSTAT. The
V$UNDOSTAT view provides a histogram of the retained data usage. In ten-minute intervals, Oracle
records the total number of undo blocks consumed in the UndoBlks column of V$UNDOSTAT,
and the number of transactions supported in the TxnCount column. You can use the data from
V$UNDOSTAT to determine if the undo tablespace is properly sized for the transaction volume
of the application. Oracle maintains 144 rows in V$UNDOSTAT, reflecting the past day’s statistics.

900 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:900

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Other columns of interest in V$UNDOSTAT include MaxQuerylen, which records the duration
in seconds of the longest query executed; the undo retention must be greater than this value.
If the NoSpaceErrCnt column of V$UNDOSTAT has a nonzero value, you should add space to the
undo tablespace to avoid future space-related errors. Another column, SsOlderRcnt, records the
number of times an ORA-01555 (“snapshot too old”) error occurred. Increasing the UNDO_
RETENTION value can reduce the occurrence of this error.

Automating Storage Management
As of Oracle Database 10g, you can use automatic storage management (ASM) to enhance and
simplify your storage management efforts. ASM offers a number of significant advantages, including:

■ You can easily add new disks to the set of disks available to the database; Oracle will
decide how to best use the disks to distribute the I/O workload.

■ The I/O workload will be dynamically distributed among the available disks, without
DBA intervention.

■ The I/O stripe width can be maintained at different levels for different types of files,
all maintained by the database.

■ Software mirroring can be enabled if hardware mirroring is not.

Configuring ASM
To use ASM, you must configure an ASM instance. First, specify ‘ASM’ as the value for the
INSTANCE_TYPE initialization parameter (default value is ‘RDBMS’):

INSTANCE_TYPE = ASM

You can then use the create diskgroup command with the available disks. For example,
you may have four disks available to you:

create diskgroup DISKGROUP1
external redundancy
disk '/u01', '/u02', '/u03', '/u04';

NOTE
You can use wildcards in the disk names.

The external redundancy clause means that the disk group is relying on hardware mirroring.
To use software mirroring, use the normal redundancy clause and specify the disks that make up
the mirror set via the failgroup clause. In software mirroring, Oracle uses the mirror set as a set of
disks, not as a one-to-one mirror of the diskgroup disks.

To see the disks that constitute a disk group, query the V$ASM_DISK dynamic view.
Now that the disk group is available, create a tablespace that uses the disk group as shown in

the following example:

create tablespace USERS2 datafile '+diskgroup1/users2_01'
size 500m;

Chapter 46: The Hitchhiker’s Guide to Database Administration 901

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:901

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Oracle will create the datafile for the USERS2 tablespace in the specified disk group and will
manage its I/O requirements across the available disks. If you need to add more disks to the disk
group, use the alter diskgroup command:

alter diskgroup DISKGROUP1 add disk '/u05';

Diskgroups may be dropped via the drop diskgroup command.

Segment Space Management
In addition to automating the management of storage at the diskgroup level, Oracle Database 10g
introduces capabilities for managing the space within segments. You can use these options to
reclaim unused space within segments, estimate future space needs, and reorganize tables online.

If your application frequently deletes rows from a table, that table’s blocks may be only partially
filled with rows. You can manually compress the space within the table via the alter table command.
First, enable row movement within the table:

alter table BOOKSHELF_CHECKOUT enable row movement;

Next, have Oracle move rows within the table to compress the allocation of rows within blocks:

alter table BOOKSHELF_CHECKOUT shrink space compact;

The shrink space compact operation will reorganize the rows of the table so they are stored
more compactly. However, the high-water mark for the table—the highest block number to which
rows have ever been written—is unaffected. Since all full table scans will read all blocks up to
the high-water mark, you should adjust that value. Prior to Oracle Database 10g, you can only
change the high-water mark by rebuilding or truncating a table. As of Oracle Database 10g, you
can adjust the high-water mark via the shrink space clause of the alter table command. For example:

alter table BOOKSHELF_CHECKOUT shrink space;

You can cascade the effects of this change to the table’s indexes via the shrink space cascade
option.

To predict space usage, you can use the OBJECT_GROWTH_TREND function of the DBMS_
SPACE package. As parameters, pass the schema name, object name, and object type, as shown
in the following listing. You should run this as a SYSDBA-privileged user.

select * from
table(DBMS_SPACE.OBJECT_GROWTH_TREND
('PRACTICE','BOOKSHELF_CHECKOUT','TABLE'));

The output will show the past space usage for the object along with projected space requirements
for the object. The results are based on statistics gathered via the Automated Workload Repository
(AWR), an Oracle Database 10g feature. Using a new background process, MMON, AWR collects
and stores database statistics that support administration and tuning on an hourly basis. The
information gathered via AWR allows Oracle to project your future space usage as well as identify
tuning opportunities.

902 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:902

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Transporting Tablespaces
A transportable tablespace is a tablespace that can be “unplugged” from one database and “plugged
into” another. To be transportable, a tablespace—or a set of tablespaces—must be self-contained.
The tablespace set cannot contain any objects that refer to objects in other tablespaces. Thus, if
you transport a tablespace containing indexes, you must move the tablespace containing the indexes’
base tables as part of the same transportable tablespace set. The better you have organized and
distributed your objects among tablespaces, the easier it is to generate a self-contained set of
tablespaces to transport.

To transport tablespaces, you need to generate a tablespace set, copy or move that tablespace
set to the new database, and plug the set into the new database. The databases must be on the
same operating system, with the same version of Oracle and character set.

Generating a Transportable Tablespace Set
A transportable tablespace set contains all of the datafiles for the tablespaces being moved, along
with an export of the metadata for those tablespaces. You can optionally choose whether to
include referential integrity constraints as part of the transportable tablespace set. If you choose
to use referential integrity constraints, the transportable tablespace set will increase to include
the tables required to maintain the key relationships. Referential integrity is optional because you
may have the same code tables in multiple databases. For example, you may be planning to
move a tablespace from your test database to your production database. If you have a COUNTRY
table in the test database, then you may already have an identical COUNTRY table in the production
database. Since the codes tables are identical in the two databases, you do not need to transport
that portion of the referential integrity constraints. You could transport the tablespace and then
re-enable the referential integrity in the target database once the tablespace has been moved,
simplifying the creation of the transportable tablespace set.

To determine if a tablespace set is self-contained, execute the TRANSPORT_SET_CHECK
procedure of the DBMS_TTS package. This procedure takes two input parameters: the set of
tablespaces and a Boolean flag set to TRUE if you want referential integrity constraints to be
considered. In the following example, referential integrity constraints are not considered for the
combination of the AGG_DATA and AGG_INDEXES tablespaces:

execute DBMS_TTS.TRANSPORT_SET_CHECK('AGG_DATA,AGG_INDEXES',FALSE);

NOTE
You cannot transport the SYSTEM, SYSAUX, or temporary
tablespaces.

If there are any self-containment violations in the specified set, Oracle will populate the
TRANSPORT_SET_VIOLATIONS data dictionary view. If there are no violations, the view will
be empty.

Once you have selected a self-contained set of tablespaces, make the tablespaces read-only,
as shown here:

alter tablespace AGG_DATA read only;
alter tablespace AGG_INDEXES read only;

Chapter 46: The Hitchhiker’s Guide to Database Administration 903

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:903

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Next, export the metadata for the tablespaces, using the TRANSPORT_TABLESPACES and
TABLESPACES Export parameters:

exp TRANSPORT_TABLESPACE=Y TABLESPACES=(AGG_DATA,AGG_INDEXES) CONSTRAINTS=N
GRANTS=Y TRIGGERS=N

As shown in the example, you can specify whether triggers, constraints, and grants are exported
along with the tablespace metadata. You should also note the names of the accounts that own
objects in the transportable tablespace set. You can now copy the tablespaces’ datafiles to a separate
area. If needed, you can put the tablespaces back into read-write mode in their current database.
After you have generated the transportable tablespace set, you can move its files (including the
export) to an area that the target database can access.

Plugging in the Transportable Tablespace Set
Once the transportable tablespace set has been moved to an area accessible to the target database,
you can plug the set into the target database. First, use Import to import the exported metadata:

imp TRANSPORT_TABLESPACE=Y DATAFILES=(agg_data.dbf, agg_indexes.dbf)

In the import, you specify the datafiles that are part of the transportable tablespace set. You
can optionally specify the tablespaces (via the TABLESPACES parameter) and the object owners
(via the OWNERS parameter).

After the import completes, all tablespaces in the transportable tablespace set are left in read-
only mode. You can issue the alter tablespace read write command in the target database to place
the new tablespaces in read-write mode.

alter tablespace AGG_DATA read write;
alter tablespace AGG_INDEXES read write;

Note that you cannot change the ownership of the objects being transported.
Transportable tablespaces support very fast movement of large datasets. In a data warehouse,

you could use transportable tablespaces to publish aggregations from core warehouse to data mart,
or from the data marts to a global data warehouse. Any read-only data can be quickly distributed
to multiple databases—instead of sending SQL scripts, you can send datafiles and exported metadata.
This modified data movement process may greatly simplify your procedures for managing remote
databases, remote data marts, and large data-movement operations.

NOTE
As of Oracle Database 10g, the source and target operating systems
can be different; endian conversion is supported during this process.
The datafiles must be converted via RMAN’s convert tablespace…to
platform command.

Performing Backups
Like the rest of the material in this chapter, this section provides an overview. Backup and recovery
is a complex topic, and all backup and recovery methods should be thoroughly tested and practiced

904 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:904

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

before being implemented in a production environment. The purpose of this section is to give
developers an understanding of Oracle’s capabilities, along with the impact of the backup decisions
on recovery efforts and availability. Before using backup and recovery methods in a production
environment, you should refer to books that are dedicated to that topic, including Oracle’s
documentation.

The backup methods provided by Oracle can be categorized as follows:

■ Logical backups using Data Pump Export and Import

■ Logical backups using Export (and its companion utility, Import)

■ Physical file system backups: offline backups and online backups

■ Incremental physical file system backups via Recovery Manager (RMAN)

The following sections describe each of these methods and their capabilities.

Export and Import vs. Data Pump Export and Import
As of Oracle Database 10g, you can use Data Pump Export and Import in place of the Export and
Import utilities provided with prior versions of Oracle. There is only one situation in which you
should continue to use the old versions of Export and Import: when performing indirect migrations
of databases across versions of Oracle. For regular maintenance operations, you should use the
Data Pump versions of these utilities as they offer significant benefits over their predecessors. See
Chapter 22 for a detailed description of the Data Pump utilities.

Since Data Pump Export and Data Pump Import are covered elsewhere in this book, the following
sections will focus on the use of the earlier versions of Import and Export. See Chapter 3 for details
on their use in indirect database upgrades.

NOTE
For the remainder of this chapter, the terms Export and Import refer
to the prior versions of those utilities, not the Data Pump versions.

Export and Import
Oracle’s Export utility queries the database, including the data dictionary, and writes the output
to a binary file called an export dump file. You can export the full database, specific users, or
specific tables. During exports, you may choose whether or not to export the data dictionary
information associated with tables, such as the grants, indexes, and constraints associated with
them. The file written by Export will contain the commands necessary to completely re-create
all of the chosen objects and data.

You can perform tablespace-level exports to export all of the objects contained in a tablespace.
Any indexes defined on the exported tables would also be exported. Tablespace-level exports use
the tablespaces clause of the Export utility, as described later in this chapter.

Once data has been exported, it may be imported via Oracle’s Import utility. The Import utility
reads the binary export dump file created by Export and executes the commands found there. For
example, these commands may include a create table command, followed by an insert command
to load data into the table.

Chapter 46: The Hitchhiker’s Guide to Database Administration 905

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:905

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

906 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:906

The data that has been exported does not have to be imported into the same database, or the
same schema, as was used to generate the export dump file. You may use the export dump file to
create a duplicate set of the exported objects under a different schema or in a separate database.

You can import either all or part of the exported data. If you import the entire export dump file
from a Full export, then all of the database objects—including tablespaces, datafiles, and users—
will be created during the import. However, it is often useful to pre-create tablespaces and users
in order to specify the physical distribution of objects in the database.

If you are only going to import part of the data from the export dump file, then the tablespaces,
datafiles, and users that will own and store that data should be set up prior to the import.

Exported data may be imported into an Oracle database created under the next higher version
of the Oracle software. See Chapter 3 for the versions of Export to use when upgrading and
downgrading Oracle software versions. The README.doc files that accompany Oracle releases
detail the requirements for using Export and Import across specific versions.

Export
The Export utility has four levels of functionality: Full mode, Tablespace mode, User mode, and
Table mode. You can export partitions via a modified version of Table mode exports.

In Full mode, the full database is exported. The entire data dictionary is read, and the DDL
needed to re-create the full database is written to the export dump file. This file includes creation
commands for all tablespaces, all users, and all of the objects, data, and privileges in their schemas.

In Tablespace mode, all of the objects contained in the specified tablespace(s) will be exported,
including the definition of indexes on the contained objects, even if they are in another tablespace.

In User mode, a user’s objects are exported, as well as the data within them. All grants and
indexes created by the user on the user’s objects are also exported. Grants and indexes created
by users other than the owner are not exported.

In Table mode, a specified table is exported. The table’s structure, indexes, and grants are
exported along with or without its data. Table mode can also export the full set of tables owned
by a user (by specifying the schema owner but no table names). You can also specify partitions
of a table to export.

Export can be run interactively, through Oracle Enterprise Manager, or via command files.
The run-time options that can be specified for Export are listed in Table 46-1, along with their
default values in Oracle Database 10g.

A number of the parameters conflict with each other or may result in inconsistent instructions
for Export. For example, setting full=Y and owner=HR would fail, since the full parameter calls for
a Full export, while the owner parameter specifies a User export.

NOTE
The default values and available parameters may change with each
release of Oracle.

You can display the Export parameters online via the following command:

exp help=Y

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:907

Chapter 46: The Hitchhiker’s Guide to Database Administration 907

Keyword Description

userid Username/password of the account running the export. userid must be the first
parameter on the command line.

buffer Size of the buffer used to fetch data rows. The default is system dependent;
this value is usually set to a high value (> 64,000).

file Name of the export dump file; default is expdat.dmp.

compress A Y/N flag to indicate whether export should compress fragmented segments
into single extents. This affects the storage clauses that will be stored in the
export file for those objects. Default is Y. Having objects in one large extent
is not always the best choice. For large tables, you should use compress=N.

grants A Y/N flag to indicate whether grants on database objects will be exported.
Default is Y.

indexes A Y/N flag to indicate whether indexes on tables will be exported. Default is Y.

direct A Y/N flag to indicate if a direct export should be performed. A direct export
bypasses the buffer cache during the export, generating significant performance
gains for the export process. Default is N.

log The name of a file to which the log of the export will be written.

rows A Y/N flag to indicate whether rows should be exported. If this is set to N,
then only the DDL for the database objects will be created in the export file.
Default is Y.

consistent A Y/N flag to indicate whether a read-consistent version of all exported objects
should be maintained. This is needed when tables that are related to each
other are being modified by users during the export process.

object_
consistent

A Y/N flag to indicate whether consistent versions of the exported objects
should be maintained at the object level, even across partitions. Default is N.

full If set to Y, then a Full database export is performed. Default is N.

owner A list of database accounts to be exported; User exports of those accounts
may then be performed.

tables A list of tables to be exported; Table exports of those tables may then be
performed. As of Oracle9i, this parameter supports the use of the % and _
wildcards for pattern matching.

recordlength The length, in bytes, of the export dump file record. Usually not specified
unless you are going to transfer the export file between different operating
systems.

triggers A Y/N flag to indicate if triggers should be exported. Default is Y.

TABLE 46-1. Run-Time Options for Export

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The compress=Y option alters the initial parameter of the storage clause for segments that have
multiple extents. During a subsequent import, the total allocated space for that segment will be
compressed into a single extent. There are two important points to note concerning this functionality:

908 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:908

Keyword Description

statistics A parameter to indicate whether analyze commands for the exported objects
should be written to the export dump file. Valid values are COMPUTE, ESTIMATE
(the default), and N. In earlier versions of Oracle, this parameter was called
analyze.

parfile The name of a parameter file to be passed to Export. This file may contain
entries for all of the parameters listed here.

constraints A Y/N flag to indicate whether constraints on tables are exported. Default is Y.

feedback The number of rows after which to display progress during Table exports.
The default value is 0, so no feedback is displayed until a table is completely
exported.

filesize The maximum size for an export dump file. If multiple files are listed in the file
entry, the export will be directed to those files based on the filesize setting.

flashback_scn Specifies the SCN Export will use to enable flashback. The export is performed
with data consistent as of this SCN.

flashback_time Time used to get the SCN closest to the specified time. The export is performed
with data consistent as of this SCN.

query A where clause that will be applied to each table during the export.

resumable A Y/N flag to indicate if the session is resumable following errors. Default is N.

resumable_
name

The specified value is inserted into the DBA_RESUMABLE view to help identify
the resumable statement.

resumable_
timeout

The wait time for resumable statements.

tts_full_check Perform full or partial dependency check for transportable tablespaces.

volsize Number of bytes to write to each tape volume.

tablespaces The tablespaces whose tables should be exported, including all tables that have
a partition located in the specified tablespaces.

transport_
tablespace

Set to Y if you are using the transportable tablespace option. Use in conjunction
with the tablespaces keyword. Default is N.

TABLE 46-1. Run-Time Options for Export (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ First, it is the allocated, not the used, space that is compressed. An empty table with
300MB allocated to it in three 100MB extents will be compressed into a single
empty 300MB extent. No space will be reclaimed.

■ Second, if the tablespace has multiple datafiles, a segment may allocate space that
is greater than the size of the largest datafile. In that case, using compress=Y would
change the storage clause to have an initial extent size that is greater than any datafile
size. If the datafile cannot extend itself, the object creation will fail during import.

In the following example, the compress=Y option is used, as the HR and THUMPER owners
are exported:

exp system/manager file=expdat.dmp compress=Y owner=(HR,THUMPER)

Consistent Exports
During the process of writing the database’s data to the export dump file, Export reads one table
at a time. Thus, although Export started at a specific point in time, each table is read at a different
time. The data as it exists in each table at the moment Export starts to read that table is what will
be exported. Since most tables are related to other tables, this may result in inconsistent data being
exported if users are modifying data during the export. The export dump file may contain inconsistent
data, such as foreign key records from one table without matching primary key records from a
related table.

To avoid inconsistency in your exports, there are two options:

■ First, you should schedule exports to occur when no one is making modifications to
tables. If feasible, you can use the startup restrict option to make sure only DBAs are
logged in while the export is occurring.

■ Second, you can use the consistent parameter. This parameter is only available for complete
exports. During a consistent export, Oracle will try to create a read-consistent version of
the exported data as of the time the export started. You will get “snapshot too old” errors
if Oracle cannot re-create the read-consistent version of the tables. To guarantee you
will not encounter “snapshot too old” errors, you must create large rollback segments
or a large undo tablespace, because Oracle will overwrite old rollback segment entries
without regard to your consistent=Y setting.

■ Third, you could quiesce the database, which restricts logins to SYSDBA-privileged
users. While the database is quiesced, all ongoing transactions and queries appear to
hang, and no new user logins are permitted.

Whenever possible, guarantee the consistency of exported data by running exports while the
database is not being used or is opened in restricted mode. If you are unable to do this, restrict
the database usage during the export and perform a consistent=Y export.

Another alternative is to create two parameter files (parfile). One file will contain the names
of the majority of tables within your database or schema. You can use this file for your first export
with the default of consistent=N. The second file, containing the names of the tables whose
consistency must be maintained, is used to perform an export with consistent=Y. Using this approach,
the size of your rollback segments will not need to be as large, and the performance of your system
will not suffer as much.

Chapter 46: The Hitchhiker’s Guide to Database Administration 909

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:909

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Exporting Tablespaces
The better you have distributed your application schema owners and their objects across tablespaces,
the easier it will be to export them. For example, if you want to export all of the objects in the AP_
DATA schema, you can execute a User export if only a single user owns objects in that tablespace.
If multiple users own objects in the DATA tablespace, you can export all of the objects within the
tablespace using one command regardless of which schema owns the object:

exp demo/demo tablespaces=DATA

If any table has a partition in the specified tablespace, the entire table will be exported. If you
set indexes=Y, the tables’ associated indexes will be exported regardless of their tablespace location.

Exporting Partitions
You can reference partitions and subpartitions within tables when you perform Table exports. For
example, if the SALES table in the THUMPER schema is partitioned into PART1, PART2, and PART3,
then you can export the entire table or its partitions.

To export the entire table, use the tables parameter of Export:

exp system/manager FILE=expdat.dmp TABLES=(Thumper.SALES)

To export a specific partition or subpartition, list the partition or subpartition name following
the table name. The table name and the partition name should be separated by a colon (:). In the
following listing, the PART1 partition is exported:

exp system/manager FILE=expdat.dmp TABLES=(Thumper.SALES:Part1)

If you export a partition, all of its subpartitions will be exported.

Import
The Import utility reads the export dump file and runs the commands stored there. Import may be
used to selectively bring back objects or users from the export dump file.

You can run Import either interactively or via command files. The run-time options that can
be specified for Import and their default values are listed in Table 46-2.

910 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:910

Keyword Description

userid Username/password of the account running the import; this must be the first
parameter, and the “userid=” text is optional.

buffer Size of the buffer used to fetch data rows. The default is system dependent;
this value is usually set to a high value (>100,000).

TABLE 46-2. Import Run-Time Options

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 46: The Hitchhiker’s Guide to Database Administration 911

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:911

Keyword Description

file Name of the export dump file to be imported.

show A Y/N flag to specify whether the file contents should be displayed rather than
executed. Default is N.

ignore A Y/N flag to indicate whether the import should ignore errors encountered
when issuing create commands. This flag is used if the objects being imported
already exist. Default is N.

grants A Y/N flag to indicate whether grants on database objects will be imported.
Default is Y.

indexes A Y/N flag to indicate whether indexes on tables will be imported. Default is Y.

rows A Y/N flag to indicate whether rows should be imported. If this is set to N, then
only the DDL for the database objects will be executed. Default is Y.

log The name of a file to which the log of the import will be written.

full A Y/N flag; if set to Y, then the Full export dump file is imported. Default is N.

fromuser A list of database accounts whose objects should be read from the export
dump file (when FULL=N).

touser A list of database accounts into which objects in the export dump file will be
imported. fromuser and touser do not have to be set to the same value.

tables A list of tables to be imported. As of Oracle9i, the % and _ wildcards are
supported for table names.

recordlength The length, in bytes, of the export dump file record. Usually left at the default
value unless you are going to transfer the export file between different
operating systems.

commit A Y/N flag to indicate whether Import should commit after each array (whose
size is set by buffer). If this is set to N (the default), then Import will commit
after every table is imported. For large tables, commit=N requires equally large
undo segments.

parfile The name of a parameter file to be passed to Import. This file may contain
entries for all of the parameters listed here.

constraints A Y/N flag to indicate whether constraints on tables will be imported. Default
is Y.

destroy A Y/N flag to indicate whether the create tablespace commands found in
dump files from Full exports will be executed (thereby destroying the datafiles
in the database being imported into). Default is N.

TABLE 46-2. Import Run-Time Options (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

912 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:912

Keyword Description

indexfile This option writes all of the create table, create cluster, and create index
commands to a file, rather than running them. All but the create index commands
will be commented out. If constraints=Y, then constraints will be written to the file
as well. This file can then be run (with slight modifications) after importing with
indexes=N. It is useful for separating tables and indexes into separate tablespaces.

skip_unusable_
indexes

A Y/N flag that indicates if Import should skip partition indexes marked as
“unusable.” You may want to skip the indexes during import and manually
create them later to improve index creation performance. Default is N.

feedback The number of rows after which to display progress during table imports.
The default value is 0, so no feedback is displayed until a table is completely
imported.

toid_novalidate Enables Import to skip validation of specified object types.

filesize The maximum dump size that was specified on export if the parameter filesize
was used on export.

statistics A flag to indicate if precomputed statistics should be imported. Default is
ALWAYS; other values are NONE, SAFE (for nonquestionable statistics), and
RECALCULATE (recalculate during the import).

resumable A Y/N flag to indicate if the session is resumable following errors. Default is N.

resumable_
name

The specified value is inserted into the DBA_RESUMABLE view to help identify
the resumable statement.

resumable_
timeout

The wait time for resumable statements.

streams_
configuration

A Y/N flag to indicate if Oracle Streams configuration data found in the export
dump file should be imported. Default is Y.

streams_
instantiation

A Y/N flag to indicate if Oracle Streams instantiation metadata should be
imported if present in the export dump file. Default is N.

compile A Y/N flag to indicate if procedures, functions, and packages should be
recompiled during import. Default is Y.

volsize Maximum number of bytes in a file on each volume of tape.

transport_
tablespace

A Y/N flag to indicate that transportable tablespace metadata is to be imported
into the database. Default is N.

tablespaces The name or list of names of tablespaces to be transported into the database.

datafiles The list of datafiles to be transported into the database.

tts_owners The name or list of names of owners of data in the transportable tablespace.

TABLE 46-2. Import Run-Time Options (continued)

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A number of the Import parameters conflict with each other or may result in inconsistent
instructions for Import. For example, setting full=Y and fromuser=HR would fail, since the full
parameter calls for a Full import, while the fromuser parameter specifies a User import.

Undo Space Requirements
By default, the database will issue a commit after every table is completely imported. To reduce
the sizes of the undo entries, specify commit=Y along with a value for buffer. A commit will then
be executed after every buffer’s worth of data, as shown in the following example. In the first
import command shown, a commit is executed after every table is loaded. In the second command
shown, a commit is executed after every 64,000 bytes of data are inserted.

imp system/manager file=expdat.dmp
imp system/manager file=expdat.dmp buffer=64000 commit=Y

How large should buffer be? buffer should be large enough to handle the largest single row
to be imported. If you do not know the longest row length that was exported, start with a reasonable
value (such as 50,000) and run the import. If an IMP-00020 error is returned, then the buffer size
is not large enough. Increase it and try the import again.

When using commit=Y, remember that a commit is being performed for each buffer array.
This implies that if the import of a table fails, it is possible that some of the rows in that table may
have already been imported and committed. The partial load may then be either used or deleted
prior to running the import again.

In tables with BFILE, LONG, LOB, REF, ROWID, and UROWID columns, rows are inserted
individually. The buffer value does not have to accommodate the LONG and LOB portions of
the row; Import will attempt to allocate additional buffer areas as needed for those portions.

Importing into Different Accounts
To move objects from one user to another user via Export/Import, perform a User export of the
owner of the objects. During the import, specify the owner as the fromuser and the account that
is to own the objects as the touser.

For example, to copy THUMPER’s objects into the FLOWER account, you could execute
the following commands. The first command exports the THUMPER owner, and the second
command imports the THUMPER objects into the FLOWER account.

exp system/manager file=thumper.dat owner=thumper grants=N
indexes=Y rows=Y

imp system/manager file=thumper.dat FROMUSER=thumper TOUSER=flower
rows=Y indexes=Y

See the Oracle Database Utilities 10g Release 1 for further details on Export and Import,
along with data recovery examples.

Offline Backups
An offline backup (sometimes called a cold backup) is a physical backup of the database files,
made after the database has been shut down via either a shutdown normal or a shutdown immediate
or a shutdown transactional. While the database is shut down, each of the files that is actively

Chapter 46: The Hitchhiker’s Guide to Database Administration 913

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:913

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

used by the database is backed up. These files provide a complete image of the database as it
existed at the moment it was shut down.

The following files should be backed up during cold backups:

■ All datafiles

■ All control files

■ All online redo logs

You may optionally choose to back up the database initialization parameter file, particularly
if the backup will serve as the basis for a disaster recovery process.

Having all of these files backed up while the database is closed provides a complete image
of the database as it existed at the time it was closed. The full set of these files could be retrieved
from the backups at a later date and the database would be able to function. It is not valid to perform
a file system backup of the database while it is open unless an online backup is being performed
(as discussed later in this chapter).

Ideally, all of the datafiles are located in directories at the same level on each device. For
example, all database files may be stored in an instance-specific subdirectory under an /oracle
directory for each device (such as /db01/oracle/MYDB). Directories such as these should contain
all of the datafiles, redo log files, and control files for a database. The only file you may optionally
add to the offline backup that will not be in this location is the production initialization parameter
file, which should be in either the /app/oracle/admin/INSTANCE_NAME/pfile subdirectory under
the Oracle software base directory, or the /database directory under the Oracle software home
directory.

If you use the directory structure in the prior example, your backup commands are greatly
simplified, since you will be able to use wildcards in the filenames. After shutting down the
database, back up the files to the backup destination area (either a tape or a separate disk area).

Since offline backups involve changes to the database’s availability, they are usually scheduled
to occur at night.

Offline backups are very reliable. To reduce their impact on the database’s availability, you
may use online backups. As described in the following section, online backups use Oracle’s
ARCHIVELOG mode to allow consistent file system backups during database usage.

Online Backups
You can use online backups for any database that is running in ARCHIVELOG mode. In this mode,
the online redo logs are archived, creating a full log of all transactions within the database.

Oracle writes to the online redo log files in a cyclical fashion; after filling the first log file, it
begins writing to the second log until that one fills, and then begins writing to the third. Once the
last online redo log file is filled, the LGWR (Log Writer) background process begins to overwrite
the contents of the first redo log file.

When Oracle is run in ARCHIVELOG mode, the ARC0-ARC9 (Archiver) background processes
make a copy of each redo log file before overwriting it. These archived redo log files are usually
written to a disk device. The archived redo log files may also be written directly to a tape device,
but this tends to be very operator-intensive.

You can perform file system backups of a database while that database is open, provided the
database is running in ARCHIVELOG mode. An online backup involves setting each tablespace

914 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:914

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

(or the entire database) into a backup state, backing up the related datafiles, and then restoring
the tablespaces to their normal state.

NOTE
When using the Oracle-supplied RMAN utility, you do not have to
place each tablespace into a backup state. The utility will put the
tablespace into and take it out of the backup state automatically.

The database can be fully recovered from an online backup, and can, via the archived
redo logs, be rolled forward to any point in time. When the database is then opened, any
committed transactions that were in the database at that time will have been restored and
any uncommitted transactions will have been rolled back.

While the database is open, the following files are backed up:

■ All datafiles

■ All archived redo log files

■ One control file, via the alter database command

Online backup procedures are very powerful for two reasons. First, they provide full point-in-
time recovery. Databases that are not running in ARCHIVELOG mode can only be recovered to the
point in time when the backup occurred. Second, they allow the database to remain open during the
file system backup. Thus, even databases that cannot be shut down due to user requirements can
still have file system backups.

Getting Started
To make use of the ARCHIVELOG capability, the database must first be placed in ARCHIVELOG
mode. The following listing shows the steps needed to place a database in ARCHIVELOG mode.
Run SQL*Plus and mount the database (providing its name in place of “mydb” in these examples),
then alter it as shown here:

connect system/manager as sysdba
startup mount mydb;
alter database archivelog;
alter database open;

The following command will display the current ARCHIVELOG status of the database from
within SQL*Plus:

archive log list

NOTE
To see the currently active online redo log and its sequence number,
query the V$LOG dynamic view.

Chapter 46: The Hitchhiker’s Guide to Database Administration 915

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:915

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To change a database back to NOARCHIVELOG mode, use the following set of commands
after shutting down the database:

connect system/manager as sysdba
startup mount mydb;
alter database noarchivelog;
alter database open;

A database that has been placed in ARCHIVELOG mode will remain in that mode until it is
placed in NOARCHIVELOG mode. The location of the archived redo log files is determined by
the settings in the database’s parameter file. The parameters to note are as follows (with sample
values):

log_archive_dest_1 = /db01/oracle/arch/CC1/arch
log_archive_dest_state_1 = ENABLE
log_archive_format = arch%s.arc

In this example, the archived redo log files are being written to the directory /db01/oracle/
arch/CC1. The archived redo log files will all begin with the letters “arch,” followed by a sequence
number. For example, the archived redo log file directory may contain the following files:

arch_170.arc
arch_171.arc
arch_172.arc

Each of these files contains the data from a single online redo log. They are numbered
sequentially, in the order in which they were created. The size of the archived redo log files
varies, but does not exceed the size of the online redo log files. Within the LOG_ARCHIVE_
FORMAT setting, the available variables are

Variable Description

%s Log sequence number

%S Log sequence number, zero filled

%t Thread number

%T Thread number, zero filled

%a Activation ID

%d Database ID

%r Resetlogs ID that ensures unique names are constructed for the archived log files
across multiple incarnations of the database

If the destination directory of the archived redo log files runs out of space, then ARCH will
stop processing the online redo log data and the database will temporarily hang. This situation
can be resolved by adding more space to the archived redo log file destination disk or by backing
up the archived redo log files and then removing them from this directory.

916 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:916

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
Never delete archived redo log files until you have backed them
up and verified that you can restore them successfully.

Although the initialization parameter LOG_ARCHIVE_START parameter may be set to TRUE,
the database will not be in ARCHIVELOG mode unless you have executed the alter database
archivelog command shown earlier in this section. Once the database is in ARCHIVELOG mode,
it will remain in that mode through subsequent database shutdowns and startups until you explicitly
place it in NOARCHIVELOG mode via the alter database noarchivelog command.

NOTE
The archivelog destination area is different from the flash recovery
area. As described in Chapter 28, the flash recovery area supports
the flashback database command. See Chapter 28 for details of
this command and the associated parameters.

Performing Online Database Backups
Once a database is running in ARCHIVELOG mode, you can back it up while it is open and
available to users. This capability allows round-the-clock database availability to be achieved
while still guaranteeing the recoverability of the database.

Although online backups can be performed during normal working hours, they should be
scheduled for the times of the least user activity for several reasons. First, the online backups will
use operating-system commands to back up the physical files, and these commands will use the
available I/O resources in the system (impacting the system performance for interactive users).
Second, while the tablespaces are being backed up, the manner in which transactions are written
to the archived redo log files changes. When you put a tablespace in “backup” mode, the DBWR
process writes all of the blocks in the buffer cache that belong to any file that is part of the tablespace
back to disk. When the blocks are read back into memory and then changed, they will be copied
to the log buffer the first time that a change is made to them. As long as they stay in the buffer
cache, they will not be recopied to the online redo log file. This will use a great deal more space
in the archived redo log file destination directory.

The command file for a hot backup has three parts:

1. A backup of the datafiles, which in turn consists of

a. Setting the tablespaces into backup state

b. Backing up the tablespace’s datafiles

c. Restoring the tablespace to its normal state

2. Backup of the archived redo log files, which consists of

a. Recording which files are in the archived redo log destination directory

b. Backing up the archived redo log files, then (optionally) deleting or compressing them

3. Backup of the control file via the alter database backup controlfile command

Chapter 46: The Hitchhiker’s Guide to Database Administration 917

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:917

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
The online backup process is automated via the RMAN utility.

You can create a script to perform the backups, but the use of RMAN is preferred.
When the datafiles are being backed up, you may back them up directly to tape or to disk.

If you have enough disk space available, choose the latter option, since it will greatly reduce
the time necessary for the backup procedures to complete.

Recovery Manager
A Recovery Manager utility called RMAN is provided with the Oracle database to enable you to
back up and recover your databases in an automated manner using either a command-line mode
or the Recovery Manager from within the Oracle Enterprise Manager. You can use either approach
to back up, restore, and recover database files.

Recovery Manager keeps track of backups either through a Recovery Catalog or by placing
the required information into the control file for the database being backed up. Recovery Manager
adds new backup capabilities that are unavailable in the other Oracle backup utilities. There are
four components within the Recovery Manager: the RMAN executable, one or more target databases,
the recovery catalog database, and the media management software. The only components that
you must have are the RMAN executable and a target database.

Recovery Manager allows you to perform incremental physical backups of datafiles. During
a full (called a level 0) datafile backup, all of the blocks ever used in the datafile are backed up.
During a cumulative (level 1) datafile backup, all of the blocks used since the last full datafile
backup are backed up. An incremental (level 2) datafile backup backs up only those blocks that
have changed since the most recent cumulative or full backup. You can define the levels used
for incremental backups.

The ability to perform incremental and cumulative backups of datafiles may greatly improve
the performance of backups. The greatest performance improvements will be realized by very
large databases in which only a small subset of a large tablespace changes. Using the traditional
backup methods, you would need to back up all of the datafiles in the tablespace. Using Recovery
Manager, you only back up the blocks that have changed since the last backup.

During database recovery using Recovery Manager, you need to know which files are current,
which are restored, and the backup method you plan to use. If you use the recovery catalog,
Recovery Manager stores its catalog of information in an Oracle database—and you need to back
up that database or else you may lose your entire backup and recovery catalog of information.

Recovery Manager is only used by DBAs, who need to make the decisions regarding the
Recovery Manager architecture for your environment (for example, deciding on the location of
the recovery catalog). You should work with your DBA to understand the recovery options in use
and their implications for database availability and recovery time.

Enhancements to RMAN in Oracle Database 10g
The version of RMAN that is provided with Oracle Database 10g resolves performance and
functionality issues with earlier releases while adding new capabilities. The features introduced
with Oracle Database 10g include:

918 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:918

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ The ability to span resetlogs operations during recoveries. In Oracle Database 10g you
can use all archived redo log files, before and after an alter database resetlogs operation,
to perform a recovery.

■ Recovery previews. You can use the restore database preview command within RMAN
to preview the backups needed for a recovery. You can use the restore tablespace …
preview command to perform the same analysis at the tablespace level.

■ Faster incremental backups. Although they supported incremental backups, previous
versions of RMAN detected changed blocks by scanning all of the possible blocks—
creating a performance issue within the backup. As of Oracle Database 10g, you
can create a file that will track the blocks that have changed. Use the alter database
command to create a change log file:

alter database enable block change tracking

using file 'filename';

Oracle will then create a binary file to use for change tracking. You can disable block-
level change tracking via the alter database disable block change tracking command.
Query V$BLOCK_CHANGE_TRACKING to see the current status.

■ Merged backups. Instead of maintaining multiple levels of backups across multiple days,
you can have your incremental backups dynamically merged with prior backups. Thus,
if you take a full backup on one day and an incremental backup on the next day, your
recovery efforts will be simplified if you use the new merging capabilities, since you would
only need one (merged) backup for your recovery effort. The merge occurs as part of the
backup command within RMAN—it will make a copy of the prior backup and merge
that with your new incremental changes.

■ Compressed backups. RMAN can compress the backup files as they are written, significantly
lowering your disk space requirements for disk-based backups.

Where to Go from Here
In this chapter, you’ve seen a high-level overview of the topics that production DBAs deal with
every day. In addition to the topics discussed here, DBAs monitor databases, tune databases,
install software, maintain database connectivity, and many other tasks. If you are interested in
learning more about those tasks, see your Oracle documentation set or the Oracle DBA Handbook.
The more developers understand about database administration, the more likely they are to build
applications that take advantage of the database’s inherent capabilities.

Chapter 46: The Hitchhiker’s Guide to Database Administration 919

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:919

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 46
Blind Folio 46:920

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CHAPTER
47

The Hitchhiker’s
Guide to XML

in Oracle

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 47
Blind Folio 47:921

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

X
ML (eXtensible Markup Language) is a standardized syntax for describing hierarchical
data. Rather than being a programming language, XML is a universal format for
structured documents and data. Its tag-based syntax will be familiar to those
familiar with HTML (Hypertext Markup Language) and gives it the flexibility to
handle complex data. Whereas HTML tells a Web browser how to present data,

XML tells applications what the data means.
XML is well suited to solving data-interchange problems among heterogeneous systems;

database-resident data is easily accessed, converted, and stored. In this chapter, you will see an
overview of the XML access methods available in Oracle Database 10g. XML and its toolsets are
evolving; see http://www.w3.org for the most current information.1

Document Type Definitions,
Elements, and Attributes
In XML, application-specific tags or “elements” wrap around the data they describe. The syntax
for these tags is defined in a special kind of XML document called a Document Type Definition
(DTD). The DTD defines the structure for a valid XML document. The structure is strictly hierarchical.

Each XML document is an instantiation of an infoset—the abstract data model consisting of a
document and its information items. Information items are mostly elements, attributes, and content.
For example, an XML infoset may contain the following:

<book>
<title>MY LEDGER</title>
<chapter num="1">

<title>Beginning</title>
<text>&chapter1;</text>

</chapter>
</book>

In this example, the tags <book> and </book> define the starting and ending points of the
infoset. The XML document describes a book named “MY LEDGER.” That book has chapters,
and the first chapter’s title is “Beginning.” The text of the chapter is not stored inside the XML
document; instead, a pointer is created to an external file.

In addition to being a tag in the file, “title” is an element. It has content (in this example, “MY
LEDGER”). As shown in this example, you can set the content of elements by providing values
between tags (for the title) or within the tag (as in the chapter number setting). Elements can contain
content, child elements, or both, or they may be empty. For data interchange, you should avoid
creating elements that contain both content and child elements. To create an empty element, its
tag would be in this format:

<name/>

922 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 47
Blind Folio 47:922

1 For further reading, we suggest Oracle Database 10g XML & SQL: Design, Build &
Manage XML Applications in Java, C, C++ & PL/SQL, by Scardina, Chang, and
Wang (McGraw-Hill/Osborne, 2004).

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 47: The Hitchhiker’s Guide to XML in Oracle 923

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 47
Blind Folio 47:923

NOTE
Element names are case sensitive.

Each element has exactly one parent, and a parent can have any number of children. The strict
hierarchical nature of XML means that if an element starts within another element (such as “chapter”
within “book”), its ending tag must precede the ending tag for the parent element.

As shown in the book example, elements have attributes. For example, the chapter element
has an attribute named num. The attribute value is enclosed in double quotes:

<chapter num="1">

NOTE
Like element names, attribute names are case sensitive.

In general, applications use element attributes for specific items (such as the chapter number)
and element content for the bulk of the data (in this case, the chapter text).

An XML document is said to be “well-formed” if the following conditions are met:

■ Every start tag has a matching end tag.

■ Elements do not overlap.

■ There is one root element.

■ Attribute values are always within quotes.

■ An element does not have two attributes within the same name.

■ Comments and processing instructions do not appear inside tags.

■ There are no “unescaped” < or & signs in an element’s or attribute’s character data.

These are the basic syntax rules. If an XML document conforms to these rules, it may still not
be valid. To be valid, the XML document must conform to the rules of a Document Type Definition
(DTD). The DTD is a formal way of describing what elements and entities may appear in an XML
document, and what each element’s contents and attributes are.

For example, consider the following XML document:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE CustomerList SYSTEM "Example1.dtd">
<CustomerList>

<Customer preferredCustomer="">
<ID>12345</ID>
<Address>

<Name>TUSC</Name>
<Street>377 E BUTTERFIELD RD</Street>
<City>LOMBARD</City>
<State>IL</State>

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

924 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 47
Blind Folio 47:924

<Country>USA</Country>
<ZIP_CODE>60148</ZIP_CODE>
<PHONE>630-960-2909</PHONE>

</Address>
<CreditRating>EXCELLENT</CreditRating>
<SalesRepID></SalesRepID>
<RegionID>5</RegionID>
<Comments>THIS IS A TEST XML DOCUMENT</Comments>
<ShippingMethod>M</ShippingMethod>

</Customer>
</CustomerList>

The first line is an XML declaration, which starts with “<?” and ends with “?>”:

<?xml version="1.0" encoding="UTF-8"?>

The version attribute should be set to 1.0 for now. The encoding attribute is optional; its default
value is UTF-8. You can also set a third attribute, standalone. In this case, the XML document is not
a standalone document; it has a related DTD, as specified in the second line:

<!DOCTYPE CustomerList SYSTEM "Example1.dtd">

The related DTD file Example1.dtd for this example is shown in the following listing:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT CustomerList (Customer*)>
<!ELEMENT Customer (ID, Address, CreditRating*, SalesRepID*,

RegionID, Comments*, ShippingMethod)>
<!ATTLIST Customer preferredCustomer CDATA #IMPLIED>
<!ELEMENT ID (#PCDATA)>
<!ELEMENT Address (Name, Street*, City, County,

State, Country, ZIP_CODE, PHONE)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Street (#PCDATA)>
<!ELEMENT City (#PCDATA)>
<!ELEMENT County (#PCDATA)>
<!ELEMENT State (#PCDATA)>
<!ELEMENT Country (#PCDATA)>
<!ELEMENT ZIP_CODE (#PCDATA)>
<!ELEMENT PHONE (#PCDATA)>
<!ELEMENT CreditRating (#PCDATA)>
<!ELEMENT SalesRepID (#PCDATA)>
<!ELEMENT RegionID (#PCDATA)>
<!ELEMENT Comments (#PCDATA)>
<!ELEMENT ShippingMethod (#PCDATA)>

The DTD is analogous to the control file specifications for external tables. It tells applications
what they will find in the XML document—the element names and the hierarchy of elements. An
XML document can have only one DTD.

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The syntax for the element declarations is

<!ELEMENT element_name (content_model)>

where content_model specifies what children an element can or must have and the order they
are in. The simplest content model is #PCDATA, which says that the element can contain only
parsed character data. Here’s an example:

<!ELEMENT Name (#PCDATA)>

In this example, the CustomerList element contains zero or more “Customer” elements, as
indicated by the * suffix:

<!ELEMENT CustomerList (Customer*)>

The allowable suffixes are as follows:

* Permits zero or more occurrences

+ Permits one or more occurrences

? Permits zero or one occurrences

As shown in the Address element specification, you can specify a sequence of multiple elements
by separating them with commas:

<!ELEMENT Address (Name, Street*, City, County,
State, Country, ZIP_CODE, PHONE)>

You can provide multiple options within the specification, separated by the vertical bar (|)
character. For example, a point on a two-dimensional graph may be specified via its horizontal
and vertical measurements or its distance and angle from the center:

<!ELEMENT Point ((x,y) | (distance, angle))>

For real-world applications, DTDs can quickly become very complex. You can have attribute
lists, external references, entity attributes, IDs, conditional inclusions, and other structures within
your DTD. Refer to XML documentation for a thorough review of DTD structures and options.

NOTE
Before creating a DTD for a standard business operation,
see if one is already available for your purpose. Web sites
such as http://www.xml.org/xml/registry.jsp provide many
examples of DTDs. These registries provide a valuable
resource for the documentation of industry-standard
DTDs and their components.

Chapter 47: The Hitchhiker’s Guide to XML in Oracle 925

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 47
Blind Folio 47:925

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

926 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 47
Blind Folio 47:926

XML Schema
The XML Schema specification is an alternative to DTDs. It includes datatyping, which is particularly
helpful when working with relational databases. Whereas DTDs are not extensible (they’re just
control files), XML Schema is extensible in the following ways:

■ Parts of schemas can be reused in other schemas.

■ Complex structures can be reused in other schemas.

■ Derived datatypes can be created based on existing datatypes.

■ A single document instance can reference multiple schemas.

Within XML Schema, elements are declared using xsd:element, as shown in the following
listing:

<xsd:element name="Date">

The element’s datatype can be declared via the type attribute:

<xsd:element name="Date" type="date">

You can specify the minimum and maximum number of occurrences for the element via the
minOccurs and maxOccurs attributes:

<xsd:element name="Date" type="date" minOccurs="0" maxOccurs="1">

Built-in XML Schema types include primitive types (such as string, Boolean, number, float,
date, time, and datetime) and derived types (such as normalizedString, integer, token, and
language). The full list of types can be found at http://www.w3.org/TR/xmlschema-2/.

You can create and name complex types, just as you can create abstract datatypes in Oracle.
The following code creates the “Address” type:

<xsd:complexType name="Address">
<xsd:sequence>

<xsd:element name="Street1"/>
<xsd:element name="Street2"/>
<xsd:element name="City"/>
<xsd:element name="State"/>
<xsd:element name="Zip"/>

</xsd:sequence>
</xsd:complexType>

You can then refer to the “Address” complex type when defining your elements:

<xsd:element name="mailingAddress" type="Address"/>
<xsd:element name="billingAddress" type="Address"/>

If you are declaring a content model for a single element, use an anonymous type, as shown
in the following listing:

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<xsd:element name="Name">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="First"/>
<xsd:element name="MiddleInitial"/>
<xsd:element name="Last"/>

</xsd:sequence>
</xsd:complexType

</xsd:element>

Attributes are declared using xsd:attribute, as shown in the following example:

<xsd:attribute name="paid" type="boolean"/>

You can create attributes within a complex type:

<xsd:element name="Invoice">
<xsd:complexType>

<xsd:attribute name="paid" use="optional" default="True"/>
</xsd:complexType>

</xsd:element>

In addition to creating attributes, you can create attribute groups and model groups. Model
groups are groups or element definitions, named for reuse. The “group” element must be a top-
level schema component (a child of the “schema” element). For example, the following listing
shows the creation of a MealOptions group, referenced by the “FlightDinner” element:

<xsd:element name="FlightDinner">
<xsd:sequence>

<xsd:element ref="Name"/>
<xsd:group ref="MealOptions"/>

</xsd:sequence>
</xsd:element>

<xsd:group name="MealOptions">
<xsd:choice>

<xsd:element name="Fish" type="Meal"/>
<xsd:element name="Meat" type="Meal"/>
<xsd:element name="Vegetarian" type="Meal"/>

</xsd:choice>
</xsd:group>

Attributes are commonly grouped together if elements often use the same set of attributes.
This is similar to the approach described in Part V of this book, in which common attributes were
combined to form new datatypes. For example, the following definition for a “Product” element
uses an attribute group named productDetails. Other elements can reuse this same attribute group,
improving your ability to enforce a standardized representation of this data.

<xsd:element name="Product">
<xsd:complexType>

Chapter 47: The Hitchhiker’s Guide to XML in Oracle 927

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 47
Blind Folio 47:927

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<xsd:attributeGroup ref="productDetails"/>
</xsd:complexType>

</xsd:element>

<xsd:attributeGroup name="productDetails">
<xsd:attribute name="productID" use="required" type="xsd:ID"/>
<xsd:attribute name="name" use="required" type="xsd:string"/>
<xsd:attribute name="description" use="required" type="xsd:string"/>
<xsd:attribute name="unit" type="xsd:positiveInteger"/>
<xsd:attribute name="price" use="required" type="xsd:decimal"/>
<xsd:attribute name="stock" type="xsd:integer"/>

</xsd:attributeGroup>

You can enforce uniqueness within a document instance by using xsd:unique:

<xsd:unique name="uniqueProductID">
<xsd:selector xpath="tc:Product/"/>
<xsd:field xpath="tc:@productID"/>

</xsd:unique>

Uniqueness is declared at the same level as the complex type definition for the “Product” element.
The tc: namespace is for the schema you are creating and is declared in the xsd:schema element. The
xsd:selector value specifies the elements to constrain (the “Product” elements), and xsd:field specifies
the attribute to constrain (productID).

You can use xsd:key and xsd:keyref to create references between elements. For example, you
can create a “Customer” element and then reference it from multiple “Invoice” elements:

<xsd:key name="customerID">
<xsd:selector xpath="tc:SalesData/"/>
<xsd:field xpath="tc:Customer/@CustID"/>

</xsd:key>

<xsd:keyref name="item" refer="customerID">
<xsd:selector xpath="tc:SalesData/"/>
<xsd:field xpath="tc:Invoice/@CustID"/>

</xsd:keyref>

To allow an element to be NULL, use the nillable attribute:

<xsd:element name="FlightDinner" nillable="true"/>

Using XSU to Select, Insert, Update,
and Delete XML Values
You can use Oracle’s XML-SQL Utility (XSU) to convert the result of a SQL query to XML. XSU
supports dynamic generation of DTDs and the insertion of XML into database tables. You can
also use XSU to update or delete rows from database objects.

928 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 47
Blind Folio 47:928

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 47: The Hitchhiker’s Guide to XML in Oracle 929

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 47
Blind Folio 47:929

You can access XSU via Java and PL/SQL APIs (application programming interfaces). The XSU
Java classes are part of the Oracle kernel software. The PL/SQL API is a wrapper that publishes
the Java classes to PL/SQL (see Chapter 39). Because the XSU classes are stored in the database,
you can write new stored procedures to directly access XSU’s Java classes. Because a PL/SQL
API is available, XSU’s functionality can be accessed directly through SQL.

For example, you can generate the XML version of the RATING table via the XSU PL/SQL
procedures. The following listing creates a procedure named PRINTCLOBOUT that will be called
as part of the data-output process. The data will be read in as a CLOB.

create or replace procedure PRINTCLOBOUT(result IN OUT NOCOPY CLOB)
is

xmlstr varchar2(32767);
line varchar2(2000);
begin
xmlstr := dbms_lob.SUBSTR(result,32767);
loop
exit when xmlstr is null;
line := substr(xmlstr,1,instr(xmlstr,chr(10))-1);
dbms_output.put_line('| '||line);
xmlstr := substr(xmlstr,instr(xmlstr,chr(10))+1);

end loop;
end;
/

Now that the PRINTCLOBOUT procedure exists, run the following anonymous PL/SQL block.
This block queries the RATING table, so that table must be accessible from your schema (see the
accompanying CD-ROM).

NOTE
You must set serveroutput on prior to executing this PL/SQL block.

declare
queryCtx DBMS_XMLquery.ctxType;
result CLOB;

begin
-- set up the query context...
queryCtx := DBMS_XMLQuery.newContext('select * from rating');
-- get the result..

result := DBMS_XMLQuery.getXML(queryCtx);
-- Now you can use the result to put it in tables/send as messages..
printClobOut(result);
DBMS_XMLQuery.closeContext(queryCtx); -- you must close the query..

end;
/

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The result is the RATING table, formatted with XML tags:

| <?xml version = '1.0'?>
| <ROWSET>
| <ROW num="1">
| <RATING>1</RATING>
| <RATINGDESCRIPTION>ENTERTAINMENT</RATINGDESCRIPTION>
| </ROW>
| <ROW num="2">
| <RATING>2</RATING>
| <RATINGDESCRIPTION>BACKGROUND INFORMATION</RATINGDESCRIPTION>
| </ROW>
| <ROW num="3">
| <RATING>3</RATING>
| <RATINGDESCRIPTION>RECOMMENDED</RATINGDESCRIPTION>
| </ROW>
| <ROW num="4">
| <RATING>4</RATING>
| <RATINGDESCRIPTION>STRONGLY RECOMMENDED</RATINGDESCRIPTION>
| </ROW>
| <ROW num="5">
| <RATING>5</RATING>
| <RATINGDESCRIPTION>REQUIRED READING</RATINGDESCRIPTION>
| </ROW>
| </ROWSET>

PL/SQL procedure successfully completed.

Insert, Update, and Delete Processing with XSU
To insert a document into a table or view, use the DBMS_XMLSave package. XSU will parse the
document and create an insert statement that inserts the values into all the columns of the table
or view. An absent element is treated as a NULL value.

create or replace procedure INSPROC(xmlDoc IN CLOB,
tableName IN VARCHAR2) is

insCtx DBMS_XMLSave.ctxType;
rows number;

begin
insCtx := DBMS_XMLSave.newContext(tableName); -- get the context
rows := DBMS_XMLSave.insertXML(insCtx,xmlDoc); -- insert the doc
DBMS_XMLSave.closeContext(insCtx); -- close the handle

end;
/

You can now pass in XML documents as CLOB input values to the INSPROC procedure,
along with the table name. INSPROC will take the XML document and insert its values into the
table. Updates can be executed via calls to a separate procedure, UPDATEPROC, shown in the
following listing:

930 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 47
Blind Folio 47:930

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

create or replace procedure UPDATEPROC (xmlDoc IN clob) is
updCtx DBMS_XMLSave.ctxType;
rows number;

begin
updCtx := DBMS_XMLSave.newContext('RATING'); -- get context
DBMS_XMLSave.clearUpdateColumnList(updCtx); -- clear settings
DBMS_XMLSave.setKeyColumn(updCtx,'RATING'); -- set RATING as key
rows := DBMS_XMLSave.updateXML(updCtx,xmlDoc); -- update
DBMS_XMLSave.closeContext(updCtx); -- close context

end;
/

In this example, the Rating column is the key column used for the update’s where clause:

DBMS_XMLSave.setKeyColumn(updCtx,'RATING'); -- set RATING as key

The new values are passed in as an XML document in CLOB format, and the RATING table
values are updated based on the contents of the XML document.

Delete operations function in much the same way. The following procedure takes an XML
document as its input, establishes the Rating column as the key for the RATING table, and performs
the delete based on the key values in the input document. Note that newContext takes the table
name RATING as its input value, whereas setKeyColumn takes the key column name (which in
this case happens to also be Rating).

create or replace procedure DELETEPROC(xmlDoc IN clob) is
delCtx DBMS_XMLSave.ctxType;
rows number;

begin
delCtx := DBMS_XMLSave.newContext('RATING');
DBMS_XMLSave.setKeyColumn(delCtx,'RATING');
rows := DBMS_XMLSave.deleteXML(delCtx,xmlDoc);
DBMS_XMLSave.closeContext(delCtx);

end;
/

XSU and Java
If you prefer, you can perform the XSU DML operations via calls to Java classes instead of the PL/
SQL procedures. In place of the DBMS_XMLQuery package, you should execute the oracle.xml.sql
.query.OracleXMLQuery class. In place of the DBMS_XMLSave package, use oracle.xml.sql.dml
.OracleXMLSave.

For example, the Oracle-provided sample Java program for XML queries is customized slightly
in the following listing. It relies on connection management in a fashion very similar to that shown in
the JDBC examples (see Chapter 38). The program imports the oracle.xml.sql.query.OracleXMLQuery
class, enabling it to get the XML string; Java’s System.out.println method is then called to display the
output.

import oracle.xml.sql.query.OracleXMLQuery;
import java.lang.*;

Chapter 47: The Hitchhiker’s Guide to XML in Oracle 931

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 47
Blind Folio 47:931

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

import java.sql.*;

// class to test the String generation!
class testXMLSQL {

public static void main(String[] argv)
{

try{
// create the connection
Connection conn = getConnection("practice","practice");

// Create the query class.
OracleXMLQuery qry = new OracleXMLQuery(conn, "select * from rating");

// Get the XML string
String str = qry.getXMLString();

// Print the XML output
System.out.println(" The XML output is:\n"+str);
// Always close the query to get rid of any resources..

qry.close();
}catch(SQLException e){
System.out.println(e.toString());

}
}

// Get the connection given the user name and password..!
private static Connection getConnection(String username,
String password)

throws SQLException
{

// register the JDBC driver..
DriverManager.registerDriver(new oracle.jdbc.OracleDriver());

// Create the connection using the OCI8 driver
Connection conn =

DriverManager.getConnection("jdbc:oracle:oci8:@or90",username,password);

return conn;
}

}

For details on connection management and Java, see Part VI of this book.

Customizing the Query Process
You can create your own procedures to simplify the interaction with the DBMS_XMLQuery and
DBMS_XMLSave packages. For example, the following listing creates a function named GET_XML,
which will select the rows from the table and display them in XML format.

932 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 47
Blind Folio 47:932

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

create function GET_XML (in_SQL varchar2)
return CLOB

is queryCtx DBMS_XMLQuery.ctxType;
result CLOB;

begin queryCtx := DBMS_XMLQuery.newContext(in_SQL);
result := DBMS_XMLQuery.getXML(queryCtx);
DBMS_XMLQuery.closeContext(queryCtx);
return result;

end;
/

The data will be returned in CLOB format, so you can use the set long command to set the
maximum display length (the default is 80 characters). You can call GET_XML from within SQL
queries, as shown in the following listing:

set pagesize 100 long 2000

select GET_XML('select * from category') from DUAL;

GET_XML('SELECT*FROMCATEGORY')
--
<?xml version = '1.0'?>
<ROWSET>

<ROW num="1">
<CATEGORYNAME>ADULTREF</CATEGORYNAME>
<PARENTCATEGORY>ADULT</PARENTCATEGORY>
<SUBCATEGORY>REFERENCE</SUBCATEGORY>

</ROW>
<ROW num="2">

<CATEGORYNAME>ADULTFIC</CATEGORYNAME>
<PARENTCATEGORY>ADULT</PARENTCATEGORY>
<SUBCATEGORY>FICTION</SUBCATEGORY>

</ROW>
<ROW num="3">

<CATEGORYNAME>ADULTNF</CATEGORYNAME>
<PARENTCATEGORY>ADULT</PARENTCATEGORY>
<SUBCATEGORY>NONFICTION</SUBCATEGORY>

</ROW>
<ROW num="4">

<CATEGORYNAME>CHILDRENPIC</CATEGORYNAME>
<PARENTCATEGORY>CHILDREN</PARENTCATEGORY>
<SUBCATEGORY>PICTURE BOOK</SUBCATEGORY>

</ROW>
<ROW num="5">

<CATEGORYNAME>CHILDRENFIC</CATEGORYNAME>
<PARENTCATEGORY>CHILDREN</PARENTCATEGORY>
<SUBCATEGORY>FICTION</SUBCATEGORY>

</ROW>
<ROW num="6">

<CATEGORYNAME>CHILDRENNF</CATEGORYNAME>
<PARENTCATEGORY>CHILDREN</PARENTCATEGORY>

Chapter 47: The Hitchhiker’s Guide to XML in Oracle 933

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 47
Blind Folio 47:933

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

934 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 47
Blind Folio 47:934

<SUBCATEGORY>NONFICTION</SUBCATEGORY>
</ROW>

</ROWSET>

Using XMLType
You can use XMLType as a datatype in your tables. XMLType can be used to store and query
XML data in the database. As a type, XMLType has member functions (see Chapter 33) to access,
extract, and query XML data using a class of operations known as Xpath expressions. The SYS_
XMLGEN, SYS_XMLAGG, and DBMS_XMLGEN packages create XMLType values from existing
object-relational data. When you designate a column as using the XMLType datatype, Oracle will
store the data internally in a CLOB datatype.

The following listing shows the creation of a table using the XMLType datatype:

create table MY_XML_TABLE
(Key1 NUMBER,
Xml_Column SYS.XMLTYPE);

If you describe the table, you will see its columns:

desc MY_XML_TABLE

Name Null? Type
--- -------- ------------
KEY1 NUMBER
XML_COLUMN SYS.XMLTYPE

If you increase the describe depth, you will see the member functions for the XMLType column
as well. The following listing shows the first few of the many functions and methods available:

set describe depth 5
desc MY_XML_TABLE
Name Null? Type
--- -------- -------------------
KEY1 NUMBER
XML_COLUMN SYS.XMLTYPE

METHOD

STATIC FUNCTION CREATEXML RETURNS XMLTYPE
Argument Name Type In/Out Default?
------------------------------ ----------------------- ------ --------
XMLDATA CLOB IN

METHOD

MEMBER FUNCTION EXTRACT RETURNS XMLTYPE
Argument Name Type In/Out Default?
------------------------------ ----------------------- ------ --------
XPATH VARCHAR2 IN

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 47: The Hitchhiker’s Guide to XML in Oracle 935

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 47
Blind Folio 47:935

METHOD

MEMBER FUNCTION EXISTSNODE RETURNS NUMBER
Argument Name Type In/Out Default?
------------------------------ ----------------------- ------ --------
XPATH VARCHAR2 IN

METHOD

MEMBER FUNCTION ISFRAGMENT RETURNS NUMBER

METHOD

MEMBER FUNCTION GETCLOBVAL RETURNS CLOB

METHOD

MEMBER FUNCTION GETSTRINGVAL RETURNS VARCHAR2

METHOD

MEMBER FUNCTION GETNUMBERVAL RETURNS NUMBER

You can now insert values into MY_XML_TABLE by calling XMLType’s CREATEXML method:

insert into MY_XML_TABLE (Key1, Xml_Column)
values (1, SYS.XMLTYPE.CREATEXML
('<book>
<title>MY LEDGER</title>
<chapter num= "1 ">

<title>Beginning</title>
<text>This is the ledger of G.B. Talbot</text>

</chapter>
</book>'));

You can query the data by calling the GETCLOBVAL method. For example, the query

select M.Xml_Column.GETCLOBVAL() as XML_Data
from MY_XML_TABLE M
where Key1 = 1;

returns this data:

XML_DATA

<book>
<title>MY LEDGER</title>
<chapter num="1">

<title>Beginning</title>
<text>This is the ledger of G.B. Talbot</text>

</chapter>
|</book>

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
You can create functional indexes on columns created with the
XMLType datatype to improve the performance of queries.

Other Features
This chapter has shown a very high-level view of the interaction of XML data with the Oracle
database. There are many other possibilities, including the use of style sheets for data formatting,
and creating XSQL pages. You can even create text indexes on XMLType columns:

create index XML_INDEX on MY_XML_TABLE (Xml_Column)
indextype is ctxsys.context;

NOTE
See Chapter 25 for further details on text indexes.

Oracle provides the following packages to interact with XML data:

DBMS_XMLGEN Converts the results of SQL queries to canonical XML format, returning
them as a CLOB. DBMS_XMLGEN is implemented in C and compiled
in the database kernel. DBMS_XMLGEN is similar in functionality to the
DBMS_XMLQuery package.

SYS_XMLGEN Generates XML within SQL queries. DBMS_XMLGEN and other packages
operate at a query level, giving aggregated results for the entire query. SYS_
XMLGEN operates on a single argument inside a SQL query and converts
the result to XML.
SYS_XMLGEN takes in a scalar value, object type, or an XMLType
instance to be converted to an XML document. It also takes an optional
XMLGenFormatType object to specify formatting options for the result.
SYS_XMLGEN returns an XMLType.

SYS_XMLAGG Aggregates over a set of XMLTypes. SYS_XMLAGG aggregates all the
input XML documents/fragments and produces a single XML document
by concatenating XML fragments and adding a top-level tag that defaults
to ROWSET.

Oracle provides utilities to support additional uses, such as oraxml (a command-line interface
to parse an XML document) and oraxsl (a command-line interface used to apply a style sheet on
multiple XML documents). A full discussion of every utility and data-access method is beyond the
scope of this book; see the XML documentation provided with Oracle Database 10g for additional
options and sample programs. See the Alphabetical Reference for descriptions of functions that
act on XMLType instances, including EXTRACT, EXTRACTVALUE, SYS_XMLAGG, SYS_XMLGEN,
UPDATEXML, XMLAGG, XMLCONCAT, and XMLELEMENT.

936 Part VIII: Hitchhiker’s Guides

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 47
Blind Folio 47:936

P:\010Comp\Oracle8\351-7\CD\Ventura\book.vp
Friday, August 13, 2004 1:53:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:937

PART
IX

Alphabetical Reference
Copyright © 2003, 2004, Oracle Corporation. All rights reserved. This appendix contains Oracle
Corporation User Documentation reproduced herein with permission of Oracle Corporation,
and offers brief summaries of the most common SQL commands. The commands are arranged
alphabetically. This material is extracted from Oracle Database SQL Reference Release 10g,
SQL*Plus User’s Guide and Reference, and Oracle Database Utilities 10g Release 1.

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

T
his chapter contains references for most major Oracle commands, keywords, features,
and functions, with cross-referencing of topics. The reference is intended for use by
both developers and users of Oracle, but assumes some familiarity with the products.
Reading the introduction to this reference will help you make the most productive use
of the entries.

What This Alphabetical Reference Includes
This alphabetical reference contains entries for virtually every Oracle command in SQL, PL/SQL, and
SQL*Plus, as well as definitions of all relevant terms used in Oracle Database 10g and SQL. Each
command is listed with its correct format or syntax, an explanation of its purpose and use, the product
or products in which it is used, and important details, restrictions, and hints about it, along with examples
to illustrate proper usage. Topics are in alphabetical order and are cross-referenced, both within the
alphabetical reference and to preceding chapters in the book.

What This Alphabetical Reference
Does Not Include
This is not a tutorial; it does not explain the screen-oriented development and administration tools.
Additionally, there are a few areas where usage is likely to be so specialized or infrequent that inclusion
here did not seem of much benefit. In these instances, the text refers you to the Oracle manual in which
you can find the needed information.

General Format of Entries
Entries in this reference are typically either definitions of terms or descriptions of functions, commands,
and keywords. These are usually structured in seven sections: the keyword, its type, the products in
which it is used, a SEE ALSO cross-reference, the format in which the keyword appears, a description
of its components, and an example of its use. A typical entry looks like the following:

RPAD
SEE ALSO CHARACTER FUNCTIONS, LPAD, LTRIM, RTRIM, TRIM, Chapter 7
FORMAT RPAD(string,length [,'set '])
DESCRIPTION Right PAD. RPAD makes a string a certain length by adding a certain set of characters
to the right. If set is not specified, the default pad character is a space.
EXAMPLE

select RPAD('HELLO ',24,'WORLD') from DUAL;

produces this:

HELLO WORLDWORLDWORLDWOR

The Sections of Each Entry
The KEYWORD usually appears on a line by itself. In some cases a brief definition follows. If a keyword
has more than one definition, either in different Oracle tools or in different Oracle versions, the keyword
is followed by a brief qualifier to indicate that more than one listing exists for this keyword.

938 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:938

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SEE ALSO suggests other topics that are closely related to the keyword, or gives the chapter or
chapters in the book that give detailed descriptions of how the keyword is used in practice. Occasionally
you will be referred to an Oracle manual or other reference book that contains detail beyond the scope
of this reference.

FORMAT generally follows the notation of Oracle manuals, with all SQL and other keywords in
uppercase. In actual use, these must be entered exactly as they are shown (except that case is irrelevant).
Variables and variable parameters are shown in lowercase italic. This indicates that some appropriate
value should be substituted. When parentheses are shown, they must be entered where they appear,
as must words shown in uppercase.

Standard Usages for Variables
Some standard usages for variables follow:

This Variable Indicates

column The name of a column

database The name of a database

link The name of a link in Oracle Net

password A password

segment The name of a segment

table The name of a table

tablespace The name of a tablespace

user The name of a user or owner

view The name of a view

Other Formatting Guidelines
Some other guidelines for formatting follow:

■ character means the value must be a single character.

■ string typically represents a character column or an expression or column that can be treated
like a CHAR or VARCHAR2 column after automatic data conversion.

■ value usually represents a NUMBER column or an expression or column that can be treated
like a NUMBER column after automatic data conversion.

■ date usually represents a DATE column or an expression or column that can be treated like
a DATE column after automatic data conversion.

■ datetime usually represents a TIMESTAMP column or an expression or column that can be
treated like a TIMESTAMP column after automatic data conversion.

■ integer must be a whole number, such as –3, 0, or 12.

■ expression means any form of a column. This could be a literal, a variable, a mathematical
computation, a function, or virtually any combination of functions and columns whose final
result is a single value, such as a string, a number, or a date.

■ Occasionally other notation is used as well, such as condition or query. This is explained or
is apparent in context.

Other Formatting Guidelines 939

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:939

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

940 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:940

■ Optional items are enclosed in square brackets, as in [user.], meaning that user is not necessarily
required.

■ Alternative items in a list are separated by a single broken vertical bar, as in OFF | ON,
which should be read “OFF or ON.” On some systems, this vertical bar is displayed as
a solid vertical bar.

■ Required options, where one item of a list of items is required, are surrounded by curly braces,
as in {OFF | ON}.

■ The default item in a list, if there is one, will be listed first.

■ Three periods (an ellipsis) indicate that the preceding expression can be repeated any number
of times, as in column [,column]. . ., which means that ,column may be any number of additional
columns separated by commas.

■ In rare instances, normal notation is either insufficient or inappropriate for what is being shown.
In these cases, the DESCRIPTION section spells out more fully what is intended in the FORMAT
section.

Other Elements of a Listing
A few commands have a return type, which indicates the datatype of the value returned by a function.

DESCRIPTION is an explanation of the command and its parts. Boldface words within the description
usually refer to either commands or variables shown in the FORMAT section.

EXAMPLE shows either the results of a function or how a keyword is used in a real command. The
style of the examples is not the same as the style of the FORMAT section. Instead, it follows the style of
the first part of this book (described in Chapter 3), since that style is more typical of real coding practice.

The Order of the Keywords
This reference is in alphabetical order, with all entries that begin with symbols coming before the first
entry beginning with the letter A.

Words that are hyphenated or that have an underscore character in them are alphabetized as if the
hyphen or underscore were a space.

Symbols
The symbols are listed in order of appearance with a short definition or name.

_ underline (also called underscore, underbar)

! exclamation mark

" double quotation mark

pound sign

$ dollar sign

? question mark

% percent sign

& ampersand

&& double ampersand

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

' single quotation mark or apostrophe

() parentheses

* asterisk or multiplication

** exponentiation in PL/SQL

+ plus

- subtraction or hyphen

- - double hyphen, SQL comment minus or hyphen

. period or dot, a name or variable separator

.. to

/ division or slash

/* slash asterisk, SQL comment divided by or slash

: colon

:= is set equal to in PL/SQL

; semicolon

<< >> label name delimiter in PL/SQL

< less than

<= less than or equal to

< > not equal

!= not equal

= equal

> greater than

>= greater than or equal to

@ at sign

@@ double at sign

[] square brackets

^ caret

^= not equal

{} curly braces

| broken vertical bar

|| concatenation

_ (Underscore)
The underscore represents a single position with the LIKE operator. See LIKE.

_EDITOR
See EDIT.

_EDITOR 941

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:941

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

! (Exclamation Mark)
SEE ALSO $, =, CONTAINS, SOUNDEX, Chapter 25
FORMAT Within SQL, ! is used as part of the “not equal” expression, !=. For example, you can
select all the city values that are not in the continent of Asia:

select City
from LOCATION
where Continent != 'ASIA';

For CONTEXT text indexes, ! signals the text engine to perform a SOUNDEX search. The terms to
search for will be expanded to include terms that sound like the search term, using the text’s SOUNDEX
value to determine possible matches.

select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, '!grate')>0;

" (Double Quotation Mark)
SEE ALSO ALIAS, TO_CHAR, Chapters 7 and 10
DESCRIPTION " surrounds a table or column alias that contains special characters or a space,
or surrounds literal text in a date format clause of TO_CHAR.
EXAMPLE Here " is used as an alias:

select NEXT_DAY(CycleDate,'FRIDAY') "Pay Day!"
from PAYDAY;

And here it is used as a formatting portion of TO_CHAR:

select FirstName, Birthdate, TO_CHAR(BirthDate,
'"Baby Girl on" fmMonth ddth, YYYY, "at" HH:MI "in the Morning"')
"Formatted"

from BIRTHDAY
where FirstName = 'VICTORIA';

FIRSTNAME BIRTHDATE Formatted
--------------- --------- ------------------------------
VICTORIA 20-MAY-49 Baby Girl on May 20th, 1949,

at 3:27 in the Morning

(Pound Sign)
SEE ALSO REMARK, /* */, Chapter 6
DESCRIPTION # completes a block of documentation in a SQL*Plus start file where the block
is begun by the word DOCUMENT. SQL*Plus ignores all lines from the line where it sees the word
DOCUMENT until the line after the #.

$ (Dollar Sign)
SEE ALSO @, @@, HOST, START, CONTAINS, Chapter 25

942 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:942

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT For SQL*Plus:

$ host_command

In UNIX environments, the $ symbol can be replaced with ! when executing host commands.
For CONTEXT text indexes:

select column
from table

where CONTAINS(text_column, '$search_term') >0;

DESCRIPTION $ passes any host command back to the operating system for execution without
exiting SQL*Plus. $ is shorthand for HOST. This doesn’t work on all hardware or operating systems.

For a CONTEXT text index, $ instructs the search engine to perform a stem expansion on the search
term. A stem expansion includes in the search those words that have the same word stem. For example,
a stem expansion of the word 'sing' would include 'singing', 'sang', and 'sung'.

? (Question Mark)
SEE ALSO CONTAINS, Chapter 25
FORMAT

select column
from table

where CONTAINS(text_column, '?term')>0;

DESCRIPTION For CONTEXT text indexes, ? instructs the text engine to perform a fuzzy match
search. The terms to search for will be expanded to include terms that are spelled similarly to the search
term, using the text index as the source for possible matches.

% (Percent)
% is a wildcard used to represent any number of positions and characters with the LIKE operator. See LIKE.

%FOUND
SEE ALSO %ISOPEN, %NOTFOUND, %ROWCOUNT, CURSOR, SQL CURSOR, Chapter 29
FORMAT

cursor%FOUND

or

SQL%FOUND

DESCRIPTION %FOUND is a success flag for select, insert, update, and delete. cursor is the
name of an explicit cursor declared in a PL/SQL block, or the implicit cursor named SQL. %FOUND
can be attached to a cursor name as a suffix. The two together are a success flag for the execution of
SELECT, INSERT, UPDATE, and DELETE statements in PL/SQL blocks.

PL/SQL temporarily sets aside a section of memory as a scratchpad for the execution of SQL statements,
and for storing certain kinds of information (or attributes) about the state of that execution. If the SQL
statement is a select, this area will contain one row of data.

%FOUND is one of those attributes. %FOUND is typically tested (via IF/THEN logic) after an explicit
fetch has been performed from the cursor. It will be TRUE if the fetch retrieved a row, and FALSE otherwise.
It always evaluates to TRUE, FALSE, or NULL. %NOTFOUND is the logical opposite. It is FALSE when
%FOUND is TRUE, TRUE when %FOUND is FALSE, and NULL when %FOUND is NULL.

%FOUND 943

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:943

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Testing %FOUND for the condition of an explicit cursor before it is OPENed raises an EXCEPTION
(error code ORA-01001, INVALID CURSOR).

%ISOPEN
SEE ALSO SQL CURSOR, Chapter 29
FORMAT

cursor%ISOPEN

DESCRIPTION cursor must be either the name of an explicitly declared cursor or the implicit
cursor named SQL. %ISOPEN evaluates to TRUE if the named cursor is open, and to FALSE if it
is not. SQL%ISOPEN will always evaluate to FALSE, because the SQL cursor is opened and closed
automatically when a SQL statement not explicitly declared is executed (see SQL CURSOR). %ISOPEN
is used in PL/SQL logic; it cannot be a part of a SQL statement.

%NOTFOUND
See %FOUND.

%ROWCOUNT
SEE ALSO CLOSE, DECLARE, DELETE, FETCH, INSERT, OPEN, SELECT, UPDATE, Chapter 29
FORMAT

cursor%ROWCOUNT

DESCRIPTION cursor must be either the name of an explicitly declared cursor or the implicit cursor
named SQL. cursor%ROWCOUNT contains the cumulative total number of rows that have been fetched
from the active set in this cursor. %ROWCOUNT can be used to intentionally process only a fixed
number of rows, but is more commonly used as an exception handler for selects that are intended to
return just one row (for example, select. . . into). In these cases, %ROWCOUNT is set to 0 if no rows
are returned (%NOTFOUND can make this test as well), and to 2 if more than one row is returned,
regardless of the actual number.

%ROWCOUNT is used in PL/SQL logic; it cannot be a part of a SQL statement. If SQL%ROWCOUNT
is used, it can only refer to the most recently opened implicit cursor. If no implicit cursor has been opened,
SQL%ROWCOUNT returns NULL.

%ROWTYPE
SEE ALSO FETCH, Chapter 29
FORMAT

{[user.]table | cursor}%ROWTYPE

DESCRIPTION %ROWTYPE declares a record variable to have the same structure as an entire
row in a table (or view), or as a row retrieved by the named cursor. %ROWTYPE is used as part of a
variable declaration and assures that the variable will contain the appropriate fields and datatypes to
handle all of the columns being fetched. If [user.]table is used, the table (or view) must exist in the
database.

To create a variable that will contain corresponding fields, use declare, a variable name, and
%ROWTYPE with the table name, and then select a row into the record. Because the variable has
the same structure as the table, you can reference the fields as variable.field, using notation similar to

944 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:944

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

table.column used in SQL statements. select. . .into and fetch. . .into are the only methods for loading
an entire record variable. Individual fields within the record can be loaded using :=, as shown here:

BOOKSHELF_RECORD.Publisher := 'PANDORAS';

If a cursor is used as the prefix for %ROWTYPE, then it can contain a select statement with only as
many columns as are needed. However, if a column that is fetched from a named cursor is an expression,
rather than a simple column name, the expression must be given an alias in the select statement before
it can be referenced using this technique.

%TYPE
SEE ALSO %ROWTYPE, Chapter 29
FORMAT

{[user.]table.column | variable}%TYPE

DESCRIPTION %TYPE is used to declare a variable to be of the same type as a previously declared
variable, or as a particular column in a table that exists in the database you’re connected to.
EXAMPLE In this example a new variable, Writer, is declared to be the same type as the AuthorName
column in the AUTHOR table. Since Writer now exists, it can be used to declare yet another new variable,
Coauthor.

Writer AUTHOR.AuthorName%TYPE;
Coauthor Writer%TYPE;

& or && (Ampersand or Double Ampersand)
SEE ALSO :, ACCEPT, DEFINE, START, CONTAINS, Chapter 25
FORMAT For SQL*Plus:

&integer
&variable
&&variable

For CONTEXT indexes:

select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property & harvests')>0;

DESCRIPTION & and && can be used in several ways (&& applies only to the second definition):

■ As a prefix for parameters in a SQL*Plus start file. Values are substituted for &1, &2, etc. See
START.

■ As a prefix for a substitution variable in a SQL command in SQL*Plus. SQL*Plus will prompt
for a value if an undefined & or && variable is found. && will define the variable and thereby
preserve its value; & will not define or preserve the value, but only substitute what is entered
one time. See ACCEPT and DEFINE.

■ When using CONTEXT indexes, & is used to signal an AND condition for text searches
involving multiple search terms. If any of the search terms is not found, the text will not be
returned by the search.

& or && (Ampersand or Double Ampersand) 945

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:945

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

' (Single Quotation Mark)
SEE ALSO " (Double Quotation Mark), Chapter 7
FORMAT

'string'

DESCRIPTION ' surrounds a literal, such as a character string or date constant. To use one
quotation mark or an apostrophe in a string constant, use two ' marks (not a double quotation mark).
Avoid the use of apostrophes in data (and elsewhere) whenever possible.
EXAMPLE

select 'William' from DUAL;

produces this:

William

whereas

select 'William''s brother' from DUAL;

produces this:

William's brother

() (Parentheses)
SEE ALSO PRECEDENCE, SUBQUERY, UPDATE, Chapters 13 and 15
DESCRIPTION Parentheses enclose subqueries or lists of columns, or control precedence within
expressions.

* (Multiplication)
SEE ALSO +, -, /, Chapters 9 and 25
FORMAT

value1 * value2

DESCRIPTION value1 * value2 means value1 multiplied by value2. For CONTEXT indexes, * is
used to weight the individual search terms differently.

** (Exponentiation)
SEE ALSO POWER
FORMAT

x ** y

DESCRIPTION x is raised to the power y. x and y may be constants, variables, columns, or
expressions. Both must be numeric.
EXAMPLE 4**4 = 256

+ (Addition)
SEE ALSO -, *, /, Chapter 8

946 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:946

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

value1 + value2

DESCRIPTION value1 + value2 means value1 plus value2.

– (Subtraction [Form 1])
SEE ALSO +, *, /, Chapter 8, CONTAINS, MINUS, Chapter 25
FORMAT

value1 - value2

DESCRIPTION value1 – value2 means value1 minus value2. For CONTEXT indexes, a – tells the
text search of two terms to subtract the score of the second term’s search from the score of the first term’s
search before comparing the result to the threshold score. For CTXCAT indexes, a – tells the text search
engine to exclude the row from the result set if the term following the – is found.

- (Hyphen [Form 2])
SEE ALSO Chapter 6
FORMAT

command text -
text -
text

DESCRIPTION SQL*Plus command continuation; a - continues a command on the following line.
EXAMPLE

ttitle left 'Current Portfolio' -
right 'November 1st, 1999' skip 1 -
center 'Industry Listings ' skip 4;

-- (Comment)
SEE ALSO /* */, REMARK, Chapter 6
FORMAT

-- any text

DESCRIPTION -- tells Oracle a comment has begun. Everything from that point to the end of the
line is treated as a comment. These delimiters are used only within SQL itself or in PL/SQL and must
appear before the SQLTERMINATOR.
EXAMPLE

select Feature, Section, Page
-- this is just a comment
from NEWSPAPER -- this is another comment
where Section = 'F';

. (Period or Dot [Form 1]) (SQL*Plus)
FORMAT

&variable.suffix

. (Period or Dot [Form 1]) (SQL*Plus) 947

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:947

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION The . is a variable separator, which is used in SQL*Plus to separate the variable
name from a suffix so that the suffix is not considered a part of the variable name.
EXAMPLE Here, the suffix “st” is effectively concatenated to the contents of the variable &Avenue:

define Avenue = 21
select '100 &Avenue.st Street' from DUAL;

produces this:

100 21st Street

This same technique might also be used in a WHERE clause.

. (Period or Dot [Form 2])
SEE ALSO SYNTAX OPERATORS, Chapter 21
FORMAT

[user.][table.]column

DESCRIPTION The . is a name separator, used to specify the complete name of a column, including
(optionally) its table or user. The . is also used to address columns within abstract datatypes during
selects, updates, and deletes.
EXAMPLE

select Practice.BOOKSHELF.Title
from Practice.BOOKSHELF, Practice.BOOKSHELF_AUTHOR
where Practice.BOOKSHELF.Title = Practice.BOOKSHELF_AUTHOR.Title;

If the table contains columns based on an abstract datatype, the datatype’s attributes may be accessed
via the . notation.

select C.Person.Address.City
from Company C
where C.Person.Address.State = 'FL';

See Chapter 33 for further examples.

.. (To)
See LOOP.

/ (Division [Form 1])
SEE ALSO +, –, *, Chapter 9
FORMAT

value1 / value2

DESCRIPTION value1 / value2 means value1 divided by value2.

/ (Slash [Form 2]) (SQL*Plus)
SEE ALSO ;, BUFFER, EDIT, GET, RUN, SET, SQLTERMINATOR

948 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:948

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION / executes the SQL in the SQL buffer without displaying it, unlike RUN, which
displays it first.

/* */ (Comment)
SEE ALSO REMARK, Chapter 6
FORMAT

/* any text */

DESCRIPTION /* tells Oracle a comment has begun. Everything Oracle sees from that point
forward, even for many words and lines, it regards as a comment until it sees the ending */, which
ends the comment. Comments cannot be embedded within comments; that is, a /* is terminated by
the first following */, even if there is an intervening /*.
EXAMPLE

select Feature, Section, Page
/* this is a multi-line comment

used to extensively document the code */
from NEWSPAPER

where Section = 'F';

: (Colon, Host Variable Prefix)
SEE ALSO INDICATOR VARIABLE
FORMAT

:name

DESCRIPTION name is the name of a host variable. When PL/SQL is embedded in a host language
through an Oracle precompiler, host variables can be referenced from within the PL/SQL blocks by
prefixing their host language names with a colon. In effect, this is the host variable. If PL/SQL changes
its value through an assignment (:=), the value of the host variable is changed. Host variables may be
used anywhere a PL/SQL variable can be used. The one exception is in assigning the value NULL to a
host variable, which is not supported directly, but requires the use of an indicator variable.
EXAMPLE

int BookCount;
...

select COUNT(*) into :BookCount from BOOKSHELF;

:= (Set Equal To)
SEE ALSO DECLARE, FETCH, SELECT INTO, Chapter 29
FORMAT

variable := expression

DESCRIPTION The PL/SQL variable is set equal to the expression, which may be a constant, NULL,
or a calculation with other variables, literals, and PL/SQL functions.

:= (Set Equal To) 949

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:949

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXAMPLE

Extension := Quantity * Price;
Title := 'BARBERS WHO SHAVE THEMSELVES';
Name := NULL;

; (Semicolon)
SEE ALSO / (Slash), BUFFER, EDIT, GET, RUN, SQLTERMINATOR, CONTAINS, NEAR, Chapter 25
DESCRIPTION ; executes the SQL or the command that precedes it. For CONTEXT indexes, ;
indicates that a proximity search should be executed for the specified text strings. If the search terms
are 'summer' and 'lease', then a proximity search for the two terms could be

select Text
from SONNET
where CONTAINS(Text,'summer;lease') >0;

When evaluating the text search results, text with the words 'summer' and 'lease' near to each other
in the text will have higher scores than text with the words 'summer' and 'lease' farther apart.

< < > > (PL/SQL Label Name Delimiter)
See BEGIN, BLOCK STRUCTURE, END, GOTO, LOOP, Chapter 29.

@ (“At” Sign [Form 1]) (SQL*Plus)
SEE ALSO @@, START
FORMAT

@file

DESCRIPTION @ starts the SQL*Plus start file named file. @ is similar to START, but does not
allow command-line arguments.

@ (“At” Sign [Form 2])
SEE ALSO CONNECT, COPY, DATABASE LINK, Chapter 23
FORMAT

CON[NECT] user[/password] [@database];
COPY [FROM user/password@database]

[TO user/password@database]
{APPEND | CREATE | INSERT | REPLACE}
table [(column, [column]...)]
USING query;

SELECT... FROM [user.]table[link] [, [user.]table[@link]]...

DESCRIPTION @ prefixes a database name in a CONNECT or COPY command, or a link name
in a FROM clause.

@@ (Double “At” Sign) (SQL*Plus)
SEE ALSO @ (Form 1), START

950 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:950

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

@@file

DESCRIPTION @@ starts a nested SQL*Plus start file named file. @@ is similar to @, but differs in
that @@, when used in a command file, will search for a start file in the same directory as the command
file that called it (rather than in the directory you are in when you execute the command file).

{ } (Curly Braces)
SEE ALSO CONTAINS, Chapter 25, Chapter 37
FORMAT For text searches, {} indicate that the enclosed text should be considered part of the search
string even if it is a reserved word. For example, if the search term is 'in and out', and you want to search for
the entire phrase, then you must enclose the word 'and' within braces:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'transactions {and} finances')>0;

Within Java, {} indicate the beginning and ending of a block. See Chapter 37 for examples of Java
blocks.

| (Vertical Bar)
SEE ALSO BTITLE, HEADSEP, TTITLE, Chapter 6, Chapter 25
FORMAT

text|text

DESCRIPTION When used in a SQL*Plus COLUMN, TTITLE, or BTITLE command, | is the default
HEADSEP character, and is used to denote the splitting of a line onto a second line. (When used in
listings in this Reference, | denotes a break between alternative choices: variable | literal would be
read “variable or literal.” On some machines this shows as a solid vertical bar.) Within text queries,
| signals an OR condition for searches involving two search terms. If either of the search terms is found,
and its search score exceeds the specified threshold value, the text will be returned by the search.
EXAMPLE Here’s how | is used as a HEADSEP character.

TTITLE 'This is the First Line|and This is the Second'

produces this:

This is the First Line
and This is the Second

Here’s how | is used as an OR clause in a text search query:

REM CONTAINS method for CONTEXT indexes:
select Title
from BOOK_REVIEW_CONTEXT
where CONTAINS(Review_Text, 'property | harvests')>0;

REM CATSEARCH method for CTXCAT indexes:
select Title
from BOOK_REVIEW_CTXCAT
where CATSEARCH(Review_Text, 'property | harvests', NULL)>0;

| (Vertical Bar) 951

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:951

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

|| (Concatenation)
SEE ALSO . (Period or Dot [Form 1]), CONCAT, SUBSTR, Chapter 7
FORMAT

expression1 || expression2

DESCRIPTION || concatenates two strings together.
EXAMPLE Use || to display a column of cities, followed by a comma, a space, and the country:

select City||', '||Country from LOCATION;

ABS (Absolute Value)
SEE ALSO NUMBER FUNCTIONS, Chapter 9
FORMAT

ABS(value)

value must be a number, whether a literal number, the name of a number column, a literal character
string containing a valid number, or a character column containing only a valid number.
DESCRIPTION Absolute value is the measure of the magnitude of something, and is always a
positive number.
EXAMPLES

ABS(146) = 146
ABS(-30) = 30
ABS('-27.88') = 27.88

ABSTRACT DATATYPES
Abstract datatypes are datatypes that consist of one or more attributes. Rather than being constrained
to the standard datatypes of NUMBER, DATE, and VARCHAR2, abstract datatypes can consist of multiple
attributes and/or other, previously defined abstract datatypes. Abstract datatypes are also known as user-
defined types (UDTs). See Chapter 33 for examples, and CREATE TYPE for creation syntax.

ACCEPT
SEE ALSO &, &&, DEFINE
FORMAT

ACC[EPT] variable [NUM[BER]|CHAR|DATE|BINARY_FLOAT|BINARY_DOUBLE] [FOR[MAT]
format] [DEF[AULT] default] [PROMPT text | NOPR[OMPT]] [HIDE]

DESCRIPTION ACCEPT takes input from a user’s keyboard and puts it in the named variable
with the specified datatype. If the variable has not been previously DEFINEd, it is created. FORMAT
specifies the input format for the reply (such as A20). DEFAULT sets the default value if a reply is not
given. PROMPT displays the text to the user before accepting the input. NOPROMPT skips a line
and waits for input without displaying any prompt. Using neither PROMPT nor NOPROMPT causes
ACCEPT to invent a prompt asking for the value of the variable. HIDE suppresses the user’s entry,
and is valuable for passwords and the like.
EXAMPLE The following prompts the user with “How hot?” and puts the user’s entry in a number
variable named Temperature:

952 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:952

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ACCEPT Temperature NUMBER PROMPT 'How hot? '

ACCUMULATE
See CONTAINS.

ACOS
SEE ALSO ASIN, ATAN, ATAN2, COS, COSH, EXP, LN, LOG, SIN, SINH, TAN, TANH
FORMAT

ACOS(value)

DESCRIPTION ACOS returns the arc cosine of a value. Input values range from –1 to 1; outputs
are expressed in radians.

ADD_MONTHS
SEE ALSO DATE FUNCTIONS, Chapter 10
FORMAT

ADD_MONTHS(date,integer)

DESCRIPTION ADD_MONTHS adds a number of months to date, and returns the date that is
that many months in the future. date must be a legitimate Oracle date. integer must be an integer; a
noninteger value will be truncated to the next smallest integer. A negative value for integer will return
a date in the past.
EXAMPLE ADD_MONTHS adds 1 month and 0.3 month to April 22, 2001:

select ADD_MONTHS(TO_DATE('22-APR-01'),1),
ADD_MONTHS(TO_DATE('22-APR-01'),.3) from DUAL;

ADD_MONTH ADD_MONTH
--------- ---------
22-MAY-01 22-APR-01

AGGREGATE FUNCTIONS
SEE ALSO Chapter 9
DESCRIPTION An aggregate function computes a single summary value (such as sum or average)
from the individual number values in a group of values. This is an alphabetical list of all current group
functions in the Oracle version of SQL. Each of these is listed elsewhere in this reference under its own
name, with its proper format and use. Aggregate functions are useful in select lists and ORDER BY and
HAVING clauses.
FUNCTION NAME AND USE

AVG gives the average of the values for a group of rows.
COLLECT takes the input column value and creates a nested table of the input type out of the

rows selected.
CORR returns the coefficient of correlation of a set of number pairs.
CORR_* supports nonparametric or rank correlation (CORR_K and CORR_S).
COUNT gives the count of rows for a column, or for a table (with *).
COVAR_POP returns the population covariance of a set of number pairs.

AGGREGATE FUNCTIONS 953

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:953

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

COVAR_SAMP returns the sample covariance of a set of number pairs.
CUME_DIST calculates the cumulative distribution of a value in a group of values.
DENSE_RANK computes the rank of a row in an ordered group of rows.
FIRST operates on a set of values from a set of rows that ranks as the first with respect to a given

sorting specification.
GROUP_ID distinguishes duplicate groups resulting from a GROUP BY specification.
GROUPING distinguishes superaggregate rows from regular grouped rows.
GROUPING_ID returns a number corresponding to the GROUPING bit vector associated with a row.
LAST operates on a set of values from a set of rows that ranks as the last with respect to a given

sorting specification.
MAX gives the maximum of all values for a group of rows.
MEDIAN gives the median value for a group of rows, ignoring NULLs.
MIN gives the minimum of all values for a group of rows.
PERCENT_RANK performs a percent ranking calculation.
PERCENTILE_CONT is a percentile calculation function that assumes a continuous distribution model.
PERCENTILE_DISC is a percentile calculation function that assumes a discrete distribution model.
RANK calculates the rank of a value in a group of values.
REGR functions perform linear regression analysis on a group of values.
STATS_BINOMIAL_TEST tests the difference between a sample proportion and a given proportion.
STATS_CROSSTAB analyzes two nominal values.
STATS_F_TEST tests whether two variables are significantly different.
STATS_KS_TEST tests whether two variables are from the same population.
STATS_MODE returns the value that occurs with the greatest frequency in a group.
STATS_MW_TEST tests two independent samples against a null hypothesis.
STATS_ONE_WAY_ANOVA is a one-way analysis of variance.
STATS_T_TEST_* functions measure the significance of a difference of means.
STATS_WSR_TEST determines whether the differences between samples are significantly different

from zero.
STDDEV gives the standard deviation of all values for a group of rows.
STDDEV_POP computes the population standard deviation and returns the square root of the

population variance.
STDDEV_SAMP computes the cumulative sample standard deviation and returns the square root

of the sample variance.
SUM gives the sum of all values for a group of rows.
VAR_POP returns the population variance of a set of numbers after discarding the NULLs in this set.
VAR_SAMP returns the sample variance of a set of numbers after discarding the NULLs in this set.
VARIANCE gives the variance of all values for a group of rows.

ALIAS
An alias is a temporary name assigned to a table or a column within a SQL statement and is used to refer
to it elsewhere in the same statement (if a table) or in a SQL*Plus command (if a column). You can use
the AS keyword to separate the column definition from its alias. See " (Double Quotation Mark), AS, and
SELECT. When used for a table, the alias is referred to as a correlation name.

ALL
SEE ALSO ANY, BETWEEN, EXISTS, IN, LOGICAL OPERATORS, Chapter 13

954 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:954

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ALTER CLUSTER 955

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:955

FORMAT

operator ALL list

DESCRIPTION != ALL is the equivalent of NOT IN. operator can be any one of =, >, >=, <, <=,
or !=, and list can be a series of literal strings (such as 'Talbot', 'Jones', 'Hild'), a series of literal numbers
(such as 2, 43, 76, 32.06, 444), or a column from a subquery, where each row of the subquery becomes
a member of the list, such as this:

LOCATION.City != ALL (select City from WEATHER)

The list value can be a series of columns in the WHERE clause of the main query, as shown here:

Prospect != ALL (Vendor, Client)

RESTRICTIONS list cannot be a series of columns in a subquery, such as this:

Prospect != ALL (select Vendor, Client from . . .)

Many people find this operator and the ANY operator very difficult to remember, because the logic
for some of their cases is not immediately intuitive. As a result, some form of EXISTS is usually substituted.
The combination of an operator with ALL and a list can be illustrated with the following explanations:

Page = ALL (4,2,7) Page is equal to every item in the list—no number qualifies. A subquery could return
a list where all the items were identical, and a value of Page could be equal to every
one of them, but this would be very rare.

Page > ALL (4,2,7) Page is greater than the greatest item in the list (4,2,7)—anything larger than 7 qualifies.

Page >= ALL (4,2,7) Page is greater than or equal to the greatest item in the list (4,2,7)—anything equal
to or larger than 7 qualifies.

Page < ALL (4,2,7) Page is less than the lowest item in the list (4,2,7)—anything below 2 qualifies.

Page <= ALL (4,2,7) Page is less than or equal to the lowest item in the list (4,2,7)—anything equal to or
lower than 2 qualifies.

Page != ALL (4,2,7) Page is not equal to any item in the list—any number qualifies except 4, 2, and 7.

ALLOCATE (Embedded SQL)
SEE ALSO DECLARE CURSOR, Programmer’s Guide to the Oracle Precompilers
FORMAT

EXEC SQL [AT { db_name | :host_variable }]
ALLOCATE { :cursor_variable | :host_ptr }
[[INDICATOR] :ind_ptr]

DESCRIPTION The ALLOCATE clause allocates a cursor variable that will be referenced in a
PL/SQL block. See the Programmer’s Guide to the Oracle Precompilers for details on ALLOCATE
and related clauses such as the host pointer.

ALTER CLUSTER
SEE ALSO CREATE CLUSTER, CREATE TABLE, STORAGE, Chapter 17

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

956 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:956

FORMAT
alter_cluster::=

physical_attributes_clause::=

allocate_extent_clause::=

deallocate_unused_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

ALLOCATE EXTENT

(

SIZE size_clause

DATAFILE ’ filename ’

INSTANCE integer

)

DEALLOCATE UNUSED
KEEP size_clause

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ALTER DATABASE 957

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:957

size_clause::=

parallel_clause::=

DESCRIPTION Descriptions of the parameters can be found under CREATE TABLE. They have the
same purpose and effect, except that here they are used to alter a cluster. Size is described under CREATE
CLUSTER. In order to alter a cluster, you must either own the cluster or have ALTER ANY CLUSTER system
privilege.

All tables in a cluster use the values for PCTFREE, PCTUSED, INITRANS, TABLESPACE, and STORAGE
set by CREATE CLUSTER. ALTER CLUSTER changes these values for future cluster blocks, but does
not affect those that already exist. ALTER CLUSTER does not allow changing the extent parameters in
STORAGE. The DEALLOCATE UNUSED clause allows the cluster to shrink in size, freeing unused space.
EXAMPLE

alter cluster BOOKandAUTHOR size 1024;

ALTER DATABASE
SEE ALSO ALTER ROLLBACK SEGMENT, CREATE DATABASE, RECOVER, STARTUP, SHUTDOWN,
Chapter 46
FORMAT
alter_database::=

NOPARALLEL

PARALLEL
integer

integer

K

M

G

T

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

958 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:958

startup_clauses::=

recovery_clauses::=

general_recovery::=

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ALTER DATABASE 959

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:959

full_database_recovery::=

partial_database_recovery::=

parallel_clause::=

managed_standby_recovery::=

NOPARALLEL

PARALLEL
integer

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

960 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:960

recover_clause::=

cancel_clause::=

finish_clause::=

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ALTER DATABASE 961

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:961

database_file_clauses::=

create_datafile_clause::=

alter_datafile_clause::=

size_clause::=

DATAFILE
’ filename ’

filenumber

,

ONLINE

OFFLINE
FOR DROP

RESIZE size_clause

autoextend_clause

END BACKUP

integer

K

M

G

T

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

962 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:962

alter_tempfile_clause::=

autoextend_clause::=

maxsize_clause::=

logfile_clauses::=

AUTOEXTEND

OFF

ON
NEXT size_clause maxsize_clause

MAXSIZE
UNLIMITED

size_clause

TEMPFILE
’ filename ’

filenumber

,

RESIZE size_clause

autoextend_clause

DROP
INCLUDING DATAFILES

ONLINE

OFFLINE

ARCHIVELOG
MANUAL

NOARCHIVELOG

NO
FORCE LOGGING

RENAME FILE ’ filename ’

,

TO ’ filename ’

CLEAR
UNARCHIVED

LOGFILE logfile_descriptor

,
UNRECOVERABLE DATAFILE

add_logfile_clauses

drop_logfile_clauses

supplemental_db_logging

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ALTER DATABASE 963

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:963

add_logfile_clauses::=

drop_logfile_clauses::=

supplemental_db_logging::=

supplemental_id_key_clause::=

ADD
STANDBY

LOGFILE

INSTANCE ’ instance_name ’

THREAD integer GROUP integer
redo_logfile_spec

,

MEMBER ’ filename ’
REUSE

,

TO logfile_descriptor

,

DATA (

ALL

PRIMARY KEY

UNIQUE

FOREIGN KEY

,

) COLUMNS

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

964 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:964

logfile_descriptor::=

controlfile_clauses::=

trace_file_clause::=

standby_database_clauses::=

activate_standby_db_clause

maximize_standby_db_clause

register_logfile_clause

commit_switchover_clause

start_standby_clause

stop_standby_clause

parallel_clause

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ALTER DATABASE 965

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:965

activate_standy_db_clause::=

maximize_standby_db_clause::=

register_logfile_clause::=

commit_switchover_clause::=

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

966 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:966

start_standby_clause::=

stop_standby_clause::=

default_settings_clauses::=

set_time_zone_clause::=

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

flashback_mode_clause::=

redo_thread_clauses::=

security_clause::=

DESCRIPTION To alter a database, you must have the ALTER DATABASE system privilege.
database is the database name, and must be eight or fewer characters long.
When a database is first created, it is MOUNTed in EXCLUSIVE mode, meaning no one but its

creator has access to it. To allow multiple instances to access the database, use MOUNT PARALLEL
if you have installed the Oracle Real Application Clusters option.

After mounting a database, you OPEN it. RESETLOGS resets the redo log, cleaning out any redo
entries. You use this option to restore a database after a partial recovery from a media failure. The
NORESETLOGS option leaves everything the same when you OPEN the daabase.

You can recover the database with a RECOVER clause. This command performs media recovery
for a lost database. You can use multiple recovery processes to apply redo entries to datafiles for each
instance. See RECOVER. You can BACKUP a CONTROLFILE to the specified file or to a trace file.

STANDBY databases provide a mechanism for automated failover in the event of a database failure.
See the Oracle Database Administrator’s Guide for details on the creation and management of standby
databases.

RENAME changes the name of an existing database or redo log file. DBAs can also CREATE
DATAFILEs and CREATE TEMPFILEs and manage the increments by which datafiles autoextend. The
AUTOEXTEND clause can be used to dynamically extend datafiles as needed, in increments of NEXT
size, to a maximum of MAXSIZE (or UNLIMITED). You can use the RESIZE clause to increase or decrease
the size of an existing datafile. You can bring a file ONLINE or take it OFFLINE with the DATAFILE
clause. You can CREATE a new DATAFILE to replace an old one to re-create a datafile lost without
backup.

ARCHIVELOG and NOARCHIVELOG define the way redo log files are used. NOARCHIVELOG is
the default, and using it means that redo log files will be reused without saving their contents elsewhere.
This provides instance recovery except from a media failure, such as a disk crash. ARCHIVELOG forces
redo log files to be archived (usually to another disk or a tape), so that you can recover from a media
failure. This mode also supports instance recovery.

ALTER DATABASE 967

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:967

FLASHBACK
ON

OFF

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

968 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:968

ADD LOGFILE adds a redo log file or files to the database. redo_logfile_spec specifies the redo log
file names and sizes. SIZE is the number of bytes set aside for this file. Suffixing this with K multiplies the
value by 1024; using M multiplies it by 1048576. REUSE (without SIZE) means destroy the contents of
any file by this name and give the name to this database. SIZE with REUSE creates the file if it doesn’t
exist, and checks its size if it does. SIZE alone creates the file if it doesn’t exist, but returns an error if it
does exist. The redo log file is assigned to a thread, either explicitly with the THREAD clause or to the
thread assigned to the current instance of Oracle. A GROUP is a collection of redo log files. You can
add a GROUP of redo log files by listing them, and you can name the group with an integer.

ADD LOGFILE MEMBER adds new files to an existing redo log file group, either by specifying the
GROUP integer or by listing all the redo log files in the group.

DROP LOGFILE drops an existing redo log file group. DROP LOGFILE MEMBER drops one or more
members of a redo log file group.

You can RENAME GLOBAL_NAME to change the name of the database. If you specify a domain,
tell Oracle where the database is on the network. You must change references to the database from
remote databases as well.

You can use the RESET COMPATIBILITY option, in conjunction with the COMPATIBLE parameter
in the initialization parameter file, to revert from compatibility with one version of Oracle to a previous
version.

You can ENABLE or DISABLE a THREAD. PUBLIC makes the thread available to any instance not
requesting a specific thread.

As of Oracle Database 10g, you can perform the following actions via ALTER DATABASE:

■ Specify multiple temporary tablespaces (a tablespace group) as the database default temporary
tablespace (using the DEFAULT TEMPORARY TABLESPACE clause)

■ Assign or reassign a tablespace as the database default permanent tablespace (using the DEFAULT
TABLESPACE clause)

■ Reset the target recovery incarnation for the database from the current incarnation to the prior
incarnation

■ Begin backup of all the datafiles in the database

■ Enable block change tracking for incremental backups of the database

■ Update both global and local partitioned indexes as part of table partition maintenance
operations

■ Revert the entire database, or some tablespaces of the database, to an earlier version

■ Control the relationship between primary databases and logical and physical standby databases
(via the clauses related to standby management)

■ Assign or reassign a tablespace as the default permanent tablespace for the database (via the
DEFAULT SETTINGS clause)

■ Add a redo log file or enable a redo log thread by specifying an instance name rather than a
thread number

■ Instruct Oracle Database 10g to compress archivelog files prior to transmission to a remote
site or storage to disk

ALTER DIMENSION
SEE ALSO CREATE DIMENSION, DROP DIMENSION, Chapter 24

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:12:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT
alter_dimension::=

level_clause::=

hierarchy_clause::=

dimension_join_clause::=

ALTER DIMENSION 969

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:969

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

attribute_clause::=

extended_attribute_clause::=

DESCRIPTION ALTER DIMENSION modifies the attributes, hierarchy, and levels of an existing
dimension. See CREATE DIMENSION.
EXAMPLE

alter dimension TIME drop hierarchy MONTH_TO_DATE;

ALTER DISKGROUP
SEE ALSO CREATE DISKGROUP, DROP DISKGROUP, Chapter 46
FORMAT
alter_diskgroup::=

disk_clauses::=

970 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:970

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

diskgroup_clauses::=

add_disk_clause::=

qualified_disk_clause::=

size_clause::=

ALTER DISKGROUP 971

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:971

integer

K

M

G

T

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

drop_disk_clauses::=

resize_disk_clauses::=

undrop_disk_clause::=

rebalance_diskgroup_clause::=

check_diskgroup_clauses::=

972 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:972

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

diskgroup_template_clauses::=

qualified_template_clause::=

diskgroup_directory_clauses::=

diskgroup_alias_clauses::=

ALTER DISKGROUP 973

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:973

ADD

ALTER
TEMPLATE qualified_template_clause

,

DROP TEMPLATE template_name

,

template_name ATTRIBUTES (

MIRROR

UNPROTECTED

FINE

COARSE
)

ADD DIRECTORY ’ filename ’

,

DROP DIRECTORY ’ filename ’

FORCE

NOFORCE

,

RENAME DIRECTORY ’ old_dir_name ’ TO ’ new_dir_name ’

,

ADD ALIAS ’ alias_name ’ FOR ’ filename ’

,

DROP ALIAS ’ alias_name ’

,

RENAME ALIAS ’ old_alias_name ’ TO ’ new_alias_name ’

,

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

drop_diskgroup_file_clause::=

diskgroup_availability::=

DESCRIPTION ALTER DISKGROUP lets you perform a number of operations on a disk group or
on the disks in a disk group.

The DISK_CLAUSES options include adding, dropping, and resizing disks within a group. Within
the DISKGROUP_CLAUSES option, you can rebalance and check disk groups.

The ALTER DISKGROUP command is only valid if you have installed Automated Storage Management
(ASM) and have started an ASM instance.

For example, to drop a disk from an existing disk group:

alter diskgroup DGROUP_01 drop disk DGROUP_01_0001;

ALTER FUNCTION
SEE ALSO CREATE FUNCTION, DROP FUNCTION, Chapter 31
FORMAT
alter_function::=

compiler_parameters_clause::=

974 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:974

MOUNT

DISMOUNT

FORCE

NOFORCE

DROP FILE ’ filename ’

,

ALTER FUNCTION
schema .

function

C0MPILE
DEBUG compiler_parameters_clause REUSE SETTINGS

;

parameter_name = parameter_value

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ALTER INDEX
schema .

index

deallocate_unused_clause

allocate_extent_clause

shrink_clause

parallel_clause

physical_attributes_clause

logging_clause

rebuild_clause

PARAMETERS (’ ODCI_parameters ’)

ENABLE

DISABLE

UNUSABLE

RENAME TO new_name

COALESCE

MONITORING

NOMONITORING
USAGE

UPDATE BLOCK REFERENCES

alter_index_partitioning

;

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT
deallocate_unused_clause::=

allocate_extent_clause::=

size_clause::=

shrink_clause::=

parallel_clause::=

physical_attributes_clause::=

976 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:976

DEALLOCATE UNUSED
KEEP size_clause

ALLOCATE EXTENT

(

SIZE size_clause

DATAFILE ’ filename ’

INSTANCE integer

)

integer

K

M

G

T

SHRINK SPACE
COMPACT CASCADE

NOPARALLEL

PARALLEL
integer

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

logging_clause::=

rebuild_clause::=

key_compression::=

ALTER INDEX 977

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:977

COMPRESS
integer

NOCOMPRESS

REBUILD

PARTITION partition

SUBPARTITION subpartition

REVERSE

NOREVERSE

parallel_clause

TABLESPACE tablespace

PARAMETERS (’ ODCI_parameters ’)

ONLINE

COMPUTE STATISTICS

physical_attributes_clause

key_compression

logging_clause

LOGGING

NOLOGGING

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

alter_index_partitioning::=

modify_index_default_attrs::=

add_hash_index_partition::=

coalesce_index_partition::=

978 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:978

MODIFY DEFAULT ATTRIBUTES
FOR PARTITION partition

physical_attributes_clause

TABLESPACE
tablespace

DEFAULT

logging_clause

ADD PARTITION
partition_name TABLESPACE tablespace_name parallel_clause

modify_index_default_attrs

add_hash_index_partition

modify_index_partition

rename_index_partition

drop_index_partition

split_index_partition

coalesce_index_partition

modify_index_subpartition

COALESCE PARTITION
parallel_clause

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

modify_index_partition::=

rename_index_partition::=

drop_index_partition::=

split_index_partition::=

index_partition_description::=

ALTER INDEX 979

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:979

RENAME
PARTITION partition

SUBPARTITION subpartition
TO new_name

DROP PARTITION partition_name

MODIFY PARTITION partition

deallocate_unused_clause

allocate_extent_clause

physical_attributes_clause

logging_clause

key_compression

PARAMETERS (’ ODCI_parameters ’)

COALESCE

UPDATE BLOCK REFERENCES

UNUSABLE

SPLIT PARTITION partition_name_old AT (value

,

)

INTO (index_partition_description , index_partition_description) parallel_clause

PARTITION
partition

segment_attributes_clause

key_compression

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

segment_attributes_clause::=

modify_index_subpartition::=

DESCRIPTION user is the user who owns the index you wish to alter (if you are not that user, you
must have DBA privileges). index is the name of an existing index. See CREATE TABLE for a description
of INITRANS. The default for INITRANS for indexes is 2. STORAGE contains subclauses that are described
under STORAGE. You must have INDEX privilege on the table in order to create an index, and you must
also either own the index or have the ALTER ANY INDEX system privilege.

You can use the REBUILD clause of the ALTER INDEX command to change the storage characteristics
of an existing index. REBUILD uses the existing index as the basis for the new index. All index storage
commands are supported, such as STORAGE (for extent allocation), TABLESPACE (to move the index
to a new tablespace), and INITRANS (to change the initial number of entries).

You can modify, rename, drop, split, or rebuild index partitions.
COMPRESS enables key compression, eliminating repeated occurrence of key column values for

nonunique indexes. integer specifies the prefix length (number of prefix columns to compress). By default,
indexes are not compressed. You cannot compress a bitmapped index.

COMPUTE STATISTICS generates statistics for the cost based optimizer at the time the index is rebuilt.

ALTER INDEXTYPE
SEE ALSO CREATE INDEXTYPE, DROP INDEXTYPE
FORMAT
alter_indextype::=

980 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:980

physical_attributes_clause

TABLESPACE tablespace

logging_clause

MODIFY SUBPARTITION subpartition

UNUSABLE

allocate_extent_clause

deallocate_unused_clause

ALTER INDEXTYPE
schema .

indextype

ADD

DROP

schema .
operator (parameter_types)

,

using_type_clause

COMPILE

;

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

using_type_clause::=

array_DML_clause::=

DESCRIPTION Use ALTER INDEXTYPE to add or drop an operator of the indextype, to modify
the implementation type, or to change the properties of the indextype.

ALTER JAVA
SEE ALSO CREATE JAVA, DROP JAVA, Chapter 37
FORMAT
alter_java::=

invoker_rights_clause::=

DESCRIPTION ALTER JAVA recompiles a Java source schema object. You can also use this
command to change the authorization enforced (definer or current user). To alter Java source schema
objects, you must either own the source or class or have the ALTER ANY PROCEDURE system privilege.

ALTER JAVA 981

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:981

USING
schema .

implementation_type
array_DML_clause

WITH

WITHOUT
ARRAY DML

(
schema .

type
,

schema .
varray_type

)

,

ALTER JAVA
SOURCE

CLASS

schema .
object_name

RESOLVER ((match_string
, schema_name

–
)) COMPILE

RESOLVE

invoker_rights_clause

;

AUTHID
CURRENT_USER

DEFINER

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ALTER MATERIALIZED VIEW
SEE ALSO CREATE MATERIALIZED VIEW, DROP MATERIALIZED VIEW, MATERIALIZED VIEW,
Chapter 24
FORMAT
alter_materialized_view::=

982 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:982

ALTER MATERIALIZED VIEW
schema .

materialized_view

physical_attributes_clause

table_compression

LOB_storage_clause

,

modify_LOB_storage_clause

,

alter_table_partitioning

parallel_clause

logging_clause

allocate_extent_clause

shrink_clause

CACHE

NOCACHE alter_iot_clauses

USING INDEX physical_attributes_clause

MODIFY scoped_table_ref_constraint

alter_mv_refresh

ENABLE

DISABLE
QUERY REWRITE

COMPILE

CONSIDER FRESH
;

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

physical_attributes_clause::=

table_compression::=

LOB_storage_clause::=

LOB_parameters::=

ALTER MATERIALIZED VIEW 983

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:983

LOB

(LOB_item

,

) STORE AS (LOB_parameters)

(LOB_item) STORE AS

LOB_segname (LOB_parameters)

LOB_segname

(LOB_parameters)

COMPRESS

NOCOMPRESS

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

TABLESPACE tablespace

ENABLE

DISABLE
STORAGE IN ROW

storage_clause

CHUNK integer

PCTVERSION integer

RETENTION

FREEPOOLS integer

CACHE

NOCACHE

CACHE READS

logging_clause

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

modify_LOB_storage_clause::=

modify_LOB_parameters::=

parallel_clause::=

logging_clause::=

allocate_extent_clause::=

deallocate_unused_clause::=

984 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:984

storage_clause

PCTVERSION integer

RETENTION

FREEPOOLS integer

REBUILD FREEPOOLS

CACHE

NOCACHE

CACHE READS

logging_clause

allocate_extent_clause

deallocate_unused_clause

NOPARALLEL

PARALLEL
integer

MODIFY LOB (LOB_item) (modify_LOB_parameters)

LOGGING

NOLOGGING

ALLOCATE EXTENT

(

SIZE size_clause

DATAFILE ’ filename ’

INSTANCE integer

)

DEALLOCATE UNUSED
KEEP size_clause

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

size_clause::=

shrink_clause::=

alter_iot_clauses::=

index_org_table_clause::=

index_org_overflow_clause::=

alter_overflow_clause::=

ALTER MATERIALIZED VIEW 985

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:985

integer

K

M

G

T

SHRINK SPACE
COMPACT CASCADE

index_org_table_clause

alter_overflow_clause

alter_mapping_table_clauses

COALESCE

mapping_table_clause

PCTTHRESHOLD integer

key_compression index_org_overflow_clause

INCLUDING column_name
OVERFLOW

segment_attributes_clause

OVERFLOW
allocate_extent_clause

deallocate_unused_clause

add_overflow_clause

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

add_overflow_clause::=

scoped_table_ref_constraint::=

alter_mv_refresh::=

DESCRIPTION The keyword SNAPSHOT is supported as a replacement for MATERIALIZED VIEW
for backward compatibility.

ALTER MATERIALIZED VIEW lets you change the storage characteristics or refresh mode and times
of a materialized view. You can also enable or disable query rewrite for the materialized view. To alter

986 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:986

SCOPE FOR (
ref_column

ref_attribute
) IS

schema . scope_table_name

c_alias

,

REFRESH

FAST

COMPLETE

FORCE

ON
DEMAND

COMMIT

START WITH

NEXT
date

WITH PRIMARY KEY

USING
DEFAULT MASTER ROLLBACK SEGMENT

MASTER ROLLBACK SEGMENT rollback_segment

USING
ENFORCED

TRUSTED
CONSTRAINTS

ADD OVERFLOW
segment_attributes_clause

(PARTITION
segment_attributes_clause

,

)

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

a materialized view, you must own the materialized view or have ALTER ANY SNAPSHOT or ALTER
ANY MATERIALIZED VIEW system privilege. See CREATE MATERIALIZED VIEW and Chapter 24 for
details.
EXAMPLE

alter materialized view MONTHLY_SALES
enable query rewrite;

ALTER MATERIALIZED VIEW LOG
SEE ALSO CREATE MATERIALIZED VIEW, CREATE MATERIALIZED VIEW LOG, DROP
MATERIALIZED VIEW LOG, Chapter 24
FORMAT
alter_materialized_view_log::=

new_values_clause::=

ALTER MATERIALIZED VIEW LOG 987

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:987

ALTER MATERIALIZED VIEW LOG
FORCE

ON
schema .

table

physical_attributes_clause

alter_table_partitioning

parallel_clause

logging_clause

allocate_extent_clause

shrink_clause

CACHE

NOCACHE

ADD

OBJECT ID

PRIMARY KEY

ROWID

SEQUENCE

(column

,

)

(column

,

)

,

new_values_clause

;

INCLUDING

EXCLUDING
NEW VALUES

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

physical_attributes_clause::=

allocate_extent_clause::=

size_clause::=

shrink_clause::=

parallel_clause::=

DESCRIPTION The keyword SNAPSHOT is supported as a replacement for MATERIALIZED
VIEW for backward compatibility.

ALTER MATERIALIZED VIEW LOG lets you change the storage characteristics of a materialized
view log. To alter the log, you must either have the ALTER privilege on the log table or have the ALTER
ANY TABLE system privilege. See CREATE MATERIALIZED VIEW LOG and Chapter 24.

988 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:988

ALLOCATE EXTENT

(

SIZE size_clause

DATAFILE ’ filename ’

INSTANCE integer

)

integer

K

M

G

T

SHRINK SPACE
COMPACT CASCADE

NOPARALLEL

PARALLEL
integer

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

As of Oracle Database 10g, you can use the FORCE clause to specify the addition of attributes that
the materialized view log already has, without causing Oracle to return an error. Also, you can use the
new SEQUENCE clause to instruct Oracle to record a sequence value in the materialized view log.

ALTER OPERATOR
SEE ALSO CREATE OPERATOR, DROP OPERATOR
FORMAT
alter_operator::=

add_binding_clause::=

implementation_clause::=

context_clause::=

using_function_clause::=

ALTER OPERATOR 989

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:989

ALTER OPERATOR
schema .

operator

add binding_clause

drop_binding_clause

COMPILE

;

ADD BINDING (parameter_type

,

) RETURN (return_type)

implementation_clause
using_function_clause

ANCILLARY TO primary_operator (parameter_type

,

)

,

context_clause

WITH INDEX CONTEXT , SCAN CONTEXT implementation_type
COMPUTE ANCILLARY DATA

WITH COLUMN CONTEXT

USING
schema .

package .

type .
function_name

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

drop_binding_clause::=

DESCRIPTION You can use ALTER OPERATOR to add bindings to, drop bindings from, or
compile an existing operator.

ALTER OUTLINE
SEE ALSO CREATE OUTLINE, DROP OUTLINE, Chapter 43
FORMAT
alter_outline::=

DESCRIPTION You can use ALTER OUTLINE to rename a stored outline or to assign it to a different
category. Stored outlines maintain sets of hints for previously executed queries. See Chapter 43.

ALTER PACKAGE
SEE ALSO CREATE PACKAGE, DROP PACKAGE, Chapter 31
FORMAT
alter_package::=

990 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:990

ALTER OUTLINE

PUBLIC

PRIVATE
outline

REBUILD

RENAME TO new_outline_name

CHANGE CATEGORY TO new_category_name

ENABLE

DISABLE

;

ALTER PACKAGE
schema .

package

COMPILE
DEBUG

PACKAGE

SPECIFICATION

BODY

compiler_parameters_clause REUSE SETTINGS
;

DROP BINDING (parameter_type

,

)
FORCE

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

compiler_parameters_clause::=

DESCRIPTION ALTER PACKAGE recompiles a package specification and/or body. If you
recompile the specification using PACKAGE, you recompile both the specification and the body.
Recompiling the specification will cause referencing procedures to be recompiled. You can recompile
the BODY without affecting the specification. To alter a package, you must either be the owner of the
package or have ALTER ANY PROCEDURE system privilege.

ALTER PROCEDURE
SEE ALSO CREATE PROCEDURE, DROP PROCEDURE, Chapter 31
FORMAT
alter_procedure::=

compiler_parameters_clause::=

DESCRIPTION ALTER PROCEDURE recompiles a PL/SQL procedure. You can avoid run-time
overhead and error messages by explicitly compiling a procedure in advance. To alter a procedure,
you must either own the procedure or have ALTER ANY PROCEDURE system privilege.

ALTER PROFILE
SEE ALSO CREATE PROFILE, DROP PROFILE, Chapter 18
FORMAT
alter_profile::=

ALTER PROFILE 991

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:991

parameter_name = parameter_value

ALTER PROCEDURE
schema .

procedure

COMPILE
DEBUG compiler_parameters_clause REUSE SETTINGS

;

parameter_name = parameter_value

ALTER PROFILE profile LIMIT
resource_parameters

password_parameters
;

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

resource_parameters::=

password_parameters::=

DESCRIPTION ALTER PROFILE lets you modify a particular profile setting. See CREATE PROFILE
for details.

992 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:992

FAILED_LOGIN_ATTEMPTS

PASSWORD_LIFE_TIME

PASSWORD_REUSE_TIME

PASSWORD_REUSE_MAX

PASSWORD_LOCK_TIME

PASSWORD_GRACE_TIME

expr

UNLIMITED

DEFAULT

PASSWORD_VERIFY_FUNCTION

function

NULL

DEFAULT

SESSIONS_PER_USER

CPU_PER_SESSION

CPU_PER_CALL

CONNECT_TIME

IDLE_TIME

LOGICAL_READS_PER_SESSION

LOGICAL_READS_PER_CALL

COMPOSITE_LIMIT

integer

UNLIMITED

DEFAULT

PRIVATE_SGA

integer

K

M

UNLIMITED

DEFAULT

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ALTER RESOURCE COST
SEE ALSO CREATE PROFILE
FORMAT
alter_resource_cost::=

DESCRIPTION The resource cost formula calculates the total cost of resources used in an Oracle
session. ALTER RESOURCE COST lets you assign a weight to several resources. CPU_PER_SESSION is
the amount of CPU used in a session in hundredths of a second. CONNECT_TIME is the elapsed time
of the session in minutes. LOGICAL_READS_PER_SESSION is the number of data blocks read from
both memory and disk during a session. PRIVATE_SGA is the number of bytes in a private System
Global Area (SGA), which is only relevant if you are using the shared server architecture. By assigning
weights, you change the formula used to calculate total resource cost.

ALTER ROLE
SEE ALSO CREATE ROLE, DROP ROLE, Chapter 18
FORMAT
alter_role::=

DESCRIPTION ALTER ROLE lets you modify a role.

ALTER ROLLBACK SEGMENT
SEE ALSO CREATE DATABASE, CREATE ROLLBACK SEGMENT, CREATE TABLESPACE, DROP
ROLLBACK SEGMENT, STORAGE, Chapter 46

ALTER ROLLBACK SEGMENT 993

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:993

ALTER RESOURCE COST

CPU_PER_SESSION

CONNECT_TIME

LOGICAL_READS_PER_SESSION

PRIVATE_SGA

integer ;

ALTER ROLE role

NOT IDENTIFIED

IDENTIFIED

BY password

USING
schema .

package

EXTERNALLY

GLOBALLY

;

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT
alter_rollback_segment::=

DESCRIPTION rollback_segment is a name assigned to this rollback segment. STORAGE contains
subclauses that are described under STORAGE. The INITIAL and MINEXTENTS options are not
applicable. A rollback segment can be taken ONLINE or OFFLINE while the database is open. You
can SHRINK it to a specified size (the default is its OPTIMAL size).

You should use System-Managed Undo so that the database will automatically create and drop
rollback segments as needed.

ALTER SEQUENCE
SEE ALSO AUDIT, CREATE SEQUENCE, DROP SEQUENCE, GRANT, REVOKE, NEXTVAL and
CURRVAL under PSEUDO-COLUMNS, Chapter 17
FORMAT
alter_sequence::=

994 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:994

ALTER ROLLBACK SEGMENT rollback_segment

ONLINE

OFFLINE

storage_clause

SHRINK
TO integer

K

M

;

ALTER SEQUENCE
schema .

sequence

INCREMENT BY integer

MAXVALUE integer

NOMAXVALUE

MINVALUE integer

NOMINVALUE

CYCLE

NOCYCLE

CACHE integer

NOCACHE

ORDER

NOORDER

;

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION All of these options affect the future use of an existing sequence with the name
sequence. (Note that start with is not available. To change the value with which a sequence starts,
you must DROP the sequence and CREATE it again.)

A new MAXVALUE cannot be specified that is lower than the existing CURRVAL on an ascending
sequence (one that has a positive number as its INCREMENT BY). A similar rule applies for MINVALUE
on a descending sequence (which has a negative INCREMENT BY).

To alter a sequence, you must either have the ALTER privilege on the sequence or have the ALTER
ANY SEQUENCE system privilege.

All other features of ALTER SEQUENCE work as they do in CREATE SEQUENCE, except that they
apply to an existing sequence. See CREATE SEQUENCE for details.

ALTER SESSION
SEE ALSO ALTER SYSTEM
FORMAT
alter_session::=

alter_session_set_clause::=

ALTER SESSION 995

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:995

ALTER SESSION

ADVISE

COMMIT

ROLLBACK

NOTHING

CLOSE DATABASE LINK dblink

ENABLE

DISABLE
COMMIT IN PROCEDURE

ENABLE

DISABLE
GUARD

ENABLE

DISABLE

FORCE

PARALLEL

DML

DDL

QUERY

PARALLEL integer

ENABLE RESUMABLE
TIMEOUT integer NAME string

DISABLE RESUMABLE

alter_session_set_clause

;

SET parameter_name = parameter_value

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION The ALTER SESSION command alters settings in effect for the current user session.
To generate performance statistics for SQL statement processing by Oracle, set SQL_TRACE to TRUE. To
turn them off, set it to FALSE. The initialization parameter SQL_TRACE sets the initial value for this trace.

ADVISE allows you to send transaction handling advice to remote databases involved in distributed
transactions. You can CLOSE a DATABASE LINK to eliminate the session’s link to a remote database.

You can specify whether procedures can COMMIT or not, the degree to which DML operations
are parallelized, and whether resumable operations are enabled. If you enable parallel DML or DDL
for your session, you still must specify the PARALLEL hint for the operations to be executed in parallel.

To enable or disable resumable space allocation, you must have the RESUMABLE system privilege.

ALTER SYSTEM
SEE ALSO ALTER SESSION, ARCHIVE_LOG, CREATE PROFILE
FORMAT
alter_system::=

996 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:996

ALTER SYSTEM

archive_log_clause

checkpoint_clause

check_datafiles_clause

DUMP ACTIVE SESSION HISTORY
MINUTES integer

distributed_recov_clauses

restricted_session_clauses

FLUSH
SHARED_POOL

BUFFER_CACHE

end_session_clauses

SWITCH LOGFILE

SUSPEND

RESUME

quiesce_clauses

shutdown_dispatcher_clause

REGISTER

SET alter_system_set_clause

RESET alter_system_reset_clause

;

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

archive_log_clause::=

checkpoint_clause::=

check_datafiles_clause::=

distributed_recov_clauses::=

ALTER SYSTEM 997

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:997

CHECKPOINT

GLOBAL

LOCAL

CHECK DATAFILES

GLOBAL

LOCAL

ENABLE

DISABLE
DISTRIBUTED RECOVERY

ARCHIVE LOG

INSTANCE ’ instance_name ’

THREAD integer

SEQUENCE integer

CHANGE integer

CURRENT
NOSWITCH

GROUP integer

LOGFILE ’ filename ’
USING BACKUP CONTROLFILE

NEXT

ALL

START

TO ’ location ’

STOP

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

restricted_session_clauses::=

end_session_clauses::=

quiesce_clauses::=

shutdown_dispatcher_clause::=

alter_system_set_clause::=

alter_system_reset_clause::=

998 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:998

DISCONNECT SESSION ’ integer1 , integer2 ’
POST_TRANSACTION

KILL SESSION ’ integer1 , integer2 ’

IMMEDIATE

QUIESCE RESTRICTED

UNQUIESCE

ENABLE

DISABLE
RESTRICTED SESSION

SHUTDOWN
IMMEDIATE

dispatcher_name

parameter_name = parameter_value

,
COMMENT ’ text ’ DEFERRED

SCOPE =

MEMORY

SPFILE

BOTH
SID =

’ sid ’

*

parameter_name

SCOPE =

MEMORY

SPFILE

BOTH
SID = ’ sid ’

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION ALTER SYSTEM lets you configure your Oracle instance in many ways. Via the
SET options, you can change many of the initialization parameter values while the database is running.
If you are using a system parameter file, the changes are saved and will be in effect the next time the
database is started. If you are using an initialization parameter file (such as init.ora), you need to modify
that file so the change is in effect during subsequent database startups.

You can also use the ALTER SYSTEM command to SWITCH LOGFILE, forcing Oracle to change
redo log file groups.

CHECKPOINT performs a checkpoint for (GLOBAL) all instances or (LOCAL) your instance of Oracle.
CHECK DATAFILES verifies that every instance (GLOBAL) or your instance (LOCAL) of Oracle can access
all online datafiles.

ENABLE or DISABLE RESTRICTED SESSION turns on or off a restricted session, accessible only to
users with that system privilege.

ENABLE or DISABLE DISTRIBUTED RECOVERY turns this option on or off, respectively.
FLUSH SHARED_POOL clears all data from the SGA shared pool.
FLUSH BUFFER_CACHE, available as of Oracle Database 10g, clears the buffer cache of the SGA.
SUSPEND suspends database activity; RESUME re-enables the database.
QUIESCE RESTRICTED places the database into a consistent state during which only SYS and SYSTEM,

connected as SYSDBA, can perform operations. UNQUIESCE returns the database to its normal mode.
ARCHIVE LOG manually archives the redo log files or enables automatic archiving.
KILL SESSION ends a session with both the SID column and the SERIAL# column of the V$SESSION

table identifying the session. DISCONNECT SESSION, unlike KILL SESSION, gives you the option of
forcing the session’s outstanding transactions to be posted prior to the termination of the session.

ALTER TABLE
SEE ALSO CREATE TABLE, DISABLE, DROP, ENABLE, Chapters 17 and 46
FORMAT
alter_table::=

ALTER TABLE 999

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:999

ALTER TABLE
schema .

table

alter_table_properties

column_clauses

constraint_clauses

alter_table_partitioning

alter_external_table_clauses

move_table_clause

enable_disable_clause

ENABLE

DISABLE

TABLE LOCK

ALL TRIGGERS
;

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

alter_table_properties::=

physical_attributes_clause::=

logging_clause::=

table_compression::=

1000 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1000

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

LOGGING

NOLOGGING

COMPRESS

NOCOMPRESS

physical_attributes_clause

logging_clause

table_compression

supplemental_table_logging

allocate_extent_clause

deallocate_unused_clause

shrink_clause

CACHE

NOCACHE

upgrade_table_clause

records_per_block_clause

parallel_clause

row_movement_clause

RENAME TO new_table_name

alter_iot_clauses

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

supplemental_table_logging::=

supplemental_log_grp_clause::=

supplemental_id_key_clause::=

allocate_extent_clause::=

deallocate_unused_clause::=

ALTER TABLE 1001

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1001

ADD SUPPLEMENTAL LOG
supplemental_log_grp_clause

supplemental_id_key_clause

,

DROP SUPPLEMENTAL LOG
supplemental_id_key_clause

GROUP log_group

,

GROUP log_group (column
NO LOG

,

)
ALWAYS

DATA (

ALL

PRIMARY KEY

UNIQUE

FOREIGN KEY

,

) COLUMNS

ALLOCATE EXTENT

(

SIZE size_clause

DATAFILE ’ filename ’

INSTANCE integer

)

DEALLOCATE UNUSED
KEEP size_clause

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

size_clause::=

shrink_clause::=

upgrade_table_clause::=

records_per_block_clause::=

parallel_clause::=

row_movement_clause::=

alter_iot_clauses::=

1002 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1002

SHRINK SPACE
COMPACT CASCADE

UPGRADE

NOT
INCLUDING DATA column_properties

integer

K

M

G

T

MINIMIZE

NOMINIMIZE
RECORDS_PER_BLOCK

NOPARALLEL

PARALLEL
integer

ENABLE

DISABLE
ROW MOVEMENT

index_org_table_clause

alter_overflow_clause

alter_mapping_table_clauses

COALESCE

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

index_org_table_clause::=

mapping_table_clauses::=

key_compression::=

index_org_overflow_clause::=

segment_attributes_clause::=

alter_overflow_clause::=

ALTER TABLE 1003

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1003

mapping_table_clause

PCTTHRESHOLD integer

key_compression index_org_overflow_clause

MAPPING TABLE

NOMAPPING

COMPRESS
integer

NOCOMPRESS

INCLUDING column_name
OVERFLOW

segment_attributes_clause

physical_attributes_clause

TABLESPACE tablespace

logging_clause

OVERFLOW
allocate_extent_clause

deallocate_unused_clause

add_overflow_clause

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

add_overflow_clause::=

alter_mapping_table_clauses::=

column_clauses::=

add_column_clause::=

1004 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1004

MAPPING TABLE
allocate_extent_clause

deallocate_unused_clause

add_column_clauses

modify_column_clauses

drop_column_clause

rename_column_clause

modify_collection_retrieval

modify_LOB_storage_clause

alter_varray_col_properties

ADD OVERFLOW
segment_attributes_clause

(PARTITION
segment_attributes_clause

,

)

ADD (column datatype
DEFAULT expr

inline_constraint

inline_ref_constraint

,

)

column_properties

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

modify_column_clauses::=

modify_col_properties::=

modify_col_substitutable::=

drop_column_clause::=

rename_column_clause::=

modify_collection_retrieval::=

ALTER TABLE 1005

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1005

(column
datatype DEFAULT expr inline_constraint LOB_storage_clause

,

)

MODIFY
modify_col_properties

modify_col_substitutable

COLUMN column
NOT

SUBSTITUTABLE AT ALL LEVELS
FORCE

SET UNUSED

COLUMN column

(column

,

)

CASCADE CONSTRAINTS

INVALIDATE

DROP

COLUMN column

(column

,

)

CASCADE CONSTRAINTS

INVALIDATE CHECKPOINT integer

DROP
UNUSED COLUMNS

COLUMNS CONTINUE

CHECKPOINT integer

RENAME COLUMN old_name TO new_name

MODIFY NESTED TABLE collection_item RETURN AS
LOCATOR

VALUE

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

constraint_clauses::=

drop_contraint_clause::=

column_properties::=

object_type_col_properties::=

1006 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1006

DROP

PRIMARY KEY

UNIQUE (column

,

)

CASCADE

KEEP

DROP
INDEX

CONSTRAINT constraint
CASCADE

object_type_col_properties

nested_table_col_properties

varray_col_properties

LOB_storage_clause

(LOB_partition_storage

,

)

XMLType_column_properties

ADD
out_of_line_constraint

out_of_line_ref_constraint

MODIFY

CONSTRAINT constraint

PRIMARY KEY

UNIQUE (column

,

)

constraint_state

RENAME CONSTRAINT old_name TO new_name

drop_constraint_clause

COLUMN column substitutable_column_clause

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

substitutable_column_clause::=

nested_table_col_properties::=

object_properties::=

supplemental_logging_props::=

ALTER TABLE 1007

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1007

NESTED TABLE
nested_item

COLUMN_VALUE

substitutable_column_clause
STORE AS storage_table

(

(object_properties)

physical_properties

column_properties

)
RETURN AS

LOCATOR

VALUE

column

attribute

DEFAULT expr

inline_constraint

inline_ref_constraint

out_of_line_constraint

out_of_line_ref_constraint

supplemental_logging_props

supplemental_log_grp_clause

supplemental_id_key_clause

ELEMENT
IS OF

TYPE
(ONLY type)

NOT
SUBSTITUTABLE AT ALL LEVELS

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

physical_properties::=

varray_col_properties::=

LOB_storage_clause::=

1008 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1008

VARRAY varray_item

substitutable_column_clause
STORE AS LOB

LOB_segname
(LOB_parameters)

LOB_segname

substitutable_column_clause

LOB

(LOB_item

,

) STORE AS (LOB_parameters)

(LOB_item) STORE AS

LOB_segname (LOB_parameters)

LOB_segname

(LOB_parameters)

segment_attributes_clause
table_compression

ORGANIZATION

HEAP
segment_attributes_clause table_compression

INDEX
segment_attributes_clause

index_org_table_clause

EXTERNAL external_table_clause

CLUSTER cluster (column

,

)

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

LOB_parameters::=

modify_LOB_storage_clause::=

modify_LOB_parameters::=

alter_varray_col_properties::=

ALTER TABLE 1009

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1009

MODIFY LOB (LOB_item) (modify_LOB_parameters)

storage_clause

PCTVERSION integer

RETENTION

FREEPOOLS integer

REBUILD FREEPOOLS

CACHE

NOCACHE

CACHE READS

logging_clause

allocate_extent_clause

deallocate_unused_clause

MODIFY VARRAY varray_item (modify_LOB_parameters)

TABLESPACE tablespace

ENABLE

DISABLE
STORAGE IN ROW

storage_clause

CHUNK integer

PCTVERSION integer

RETENTION

FREEPOOLS integer

CACHE

NOCACHE

CACHE READS

logging_clause

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

LOB_partition_storage::=

XMLType_column_properties::=

XMLType_storage::=

XMLSchema_spec::=

alter_external_table_clauses::=

1010 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1010

XMLTYPE
COLUMN

column
XMLType_storage XMLSchema_spec

PARTITION partition
LOB_storage_clause

varray_col_properties

(SUBPARTITION subpartition
LOB_storage_clause

varray_col_properties
)

STORE AS

OBJECT RELATIONAL

CLOB

LOB_segname
(LOB_parameters)

LOB_parameters

XMLSCHEMA XMLSchema_URL
ELEMENT

element

XMLSchema_URL # element

add_column_clause

modify_column_clauses

drop_column_clause

parallel_clause

external_data_properties

REJECT LIMIT
integer

UNLIMITED

PROJECT COLUMN
ALL

REFERENCED

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

external_data_properties::=

alter_table_partitioning::=

ALTER TABLE 1011

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1011

DEFAULT DIRECTORY directory

ACCESS PARAMETERS
(opaque_format_spec)

USING CLOB subquery

LOCATION (
directory :

’ location_specifier ’

,

)

modify_table_default_attrs

set_subpartition_template

modify_table_partition

modify_table_subpartition

move_table_partition

move_table_subpartition

add_table_partition

coalesce_table_partition

drop_table_partition

drop_table_subpartition

rename_partition_subpart

truncate_partition_subpart

split_table_partition

split_table_subpartition

merge_table_partitions

merge_table_subpartitions

exchange_partition_subpart

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

modify_table_default_attrs::=

set_subpartition_template::=

modify_table_partition::=

1012 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1012

modify_range_partition

modify_hash_partition

modify_list_partition

SET SUBPARTITION TEMPLATE

(SUBPARTITION subpartition
list_values_clause partitioning_storage_clause

,

)

hash_subpartition_quantity

MODIFY DEFAULT ATTRIBUTES
FOR PARTITION partition

segment_attributes_clause table_compression

PCTTHRESHOLD integer key_compression alter_overflow_clause

LOB (LOB_item)

VARRAY varray
(LOB_parameters)

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

modify_range_partition::=

modify_hash_partition::=

modify_list_partition::=

ALTER TABLE 1013

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1013

MODIFY PARTITION partition

partition_attributes

ADD

DROP
VALUES (partition_value

,

)

REBUILD
UNUSABLE LOCAL INDEXES

MODIFY PARTITION partition

partition_attributes

alter_mapping_table_clause

REBUILD
UNUSABLE LOCAL INDEXES

MODIFY PARTITION partition

partition_attributes

add_hash_subpartition

add_list_subpartition

COALESCE SUBPARTITION
update_index_clauses parallel_clause

alter_mapping_table_clause

REBUILD
UNUSABLE LOCAL INDEXES

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

modify_table_subpartition::=

move_table_partition::=

move_table_subpartition::=

add_table_partition::=

add_range_partition_clause::=

add_harsh_partition_clause::=

add_list_partition_clause::=

1014 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1014

MOVE subpartition_spec
update_index_clauses parallel_clause

MOVE PARTITION partition
MAPPING TABLE table_partition_description

update_index_clauses parallel_clause

add_range_partition_clause

add_hash_partition_clause

add_list_partition_clause

ADD PARTITION
partition

range_values_clause
table_partition_description update_index_clauses

ADD PARTITION
partition

partitioning_storage_clause
update_index_clauses parallel_clause

ADD PARTITION
partition

list_values_clause
table_partition_description update_index_clauses

MODIFY SUBPARTITION subpartition
modify_hash_subpartition

modify_list_subpartition

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

coalesce_table_partition::=

drop_table_partition::=

drop_table_subpartition::=

rename_partition_subpart::=

truncate_partition_subpart::=

split_table_partition::=

ALTER TABLE 1015

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1015

COALESCE PARTITION
update_index_clauses parallel_clause

DROP PARTITION partition
update_index_clauses

parallel_clause

DROP SUBPARTITION subpartition
update_index_clauses

parallel_clause

RENAME
PARTITION

SUBPARTITION
current_name TO new_name

TRUNCATE
PARTITION partition

SUBPARTITION subpartition

DROP

REUSE
STORAGE

update_index_clauses
parallel_clause

SPLIT PARTITION current_partition
AT

VALUES
(value

,

)

INTO (partition_spec , partition_spec)

update_index_clauses parallel_clause

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

split_table_subpartition::=

merge_table_partitions::=

merge_table_subpartitions::=

exchange_partition_subpart::=

exceptions_clause::=

1016 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1016

SPLIT SUBPARTITION subpartition VALUES (
value

NULL

,

)

INTO (subpartition_spec , subpartition_spec)

update_index_clauses parallel_clause

MERGE PARTITIONS partition_1 , partition_2

INTO partition_spec update_index_clauses parallel_clause

MERGE SUBPARTITIONS subpart_1 , subpart_2
INTO subpartition_spec

update_index_clauses parallel_clause

EXCHANGE
PARTITION partition

SUBPARTITION subpartition
WITH TABLE table

INCLUDING

EXCLUDING
INDEXES

WITH

WITHOUT
VALIDATION

exceptions_clause update_index_clauses
parallel_clause

EXCEPTIONS INTO
schema .

table

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

list_values_clause::=

range_values_clause::=

partitioning_storage_clause::=

partition_attributes::=

ALTER TABLE 1017

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1017

VALUES (

value

NULL

,

DEFAULT

)

VALUES LESS THAN (
value

MAXVALUE

,

)

TABLESPACE tablespace

OVERFLOW
TABLESPACE tablespace

LOB (LOB_item) STORE AS
LOB_segname

(TABLESPACE tablespace)

(TABLESPACE tablespace)

VARRAY varray_item STORE AS LOB LOB_segname

physical_attributes_clause

logging_clause

allocate_extent_clause

deallocate_unused_clause

shrink_clause

OVERFLOW

physical_attributes_clause

logging_clause

allocate_extent_clause

deallocate_unused_clause

table_compression

LOB LOB_item

VARRAY varray
modify_LOB_parameters

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

add_hash_subpartition::=

add_list_subpartition::=

modify_hash_subpartition::=

modify_list_subpartition::=

1018 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1018

ADD subpartition_spec
update_index_clauses parallel_clause

ADD subpartition_spec
update_index_clauses

allocate_extent_clause

deallocate_unused_clause

shrink_clause

LOB LOB_item

VARRAY varray
modify_LOB_parameters

REBUILD
UNUSABLE LOCAL INDEXES

allocate_extent_clause

deallocate_unused_clause

shrink_clause

LOB LOB_item

VARRAY varray
modify_LOB_parameters

REBUILD
UNUSABLE LOCAL INDEXES

ADD

DROP
VALUES (value

,

)

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

table_partition_description::=

partition_level_subpartition::=

partition_spec::=

subpartition_spec::=

update_index_clauses::=

update_global_index_clause::=

ALTER TABLE 1019

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1019

SUBPARTITIONS hash_subpartition_quantity
STORE IN (tablespace

,

)

(subpartition_spec

,

)

PARTITION
partition table_partition_description

segment_attributes_clause

table_compression

key_compression

OVERFLOW
segment_attributes_clause

LOB_storage_clause

varray_col_properties partition_level_subpartition

SUBPARTITION
subpartition list_values_clause partitioning_storage_clause

update_global_index_clause

update_all_indexes_clause

UPDATE

INVALIDATE
GLOBAL INDEXES

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

update_all_indexes_clause::=

update_index_partition::=

update_index_subpartition::=

index_partition_description::=

index_subpartition_clause::=

parallel_clause::=

1020 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1020

UPDATE INDEXES

(index (
update_index_partition

update_index_subpartition
))

,

PARTITION
partition index_partition_description

index_subpartition_clause

,

SUBPARTITION
subpartition TABLESPACE tablespace

,

PARTITION
partition

segment_attributes_clause

key_compression

STORE IN (tablespace

,

)

(SUBPARTITION
subpartition

TABLESPACE tablespace

,

)

NOPARALLEL

PARALLEL
integer

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

move_table_clause::=

enable_disable_clause::=

using_index_clause::=

index_properties::=

ALTER TABLE 1021

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1021

MOVE
ONLINE segment_attributes_clause table_compression

index_org_table_clause

LOB_storage_clause

varray_col_properties parallel_clause

ENABLE

DISABLE

VALIDATE

NOVALIDATE
UNIQUE (column

,

)

PRIMARY KEY

CONSTRAINT constraint

using_index_clause exceptions_clause CASCADE

KEEP

DROP
INDEX

USING INDEX

schema .
index

(create_index_statement)

index_properties

global_partitioned_index

local_partitioned_index

index_attributes

domain_index_clause

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

index_attributes::=

DESCRIPTION ALTER TABLE changes the definition of an existing table. ADD allows you to add
a new column to the end of an existing table, or add a constraint to the table’s definition. These follow
the same format used in CREATE TABLE.

MODIFY changes an existing column, with some restrictions:

■ You may change the type of column or decrease its size only if the column is NULL in every
row of the table.

■ A NOT NULL column may be added only to a table with no rows.

■ An existing column can be modified to NOT NULL only if it has a non-NULL value in every
row or if a default value is specified during the alteration.

■ Increasing the length of a NOT NULL column without specifying NULL will leave it NOT
NULL.

You can use the SET UNUSED clause to mark columns as unused. When you use the DROP UNUSED
COLUMNS clause, the table will be reorganized and all unused columns will be dropped.

ALLOCATE EXTENT lets you allocate a new extent explicitly. ENABLE and DISABLE enable and
disable constraints. All other features of ALTER TABLE work as they do in CREATE TABLE, except that
they apply to an existing table. See CREATE TABLE for details.

In order to alter a table, you must either have the ALTER privilege for that table or have the ALTER
ANY TABLE system privilege.

CACHE specifies that the blocks for this table, when read, are to be marked as “most recently used”
and kept in the data block buffer cache for as long as possible. This option is useful if the tables are
small and fairly static. NOCACHE (the default) reverts the table back to the normal Last Recently Used
(LRU) list behavior.

PARALLEL, along with DEGREE and INSTANCES, specifies the parallel characteristics of the table
(for databases using the Real Application Clusters option). DEGREE specifies the number of query servers

1022 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1022

physical_attributes_clause

logging_clause

ONLINE

COMPUTE STATISTICS

TABLESPACE
tablespace

DEFAULT

key_compression

SORT

NOSORT

REVERSE

parallel_clause

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

to use; INSTANCES specifies how the table is to be split among instances of Real Application Clusters
for parallel query processing. An integer n specifies that the table is to be split among the specified number
of available instances.

You can use ALTER TABLE to ADD, DROP, EXCHANGE, MODIFY, MOVE, SPLIT, or TRUNCATE
partitions. See Chapter 17 and CREATE TABLE.

The LOB storage clauses specify the storage area to be used for LOB data that will not be stored in
the table itself (out-of-line).

The MOVE ONLINE option allows you to access a table for DML operations during an online table
reorganization. The MOVE and MOVE ONLINE options are only available for nonpartitioned index-
organized tables. During a MOVE ONLINE operation, parallel DML operations against the table are
not supported.

As of Oracle Database 10g, you can use the COMPRESS keyword to instruct Oracle to compress
data segments to reduce disk and memory use for tables that are loaded with direct-path INSERTs.

ALTER TABLESPACE
SEE ALSO CREATE TABLESPACE, DROP TABLESPACE, STORAGE, Chapters 20 and 46
FORMAT
alter_tablespace::=

ALTER TABLESPACE 1023

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1023

ALTER TABLESPACE tablespace

DEFAULT
table_compression

storage_clause

MINIMUM EXTENT integer

K

M

RESIZE size_clause

COALESCE

RENAME TO new_tablespace_name

BEGIN

END
BACKUP

datafile_tempfile_clauses

tablespace_logging_clauses

tablespace_group_clause

tablespace_state_clauses

autoextend_clause

flashback_mode_clause

tablespace_retention_clause

;

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

size_clause::=

datafile_tempfile_clauses::=

tablespace_logging_clauses::=

tablespace_group_clause::=

1024 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1024

ADD
DATAFILE

TEMPFILE

file_specification

,

RENAME DATAFILE ’ filename ’

,

TO ’ filename ’

,

DATAFILE

TEMPFILE

ONLINE

OFFLINE

logging_clause

NO
FORCE LOGGING

integer

K

M

G

T

TABLESPACE GROUP
tablespace_group_name

’ ’

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

tablespace_state_clauses::=

autoextend_clause::=

maxsize_clause::=

flashback_mode_clause::=

tablespace_retention_clause::=

ALTER TABLESPACE 1025

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1025

AUTOEXTEND

OFF

ON
NEXT size_clause maxsize_clause

MAXSIZE
UNLIMITED

size_clause

ONLINE

OFFLINE

NORMAL

TEMPORARY

IMMEDIATE

READ
ONLY

WRITE

PERMANENT

TEMPORARY

FLASHBACK
ON

OFF

RETENTION
GUARANTEE

NOGUARANTEE

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION tablespace is the name of an existing tablespace. ADD DATAFILE adds to
the tablespace a file or series of files described according to a file_specification, which defines the
database filenames and sizes.

The filename format is operating system specific. SIZE is the number of bytes set aside for this file.
Suffixing this with K multiplies the value by 1024; using M multiplies it by 1048576. REUSE (without
SIZE) means destroy the contents of any file by this name and assign it for use by this tablespace. REUSE
with SIZE creates the file if it doesn’t exist, and checks its size if it does. SIZE alone creates the file if it
doesn’t exist, but returns an error if it does exist.

You can use the AUTOEXTEND clause to dynamically resize your datafiles as needed, in increments
of NEXT size, to a maximum of MAXSIZE (or UNLIMITED).

NOLOGGING specifies the default action for the writing of redo log entries for certain types of
transactions in the tablespace. You can override this setting at the object level. RENAME DATAFILE
changes the name of an existing tablespace file. The tablespace should be offline while the renaming
takes place. Note that RENAME does not actually rename the files; it only associates their new names
with this tablespace. Actually renaming operating system files must be done with the operating system
itself. To properly rename files, first ALTER TABLESPACE OFFLINE, rename the files in the operating
system, RENAME them with ALTER TABLESPACE, and then ALTER TABLESPACE ONLINE.

DEFAULT STORAGE defines the default storage for all future objects created in this tablespace,
unless those defaults are overridden, such as by CREATE TABLE. ONLINE brings the tablespace back
online. OFFLINE takes it offline, either without waiting for its users to log off (IMMEDIATE) or after
they’ve all stopped using it (NORMAL).

MINIMUM EXTENT sets the minimum size for any extent created in the tablespace. COALESCE
combines neighboring free extents in the tablespace into fewer, larger free extents.

READ ONLY tablespaces are never updated by Oracle, and can be placed on read-only media. Read-
only tablespaces do not need repeated backups. All tablespaces are created read-write. To change a
read-only tablespace back to read-write status, use the READ WRITE clause.

BEGIN BACKUP can be executed at any time. It puts the tablespace in a state such that an online
backup can occur while users are accessing the tablespace. END BACKUP indicates the system backup
is finished. If the tablespace is online, any system backup must also back up archive redo logs. If it is
offline, this is unnecessary.

TEMPORARY tablespaces cannot contain any permanent objects (such as tables or indexes); they
can only hold the temporary segments used by Oracle during the processing of sorting operations and
index creations. A PERMANENT tablespace can hold every type of Oracle segment.

NOTE
For bigfile tablespaces, you can use ALTER TABLESPACE for commands
(such as RESIZE) that would only work at the datafile level for smallfile
tablespaces.

As of Oracle Database 10g, you can rename a tablespace (the RENAME clause). You can also
guarantee that unexpired undo data will be preserved, even at the expense of ongoing transactions
that require undo space (via RETENTION GUARANTEE).

ALTER TRIGGER
SEE ALSO CREATE TRIGGER, DROP TRIGGER, ENABLE, TRIGGER, Chapter 30

1026 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1026

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT
alter_trigger::=

compiler_parameters_clause::=

DESCRIPTION ALTER TRIGGER enables, disables, renames, or recompiles a PL/SQL trigger. To use
the ALTER TRIGGER command, you must either own the trigger or have ALTER ANY TRIGGER system
privilege.

You can use the COMPILE clause to manually recompile an invalid trigger object. Since triggers
have dependencies, they can become invalid if an object the trigger depends on changes. The DEBUG
clause allows PL/SQL information to be generated during trigger recompilation.

ALTER TYPE
SEE ALSO CREATE TYPE, CREATE TYPE BODY, Chapter 33
FORMAT
alter_type::=

ALTER TYPE 1027

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1027

parameter_name = parameter_value

ALTER TRIGGER
schema .

trigger

ENABLE

DISABLE

RENAME TO new_name

COMPILE
DEBUG compiler_parameters_clause REUSE SETTINGS

;

ALTER TYPE
schema .

type

compile_type_clause

replace_type_clause

alter_method_spec

alter_attribute_definition

alter_collection_clauses

NOT INSTANTIABLE

FINAL

dependent_handling_clause

;

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

compile_type_clause::=

compiler_parameters_clause::=

replace_type_clause::=

invoker_rights_clause::=

element_spec::=

inheritance_clauses::=

1028 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1028

parameter_name = parameter_value

COMPILE
DEBUG

SPECIFICATION

BODY

compiler_parameters_clause REUSE SETTINGS

REPLACE
invoker_rights_clause

AS OBJECT

(atttribute datatype

,
, element_spec

,

)

AUTHID
CURRENT_USER

DEFINER

inheritance_clauses
subprogram_spec

constructor_spec

map_order_function_spec

, pragma_clause

NOT
OVERRIDING

FINAL

INSTANTIABLE

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

subprogram_spec::=

procedure_spec::=

function_spec::=

constructor_spec::=

map_order_function_spec::=

pragma_clause::=

ALTER TYPE 1029

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1029

MEMBER

STATIC

procedure_spec

function_spec

PROCEDURE name (parameter datatype

,

)

IS

AS
call_spec

FUNCTION name (parameter datatype

,

) return_clause

FINAL INSTANTIABLE
CONSTRUCTOR FUNCTION datatype

(
SELF IN OUT datatype ,

parameter datatype

,

)

RETURN SELF AS RESULT

IS

AS
call_spec

MAP

ORDER
MEMBER function_spec

PRAGMA RESTRICT_REFERENCES (
method_name

DEFAULT
,

RNDS

WNDS

RNPS

WNPS

TRUST

,

)

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

alter_method_spec::=

alter_attribute_definition::=

alter_collection_clauses::=

dependent_handling_clause::=

exceptions_clause::=

DESCRIPTION ALTER TYPE allows you to modify existing abstract datatypes. When you create
a method that acts on the abstract datatype, you use the CREATE TYPE BODY command (see entry in
this appendix). Each method defined in the type body must first be listed in the type.

As of Oracle Database 10g, you can modify varying arrays and nested tables of scalar types.

1030 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1030

ADD

DROP

map_order_function_spec

subprogram_spec

,

ADD

MODIFY
ATTRIBUTE

attribute
datatype

(attribute datatype

,

)

DROP ATTRIBUTE

attribute

(attribute

,

)

MODIFY
LIMIT integer

ELEMENT TYPE datatype

INVALIDATE

CASCADE

NOT
INCLUDING TABLE DATA

CONVERT TO SUBSTITUTABLE
FORCE

exceptions_clause

EXCEPTIONS INTO
schema .

table

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ALTER USER
SEE ALSO CREATE TABLESPACE, GRANT, CREATE PROFILE, CREATE USER, Chapter 18
FORMAT
alter_user::=

ALTER USER 1031

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1031

ALTER USER

user

IDENTIFIED

BY password
REPLACE old_password

EXTERNALLY

GLOBALLY AS ’ external_name ’

DEFAULT TABLESPACE tablespace

TEMPORARY TABLESPACE
tablespace

tablespace_group_name

QUOTA
integer

K

M

UNLIMITED
ON tablespace

PROFILE profile

DEFAULT ROLE

role

,

ALL
EXCEPT role

,

NONE

PASSWORD EXPIRE

ACCOUNT
LOCK

UNLOCK

user

,

proxy_clause

;

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

proxy_clause::=

proxy_authentication::=

DESCRIPTION You use ALTER USER to change a user’s password, or the DEFAULT tablespace (for
objects the user owns) or TEMPORARY tablespace (for temporary segments used by the user). Without
ALTER USER, the defaults for both of these are set by the defaults of the first tablespace (both for objects
and temporary segments) to which the user is GRANTed resources and the default temporary tablespace
defined at the database level. ALTER USER can also change the quota, the resource profile, or the default
role (see CREATE USER). You can use the PASSWORD EXPIRE clause to force a user’s password to expire,
in which case the user must change his or her password during the next login. The ACCOUNT UNLOCK
clause allows you to unlock an account that has exceeded its maximum number of consecutive failed
login attempts. See CREATE PROFILE for details on password control. To alter a user, you must have
the ALTER USER system privilege.

You can use the PROXY clause to connect as the specified user and to activate all, some, or none
of the user’s roles. PROXY is typically used in three-tier applications involving application servers.

1032 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1032

AUTHENTICATION REQUIRED

AUTHENTICATED USING

PASSWORD

DISTINGUISHED NAME

CERTIFICATE
TYPE ’ type ’ VERSION ’ version ’

GRANT

REVOKE
CONNECT THROUGH proxy

WITH

ROLE

role_name

,

ALL EXCEPT role_name

,

NO ROLES proxy_authentication

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ALTER VIEW
SEE ALSO CREATE VIEW, DROP VIEW, Chapter 17
FORMAT
alter_view::=

DESCRIPTION ALTER VIEW recompiles a view or alters its constraints. To alter a view, you must
either own the view or have ALTER ANY TABLE system privilege.

ANALYTIC FUNCTIONS
Analytic functions compute an aggregate value based on a group of rows they return multiple rows for
each group. Many of the analytic functions are listed under the AGGREGATE FUNCTIONS entry; when
used as analytic functions, they can only be used within the ORDER BY clause.

In the following alphabetical list of analytic functions (see the individual entries for syntax descriptions),
the functions followed by an asterisk allow for the use of a windowing clause: AVG*, CORR*, COVAR_
POP*, COVAR_SAMP*, COUNT*, CUME_DIST, DENSE_RANK, FIRST, FIRST_VALUE*, LAG, LAST,
LAST_VALUE*, LEAD, MAX*, MIN*, NTILE, PERCENT_RANK, PERCENTILE_CONT, PERCENTILE_DISC,
RANK, RATIO_TO_REPORT, REGR_*, ROW_NUMBER, STDDEV*, STDDEV_POP, STDDEV_SAMP,
SUM*, VAR_POP*, VAR_SAMP*, VARIANCE*.

ANALYTIC FUNCTIONS 1033

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1033

ALTER VIEW
schema .

view

ADD out_of_line_constraint

MODIFY CONSTRAINT constraint
RELY

NORELY

DROP

CONSTRAINT constraint

PRIMARY KEY

UNIQUE (column

,

)

COMPILE

;

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ANALYZE
SEE ALSO Chapter 43
FORMAT
analyze::=

validation_clauses::=

for_clause::=

1034 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1034

VALIDATE REF UPDATE
SET DANGLING TO NULL

VALIDATE STRUCTURE
CASCADE into_clause OFFLINE

ONLINE

ANALYZE

TABLE
schema .

table

PARTITION (partition)

SUBPARTITION (subpartition)

INDEX
schema .

index

PARTITION (partition)

SUBPARTITION (subpartition)

CLUSTER
schema .

cluster

validation_clauses

LIST CHAINED ROWS
into_clause

DELETE
SYSTEM

STATISTICS

compute_statistics_clause

estimate_statistics_clause

;

FOR

TABLE

ALL
INDEXED

COLUMNS
SIZE integer

COLUMNS
SIZE integer column

attribute

SIZE integer

ALL
LOCAL

INDEXES

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

into_clause::=

compute_statistics_clause::=

estimate_statistics_clause::=

DESCRIPTION Oracle recommends that you use the DBMS_STATS package in place of the
ANALYZE command. ANALYZE lets you collect statistics about a table, cluster, partition, or index for
the optimizer, and stores them in the data dictionary; it lets you delete these statistics; it validates the
structure of an object; and it identifies migrated and chained rows of a table or cluster with a listing in
a local table. You use the VALIDATE STRUCTURE clause to test an object for possible data corruption.
To analyze a table, you must either own the table or have the ANALYZE ANY system privilege.

The LIST CHAINED ROWS clause records information about row chaining in a table you specify.

AND
See LOGICAL OPERATORS, PRECEDENCE, CONTAINS.

ANSI
The American National Standards Institute sets standards for the SQL language and its many elements.

ANY
SEE ALSO ALL, BETWEEN, EXISTS, IN, LOGICAL OPERATORS, Chapter 13
FORMAT

operator ANY list

DESCRIPTION = ANY is the equivalent of IN. operator can be any one of =, >, >=, <, <=, or !=,
and list can be a series of literal strings (such as 'Talbot', 'Jones', or 'Hild'), a series of literal numbers
(such as 2, 43, 76, 32.06, or 444), or a column from a subquery, where each row of the subquery becomes
a member of the list, as shown here:

LOCATION.City = ANY (select City from WEATHER)

ANY 1035

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1035

INTO
schema .

table

COMPUTE
SYSTEM

STATISTICS
for_clause

ESTIMATE
SYSTEM

STATISTICS
for_clause

SAMPLE integer
ROWS

PERCENT

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The list variable also can be a series of columns in the WHERE clause of the main query, as
shown here:

Prospect = ANY (Vendor, Client)

RESTRICTIONS list cannot be a series of columns in a subquery, like this:

Prospect = ANY (select Vendor, Client from . . .)

Many people find this operator and the ALL operator very difficult to remember, because the logic
for some of their cases is not immediately intuitive. As a result, some form of EXISTS is usually substituted.

The combination of an operator with ANY and a list can be illustrated with these explanations:

Page = ANY (4,2,7) Page is in the list (4,2,7)—2, 4, and 7 all qualify.

Page > ANY (4,2,7) Page is greater than any single item in the list (4,2,7)—even 3 qualifies, because it
is greater than 2.

Page >= ANY (4,2,7) Page is greater than or equal to any single item in the list (4,2,7)—even 2 qualifies,
because it is equal to 2.

Page < ANY (4,2,7) Page is less than any single item in the list (4,2,7)—even 6 qualifies, because it is
less than 7.

Page <= ANY (4,2,7) Page is less than or equal to any single item in the list (4,2,7)—even 7 qualifies.

Page != ANY (4,2,7) Page is not equal to any single item in the list (4,2,7)—any number qualifies so long as
the list has more than one value. With only one value, != ANY is the equivalent of !=.

APPEND (SQL*Plus)
SEE ALSO CHANGE, DEL, EDIT, LIST, Chapter 6
FORMAT

A[PPEND] text

DESCRIPTION APPEND is a feature of the SQL*Plus command-line editor. APPEND places the
text at the end of the current line in the current buffer, with no intervening spaces. If you want a space
between the end of the current line and text, put two spaces between APPEND and text. If you want to
append a semicolon at the end of a line, put two of them together (one of them will be regarded as a
command terminator and discarded). APPEND is not available in iSQL*Plus.
EXAMPLE

APPEND ;;

ARCH PROCESS
One of the background processes used by Oracle, ARCH performs automatic archiving of redo log files
when the database is used in ARCHIVELOG mode. See BACKGROUND PROCESS.

ARCHIVE
In a general sense, archiving means to save data for possible later use. In a specific sense, it means to
save the data found in the online redo logs, in the event that the logs are needed to restore the database
due to a media failure.

1036 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1036

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ARCHIVE LOG
SEE ALSO ALTER DATABASE, RECOVER, Chapter 46
FORMAT

ARCHIVE LOG {LIST|STOP}|{START|NEXT|ALL|integer} [TO destination]

DESCRIPTION ARCHIVE LOG starts or stops automatic archiving of online redo log files,
manually archives specific redo log files, or displays information about redo log files. START
enables automatic archiving; STOP disables it. LIST shows the archive status for the online redo
logs. NEXT manually archives the next online redo log file group that has been filled but not
yet archived. ALL manually archives all filled but not yet archived redo log file groups. You can
specify the online redo log group number and the destination area for the archived files.
EXAMPLE

ARCHIVE LOG ALL
ARCHIVE LOG LIST

ARRAYSIZE (SQL*Plus)
See SET.

AS
SEE ALSO ALIAS, TO_CHAR, Chapters 7 and 10
DESCRIPTION AS is used to separate column formulas from column aliases.
EXAMPLE Here AS separates the column alias PayDay from its column formula:

select NEXT_DAY(CycleDate,'FRIDAY') AS PayDay
from PAYDAY;

ASCII
SEE ALSO CHARACTER FUNCTIONS, ASCIISTR, CHR
FORMAT

ASCII(string)

DESCRIPTION ASCII is an acronym for American Standard Code for Information Interchange.
It is a convention for using digital data to represent printable characters.

The ASCII function will return the ASCII value of the first (leftmost) character in the string. The ASCII
value of a character is an integer between 0 and 255. Those between 0 and 127 are well defined. Those
above 127 (“extended ASCII set”) tend to differ by country, application, and computer manufacturer.
The letter A, for instance, is equal to the ASCII number 65, B is 66, C is 67, and so on. The decimal
point is 46. A minus sign is 45. The number 0 is 48, 1 is 49, 2 is 50, and so on.
EXAMPLE

select ASCII('.'), ASCII(.5),
ASCII('E'), ASCII('EMILY')

from DUAL;

ASCII('.') ASCII(.5) ASCII('E') ASCII('EMILY')
---------- --------- ---------- --------------

46 46 69 69

ASCII 1037

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1037

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ASCIISTR
SEE ALSO CHARACTER FUNCTIONS, ASCII, CHR
FORMAT

ASCIISTR(string)

DESCRIPTION The ASCII function takes a string and returns its ASCII equivalent in the database
character set.
EXAMPLE

select ASCIISTR('E'), ASCIISTR('EMILY')
from DUAL;

A ASCII
- -----
E EMILY

ASIN
SEE ALSO ACOS, ATAN, ATAN2, COS, COSH, EXP, LN, LOG, SIN, SINH, TAN, TANH
FORMAT

ASIN(value)

DESCRIPTION ASIN returns the arc sine of a value. Input values range from –1 to 1; outputs are
expressed in radians.

ASSOCIATE STATISTICS
SEE ALSO ANALYZE
FORMAT
associate_statistics::=

column_association::=

1038 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1038

ASSOCIATE STATISTICS WITH
column_association

function_association
;

COLUMNS
schema .

table . column

,

using_statistics_type

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

function_association::=

using_statistics_type::=

default_cost_clause::=

default_selectivity_clause::=

DESCRIPTION ASSOCIATE STATISTICS associates a set of statistics functions with one or more
columns, stand-alone functions, packages, types, or indexes. You must have the required privileges to
ALTER the object being modified.

You can view associations in USER_USTATS after you analyze the object with which you are
associating your statistics functions.

ASSOCIATE STATISTICS 1039

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1039

USING

schema .
statistics_type

NULL

FUNCTIONS
schema .

function

,

PACKAGES
schema .

package

,

TYPES
schema .

type

,

INDEXES
schema .

index

,

INDEXTYPES
schema .

indextype

,

using_statistics_type

default_cost_clause
, default_selectivity_clause

default_selectivity_clause
, default_cost_clause

DEFAULT COST (cpu_cost , io_cost , network_cost)

DEFAULT SELECTIVITY default_selectivity

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ATAN
SEE ALSO ACOS, ASIN, ATAN2, COS, COSH, EXP, LN, LOG, SIN, SINH, TAN, TANH
FORMAT

ATAN(value)

DESCRIPTION ATAN returns the arc tangent of a value. Input values are unbounded; outputs are
expressed in radians.

ATAN2
SEE ALSO ACOS, ASIN, ATAN, COS, COSH, EXP, LN, LOG, SIN, SINH, TAN, TANH
FORMAT

ATAN2(value1, value2)

DESCRIPTION ATAN2 returns the arc tangent of two values. Input values are unbounded; outputs
are expressed in radians.

ATTRIBUTE (SQL*Plus)
SEE ALSO COLUMN, Chapter 33
FORMAT

ATTRIBUTE [type_name.attribute_name [option ...]]

option can be one of the following:

ALI[AS] alias
CLE[AR]
FOR[MAT] format
LIKE {type_name.attribute_name|alias}
ON|OFF

DESCRIPTION ATTRIBUTE sets the display attributes for attributes of a user-defined type column
in SQL*Plus.
EXAMPLE

ATTRIBUTE ADDRESS_TY.Street FORMAT A50

AUDIT
SEE ALSO CREATE DATABASE LINK, DATA DICTIONARY, NOAUDIT, PRIVILEGE
FORMAT
audit::=

1040 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1040

AUDIT
sql_statement_clause

schema_object_clause

BY
SESSION

ACCESS WHENEVER
NOT

SUCCESSFUL
;

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

sql_statement_clause::=

auditing_by_clause::=

schema_object_clause::=

auditing_on_clause::=

DESCRIPTION You can AUDIT statements executed by users and statements that access specific
objects.

The statement options are as follows:

Option Audits

CLUSTER Create, alter, drop, or truncate cluster

CONTEXT Create or drop context

DATABASE LINK Create or drop database link

DIMENSION Create, alter, or drop dimension

AUDIT 1041

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1041

statement_option

ALL

,

system_privilege

ALL PRIVILEGES

,
auditing_by_clause

BY

proxy

,

user

,

object_option

,

ALL
auditing_on_clause

ON

schema .
object

DIRECTORY directory_name

DEFAULT

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Option Audits

DIRECTORY Create or drop directory

INDEX Create, alter, or drop index

MATERIALIZED VIEW Create, alter, or drop materialized view

NOT EXISTS SQL statements that fail because an object does not exist

PROCEDURE Create or drop procedure, function, library, or package; create package body

PROFILE Create, alter, or drop profile

PUBLIC DATABASE LINK Create or drop public database link

PUBLIC SYNONYM Create or drop public synonym

ROLE Create, alter, drop, or set role

ROLLBACK SEGMENT Create, alter, or drop rollback segment

SEQUENCE Create or drop sequence

SESSION Logon attempts

SYNONYM Create or drop synonym

SYSTEM AUDIT Audit or noaudit of SQL statements

SYSTEM GRANT Grant or revoke system privileges and roles

TABLE Create, drop, or truncate table

TABLESPACE Create, alter, or drop tablespace

TRIGGER Create, alter, or drop trigger; alter table with ENABLE|DISABLE ALL TRIGGERS

TYPE Create, alter, or drop type or type body

USER Create, alter, or drop user

VIEW Create or drop view

The following are additional statement-level options that are available:

Option Commands Audited

ALTER SEQUENCE ALTER SEQUENCE

ALTER TABLE ALTER TABLE

COMMENT TABLE COMMENT ON TABLE table, view, materialized view
COMMENT ON COLUMN table.column, view.column,
materialized view.column

DELETE TABLE DELETE FROM table, view

EXECUTE PROCEDURE CALL
Execution of any procedure or function or access to any variable,
library, or cursor inside a package

GRANT DIRECTORY GRANT privilege ON directory
REVOKE privilege ON directory

GRANT PROCEDURE GRANT privilege ON procedure, function, package
REVOKE privilege ON procedure, function, package

1042 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1042

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Option Commands Audited

GRANT SEQUENCE GRANT privilege ON sequence
REVOKE privilege ON sequence

GRANT TABLE GRANT privilege ON table, view, materialized view
REVOKE privilege ON table, view, materialized view

GRANT TYPE GRANT privilege ON TYPE
REVOKE privilege ON TYPE

INSERT TABLE INSERT INTO table, view

LOCK TABLE LOCK TABLE table, view

SELECT SEQUENCE Any statement containing sequence.CURRVAL or sequence.NEXTVAL

SELECT TABLE SELECT FROM table, view, materialized view

UPDATE TABLE UPDATE table, view

BY user audits only SQL statements issued by particular users. The default is to audit all users.
WHENEVER [NOT] SUCCESSFUL writes a row to an audit table only when an attempted access to

an audited table or system facility is (or is NOT) successful. Omitting this optional clause causes a row
to be written whether an access is successful or not.

Auditing information is written to a table named SYS.AUD$ and accessed via data dictionary views.
EXAMPLE This audits all updates by a user named CLERK_USER:

audit UPDATE TABLE by clerk_user;

AUTOCOMMIT (SQL*Plus)
AUTOCOMMIT is a SQL*Plus setting used to automatically commit changes to the database following
any SQL command that inserts, updates, or deletes data in the database. See SET.

AUTORECOVERY (SQL*Plus)
See SET.

AVG
SEE ALSO COMPUTE, AGGREGATE FUNCTIONS, Chapter 9
FORMAT

AVG ([DISTINCT | ALL] expr) [OVER (analytic_clause)]

DESCRIPTION AVG is the average of expr for a group of rows. DISTINCT forces only unique values
to be averaged. NULL rows are ignored by this function, which may affect results.

B*-TREE
B*-TREE is a high-performance indexing structure used by Oracle to create and store indexes.

BACKGROUND PROCESS
A background process is one of the processes used by an instance of Oracle to perform and coordinate
tasks on behalf of concurrent users of a database.

BACKGROUND PROCESS 1043

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1043

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

BEGIN
SEE ALSO BLOCK STRUCTURE, DECLARE, END, EXCEPTION, TERMINATOR, Chapter 29
FORMAT

[<<block label>>]
[DECLARE]
BEGIN

... block logic ...
END [block label];

DESCRIPTION BEGIN is the opening statement of a PL/SQL block’s executable section. It can be
followed with any legal PL/SQL logic, and an exception handler, and is closed with the END statement.
At least one executable statement is required between BEGIN and END. See BLOCK STRUCTURE.

block label is a name given to a PL/SQL block that starts with the word BEGIN and finishes with
the word END. The word END is followed by a terminator, usually a semicolon (see TERMINATOR for
exceptions). block label follows normal naming conventions for objects, and must be bracketed by <<
and >>. These symbols tell PL/SQL that this is a label. BEGIN may optionally be preceded by a section
called DECLARE (which follows the block label) and may optionally contain a section called EXCEPTION.

BETWEEN
See LOGICAL OPERATORS.

BFILE
BFILE is a datatype (see DATATYPES) used for binary LOB data stored outside the database. Oracle
does not maintain read consistency or data integrity for the externally stored data. Within the database,
a LOB locator value is stored to point to the external file. Before creating a BFILE entry, you must first
create a directory. See CREATE DIRECTORY.

BFILENAME
SEE ALSO BFILE, CREATE DIRECTORY, Chapter 35
FORMAT

BFILENAME ('directory' , 'filename')

DESCRIPTION BFILENAME returns a BFILE locator associated with the specified filename and
directory object.

BINARY_DOUBLE
See DATATYPES.

BINARY_FLOAT
See DATATYPES.

BIN_TO_NUM
SEE ALSO NUMBER FUNCTIONS, Chapter 9

1044 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1044

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

BIN_TO_NUM (expr [, expr]...)

DESCRIPTION BIN_TO_NUM converts a bit vector to its equivalent number.
EXAMPLE

select BIN_TO_NUM(1,0,0,1) from DUAL;

BIN_TO_NUM(1,0,0,1)

9

BIND VARIABLE
A bind variable is a variable in a SQL statement that must be replaced with a valid value or address of
a value in order for the statement to successfully execute.

BITAND
SEE ALSO DECODE, Chapter 16
FORMAT

BITAND (argument1, argument2)

DESCRIPTION BITAND computes an AND operation on the bits of argument1 and argument2,
both of which must resolve to nonnegative integers, and returns an integer. This function is commonly
used with the DECODE function.

BITMAP INDEX
A bitmap index is a type of index best suited for columns with few distinct values (and thus, poor
selectivity). If there are few distinct values for a column, and it is frequently used as a limiting condition
in queries, you should consider using a bitmap index for the column. See Chapter 17 for further details
on bitmap indexes. For full syntax information, see CREATE INDEX.

BLOB
A BLOB is a binary large object, stored inside the database. See Chapter 35.

BLOCK
A block is the basic unit of storage (physical and logical) for all Oracle data. The Oracle block size
varies by operating system and may differ from the block size of the host operating system. Common
block sizes are 4K, 8K, and 16K. For the size of a block on your specific operating system, refer to your
Installation and User’s Guide. Database block sizes can differ at the tablespace level.

BLOCK STRUCTURE
A block structure is a structure of block sections in PL/SQL.
SEE ALSO BEGIN, DECLARE, END, EXCEPTION, GOTO, Chapter 29

BLOCK STRUCTURE 1045

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1045

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION PL/SQL blocks can be embedded in SQL*Plus and any of several programming
languages, through the use of the Oracle precompilers. PL/SQL blocks are structured like this:

[<<block label>>]
[DECLARE
.. declarations (CURSOR, VARIABLE and EXCEPTION)...]

BEGIN

... block logic (executable code)...

[EXCEPTION

... exception handling logic (for fatal errors)...]

END [block label];

As the brackets show, both the DECLARE and EXCEPTION sections are optional. A block may
optionally be labeled by a block name, which must be bracketed by << and >>.

The sections of a block must be in this order, although blocks may nest inside of other blocks in
either the block logic or exception-handling logic sections. blocks may be used for branching using
a GOTO, or as a prefix in referencing a variable in another block (see DECLARE for details on this).
If a variable will be referenced in a cursor declaration, it must be declared before the cursor is declared.
EXAMPLE

<<calc_areas>>
DECLARE

pi constant NUMBER(9,7) := 3.14159;
area NUMBER(14,2);
cursor rad_cursor is

select * from RADIUS_VALS;
rad_val rad_cursor%ROWTYPE;

BEGIN
open rad_cursor;
loop
fetch rad_cursor into rad_val;
exit when rad_cursor%NOTFOUND;
area := pi*power(rad_val.radius,2);
insert into AREAS values (rad_val.radius, area);

end loop;
close rad_cursor;

END calc_areas;

BREAK (SQL*Plus)
SEE ALSO CLEAR, COMPUTE, Chapter 6
FORMAT

BRE[AK] [ON report_element [action [action]]] ...

1046 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1046

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

where report_element is

{column|expr|ROW|REPORT}

and action is

[SKI[P]n|[SKI[P]] PAGE][NODUP[LICATES]|DUP[LICATES]]

DESCRIPTION A break occurs when SQL*Plus detects a specified change, such as the end of a page
or a change in the value of an expression. A break will cause SQL*Plus to perform some action you’ve
specified in the BREAK command, such as SKIP, and to print some result from a COMPUTE command,
such as averages or totals for a column. Only one BREAK command may be in effect at a time. A new
BREAK command may specify changes, and their associated actions, that are to cause a break.

A BREAK ON REPORT causes a break at the end of a report or query.
A change in the value of an expression may occur at any time prior to the REPORT break, and there

may be several ON expression clauses in a single BREAK statement; however, their order in the BREAK
command should be the same as in the order by of the select statement. That is, each expression that
appears in the BREAK command also should be placed in the order by clause of select, in identical
sequence, or the result will be meaningless. In addition, their order should be from the largest grouping
to the smallest (for example, ON Corporation, ON Division, ON Project).

ON ROW causes a break for every row selected.
ON PAGE causes a break at the end of each page, and is independent of breaks caused by expression,

ON ROW, or ON REPORT.
SKIP skips a number of lines, and PAGE or SKIP PAGE skips to a new page, before printing the result

of the associated COMPUTE for the break.
NODUPLICATES suppresses the printing of the values in the expression or column in the BREAK for

every row except the first one after the BREAK occurs.
BREAK by itself will display the current break settings.
CLEAR BREAKS will remove any existing BREAKs.

BTITLE (SQL*Plus)
SEE ALSO ACCEPT, DEFINE, PARAMETERS, REPFOOTER, REPHEADER, SET HEADSEP, TTITLE
FORMAT

BTI[TLE] [printspec [text|variable]... | OFF | ON]

DESCRIPTION BTITLE puts text (may be multiline) at the bottom of each page of a report. OFF
and ON suppress and restore the display of the text without changing its contents. BTITLE by itself
displays the current btitle options and text or variable. text is a bottom title you wish to give this report,
and variable is a user-defined variable or a system-maintained variable, including SQL.LNO, the current
line number, SQL.PNO, the current page number, SQL.RELEASE, the current Oracle release number,
SQL.SQLCODE, the current error code, and SQL.USER, the username.

printspec options are as follows:

■ COL n skips directly to position n (from the left margin) of the current line.

■ S[KIP] n prints n blank lines. If no n is specified, one blank line is printed. If n is 0, no blank
lines are printed and the current position for printing becomes position 1 of the current line
(leftmost on the page).

■ TAB n skips forward n positions (backward if n is negative).

■ BOLD prints the output data in bold print.

BTITLE (SQL*Plus) 1047

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1047

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ LE[FT], CE[NTER], and R[IGHT] left-justify, center, and right-justify data, respectively, on the
current line. Any text or variables following these commands are justified as a group, up to
the end of the command, or a LEFT, CENTER, RIGHT, or COL. CENTER and RIGHT use the
value set by the SET LINESIZE command to determine where to place the text or variable.

■ FORMAT string specifies the format model that will control the format of following text or
variables, and follows the same syntax as FORMAT in a COLUMN command, such as FORMAT
A12 or FORMAT $999,999.99. Each time a FORMAT appears, it supersedes the previous one
that was in effect. If no FORMAT model has been specified, the one set by SET NUMFORMAT
is used. If NUMFORMAT has not been set, the default for SQL*Plus is used.

Data values are printed according to the default format unless a variable has been loaded with a
date reformatted by TO_CHAR.

Any number of options, text, and variables may be used in a single BTITLE. Each is printed in the
order specified, and each is positioned and formatted as specified by the clauses that precede it.

BUFFER
Generally speaking, a buffer is a scratchpad, usually in the computer’s memory, where commands are
staged for editing and execution.

In SQL*Plus, a buffer is an area in memory for editing SQL commands. See EDIT and SET.

BUFFERS (DATABASE)
Buffers are temporary storage places for database blocks that are currently being accessed and changed
by database users.

BUFFERS (REDO LOG)
Buffers are temporary storage places for redo log entries that are created by transactions within the
database.

CACHES
Caches are temporary holding places for either database data that is currently being accessed or changed
by users or data that Oracle requires to support users.

CALL
SEE ALSO EXECUTE, Chapter 39
FORMAT
call::=

1048 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1048

CALL
routine_clause

object_access_expression

INTO : host_variable

INDICATOR
: indicator_variable

;

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

routine_clause::=

object_access_expression::=

DESCRIPTION You can use CALL to execute a stored procedure or function from within SQL. You
must have EXECUTE privilege on the procedure or function, or on the package in which the procedure or
function exists.

CARDINALITY
SEE ALSO COLLECTION FUNCTIONS
FORMAT

CARDINALITY (nested_table)

DESCRIPTION CARDINALITY returns the number of elements in a nested table. If the nested table
is empty, or is a null collection, then CARDINALITY returns NULL.

CASE
SEE ALSO OTHER FUNCTIONS, DECODE, TRANSLATE, Chapter 16
FORMAT
case_expression::=

CASE 1049

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1049

schema .

type .

package .
function

procedure

method

@ dblink_name
(

argument

,

)

table_alias . column .

object_table_alias .

(expr) .

attribute

.
. method (

argument

,

)

method (
argument

,

)

CASE
simple_case_expression

searched_case_expression

else_clause
END

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

simple_case_expression::=

searched_case_expression::=

else_clause::=

DESCRIPTION CASE supports if-then-else logic within SQL statements. Use WHEN/THEN clauses
to tell the database what to do for each condition. You can use an ELSE clause to handle exceptions to
your WHEN clauses.
EXAMPLE

select distinct
CASE CategoryName
when 'ADULTFIC' then 'Adult Fiction'
when 'ADULTNF' then 'Adult Nonfiction'
when 'ADULTREF' then 'Adult Reference'
when 'CHILDRENFIC' then 'Children Fiction'
when 'CHILDRENNF' then 'Children Nonfiction'
when 'CHILDRENPIC' then 'Children Picturebook'
else CategoryName

end
from BOOKSHELF;

CAST
SEE ALSO NESTED TABLE, Chapter 34
FORMAT

CAST ({ expr | (subquery) | MULTISET (subquery) } AS type_name)

DESCRIPTION You can use CAST to convert one datatype to another. CAST is most commonly
used when working with collectors such as nested tables.

CATSEARCH
CATSEARCH is used for text searches against CTXCAT text indexes created within Oracle Text. See
Chapter 25 for index creation and text search examples. Supported text search operators include the
following:

Operator Description

| Returns a record if either search term has a score that exceeds the threshold.

AND Returns a record if both search terms have a score that exceeds the threshold.
This is the default action.

1050 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1050

expr WHEN comparison_expr THEN return_expr

WHEN condition THEN return_expr

ELSE else_expr

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Operator Description

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:13:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

would change the line to this:

where CategoryName = 'ADULTNF'

CHAR DATATYPE
See DATATYPES.

CHARACTER FUNCTIONS
SEE ALSO CONVERSION FUNCTIONS, NUMBER FUNCTIONS, OTHER FUNCTIONS, Chapter 7
DESCRIPTION This is an alphabetical list of all current character functions in the Oracle version of
SQL. Each of these is listed elsewhere in this reference under its own name, with its proper format and use.

Function Name and Use
string || string

|| concatenates two strings. The | symbol is called a broken vertical bar, although on some computers
it may be a solid bar.

ASCII(string)

ASCII gives the ASCII value of the first character of a string.

CHR(integer)

CHR gives the character with an ASCII value equal to a given positive integer.

CONCAT(string1,string2)

CONCAT concatenates two strings. It is equivalent to ||.

INITCAP(string)

This stands for INITial CAPital. It changes the first letter of a word or series of words into uppercase.

INSTR(string, set [, start [,occurrence]])

INSTR finds the location of the beginning of a set of characters IN a STRing.

LENGTH(string)

This tells the LENGTH of a string.

LOWER(string)

LOWER converts every letter in a string to lowercase.

LPAD(string,length [,'set'])

LPAD stands for Left PAD. It makes a string a specific length by adding a specified set of characters
to the left.

LTRIM(string [,'set'])

LTRIM stands for Left TRIM. It trims all the occurrences of any one of a set of characters off of the
left side of a string.

1052 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1052

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:14:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NLS_INITCAP(string[,'NLS_SORT=sort'])

NLS_INITCAP stands for National Language Support INITial CAPital. This version of INITCAP uses
the collating sequence sort to do the case conversion.

NLS_LOWER(string[,'NLS_SORT=sort'])

NLS_LOWER stands for National Language Support LOWERcase. This version of LOWER uses the
collating sequence sort to do the case conversion.

NLS_UPPER(string[,'NLS_SORT=sort'])

NLS_UPPER stands for National Language Support UPPERcase. This version of UPPER uses the
collating sequence sort to do the case conversion.

NLSSORT(string[,'NLS_SORT=sort'])

Oracle uses National Language Support SORT. This gives the collating sequence value of the given
string based on the collating sequence sort or, if omitted, the National Language Support option chosen
for the site.

REGEXP_INSTR(source_string, pattern
[,position,occurrence,return_option,match_parameter])

REGEXP_INSTR returns an integer indicating the start of the search pattern. REGEXP_INSTR extends the
capabilities of INSTR by permitting searches of regular expression patterns.

REGEXP_REPLACE(source_string, pattern
[,replace_string,position,occurrence,match_parameter])

REGEXP_REPLACE returns source_string with every occurrence of pattern replaced with replace_string
(zero or more characters). REGEXP_REPLACE extends the capabilities of REPLACE by permitting searches of
regular expression patterns.

REGEXP_SUBSTR(source_string, pattern
[,position,occurrence,match_parameter])

REGEXP_SUBSTR returns a subset of source_string based on the results of a regular expression search.
REGEXP_SUBSTR extends the capabilities of SUBSTR by permitting searches of regular expression patterns.

REPLACE(string, if [,then])

REPLACE returns string with every occurrence of if replaced with then (zero or more characters).
If no then string is specified, then all occurrences of if are removed. See TRANSLATE.

RPAD(string,length [,'set'])

RPAD stands for Right PAD. It makes a string a specific length by adding a specified set of characters
to the right.

RTRIM(string [,'set'])

RTRIM stands for Right TRIM. It trims all the occurrences of any one of a set of characters off of the
right side of a string.

SOUNDEX(string)

CHARACTER FUNCTIONS 1053

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1053

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:14:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SOUNDEX converts a string to a code value. Names with similar sounds tend to have the same
code value. You can use SOUNDEX to compare names that might have small spelling differences but
are still the same.

SUBSTR(string, start [,count])

SUBSTRing clips out a piece of a string beginning at start position and counting for count
characters from start.

TRANSLATE(string,if,then)

This TRANSLATEs a string, character by character, based on a positional matching of characters
in the if string with characters in the then string. See REPLACE.

TREAT(expr AS [REF][user.]type)

TREAT changes the declared type of an expression.

TRIM
([{ { LEADING | TRAILING | BOTH } [trim_character])

| trim_character
} FROM] trim_source)

TRIM removes all the occurrences of any one of a set of characters off of the right side, left side,
or both sides of a string.

UPPER(string)

UPPER converts every letter in a string into uppercase.

USERENV(option)

USERENV returns information about the USER ENVironment, usually for an audit trail. Options
include 'ENTRYID', 'SESSIONID', and 'TERMINAL'. USERENV is still supported but has been replaced
by SYS_CONTEXT’s UserEnv namespace.

VSIZE(string)

VSIZE gives the storage size of string in Oracle.

CHARTOROWID
SEE ALSO CONVERSION FUNCTIONS, ROWIDTOCHAR
FORMAT

CHARTOROWID(string)

DESCRIPTION This stands for CHARacter TO ROW IDentifier. It changes a character string to
act like an internal Oracle row identifier, or ROWID.

CHR
SEE ALSO ASCII, CHARACTER FUNCTIONS
FORMAT

CHR(integer)

1054 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1054

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:14:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION CHR will return the character with the ASCII value of integer. (integer means an
integer between 0 and 255, since the ASCII value of a character is an integer between 0 and 255.)
Those between 0 and 127 are well defined. Those above 127 (called the extended ASCII set) tend to
differ by country, application, and computer manufacturer. The letter A, for instance, is equal to the
ASCII number 65, B is 66, C is 67, and so on. The decimal point is 46. A minus sign is 45. The number 0
is 48, 1 is 49, 2 is 50, and so on.
EXAMPLE

select CHR(77), CHR(46), CHR(56) from DUAL;

C C C
- - -
M . 8

CLAUSE
A clause is a major section of a SQL statement and begins with a keyword such as select, insert, update,
delete, from, where, order by, group by, or having.

CLEAR (SQL*Plus)
SEE ALSO BREAK, COLUMN, COMPUTE
FORMAT

CL[EAR] option

DESCRIPTION CLEAR clears the option.
BRE[AKS] clears breaks set by the BREAK command.
BUFF[ER] clears the current buffer.
COL[UMNS] clears options set by the COLUMN command.
COMP[UTES] clears options set by the COMPUTE command.
SCR[EEN] clears the screen.
SQL clears the SQL buffer.
TIMI[NG] deletes all timing areas created by the TIMING command.

EXAMPLES To clear computes, use this:

clear computes

To clear column definitions, use this:

clear columns

CLOB
CLOB is a datatype that supports character large objects. See Chapter 35.

CLOSE
SEE ALSO DECLARE, FETCH, FOR, OPEN, Chapter 29
FORMAT

CLOSE cursor;

CLOSE 1055

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1055

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:14:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION CLOSE closes the named cursor and releases its resources to Oracle for use elsewhere.
cursor must be the name of a currently open cursor.

Even though a cursor has been closed, its definition has not been lost. You can issue OPEN cursor
again, so long as the cursor was explicitly declared. A FOR loop will also implicitly OPEN a declared
cursor. See CURSOR FOR LOOP.

CLOSED DATABASE
A closed database is a database that is associated with an instance (the database is mounted) but not
open. Databases must be closed for some database maintenance functions. This can be accomplished
via the SQL statements ALTER DATABASE or SHUTDOWN.

CLUSTER
A cluster is a means of storing together data from multiple tables, when the data in those tables contains
common information and is likely to be accessed concurrently. You can also cluster an individual table.
See CREATE CLUSTER.

CLUSTER INDEX
A cluster index is an index that is manually created after a cluster has been created and before any DML
(select, insert, update, or delete) statements can operate on the cluster. This index is created on the
cluster key columns with the SQL statement CREATE INDEX. In Oracle, you can define a hash cluster
to index on the primary key. See HASH CLUSTER.

CLUSTER KEY
A cluster key is the column or columns that clustered tables have in common, and which is chosen as
the storage/access key. For example, two tables, BOOKSHELF and BOOKSHELF_AUTHOR, might be
clustered on the column Title. A cluster key is the same thing as a CLUSTER COLUMN.

CMDSEP (SQL*Plus)
See SET.

COALESCE
SEE ALSO DECODE, Chapter 16
FORMAT

COALESCE(value1, value2, ...)

DESCRIPTION COALESCE will return the first non-NULL value encountered in the list of values
provided.

COLLATION
SEE ALSO GROUP BY, INDEX, ORDER BY, Chapter 12
DESCRIPTION The collation or collating sequence is the order in which characters, numbers, and
symbols will be sorted because of an order by or group by clause. These sequences differ based on the
collation sequence of the computer’s operating system or the national language. EBCDIC (usually IBM
and compatible mainframes) and ASCII (most other computers) sequences differ significantly. In spite of
these differences, the following rules always apply:

1056 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1056

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:14:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ A number with a larger value is considered “greater” than a smaller one. All negative numbers
are smaller than all positive numbers. Thus, –10 is smaller than 10; –100 is smaller than –10.

■ A later date is considered greater than an earlier date.

Character strings are compared position by position, starting at the leftmost end of the string,
up to the first character that is different. Whichever string has the greater character in that position is
considered the greater string. One character is considered greater than another if it appears after the
other in the computer’s collation sequence. Usually this means that a B is greater than an A, but the
value of A compared to a, or compared to the number 1, will differ by operating system.

The collation comparison varies slightly depending on whether you are using CHAR or VARCHAR2
strings.

If two VARCHAR2 strings are identical up to the end of the shorter one, the longer string is considered
greater. If two strings are identical and the same length, they are considered equal.

With CHAR strings, the shorter string is padded with blanks out to the length of the longer string.
If the strings are not identical after this padding, the comparison treats the padded blanks as less than
any other character, resulting in the same truth value as the VARCHAR2 comparison. If the strings are
identical after, but not before, the padding, the CHAR comparison would treat them as equal, whereas
the VARCHAR2 comparison would not.

In SQL it is important that literal numbers be typed without enclosing single quotes. '10' would be
considered smaller than '6', since the quotes will cause these to be regarded as character strings rather
than numbers, and the '6' will be seen as greater than the '1' in the first position of '10'.

COLLECT
SEE ALSO COLLECTION FUNCTIONS, CAST
FORMAT

COLLECT(column)

DESCRIPTION COLLECT takes the input column value and creates a nested table of the input type
out of the rows selected. To get the results of this function, you must use it within a CAST function.

COLLECTION FUNCTIONS
Collection functions operate on nested tables and varying arrays; see Chapter 34 for details. Collection
functions available include CARDINALITY, COLLECT, POWERMULTISET, POWERMULTISET_BY_
CARDINALITY, and SET.

COLSEP (SQL*Plus)
See SET.

COLUMN (Form 1—Definition)
A column is a subdivision of a table with a column name and a specific datatype. For example, in a table
of workers, all of the workers’ ages would constitute one column. See ROW.

COLUMN (Form 2—SQL*Plus)
SEE ALSO ALIAS, Chapter 6

COLUMN (Form 2—SQL*Plus) 1057

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1057

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:14:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

COL[UMN] {column | expression}
[ALI[AS] alias]
[CLE[AR] | DEF[AULT]]
[ENTMAP {ON|OFF}
[FOLD_A[FTER]
[FOLD_B[EFORE]
[FOR[MAT] format]
[HEA[DING] text

[JUS[TIFY] {L[EFT]|C[ENTER]| R[IGHT]}]]
[LIKE {expression | alias}]
[NEWL[INE]]
[NEW_V[ALUE] variable]
[NOPRI[NT]|PRI[NT]]
[NUL[L] text]
[OLD_V[ALUE] variable]
[ON | OFF]
[WRA[PPED]|WOR[D_WRAPPED]|TRU[NCATED]]...

DESCRIPTION COLUMN controls column and column heading formatting. The options are all
cumulative, and may be entered either simultaneously on a single line, or on separate lines at any time;
the only requirement is that the word COLUMN and the column or expression must appear on each
separate line. If one of the options is repeated, the most recent specified will be in effect. COLUMN by
itself displays all the current definitions for all columns. COLUMN with only a column or expression
will show that column’s current definition.

column or expression refers to a column or expression used in the select. If an expression is used,
the expression must be entered exactly the same way that it is in the select statement. If the expression
in the select is Amount * Rate, then entering Rate * Amount in a COLUMN command will not work.
If a column or expression is given an alias in the select statement, that alias must be used here.

If you select columns with the same name from different tables (in sequential selects), a COLUMN
command for that column name will apply to both. Avoid this by assigning the columns different aliases
in the select (not with the COLUMN command’s ALIAS clause), and entering a COLUMN command
for each column’s alias.

ALIAS gives this column a new name, which then may be used to reference the column in BREAK
and COLUMN commands.

CLEAR drops the column definition.
DEFAULT leaves the column defined and ON, but drops any other options.
ENTMAP allows entity mapping to be turned on or off for selected columns in HTML output.
FOLD_A[FTER] and FOLD_B[EFORE] instruct Oracle to fold a single row of output across multiple

rows when printed. You can choose to fold the row either before or after the column.
FORMAT specifies the display format of the column. The format must be a literal like A25 or 990.99.

Without FORMAT specified, the column width is the length as defined in the table.
A LONG column’s width defaults to the value of the SET LONG. Both regular CHAR and LONG

fields can have their width set by a format like FORMAT An, where n is an integer that is the column’s
new width.

A NUMBER column’s width defaults to the value of SET NUMWIDTH, but is changed by the width
in a FORMAT clause such as FORMAT 999,999.99. These options work with both SET NUMFORMAT
and the COLUMN FORMAT commands:

1058 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1058

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:14:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Format Result

, Displays a comma.

. Displays a period.

$99999 A dollar sign is placed in front of every number.

999990 Displays trailing zeroes, and a zero if the value is zero.

099999 Displays leading zeroes.

9999990 The count of nines and zeros determines the maximum digits that can be displayed.

999,999,999.99 Commas and decimals will be placed in the pattern shown.

B99999 The display will be blank if the value is zero.

C999 Displays the ISO currency symbol in this position.

99D99 Displays the decimal in the position indicated.

9.999EEEE The display will be in scientific notation (4 E’s are required).

9G999 Displays the group separator in the position shown.

L999 Displays the local currency symbol.

99999MI If the number is negative, a minus sign follows the number. The default is for the negative
sign to be on the left.

99999PR Negative numbers are displayed within < and >.

RN or rn Displays uppercase or lowercase Roman numerals. Values are 1 to 3999.

S9999 or 9999S Returns leading or trailing + for positive values, – for negative values.

TM Displays the data in the smallest number of decimal characters possible.

U999 Displays the Euro or other dual currency symbol in the specified position.

999V99 Multiplies number by 10n, where n is the number of digits to the right of V.

X Displays the hexadecimal value for the rounded value of the specified number of digits.

HEADING relabels a column heading. The default is the column name or the expression. If text
has blanks or punctuation characters, it must be in single quotes. The HEADSEP character (usually |) in
text makes SQL*Plus begin a new line. The COLUMN command will remember the current HEADSEP
character when the column is defined, and continue to use it for this column unless the column is
redefined, even if the HEADSEP character is changed.

JUSTIFY aligns the heading over the column. By default, this is RIGHT for number columns and
LEFT for anything else.

LIKE replicates the column definitions of a previously defined column for the current one, where
either the expression or label was used in the other column definition. Only those features of the other
column that have not been explicitly defined in the current column command are copied.

NEWLINE starts a new line before printing the column value.
NEW_VALUE names a variable to hold the column’s value for use in the TTITLE command.

See Chapter 6 for usage information.
NOPRINT and PRINT turn the column’s display off or on.
NULL sets text to be displayed if the column has a NULL value. The default for this is a string of

blanks as wide as the column is defined.
OFF or ON turns all these options for a column off or on without affecting its contents.

COLUMN (Form 2—SQL*Plus) 1059

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1059

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:14:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

OLD_VALUE names a variable to hold the column’s value for use in the BTITLE command.
WRAPPED, WORD_WRAPPED, and TRUNCATED control how SQL*Plus displays a heading or string

value too wide to fit the column. WRAP folds the value to the next line. WORD_WRAP folds similarly,
but breaks on words. TRUNCATED truncates the value to the width of the column definition.

COLUMN CONSTRAINT
A column constraint is an integrity constraint placed on a specific column of a table. See INTEGRITY
CONSTRAINT.

COMMENT
SEE ALSO DATA DICTIONARY VIEWS, Chapter 42
FORMAT

COMMENT ON
{ TABLE [schema .] { table | view | materialized view }
| COLUMN [schema .] { table . | view . | materialized view . } column
| OPERATOR [schema .] operator
| INDEXTYPE [schema .] indextype
}
IS 'text';

DESCRIPTION COMMENT inserts the comment text about an object or column into the data
dictionary.

You drop a comment from the database by setting it to an empty string (set text to ' ').

COMMIT
To commit means to make changes to data (inserts, updates, and deletes) permanent. Before changes
are stored, both the old and new data exist so that changes can be made, or so that the data can be
restored to its prior state (“rolled back”). When a user enters the Oracle SQL command COMMIT,
all changes from that transaction are made permanent.

COMMIT (Form 1—Embedded SQL)
SEE ALSO ROLLBACK, SAVEPOINT, SET TRANSACTION, Programmer’s Guide to the Oracle
Precompilers
FORMAT

EXEC SQL [AT { database| :host variable}] COMMIT [WORK]
[[COMMENT 'text'] [RELEASE]
| FORCE 'text' [, integer]]

DESCRIPTION You use COMMIT to commit work at various stages within a program. Without
the explicit use of COMMIT, an entire program’s work will be considered one transaction, and will not
be committed until the program terminates. Any locks obtained will be held until that time, blocking
other users from access. COMMIT should be used as often as logically feasible.

WORK is optional and has no effect on usage; it is provided for ANSI compatibility. AT references
a remote database accessed by the DECLARE DATABASE command. RELEASE disconnects you from
the database, whether remote or local. FORCE manually commits an in-doubt distributed transaction.

1060 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1060

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:14:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

COMMIT (Form 2—PL/SQL Statement)
SEE ALSO ROLLBACK, SAVEPOINT
FORMAT

COMMIT [WORK] [COMMENT 'text' | FORCE 'text' [, integer]];

DESCRIPTION COMMIT commits any changes made to the database since the last COMMIT was
executed implicitly or explicitly. WORK is optional and has no effect on usage.

COMMENT associates a text comment with the transaction. The comment can be viewed via the
data dictionary view DBA_2PC_PENDING in the event a distributed transaction fails to complete. FORCE
manually commits an in-doubt distributed transaction.

COMPOSE
SEE ALSO CONVERSION FUNCTIONS, Chapter 11
FORMAT

COMPOSE(string)

DESCRIPTION COMPOSE takes as its argument a string in any datatype, and returns a Unicode
string in its fully normalized form in the same character set as the input.
EXAMPLE To display an o with an umlaut:

select COMPOSE ('o' || UNISTR('\0308')) from DUAL;

C
-
ö

COMPOSITE KEY
A composite key is a primary or foreign key composed of two or more columns.

COMPOSITE PARTITION
A composite partition involves the use of multiple partition methods, such as a range-partitioned table
in which the range partitions are then hash-partitioned. See Chapter 17.

COMPRESSED INDEX
A compressed index is an index for which only enough index information is stored to identify unique index
entries; information that an index stores with the previous or following key is “compressed” (truncated) and
not stored to reduce the storage overhead required by an index. See also NONCOMPRESSED INDEX.

COMPUTE (SQL*Plus)
SEE ALSO BREAK, AGGREGATE FUNCTIONS
FORMAT

COMP[UTE][AVG|COU[NT]|MAX[IMUM]|MIN[IMUM]|NUM[BER]|STD|SUM|VAR[IANCE]]...
[function LABEL label_name
OF {expression | column | alias} ...
ON {expression | column | alias | REPORT | ROW}...]

COMPUTE (SQL*Plus) 1061

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1061

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:14:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION expression is a column or expression. COMPUTE performs computations on columns
or expressions selected from a table. It works only with the BREAK command.

By default, Oracle will use the function name (SUM, AVG, etc.) as the label for the result in the query
output. LABEL allows you to specify a label_name that overrides the default value.

OF names the column or expression whose value is to be computed. These columns also must be
in the select clause, or the COMPUTE will be ignored.

ON coordinates the COMPUTE with the BREAK command. COMPUTE prints the computed value
and restarts the computation when the ON expression’s value changes, or when a specified ROW or
REPORT break occurs. See BREAK for coordination details.

COMPUTE by itself displays the computes in effect.
AVG, MAXIMUM, MINIMUM, STD, SUM, and VARIANCE all work on expressions that are numbers.

MAXIMUM and MINIMUM also work on character expressions, but not DATEs. COUNT and NUMBER
work on any expression type.

All of these computes, except NUMBER, ignore rows with NULL values:

AVG Gives average value

COUNT Gives count of non-NULL values

MAXIMUM Gives maximum value

MINIMUM Gives minimum value

NUMBER Gives count of all rows returned

STD Gives standard deviation

SUM Gives sum of non-NULL values

VARIANCE Gives variance

Successive computes are simply put in order without commas, as in this case:

compute sum avg max of Amount Rate on report

This will compute the sum, average, and maximum of both Amount and Rate for the entire report.
EXAMPLE To calculate for each Item classification and for the entire report, enter this:

break on Report on Industry skip 1
compute sum of Volume on Industry Report

CONCAT
See SET, ||.

CONCATENATED INDEX (or KEY)
A concatenated index is an index that is created on more than one column of a table. It can be used
to guarantee that those columns are unique for every row in the table and to speed access to rows via
those columns. See COMPOSITE KEY.

CONCURRENCY
Concurrency is a general term that means the access of the same data by multiple users. In database
software, concurrency requires complex software programming to ensure that all users see correct data
and that all changes are made in the proper order.

1062 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1062

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:14:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CONDITION
A condition is an expression whose value evaluates to either TRUE or FALSE, such as Age > 65.

CONNECT (Form 1—SQL*Plus))
SEE ALSO COMMIT, DISCONNECT, Chapter 23
FORMAT

CON[NECT] [{user[/password] [@connect_identifier] |/} [AS SYSOPER|SYSDBA}]];

DESCRIPTION You must be in SQL*Plus to use this command, although you don’t need to be
logged onto Oracle (see DISCONNECT). CONNECT commits any pending changes, logs you off of
Oracle, and logs on as the specified user. If the password is absent, you are prompted for it. It is not
displayed when you type it in response to a prompt.

@connect_identifier connects to the named database. It may be on your host, or on another computer
connected via Oracle Net.

CONNECT (Form 2—Embedded SQL)
SEE ALSO COMMIT, DECLARE DATABASE, Chapter 23
FORMAT

EXEC SQL CONNECT
{ :user IDENTIFIED BY :password | :user_password }

[AT { database | :host_variable}]
[USING :connect_string]
[ALTER AUTHORIZATION :new_password
| IN {SYSDBA | SYSOPER } MODE]

DESCRIPTION CONNECT connects a host program to a local or remote database. It may be used
more than once to connect to multiple databases. :user_password is a host variable that contains the
Oracle username and password separated by a slash (/). Alternatively, :user and :password can be entered
separately by using the second format.

AT is used to name a database other than the default for this user. It is a required clause to reach
any databases other than the user’s default database. This name can be used later in other SQL statements
with AT. This database must be first identified with DECLARE DATABASE. USING specifies an optional
Oracle Net string (such as a service name) used during the CONNECT operation. Without the USING
string, you will be connected to the user’s default database, regardless of the database named in the
AT line.

CONNECT BY
SEE ALSO Chapter 14
FORMAT

SELECT expression [,expression]...
FROM [user.]table

WHERE condition
CONNECT BY [PRIOR] expression = [PRIOR] expression
START WITH expression = expression
ORDER BY expression

CONNECT BY 1063

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1063

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:14:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION CONNECT BY is an operator used in a SELECT statement to create reports on
inheritance in tree-structured data, such as company organization, family trees, and so on. START
WITH tells where in the tree to begin. These are the rules:

■ The position of PRIOR with respect to the CONNECT BY expressions determines which
expression identifies the root and which identifies the branches of the tree.

■ A WHERE clause will eliminate individuals from the tree, but not their descendants (or ancestors,
depending on the location of PRIOR).

■ A qualification in the CONNECT BY (particularly a not equal sign instead of the equal sign)
will eliminate both an individual and all of its descendants.

■ CONNECT BY cannot be used with a table join in the WHERE clause.

EXAMPLE

select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,
Sex, Birthdate

from BREEDING
connect by Offspring = PRIOR Cow
start with Offspring = 'DELLA'
order by Birthdate;

In this example, the following clause:

connect by Offspring = PRIOR Cow

means the offspring is the cow PRIOR to this one.

CONSTRAINT
A constraint is a rule or restriction concerning a piece of data (such as a NOT NULL restriction on a
column) that is enforced at the data level rather than at the object or application level. See INTEGRITY
CONSTRAINT.

CONSTRAINTS
SEE ALSO CREATE TABLE, INTEGRITY CONSTRAINT, Chapter 17
FORMAT
constraint::=

1064 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1064

inline_constraint

out_of_line_constraint

inline_ref_constraint

out_of_line_ref_constraint

P:\010Comp\Oracle8\351-7\Part9A.vp
Friday, August 13, 2004 3:14:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

inline_constraint::=

out_of_line_constraint::=

inline_ref_constraint::=

out_of_line_ref_constraint

CONSTRAINTS 1065

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1065

CONSTRAINT constraint_name

NOT
NULL

UNIQUE

PRIMARY KEY

references_clause

CHECK (condition)

constraint_state

CONSTRAINT constraint_name

UNIQUE (column

,

)

PRIMARY KEY (column

,

)

FOREIGN KEY (column

,

) references_clause

CHECK (condition)

constraint_state

SCOPE IS
schema .

scope_table

WITH ROWID

CONSTRAINT constraint_name
references_clause

constraint_state

SCOPE FOR (
ref_col

ref_attr
) IS

schema .
scope_table

REF (
ref_col

ref_attr
) WITH ROWID

CONSTRAINT constraint_name
FOREIGN KEY (

ref_col

ref_attr
) references_clause

constraint_state

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:25:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

references_clause::=

constraint_state::=

using_index_clause::=

index_properties::=

1066 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1066

NOT
DEFERRABLE

INITIALLY
IMMEDIATE

DEFERRED

ENABLE

DISABLE

VALIDATE

NOVALIDATE

RELY

NORELY

using_index_clause

exceptions_clause

USING INDEX

schema .
index

(create_index_statement)

index_properties

global_partitioned_index

local_partitioned_index

index_attributes

domain_index_clause

REFERENCES
schema .

object
(column)

ON DELETE
CASCADE

SET NULL

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:25:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

index_attributes::=

exceptions_clause::=

DESCRIPTION Constraints are defined with the RELATIONAL_PROPERTIES clause of the CREATE
TABLE and ALTER TABLE commands. You use the constraints clauses to create a constraint or to alter
an existing constraint. You can enable and disable constraints. If you disable a constraint and then try
to re-enable it, Oracle will check the data. If the constraint cannot be re-enabled, Oracle can write the
exceptions out to a separate table for review.

For PRIMARY KEY and UNIQUE constraints, Oracle creates indexes. As part of the constraint clause for
those constraints, you can use the USING INDEX clause to specify the tablespace and storage for the index.

CONTAINS
CONTAINS is used to evaluate text searches that use CONTEXT indexes within Oracle Text. See
Chapter 25. Supported text search operators for CONTAINS are shown in the following table:

Operator Description

OR Returns a record if either search term has a score that exceeds the threshold.

| Same as OR.

AND Returns a record if both search terms have a score that exceeds the threshold.

& Same as AND.

ACCUM Returns a record if the sum of the search terms’ scores exceeds the threshold.

, Same as ACCUM.

CONTAINS 1067

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1067

EXCEPTIONS INTO
schema .

table

physical_attributes_clause

logging_clause

ONLINE

COMPUTE STATISTICS

TABLESPACE
tablespace

DEFAULT

key_compression

SORT

NOSORT

REVERSE

parallel_clause

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:25:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Operator Description

MINUS Returns a record if the score of the first search minus the score of the second search exceeds
the threshold.

- Same as MINUS.

* Assigns different weights to the score of the searches.

NEAR The score will be based on how near the search terms are to each other in the searched text.

; Same as NEAR.

{} Encloses reserved words such as AND if they are part of the search term.

% Multiple-character wildcard.

_ Single-character wildcard.

$ Performs stem expansion of the search term prior to performing the search.

? Performs a fuzzy match (allowing for misspellings) of the search term prior to performing
the search.

! Performs a SOUNDEX (phonetic) search.

() Specifies the order in which search criteria are evaluated.

CONTEXT AREA
A context area is work area in memory where Oracle stores the current SQL statement and, if the statement
is a query, one row of the result. The context area holds the state of a cursor.

CONTEXT INDEX
Oracle Text supports three types of text indexes: CONTEXT indexes, CTXCAT indexes, and CTXRULE
indexes. CONTEXT indexes use the CONTAINS operator and support a wider array of text search
capabilities. CTXCAT indexes support a narrower set of search operators but support the creation of
index sets. CTXRULE indexes are indexes on columns that contain a set of text queries. See Chapter 25
for details.

CONTROL FILE (DATABASE)
A control file is a small administrative file that is required by every database to enable the database to
start and run a database system. Multiple identical control files are created for redundancy.

CONTROL FILE (SQL*LOADER)
A SQL*Loader control file tells the SQL*Loader executable where to find the data to be loaded, and
how to process the data during the load. Every SQL*Loader session has an associated control file.
For control file syntax, see SQLLDR. For details on the use of SQL*Loader, see Chapter 21.

CONVERSION FUNCTIONS
SEE ALSO CHARACTER FUNCTIONS, NUMBER FUNCTIONS, AGGREGATE FUNCTIONS,
Chapter 11
DESCRIPTION The following is an alphabetical list of all current conversion and transformation
functions in Oracle version of SQL.

1068 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1068

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:25:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Function Name Definition

ASCIISTR Translates a string in any character set and returns an ASCII string in the database
character set.

BIN_TO_NUM Converts a binary value to its numerical equivalent.

CAST CASTs one built-in or collection type to another; commonly used with nested tables
and varying arrays.

CHARTOROWID Changes a character string to act like an internal Oracle row identifier, or ROWID.

COMPOSE Translates a string in any datatype to a Unicode string in its fully normalized form in the
same character set as the input.

CONVERT CONVERTs a character string from one national language character set to another.

DECOMPOSE Translates a string in any datatype to a Unicode string after canonical decomposition in
the same character set as the input.

HEXTORAW Changes a character string of hex numbers into binary.

NUMTODSINTERVAL Converts a NUMBER to an INTERVAL DAY TO SECOND literal.

NUMTOYMINTERVAL Converts a NUMBER to an INTERVAL YEAR TO MONTH literal.

RAWTOHEX Changes a string of binary numbers to a character string of hex numbers.

RAWTONHEX Converts RAW to an NVARCHAR2 character value containing its hexadecimal
equivalent.

ROWIDTOCHAR Changes an internal Oracle row identifier, or ROWID, to a character string.

ROWIDTONCHAR Converts a ROWID value to an NVARCHAR2 datatype.

SCN_TO_TIMESTAMP Converts a system change number to an approximate timestamp.

TIMESTAMP_TO_SCN Converts a timestamp to an approximate system change number.

TO_BINARY_DOUBLE Returns a double-precision floating-point number.

TO_BINARY_FLOAT Returns a single-precision floating-point number.

TO_CHAR Converts a NUMBER or DATE to a character string.

TO_CLOB Converts NCLOB values in a LOB column or other character strings to CLOB values.

TO_DATE Converts a NUMBER, CHAR, or VARCHAR2 to a DATE (an Oracle datatype).

TO_DSINTERVAL Converts a character string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 datatype
to an INTERVAL DAY TO SECOND type.

TO_LOB Converts a LONG to a LOB as part of an INSERT AS SELECT.

TO_MULTI_BYTE Converts the single-byte characters in a character string to multibyte characters.

TO_NCHAR Converts a character string, NUMBER, or DATE from the database character set to the
national character set.

TO_NCLOB Converts CLOB values in a LOB column or other character strings to NCLOB values.

TO_NUMBER Converts a CHAR or VARCHAR2 to a number.

TO_SINGLE_BYTE Converts the multibyte characters in a CHAR or VARCHAR2 to single bytes.

TO_TIMESTAMP Converts a character string to a value of TIMESTAMP datatype.

CONVERSION FUNCTIONS 1069

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1069

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:25:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Function Name Definition

TO_TIMESTAMP_TZ Converts a character string to a value of TIMESTAMP WITH TIME ZONE datatype.

TO_YMINTERVAL Converts a character string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2 datatype
to an INTERVAL YEAR TO MONTH type.

TRANSLATE…USING TRANSLATEs characters in a string into different characters.

UNISTR Converts a string into Unicode in the database Unicode character set.

CONVERT
SEE ALSO CONVERSION FUNCTIONS
FORMAT

CONVERT(string,[destination_set,[source_set]])

DESCRIPTION CONVERT is used to convert the characters in string from one standard bit
representation to another, such as from US7ASCII (the default if either set isn’t entered) to WE8DEC.
This is typically done when data entered into a column on one computer contains characters that can’t
be properly displayed or printed on another computer. CONVERT allows a reasonable translation of
one standard to the other in most cases. The most common sets include:

F7DEC DEC’s 7-bit ASCII set for France

US7ASCII Standard U.S. 7-bit ASCII set

WE8DEC DEC’s 8-bit ASCII set for Western Europe

WE8HP HP’s 8-bit ASCII set for Western Europe

WE8ISO8859P1 ISO 8859-1 Western Europe 8-bit character set

WE8EBCDIC500
WE8PC850

IBM West European EBCDIC Code Page 500
IBM PC Code Page 850

COPY (SQL*Plus)

NOTE
The SQL*Plus COPY command is not being enhanced to handle
datatypes or features introduced with, or after, Oracle8i. The COPY
command is likely to be made obsolete in a future release.

SEE ALSO CREATE DATABASE LINK, Chapter 23
FORMAT

COPY [FROM user/password@database]
[TO user/password@database]
{APPEND | CREATE | INSERT | REPLACE}
table [(column [,column]...)]
USING query

1070 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1070

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:25:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION COPY copies FROM a table TO a table in another computer using Oracle Net.
FROM is the username, password, and database of the source table, and TO is the destination table.
Either FROM or TO may be omitted, in which case the user’s default database will be used for the
missing clause. The source and destination databases must not be the same, so only one of the FROM
and TO clauses may be absent.

APPEND adds to the destination table; if the table does not exist, it is created. CREATE requires
that the destination table be created; if it already exists, a 'table already exists' error occurs. INSERT
adds to the destination table; if the table does not exist, a 'table does not exist' error occurs. REPLACE
drops the data in the destination table and replaces it with the data from the source table; if the table
does not exist, it is created.

table is the name of the destination table. column is the name(s) of the column(s) in the destination
table. If named, the number of columns must be the same as in the query. If no columns are named,
the copied columns will have the same names in the destination table as they had in the source table.
query identifies the source table and determines which rows and columns will be copied from it.

SET LONG (see SET) determines the length of a long field that can be copied. LONG columns with
data longer than the value of LONG will be truncated. SET COPYCOMMIT determines how many sets
of rows get copied before a commit. SET ARRAYSIZE determines how many rows are in a set.
EXAMPLE This example copies BOOKSHELF_CHECKOUT from the EDMESTON database to the
database the local SQL*Plus user is connected to. The table LOCAL_CHECKOUT is created by the copy.
The columns may be renamed at the destination. Note the use of the dash (-) at the end of each line.
This is required. The command does not end with a semicolon (since it is a SQL*Plus command, not
a SQL command). See the SET command for options related to the COPY command.

copy from PRACTICE/PRACTICE@EDMESTON -
create LOCAL_CHECKOUT (Borrower, Title) -
using select Name, Title -

from BOOKSHELF_CHECKOUT

COPYCOMMIT (SQL*Plus)
See SET and COPY.

COPYTYPECHECK (SQL*Plus)
See SET and COPY.

CORR
SEE ALSO AGGREGATE FUNCTIONS
FORMAT

CORR (expr1 , expr2) [OVER (analytic_clause)]

DESCRIPTION CORR returns the coefficient of correlation of a set of number pairs. Both expr1
and expr2 are number expressions. Oracle applies the function to the set of (expr1, expr2) after eliminating
the pairs for which either expr1 or expr2 is NULL. Then Oracle makes the following computation:

COVAR_POP(expr1, expr2) / (STDDEV_POP(expr1) * STDDEV_POP(expr2))

The function returns a value of type NUMBER. If the function is applied to an empty set, it
returns NULL.

CORR 1071

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1071

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:25:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CORR
SEE ALSO CORR_K and CORR_S
FORMAT

CORR (expr1, expr2) OVER (analytic clause)

DESCRIPTION CORR returns the coefficient of correlation on a set of number pairs. CORR can
be used as an aggregate or analytic function.

CORR_K and CORR_S
SEE ALSO CORR
FORMAT

{CORR_K | CORR_S }
(expr1, expr2 [, { COEFFICIENT |ONE_SIDED_SIG|TWO_SIDED_SIG}])

DESCRIPTION The CORR_K and CORR_S functions support nonparametric or rank correlations.
Correlation coefficients take a value ranging from 1 to –1 where 1 indicates a perfect relationship and
–1 a perfect inverse relationship. The arguments must either be numeric or implicitly converted to a
numeric datatype. ONE_SIDED_SIG is for one-tailed significance of the correlation, TWO_SIDED_SIG
is for two-tailed significance.

CORRELATED QUERY
A correlated query is a subquery that is executed repeatedly, once for each value of a candidate row
selected by the main query. The outcome of each execution of the subquery depends on the values of
one or more fields in the candidate row; that is, the subquery is correlated with the main query. See
Chapter 13.

COS
SEE ALSO ACOS, ASIN, ATAN, ATAN2, COSH, EXP, LN, LOG, SIN, SINH, TAN, TANH
FORMAT

COS(value)

DESCRIPTION COS returns the cosine of a value, an angle expressed in radians. You can convert
a degree angle into radians by multiplying it by pi/180.

COSH
SEE ALSO ACOS, ASIN, ATAN, ATAN2, COS, EXP, LN, LOG, SIN, SINH, TAN, TANH
FORMAT

COSH(value)

DESCRIPTION COSH returns the hyperbolic cosine of a value.

1072 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1072

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:25:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

COUNT
SEE ALSO AGGREGATE FUNCTIONS, Chapters 9 and 12
FORMAT

COUNT ({ * | [DISTINCT | ALL] expr }) [OVER (analytic_clause)]

DESCRIPTION COUNT counts the number of rows in which expression is non-NULL, which is
then returned by the query. With DISTINCT, COUNT counts only the distinct non-NULL rows. With *,
COUNT counts all rows, whether NULL or not.

COVAR_POP
SEE ALSO AGGREGATE FUNCTIONS
FORMAT

COVAR_POP (expr1 , expr2) [OVER (analytic_clause)]

DESCRIPTION COVAR_POP returns the population covariance of a set of number pairs. You can
use it as an aggregate or analytic function.

Both expr1 and expr2 are number expressions. Oracle applies the function to the set of (expr1, expr2)
pairs after eliminating all pairs for which either expr1 or expr2 is NULL. Then Oracle makes the following
computation:

(SUM(expr1 * expr2) - SUM(expr2) * SUM(expr1) / n) / n

where n is the number of (expr1, expr2) pairs where neither expr1 nor expr2 is NULL.

COVAR_SAMP
SEE ALSO AGGREGATE FUNCTIONS
FORMAT

COVAR_POP (expr1 , expr2) [OVER (analytic_clause)]

DESCRIPTION COVAR_SAMP returns the sample covariance of a set of number pairs. You can
use it as an aggregate or analytic function.

Both expr1 and expr2 are number expressions. Oracle applies the function to the set of (expr1, expr2)
pairs after eliminating all pairs for which either expr1 or expr2 is NULL. Then Oracle makes the following
computation:

(SUM(expr1 * expr2) - SUM(expr1) * SUM(expr2) / n) / (n-1)

where n is the number of (expr1, expr2) pairs where neither expr1 nor expr2 is NULL.

CREATE CLUSTER
SEE ALSO CREATE INDEX, CREATE TABLE, Chapter 17

CREATE CLUSTER 1073

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1073

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:25:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT
create_cluster::=

physical_attributes_clause::=

size_clause::=

parallel_clause::=

1074 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1074

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

integer

K

M

G

T

NOPARALLEL

PARALLEL
integer

CREATE CLUSTER
schema .

cluster (column datatype
SORT

,

)

physical_attributes_clause

SIZE size_clause

TABLESPACE tablespace

INDEX

SINGLE TABLE
HASHKEYS integer

HASH IS expr

parallel_clause

N0ROWDEPENDENCIES

ROWDEPENDENCIES

CACHE

N0CACHE
;

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:25:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION CREATE CLUSTER creates a cluster for one or more tables. Tables are added to the
cluster using CREATE TABLE with the CLUSTER clause. CREATE CLUSTER requires at least one cluster
column from each of the tables. These must have the same datatype and size, but are not required to
have the same name. For the tables in a cluster, rows with the same cluster column values are kept
together on disk in the same area, the same logical block(s). This can improve performance when the
cluster columns are the columns by which the tables are usually joined.

Each distinct value in each cluster column is stored only once, regardless of whether it occurs once
or many times in the tables and rows. This typically can reduce the amount of disk space needed to
store the tables, but each table continues to appear as if it contains all of its own data. Tables with LONG
columns cannot be clustered.

cluster is the name created for the cluster. column and datatype follow the method of CREATE TABLE,
except that NULL and NOT NULL cannot be specified. However, in the actual CREATE TABLE statement,
at least one cluster column in a cluster must be NOT NULL. SIZE sets the size in bytes for a logical
block (not a physical block). SPACE is the cluster’s initial disk allocation, as used in CREATE TABLE.

SIZE should be the average amount of space needed to store all the rows from all the clustered
tables that are associated with a single cluster key. A small SIZE value may increase the time needed
to access tables in the cluster, but can reduce disk space usage. SIZE should be a proper divisor of the
physical block size. If not, Oracle will use the next larger divisor. If SIZE exceeds the physical block
size, Oracle will use the physical block size instead.

By default, the cluster is indexed, and you must create an index on the cluster key before putting
any data in the cluster. If you specify the hash cluster form, however, you don’t need to (and can’t)
create an index on the cluster key. Instead, Oracle uses a hash function to store the rows of the table.

You can create your own hash value as a column of the table and use that for hashing with the HASH
IS clause to tell Oracle to use that column as the hash value. Otherwise, Oracle uses an internal hash
function based on the columns of the cluster key. The HASHKEYS clause actually creates the hash cluster
and specifies the number of hash values, rounded to the nearest prime number. The minimum value is 2.

See STORAGE for details on the common storage clause parameters.

CREATE CONTEXT
SEE ALSO ALTER CONTEXT
FORMAT

CREATE [OR REPLACE] CONTEXT namespace USING [schema .] package
[INITIALIZED { EXTERNALLY | GLOBALLY }
| ACCESSED GLOBALLY] ;

DESCRIPTION A context is a set of attributes used to secure an application. CREATE CONTEXT
creates a namespace for a context and associates the namespace with the externally created package
that sets the context. To create a context namespace, you must have the CREATE ANY CONTEXT system
privilege.

CREATE CONTROLFILE
SEE ALSO ALTER DATABASE, CREATE DATABASE

CREATE CONTROLFILE 1075

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1075

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:25:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT
create_controlfile::=

logfile_clause::=

character_set_clause::=

DESCRIPTION You can use the CREATE CONTROLFILE command to re-create a control file if
you have lost your current control file to media failure, if you want to change the name of your database,
or if you want to change one of the options for the redo log file or a datafile. In general, this command
should be used only by experienced database administrators.

NOTE
Perform a full offline backup of all of your database files before using
this command.

1076 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1076

LOGFILE
GROUP integer

file_specification

,

CHARACTER SET character_set

CREATE CONTROLFILE
REUSE SET

DATABASE database

logfile_clause RESETL0GS

NORESETL0GS

DATAFILE file_specification

,

MAXLOGFILES integer

MAXLOGMEMBERS integer

MAXLOGHISTORY integer

MAXDATAFILES integer

MAXINSTANCES integer

ARCHIVELOG

NOARCHIVELOG

FORCE LOGGING character_set_clause
;

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:25:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The REUSE option lets existing control files be reused. If you specify the name of an existing control
file but do not use the REUSE option, the command will return an error. The SET option changes the
name of the database, specified by the DATABASE clause. The LOGFILE clause specifies the redo log
file groups, all of which must exist. The RESETLOGS versus NORESETLOGS clause tells Oracle to reset
the current logs or not. The DATAFILE line specifies the datafiles for the database, all of which must exist.

The MAXLOGFILES option specifies the maximum number of redo log file groups that can be
created. The MAXLOGMEMBERS option specifies the number of copies for a redo log group. The
MAXLOGHISTORY option specifies the number of archived redo log file groups for Real Application
Clusters. The MAXDATAFILES option specifies the maximum number of datafiles that can ever be
created for the database. The MAXINSTANCES option gives the maximum number of Oracle instances
that can mount and open the database. The ARCHIVELOG and NOARCHIVELOG options turn archiving
of the redo log files on and off, respectively.

The CREATE CONTROLFILE command needed for an existing database can be generated via the
ALTER DATABASE BACKUP CONTROLFILE TO TRACE command.

As of Oracle Database 10g, you can specify Automatic Storage Management files as well as file
system files.

CREATE DATABASE
SEE ALSO ALTER DATABASE, CREATE CONTROLFILE, CREATE ROLLBACK SEGMENT, CREATE
TABLESPACE, SHUTDOWN, STARTUP, Chapters 2 and 46
FORMAT
create_database::=

CREATE DATABASE 1077

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1077

CREATE DATABASE
database

USER SYS IDENTIFIED BY password

USER SYSTEM IDENTIFIED BY password

CONTROLFILE REUSE

MAXDATAFILES integer

MAXINSTANCES integer

CHARACTER SET charset

NATIONAL CHARACTER SET charset

SET DEFAULT
BIGFILE

SMALLFILE
TABLESPACE

database_logging_clauses

tablespace_clauses

set_time_zone_clause

;

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:25:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

database_logging_clauses::=

tablespace_clauses::=

default_tablespace::=

default_temp_tablespace::=

1078 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1078

EXTENT MANAGEMENT LOCAL

DATAFILE file_specification

,

SYSAUX DATAFILE file_specification

,

default_tablespace

default_temp_tablespace

undo_tablespace

DEFAULT TABLESPACE tablespace
DATAFILE datafile_tempfile_spec

extent_management_clause

BIGFILE

SMALLFILE
DEFAULT TEMPORARY TABLESPACE tablespace

TEMPFILE file_specification

,

extent_management_clause

LOGFILE
GROUP integer

file_specification

,

MAXLOGFILES integer

MAXLOGMEMBERS integer

MAXLOGHISTORY integer

ARCHIVELOG

NOARCHIVELOG

FORCE LOGGING

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:25:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

extent_management_clause::=

size_clause::=

undo_tablespace::=

set_time_zone_clause::=

DESCRIPTION database is the database name, and must have eight characters or fewer. DB_NAME
in init.ora contains the default database name. In general, this command should be used only by
experienced database administrators.

NOTE
Using this command in an existing database will erase the specified
datafiles.

file_definition defines the redo log file and datafile names and sizes.

'file' [SIZE integer [K | M] [REUSE]

SIZE is the number of bytes set aside for this file. Suffixing this with K multiplies the value by 1024;
M multiplies it by 1048576 (G and T are also supported). REUSE (without SIZE) means destroy the contents

CREATE DATABASE 1079

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1079

integer

K

M

G

T

BIGFILE

SMALL
UNDO TABLESPACE tablespace

DATAFILE file_specification

,

SET TIME_ZONE = ’

+

–
hh : mi

time_zone_region

’

EXTENT MANAGEMENT

DICTIONARY

LOCAL

AUTOALLOCATE

UNIFORM
SIZE size_clause

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:25:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

of any file by this name and associate the name with this database. REUSE with SIZE creates the file
if it doesn’t exist, and checks its size if it does exist. CONTROLFILE REUSE overwrites the existing
control files defined by the CONTROL_FILES parameter in the initialization parameter file.

LOGFILE names the files to be used as redo log files. If this parameter is not used, Oracle creates two
by default. MAXLOGFILES overrides the LOG_FILES initialization parameter, and defines the maximum
number of redo log files that can ever be created for this database. This number cannot be increased later
except by re-creating the control file. The minimum number for files is two. A high number only makes a
somewhat larger control file.

DATAFILE names the files to be used for the database itself. MAXDATAFILES sets the absolute upper
limit for files that can be created for this database, and overrides the DB_FILES initialization parameter.
A high number only makes a somewhat larger control file.

As of Oracle Database 10g, you can specify Automatic Storage Management files as well as file
system files. When the AUTOEXTEND option is turned ON for a datafile, the datafile will dynamically
extend as needed in increments of NEXT size, to a maximum of MAXSIZE (or UNLIMITED).

MAXINSTANCES overrides the INSTANCES parameter in init.ora and sets the maximum number
of simultaneous instances that can mount and open this database.

ARCHIVELOG and NOARCHIVELOG define the way redo log files are used when the database
is first created. NOARCHIVELOG is the default, and means that redo log files will get reused without
saving their contents elsewhere. This provides instance recovery but will not recover from a media
failure, such as a disk crash. ARCHIVELOG forces redo log files to be archived (usually to another disk
or a tape), so that you can recover from a media failure. This mode also supports instance recovery.
This parameter can be reset by ALTER DATABASE.

The MAXLOGMEMBERS option specifies the maximum number of copies of a redo log file group.
The MAXLOGHISTORY option specifies the maximum number of archived redo log files, useful only
for the Real Application Clusters when you are archiving redo log files. The CHARACTER SET option
specifies the character set used to store data, which depends on the operating system.

For more automated handling of undo (rollback) segments, you can specify the UNDO TABLESPACE
clause to allocate a tablespace specifically to hold undo data. The database must be started in Automatic
Undo Management (AUM) mode.

You can use the DEFAULT TEMPORARY TABLESPACE clause to designate a non-SYSTEM tablespace
as the default temporary tablespace for all new users created in the database.

As of Oracle Database 10g, you can use the CREATE DATABASE command to do the following:

■ Create a default permanent tablespace for the database

■ Specify datafiles for the SYSAUX tablespace

■ Specify a bigfile tablespace as the default for the database

■ Override the default for the undo and default temporary tablespaces

CREATE DATABASE LINK
SEE ALSO CREATE SYNONYM, SELECT, Chapter 23
FORMAT

CREATE [SHARED] [PUBLIC] DATABASE LINK dblink
[CONNECT TO { CURRENT_USER | user IDENTIFIED BY password
[AUTHENTICATED BY user IDENTIFIED BY password] }
| AUTHENTICATED BY user IDENTIFIED BY password]
[USING 'connect_string'];

1080 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1080

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:25:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION dblink is the name given to the link. connect_string is the definition of the remote
database that can be accessed through Oracle Net and defines the link between a local database and a
username on a remote database. PUBLIC links can be created only by a user with the CREATE PUBLIC
DATABASE LINK system privilege, but are then available to all users except those who have created a
private link with the same name. If PUBLIC isn’t specified, the link is only available to the user who
executed the CREATE DATABASE LINK statement. connect_string is the Oracle Net service name for
the remote database.

Remote tables can be accessed just like local tables, except that the table name must be suffixed
by @link in the FROM clause of the SELECT statement. Most systems set the maximum number of
simultaneous links to four. The DBA can increase this number with the OPEN_LINKS parameter in init.ora.

Tree-structured queries are limited. They may not use the PRIOR operator except in the CONNECT
BY clause. START WITH cannot contain a subquery. CONNECT BY and START WITH cannot use the
function USERENV('ENTRYID'), or the pseudo-column RowNum.

To create a database link, you must have CREATE DATABASE LINK privilege in the local database,
and the CREATE SESSION privilege in a remote database. To create a public database link, you must
have the CREATE PUBLIC DATABASE LINK system privilege.

If you use the CONNECT TO CURRENT_USER clause, the link will attempt to open a connection
in the remote database by using your current username and password. You therefore need to coordinate
any password changes you make between the local database and the remote database, or else database
links may stop working.

If you use the shared server architecture, you can create SHARED database links that eliminate
the need for many separate dedicated connections via links. When you create a SHARED link, you
must supply a valid username and password in the remote database to use as an authentication for
the connection.
EXAMPLES The following defines a link named EDMESTON_BOOKS that connects to the Practice
username in the EDMESTON database:

create database link EDMESTON_BOOKS
connect to Practice identified by Practice
using 'EDMESTON';

You now can query Practice’s tables like this:

select Title, Publisher
from BOOKSHELF@EDMESTON_BOOKS;

A synonym could also be created to hide the remoteness of the tables:

create synonym BOOKSHELF for BOOKSHELF@EDMESTON_BOOKS;

CREATE DIMENSION
SEE ALSO ALTER DIMENSION, DROP DIMENSION, Chapter 24
FORMAT
create_dimension::=

CREATE DIMENSION 1081

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1081

CREATE DIMENSION
schema .

dimension level_clause

hierarchy_clause

attribute_clause

extended_attribute_clause

;

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:25:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

level_clause::=

hierarchy_clause::=

dimension_join_clause::=

attribute_clause::=

extended_attribute_clause::=

DESCRIPTION CREATE DIMENSION creates hierarchies among related columns in tables, for
use by the optimizer. The optimizer uses dimension values when determining whether a materialized
view will return the same data as its base table. To create a dimension, you must have CREATE
DIMENSION privilege; to create a dimension in another user’s schema, you must have the CREATE
ANY DIMENSION privilege.

LEVEL defines the level within the dimension. HIERARCHY defines the relationships among the
levels. ATTRIBUTE assigns specific attributes to levels within the dimension. JOIN_KEY defines the
join clauses between the levels.

As of Oracle Database 10g, you can assign a name to a dimension attribute that is different from
the level name.
EXAMPLES Consider a geography dimension. Continents are divided into countries, so there is
a hierarchy between country data and continent data. For a table named COUNTRY, with columns
Country and Continent, and a second table named CONTINENT, with a column named Continent:

1082 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1082

HIERARCHY hierarchy (child_level CHILD OF parent_level
dimension_join_clause

)

JOIN KEY

child_key_column

(child_key_column

,

)

REFERENCES parent_level

ATTRIBUTE level DETERMINES

dependent_column

(dependent_column

,

)

ATTRIBUTE attribute LEVEL level DETERMINES

dependent_column

(dependent_column

,

)

LEVEL level IS

level_table . level_column

(level_table . level_column

,

)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:25:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

create table CONTINENT (
Continent VARCHAR2(30));

create table COUNTRY (
Country VARCHAR2(30) not null,
Continent VARCHAR2(30));

create dimension GEOGRAPHY
level COUNTRY_ID is COUNTRY.Country
level CONTINENT_ID is CONTINENT.Continent
hierarchy COUNTRY_ROLLUP (

COUNTRY_ID child of
CONTINENT_ID

join key COUNTRY.Continent references CONTINENT_ID);

CREATE DIRECTORY
SEE ALSO BFILE, Chapters 22, 26, and 35
FORMAT

CREATE [OR REPLACE] DIRECTORY directory AS 'path_name';

DESCRIPTION Within Oracle, a “directory” is an alias for an operating system directory. You
must create a directory prior to accessing BFILE datatype values or external tables. See Chapter 26 for
details on the creation and management of external tables.

CREATE DISKGROUP
SEE ALSO ALTER DISKGROUP, DROP DISKGROUP, Chapter 46
FORMAT
create_diskgroup::=

qualified_disk_clause::=

CREATE DISKGROUP 1083

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1083

CREATE DISKGROUP diskgroup_name

HIGH

NORMAL

EXTERNAL

REDUNDANCY

FAILGROUP failgroup_name
DISK qualified_disk_clause

,

;

’ search_string ’
NAME disk_name SIZE size_clause

FORCE

NOFORCE

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

size_clause::=

DESCRIPTION

NOTE
CREATE DISKGROUP is valid only if you are using Automatic Storage
Management (ASM) and you have started an ASM instance.

CREATE DISKGROUP creates a collection of disks. Oracle manages a disk group as a logical unit
and evenly spreads each file across the disks to balance I/O. Oracle automatically distributes database
files across the available disks in disk groups and rebalances the storage when the storage configuration
changes. CREATE DISKGROUP creates a disk group, assigns disks to the disk group, and mounts the
disk group for the first time.

CREATE FUNCTION
SEE ALSO ALTER FUNCTION, BLOCK STRUCTURE, CREATE LIBRARY, CREATE PACKAGE,
CREATE PROCEDURE, DATATYPES, DROP FUNCTION, Chapter 31
FORMAT
create_function::=

1084 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1084

integer

K

M

G

T

CREATE
OR REPLACE

FUNCTION
schema .

function

(argument

IN

OUT

IN OUT NOCOPY
datatype

,

)
RETURN datatype

invoker_rights_clause

DETERMINISTIC

parallel_enable_clause

AGGREGATE

PIPELINED
USING

schema .
implementation_type

PIPELINED IS

AS

pl/sql_function_body

call_spec

;

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

invoker_rights_clause::=

parallel_enable_clause::=

streaming_clause::=

call_spec::=

Java_declaration::=

C_declaration::=

DESCRIPTION function is the name of the function being defined. A function may have parameters
and named arguments of a certain datatype, and every function returns a value of a certain datatype as

CREATE FUNCTION 1085

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1085

AUTHID
CURRENT_USER

DEFINER

PARALLEL_ENABLE

(PARTITION argument BY

ANY

HASH

RANGE
(column

,

)

)
streaming_clause

ORDER

CLUSTER
BY (column

,

)

LANGUAGE
Java_declaration

C_declaration

JAVA NAME ’ string ’

C
NAME name

LIBRARY lib_name
AGENT IN (argument

,

)

WITH CONTEXT PARAMETERS (parameter

,

)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

specified by the RETURN clause. The PL/SQL block defines the behavior of the function as a series of
declarations, PL/SQL program statements, and exceptions.

The IN qualifier means that you have to specify a value for the parameter when you call the function,
but since you always have to do this for a function, the syntax is optional. In a procedure, you can
have other kinds of parameters. The difference between a function and a procedure is that a function
returns a value to the calling environment.

In order to create a function, you must have the CREATE PROCEDURE system privilege. To create
a function in another user’s account, you must have the CREATE ANY PROCEDURE system privilege.

Your function can use C libraries that are stored outside of the database (see CREATE LIBRARY).
If you use Java within your function, you can provide a Java declaration within the LANGUAGE clause.
The INVOKER_RIGHTS clause lets you specify whether the function executes with the privileges of
the function owner (the definer) or the current user (the invoker).

CREATE INDEX
SEE ALSO ANALYZE, ALTER INDEX, DROP INDEX, INTEGRITY CONSTRAINT, STORAGE,
Chapters 17 and 43
FORMAT
create_index::=

cluster_index_clause::=

table_index_clause::=

1086 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1086

CREATE

UNIQUE

BITMAP
INDEX

schema .
index ON

cluster_index_clause

table_index_clause

bitmap_join_index_clause

;

CLUSTER
schema .

cluster index_attributes

schema .
table

t_alias

(index_expr

ASC

DESC

,

)
index_properties

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

bitmap_join_index_clause::=

index_expr::=

index_properties::=

index_attributes::=

CREATE INDEX 1087

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1087

column

column_expression

global_partitioned_index

local_partitioned_index

index_attributes

domain_index_clause

schema .
table (

schema .
table .

t_alias .
column

ASC

DESC

,

)

FROM
schema .

table
t_alias

,

WHERE condition
local_partitioned_index

index_attributes

physical_attributes_clause

logging_clause

ONLINE

COMPUTE STATISTICS

TABLESPACE
tablespace

DEFAULT

key_compression

SORT

NOSORT

REVERSE

parallel_clause

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

physical_attributes_clause::=

logging_clause::=

key_compression::=

domain_index_clause::=

global_partitioned_index::=

individual_hash_partitions::=

1088 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1088

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

LOGGING

NOLOGGING

COMPRESS
integer

NOCOMPRESS

INDEXTYPE IS indextype

parallel_clause PARAMETERS (’ ODCI_parameters ’)

GLOBAL PARTITION BY

RANGE (column_list) (index_partitioning_clause)

HASH (column_list)
individual_hash_partitions

hash_partitions_by_quantity

(PARTITION
partition partitioning_storage_clause

,

)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

partitioning_storage_clause::=

hash_partitions_by_quantity::=

index_partitioning_clause::=

local_partitioned_index::=

on_range_partitioned_table::=

CREATE INDEX 1089

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1089

PARTITIONS hash_partition_quantity
STORE IN (tablespace

,

)

OVERFLOW STORE IN (tablespace

,

)

PARTITION
partition

VALUES LESS THAN (value

,

)
segment_attributes_clause

LOCAL

on_range_partitioned_table

on_list_partitioned_table

on_hash_partitioned_table

on_comp_partitioned_table

(PARTITION
partition

segment_attributes_clause

key_compression

,

)

TABLESPACE tablespace

OVERFLOW
TABLESPACE tablespace

LOB (LOB_item) STORE AS
LOB_segname

(TABLESPACE tablespace)

(TABLESPACE tablespace)

VARRAY varray_item STORE AS LOB LOB_segname

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

on_list_partitioned_table::=

segment_attributes_clause::=

on_hash_partitioned_table::=

on_comp_partitioned_table::=

1090 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1090

(PARTITION
partition

segment_attributes_clause

key_compression

,

)

physical_attributes_clause

TABLESPACE tablespace

logging_clause

STORE IN (tablespace

,

)

(PARTITION
partition

TABLESPACE tablespace

,

)

STORE IN (tablespace

,

)

(PARTITION
partition

segment_attribute_clause

key_compression index_subpartition_clause

,

)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

index_subpartition_clause::=

parallel_clause::=

DESCRIPTION index is a name you assign to this index. It’s usually a good idea to make it reflect
the table and columns being indexed. table and column(s) are the table and column(s) for which the index
is to be created. A unique index guarantees that each indexed row is unique on the values of the index
columns. You can use the UNIQUE constraint on the columns to automatically create unique indexes.
Specifying multiple columns will create a composite index. ASC and DESC mean ascending and descending.
CLUSTER is the name of the cluster key that is indexed for a cluster. Clusters must have their keys indexed
for their associated tables to be accessed. PCTFREE is the percentage of space to leave free in the
index for new entries and updates. The minimum is zero.

TABLESPACE is the name of the tablespace to which this index is assigned. The physical attributes
section contains subclauses that are described under STORAGE. NOSORT is an option whose primary value
is in reducing the time to create an index if, and only if, the values in the column being indexed are already
in ascending order. It doesn’t harm anything if they later fall out of ascending order, but NOSORT works
only if they are in order when the index is created. If the rows are not in order, CREATE INDEX will return
an error message, will not damage anything, and will allow you to rerun it without the NOSORT option.

PARALLEL, along with DEGREE and INSTANCES, specifies the parallel characteristics of the index.
DEGREE specifies the number of query servers to use to create the index; INSTANCES specifies how
the index is to be split among instances of Real Application Clusters for parallel query processing.
An integer n specifies that the index is to be split among the specified number of available instances.

In order to create an index, you must own the indexed table, have INDEX privilege on the table,
or have the CREATE ANY INDEX system privilege. To create a function-based index, you must have
the QUERY REWRITE privilege.

BITMAP creates a bitmap index, which can be useful for columns with few distinct values. The
PARTITION clauses create indexes on partitioned tables. Bitmap join indexes store index key values
for multiple tables in a single index (usually for data warehouse applications). Bitmap join indexes use
the FROM and WHERE clauses to specify the tables involved and the join conditions.

REVERSE stores the bytes of the indexed value in reverse order. You cannot reverse a bitmap index.

CREATE INDEX 1091

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1091

NOPARALLEL

PARALLEL
integer

STORE IN (tablespace

,

)

(SUBPARTITION
subpartition

TABLESPACE tablespace

,

)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

COMPRESS saves storage space by compressing nonunique, nonpartitioned indexes. During data
retrieval, the data will be displayed as if it were uncompressed. You can turn off index compression;
re-create the index using the clause NOCOMPRESS.

COMPUTE STATISTICS analyzes the index data as the index is created.
As of Oracle Database 10g, you can create global hash-partitioned indexes.

CREATE INDEXTYPE
FORMAT
create_indextype::=

using_type_clause::=

array_DML_clause::=

DESCRIPTION CREATE INDEXTYPE specifies the routines used by a domain index. To create an
indextype, you must have the CREATE INDEXTYPE system privilege. To create an indextype in another
user’s schema, you must have the CREATE ANY INDEXTYPE system privilege.

As of Oracle Database 10g, CREATE INDEXTYPE supports array inserts using the ODCIIndexInsert
method.

CREATE JAVA
SEE ALSO ALTER JAVA, DROP JAVA, Chapters 37, 38, and 39

1092 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1092

USING
schema .

implementation_type
array_DML_clause

WITH

WITHOUT
ARRAY DML

(
schema .

type
,

schema .
varray_type

)

,

CREATE
OR REPLACE

INDEXTYPE
schema .

indextype

FOR
schema .

operator (paramater_type

,

)

,

using_type_clause

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT
create_java::=

invoker_rights_clause::=

DESCRIPTION CREATE JAVA creates a Java source, class, or resource. You must have the
CREATE PROCEDURE system privilege or (to create the object in another user’s schema) the CREATE
ANY PROCEDURE system privilege. To replace such a schema object in another user’s schema, you
must have the ALTER ANY PROCEDURE system privilege.

The JAVA SOURCE, JAVA CLASS, and JAVA RESOURCE clauses load sources, classes, and resources,
respectively.

The AUTHID lets you specify whether the function executes with the privileges of the function
owner or the current user.
EXAMPLE The following command creates a Java source:

create java source named "Hello" as
public class Hello (

public static String hello() (
return "Hello World";));

CREATE JAVA 1093

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1093

AUTHID
CURRENT_USER

DEFINER

CREATE
OR REPLACE

AND
RESOLVE

COMPILE NOFORCE

JAVA

SOURCE

RESOURCE
NAMED

schema .
primary_name

CLASS
SCHEMA schema

invoker_rights_clause
RESOLVER ((match_string

, schema_name

–
))

USING

BFILE (directory_object_name , server_file_name)

CLOB

BLOB

BFILE

subquery

’ key_for_BLOB ’

AS source_text

;

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CREATE LIBRARY
SEE ALSO CREATE FUNCTION, CREATE PACKAGE BODY, CREATE PROCEDURE, Chapter 31
FORMAT

CREATE [OR REPLACE] LIBRARY [schema .] libname
{ IS | AS } 'filespec' [AGENT 'agent_dblink'];

DESCRIPTION CREATE LIBRARY creates a library object, allowing you to reference an operating-
system shared library, from which SQL and PL/SQL can call external 3GL functions and procedures.
To use the procedures and functions stored in the library, you must have been granted EXECUTE privilege
on the library. Specify the AGENT clause if you want external procedures to be run from a database
link other than the server. Oracle will use the database link specified by agent_dblink to run external
procedures. If you omit this clause, the default agent on the server (extproc) will run external procedures.

CREATE MATERIALIZED VIEW
SEE ALSO ALTER MATERIALIZED VIEW, CREATE MATERIALIZED VIEW LOG, DROP
MATERIALIZED VIEW, STORAGE, Chapter 24
FORMAT
create_materialized_view::=

1094 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1094

CREATE MATERIALIZED VIEW
schema .

materialized_view

OF
schema .

object_type (scoped_table_ref_constraint)

ON PREBUILT TABLE

WITH

WITHOUT
REDUCED PRECISION

physical_properties materialized_view_props

USING INDEX

physical_attributes_clause

TABLESPACE tablespace

USING NO INDEX create_mv_refresh

FOR UPDATE

DISABLE

ENABLE
QUERY REWRITE

AS subquery ;

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

physical_properties::=

materialized_view_props::=

scoped_table_ref_constraint::=

index_org_table_clause::=

key_compression::=

index_org_overflow-clause::=

CREATE MATERIALIZED VIEW 1095

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1095

column_properties table_partitioning_clauses

CACHE

NOCACHE parallel_clause

build_clause

SCOPE FOR (
ref_column

ref_attribute
) IS

schema . scope_table_name

c_alias

,

mapping_table_clause

PCTTHRESHOLD integer

key_compression index_org_overflow_clause

COMPRESS
integer

NOCOMPRESS

segment_attributes_clause
table_compression

ORGANIZATION

HEAP
segment_attributes_clause table_compression

INDEX
segment_attributes_clause

index_org_table_clause

EXTERNAL external_table_clause

CLUSTER cluster (column

,

)

INCLUDING column_name
OVERFLOW

segment_attributes_clause

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

create_mv_refresh:=

segment_attributes_clause::=

physical_attributes_clause::=

1096 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1096

REFRESH

FAST

COMPLETE

FORCE

ON
DEMAND

COMMIT

START WITH

NEXT
date

WITH
PRIMARY KEY

ROWID

USING

DEFAULT

MASTER

LOCAL
ROLLBACK SEGMENT

MASTER

LOCAL
ROLLBACK SEGMENT rollback_segment

USING
ENFORCED

TRUSTED
CONSTRAINTS

NEVER REFRESH

physical_attributes_clause

TABLESPACE tablespace

logging_clause

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

logging_clause::=

table_compression::=

column_properties::=

object_type_col_properties::=

substitutable_column_clause::=

nested_table_col_properties::=

CREATE MATERIALIZED VIEW 1097

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1097

LOGGING

NOLOGGING

COMPRESS

NOCOMPRESS

object_type_col_properties

nested_table_col_properties

varray_col_properties

LOB_storage_clause

(LOB_partition_storage

,

)

XMLType_column_properties

COLUMN column substitutable_column_clause

ELEMENT
IS OF

TYPE
(ONLY type)

NOT
SUBSTITUTABLE AT ALL LEVELS

NESTED TABLE
nested_item

COLUMN_VALUE

substitutable_column_clause
STORE AS storage_table

(

(object_properties)

physical_properties

column_properties

)
RETURN AS

LOCATOR

VALUE

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

varray_col_properties::=

LOB_storage_clause::=

LOB_parameters::=

LOB_partition_storage::=

1098 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1098

VARRAY varray_item

substitutable_column_clause
STORE AS LOB

LOB_segname
(LOB_parameters)

LOB_segname

substitutable_column_clause

LOB

(LOB_item

,

) STORE AS (LOB_parameters)

(LOB_item) STORE AS

LOB_segname (LOB_parameters)

LOB_segname

(LOB_parameters)

TABLESPACE tablespace

ENABLE

DISABLE
STORAGE IN ROW

storage_clause

CHUNK integer

PCTVERSION integer

RETENTION

FREEPOOLS integer

CACHE

NOCACHE

CACHE READS

logging_clause

PARTITION partition
LOB_storage_clause

varray_col_properties

(SUBPARTITION subpartition
LOB_storage_clause

varray_col_properties
)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

parallel_clause::=

build_clause::=

DESCRIPTION The keyword SNAPSHOT is supported in place of MATERIALIZED VIEW for
backward compatibility.

CREATE MATERIALIZED VIEW creates a materialized view, a table that holds the results of a query,
usually on one or more tables, called master tables. The master tables may be in a local database or in a
remote database. You can have the data refreshed at intervals by using the REFRESH clause.

To enable a materialized view for query rewrite, you must have the QUERY REWRITE system privilege.
If the materialized view is based on objects in other schemas, you must have the GLOBAL QUERY
REWRITE privilege.

Materialized views cannot contain LONG columns or reference any objects owned by SYS.
A FAST refresh uses the materialized view log associated with the master table(s) to refresh the

materialized view. A COMPLETE refresh reexecutes the query. A FORCE refresh lets Oracle make
the choice between a FAST or a COMPLETE refresh. Oracle first refreshes the materialized view on
the START WITH date. If you give a NEXT date, Oracle refreshes the materialized view at intervals
specified by the difference between the START WITH and NEXT dates.

A simple materialized view selects data from a single master table using a simple query. A complex
materialized view selects data using a GROUP BY, CONNECT BY, subquery, join, or set operation in the
query. Oracle can do a FAST refresh only on simple materialized views that have materialized view logs.

To create a materialized view in your schema, you must have the CREATE MATERIALIZED VIEW
system privilege. To create a materialized view in another user’s schema, you must have the CREATE
ANY MATERIALIZED VIEW system privilege.

As of Oracle Database 10g, the refresh operations are enhanced. See Chapter 24 for details on
refresh options.
EXAMPLE

create materialized view LOCAL_BOOKSHELF
storage (initial 100K next 100K pctincrease 0)
tablespace USERS
refresh force
start with SysDate next SysDate+7
with primary key
as
select * from BOOKSHELF@REMOTE_CONNECT;

CREATE MATERIALIZED VIEW LOG
SEE ALSO ALTER MATERIALIZED VIEW LOG, CREATE MATERIALIZED VIEW, DROP
MATERIALIZED VIEW LOG, STORAGE, Chapter 24

CREATE MATERIALIZED VIEW LOG 1099

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1099

NOPARALLEL

PARALLEL
integer

BUILD
IMMEDIATE

DEFERRED

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT
create_materialized_vw_log::=

physical_attributes_clause::=

logging_clause::=

parallel_clause::=

1100 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1100

CREATE MATERIALIZED VIEW LOG ON
schema .

table

physical_attributes_clause

TABLESPACE tablespace

logging_clause

CACHE

NOCACHE parallel_clause table_partitioning_clauses

WITH

OBJECT ID

PRIMARY KEY

ROWID

SEQUENCE

(column

,

)

,

new_values_clause

;

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

LOGGING

NOLOGGING

NOPARALLEL

PARALLEL
integer

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

new_values_clause::=

DESCRIPTION The keyword SNAPSHOT is supported in place of MATERIALIZED VIEW for
backward compatibility.

CREATE MATERIALIZED VIEW LOG creates a table associated with the master table of a materialized
view that tracks changes to the master table’s data. Oracle uses the materialized view log to FAST refresh
the materialized views of a master table. The storage options specify the storage of the table. Oracle
logs database changes only if there is a simple materialized view based on the master table.

You can have only one log for a given master table, and the log is stored in the same schema as the
master table. To create a materialized view log on your own master table, you must have the CREATE
TABLE system privilege. If the master table is in another user’s schema, you must have the CREATE
ANY TABLE and COMMENT ANY TABLE system privileges as well as the SELECT privilege on the
master table.

As of Oracle Database 10g, you can use the SEQUENCE clause to record a sequence value in the
materialized view log.

CREATE OPERATOR
FORMAT
create_operator::=

binding_clause::=

implementation_clause::=

CREATE OPERATOR 1101

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1101

INCLUDING

EXCLUDING
NEW VALUES

CREATE
OR REPLACE

OPERAT0R
schema .

operator binding_clause ;

BINDING

(parameter_type

,

) RETURN return_type
implementation_clause

using_function_clause

,

ANCILLARY TO primary_operator (parameter_type

,

)

,

context_clause

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

context_clause::=

using_function_clause::=

DESCRIPTION CREATE OPERATOR creates a new operator and defines its bindings. You can
reference operators in indextypes and in SQL statements. The operators, in turn, reference functions,
packages, types, and other user-defined objects.

To create an operator, you must have EXECUTE privilege on the functions and operators referenced
by the operator, and the CREATE OPERATOR system privilege. If the operator is created in another user’s
schema, you must have the CREATE ANY OPERATOR system privilege.

As of Oracle Database 10g, you can pass column information to the functional implementation of
the operator.

CREATE OUTLINE
SEE ALSO Chapter 43
FORMAT

CREATE [OR REPLACE] [PUBLIC | PRIVATE] OUTLINE [outline]
[FROM [PUBLIC | PRIVATE] source_outline]
[FOR CATEGORY category]
[ON statement];

DESCRIPTION CREATE OUTLINE creates a stored outline, which is a set of hints used to create
the execution plan of the associated query. Later executions of the query will use the same set of hints.
You can group stored outlines into categories.

To create an operator, you must have the CREATE ANY OUTLINE system privilege.
EXAMPLE

create outline TEST
for category DEVELOPMENT
on select AuthorName, COUNT(AuthorName) from BOOKSHELF_AUTHOR group by AuthorName;

CREATE PACKAGE
SEE ALSO ALTER PACKAGE, CREATE FUNCTION, CREATE PACKAGE BODY, CREATE
PROCEDURE, CURSOR, DROP PACKAGE, EXCEPTION, RECORD, TABLE, VARIABLE
DECLARATION, Chapter 31

1102 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1102

USING
schema .

package .

type .
function_name

WITH INDEX CONTEXT , SCAN CONTEXT implementation_type
COMPUTE ANCILLARY DATA

WITH COLUMN CONTEXT

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

CREATE [OR REPLACE] PACKAGE [schema .] package
[AUTHID { CURRENT_USER | DEFINER }]
{ IS | AS } pl/sql_package_spec;

DESCRIPTION CREATE PACKAGE sets up the specification for a PL/SQL package, a group of
public procedures, functions, exceptions, variables, constants, and cursors. Adding OR REPLACE
replaces the package specification if it already exists, which invalidates the package and initiates
a recompilation of the package body and any objects that depend on the package specification.

Packaging your procedures and functions lets them share data through variables, constants, and
cursors. It enables you to grant the whole collection at once as part of a role. Oracle accesses all the
elements of a package more efficiently than it would if they were separate. If you change the package
body, which Oracle stores separately from the package specification, you do not have to recompile
anything that uses the package.

To create a package, you must have the CREATE PROCEDURE system privilege; to create a package
in another user’s account, you must have the CREATE ANY PROCEDURE system privilege.

The AUTHID clause lets you specify whether the package code executes with the privileges of the
package owner or the user who runs the package’s code.

CREATE PACKAGE BODY
SEE ALSO ALTER PACKAGE, CREATE FUNCTION, CREATE LIBRARY, CREATE PACKAGE, CREATE
PROCEDURE, CURSOR, DROP PACKAGE, EXCEPTION, RECORD, TABLE, VARIABLE DECLARATION,
Chapter 31
FORMAT

CREATE [OR REPLACE] PACKAGE BODY [schema .] package
{ IS | AS } pl/sql_package_body;

DESCRIPTION CREATE PACKAGE BODY builds the body of a previously specified package created
with CREATE PACKAGE. Adding OR REPLACE replaces the package body if it already exists. You must
have the CREATE PROCEDURE system privilege to create a package body; to create a package body in
another user’s account, you must have the CREATE ANY PROCEDURE system privilege.

CREATE PFILE
SEE ALSO CREATE SPFILE, init.ora
FORMAT

CREATE PFILE [= 'pfile_name'] FROM SPFILE [= 'spfile_name'];

DESCRIPTION CREATE PFILE exports a binary server parameter file into a text-initialization parameter
file (init.ora). Creating a text parameter file is a convenient way to get a listing of the current parameter
settings being used by the database, and it lets you edit the file easily in a text editor and then convert
it back into a server parameter file using the CREATE SPFILE statement. You can specify the name of
both the source binary server parameter file and the target text parameter file.
EXAMPLE

create pfile from spfile;

CREATE PFILE 1103

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1103

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CREATE PROCEDURE
SEE ALSO ALTER PROCEDURE, BLOCK STRUCTURE, CREATE LIBRARY, CREATE FUNCTION,
CREATE PACKAGE, DATATYPES, DROP PROCEDURE, Chapters 31 and 39
FORMAT
create_procedure::=

invoker_rights_clause::=

call_spec::=

Java_declaration::=

C_declaration::=

1104 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1104

CREATE
OR REPLACE

PROCEDURE
schema .

procedure

(argument

IN

OUT

IN OUT NOCOPY
datatype

,

)

invoker_rights_clause IS

AS

pl/sql_subprogram_body

call_spec
;

AUTHID
CURRENT_USER

DEFINER

LANGUAGE
Java_declaration

C_declaration

JAVA NAME ’ string ’

C
NAME name

LIBRARY lib_name
AGENT IN (argument

,

)

WITH CONTEXT PARAMETERS (parameter

,

)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION CREATE PROCEDURE creates the specification and body of a procedure. A procedure
may have parameters, named arguments of a certain datatype. The PL/SQL block defines the behavior
of the procedure as a series of declarations, PL/SQL program statements, and exceptions.

The IN qualifier means that you have to specify a value for the argument when you call the procedure.
The OUT qualifier means that the procedure passes a value back to the caller through this argument. The
IN OUT qualifier combines the meaning of both IN and OUT—you specify a value, and the procedure
replaces it with a value. If you don’t have any qualifier, the argument defaults to IN. The difference between
a function and a procedure is that a function returns a value to the calling environment in addition to
any arguments that are OUT arguments.

The PL/SQL block can refer to programs in an external C library or to a Java call specification. The
invoker_rights (AUTHID) clause lets you specify whether the procedure executes with the privileges of
the function owner or the privileges of the user who is calling the function.

CREATE PROFILE
SEE ALSO ALTER PROFILE, ALTER RESOURCE COST, ALTER SYSTEM, ALTER USER, CREATE USER,
DROP PROFILE, Chapter 18
FORMAT
create_profile::=

resource_parameters::=

CREATE PROFILE 1105

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1105

CREATE PROFILE profile LIMIT
resource_parameters

password_parameters
;

SESSIONS_PER_USER

CPU_PER_SESSION

CPU_PER_CALL

CONNECT_TIME

IDLE_TIME

LOGICAL_READS_PER_SESSION

LOGICAL_READS_PER_CALL

COMPOSITE_LIMIT

integer

UNLIMITED

DEFAULT

PRIVATE_SGA

integer

K

M

UNLIMITED

DEFAULT

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

password_parameters::=

DESCRIPTION CREATE PROFILE creates a set of limits on the use of database resources. When
you associate the profile with a user with CREATE USER or ALTER USER, you can control what the user
does via those limits. To use CREATE PROFILE, you must enable resource limits through the initialization
parameter RESOURCE_LIMIT or through the ALTER SYSTEM command.

SESSIONS_PER_USER limits the user to integer concurrent SQL sessions. CPU_PER_SESSION limits
the CPU time in hundredths of seconds. CPU_PER_CALL limits the CPU time for a parse, execute, or
fetch call in hundredths of seconds. CONNECT_TIME limits elapsed time of a session in minutes. IDLE_
TIME disconnects a user after this number of minutes; this does not apply while a query is running.
LOGICAL_READS_PER_SESSION limits the number of blocks read per session; LOGICAL_READS_PER_
CALL does the same thing for parse, execute, or fetch calls. PRIVATE_SGA limits the amount of space
you can allocate in the SGA as private; the K and M options apply only to this limit. COMPOSITE_LIMIT
limits the total resource cost for a session in service units based on a weighted sum of CPU, connect
time, logical reads, and private SGA resources.

UNLIMITED means there is no limit on a particular resource. DEFAULT picks up the limit from the
DEFAULT profile, which you can change through the ALTER PROFILE command.

If a user exceeds a limit, Oracle aborts and rolls back the transaction, then ends the session. You
must have the CREATE PROFILE system privilege to create a profile. You associate a profile to a user
with the ALTER USER command.

CREATE ROLE
SEE ALSO ALTER ROLE, ALTER USER, CREATE USER, DROP ROLE, GRANT, REVOKE, ROLE,
SET ROLE, Chapter 18
FORMAT

CREATE ROLE role
[NOT IDENTIFIED
| IDENTIFIED { BY password |

USING [schema .] package | EXTERNALLY | GLOBALLY }];

DESCRIPTION With CREATE ROLE, you can create a named role or set of privileges. When you
grant the role to a user, you grant him or her all the privileges of that role. You first create the role with
CREATE ROLE, then grant privileges to the role using the GRANT command. When a user wants to access
something that the role allows, he or she enables the role with SET ROLE. Alternatively, the role can
be set as the user’s DEFAULT role via the ALTER USER or CREATE USER command.

1106 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1106

FAILED_LOGIN_ATTEMPTS

PASSWORD_LIFE_TIME

PASSWORD_REUSE_TIME

PASSWORD_REUSE_MAX

PASSWORD_LOCK_TIME

PASSWORD_GRACE_TIME

expr

UNLIMITED

DEFAULT

PASSWORD_VERIFY_FUNCTION

function

NULL

DEFAULT

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If you put password protection on the role, the user who wants to use the privileges must supply
the password in the SET ROLE command to enable the role. The USING package clause lets you create
an application role, which is a role that can be enabled only by applications using an authorized package.
If you do not specify schema, Oracle assumes the package is in your own schema.

CREATE ROLLBACK SEGMENT
SEE ALSO ALTER ROLLBACK SEGMENT, CREATE DATABASE, CREATE TABLESPACE, DROP
ROLLBACK SEGMENT, STORAGE, Chapter 46
FORMAT

CREATE [PUBLIC] ROLLBACK SEGMENT rollback_segment
[{ TABLESPACE tablespace | storage_clause }
[TABLESPACE tablespace | storage_clause]...];

DESCRIPTION rollback_segment is a name assigned to this rollback segment. tablespace is the
name of the tablespace to which this rollback segment is assigned. One tablespace may have multiple
rollback segments.

storage_clause contains subclauses that are described under STORAGE. If PUBLIC is used, this
rollback segment can be used by any instance that requests it; otherwise it is available only to instances
that named it in their initialization parameter files. See Chapter 46 for details concerning the use and
management of rollback segments.

As of Oracle9i, you can use system-managed undo to manage transactions. In system-managed
undo environments, the database dynamically creates and drops rollback segments as needed. As of
Oracle Database 10g, rollback segments exist only in the SYSTEM tablespace.

CREATE SCHEMA
SEE ALSO CREATE TABLE, CREATE VIEW, GRANT
FORMAT

CREATE SCHEMA AUTHORIZATION schema
{ create_table_statement | create_view_statement | grant_statement }
[create_table_statement | create_view_statement | grant_statement]...;

DESCRIPTION The CREATE SCHEMA command creates a collection of tables, views, and privilege
grants as a single transaction. The schema name is the same as your Oracle username. The CREATE
TABLE, CREATE VIEW, and GRANT commands are the standard commands, and the order in which
the commands appear is not important, even if there are internal dependencies.

CREATE SEQUENCE
SEE ALSO ALTER SEQUENCE, AUDIT, DROP SEQUENCE, GRANT, REVOKE, NEXTVAL and
CURRVAL under PSEUDO-COLUMNS, Chapter 17
FORMAT

CREATE SEQUENCE [schema .] sequence
[{ { INCREMENT BY | START WITH } integer
| { MAXVALUE integer | NOMAXVALUE }
| { MINVALUE integer | NOMINVALUE }
| { CYCLE | NOCYCLE }
| { CACHE integer | NOCACHE }
| { ORDER | NOORDER }
}

CREATE SEQUENCE 1107

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1107

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

[{ INCREMENT BY | START WITH } integer
| { MAXVALUE integer | NOMAXVALUE }
| { MINVALUE integer | NOMINVALUE }
| { CYCLE | NOCYCLE }
| { CACHE integer | NOCACHE }
| { ORDER | NOORDER }]...];

DESCRIPTION sequence is the name given to the sequence. The default INCREMENT BY is 1.
A positive number will increment the sequence number in an interval equal to the integer. A negative
number will decrement (decrease the value of) the sequence in the same way. START WITH is the number
with which the sequence will begin. The default START WITH is MAXVALUE for descending sequences
and MINVALUE for ascending; use START WITH to override this default.

MINVALUE is the lowest number the sequence will generate. The default is 1 for ascending sequences.
MAXVALUE is the highest number the sequence will generate. For descending sequences, the default
is –1. To allow sequences to progress without limitation, specify only MINVALUE for ascending sequences
and MAXVALUE for descending sequences. To stop creating sequence numbers and force an error
when an attempt is made to get a new one, specify a MAXVALUE on an ascending sequence, or a
MINVALUE on a descending sequence, plus NOCYCLE. To restart either type of sequence where its
MAXVALUE or MINVALUE made it begin, specify CYCLE.

CACHE allows a preallocated set of sequence numbers to be kept in memory. The default is 20.
The value set must be less than MAXVALUE minus MINVALUE.

ORDER guarantees that sequence numbers will be assigned to instances requesting them in the
order the requests are received. This is required only in applications using Real Application Clusters.

To create a sequence in your own schema, you must have the CREATE SEQUENCE system privilege;
to create a sequence in another user’s schema, you must have the CREATE ANY SEQUENCE system
privilege.

CREATE SPFILE
SEE ALSO CREATE PFILE, init.ora
FORMAT

CREATE SPFILE [= 'spfile_name'] FROM PFILE [= 'pfile_name'];

DESCRIPTION CREATE SPFILE creates a server parameter file from a client-side text-based
initialization parameter file. Server parameter files are binary files that exist only on the server and are
called from client locations to start up the database. Server parameter files let you make persistent
changes to individual parameters; parameter changes made via ALTER SYSTEM commands are retained
across database shutdowns and startups even if no external parameter file is manually updated.

CREATE SYNONYM
SEE ALSO CREATE DATABASE LINK, CREATE TABLE, CREATE VIEW, Chapters 17 and 23
FORMAT

CREATE [PUBLIC] SYNONYM [schema .] synonym
FOR [schema .] object [@ dblink];

DESCRIPTION CREATE SYNONYM creates a synonym for a table, view, sequence, stored procedure,
function, package, materialized view, Java class object, or synonym, including those on a remote database.
PUBLIC makes the synonym available to all users, but the synonym can be created only by a DBA or
a user with the CREATE PUBLIC DATABASE LINK system privilege. Without PUBLIC, users must prefix

1108 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1108

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

the synonym with their username. synonym is the synonym name. schema.object is the name of the
table, view, or synonym to which the synonym refers. You can have a synonym of synonym. @database_
link is a database link to a remote database. The synonym refers to a table in the remote database as
specified by the database link.
EXAMPLE

create synonym LOCAL_BOOKSHELF for BOOKSHELF@REMOTE_CONNECT;

CREATE TABLE
SEE ALSO ALTER TABLE, CREATE CLUSTER, CREATE INDEX, CREATE TABLESPACE, CREATE TYPE,
DATATYPES, DROP TABLE, INTEGRITY CONSTRAINT, OBJECT NAMES, STORAGE, Chapters 3, 17, 26,
33, 34, and 36
FORMAT
create_table::=

relational_table::=

object_table::=

CREATE TABLE 1109

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1109

relational_table

object_table

XMLType_table

CREATE
GLOBAL TEMPORARY

TABLE
schema .

table

(relational_properties)
ON COMMIT

DELETE

PRESERVE
ROWS

physical_properties table_properties
;

CREATE
GLOBAL TEMPORARY

TABLE
schema .

table

OF
schema .

object_type
object_table_substitution

(object_properties)
ON COMMIT

DELETE

PRESERVE
ROWS

OID_clause OID_index_clause physical_properties table_properties
;

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

XMLType_table::=

relational_properties::=

object_table_substitution::=

object_properties::=

1110 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1110

CREATE
GLOBAL TEMPORARY

TABLE
schema .

table OF XMLTYPE

(object_properties) XMLTYPE XMLType_storage XMLSchema_spec

ON COMMIT
DELETE

PRESERVE
ROWS

OID_clause OID_index_clause

physical_properties table_properties

column datatype
SORT DEFAULT expr

inline_constraint

inline_ref_constraint

out_of_line_constraint

out_of_line_ref_constraint

supplemental_logging_props

,

NOT
SUBSTITUTABLE AT ALL LEVELS

column

attribute

DEFAULT expr

inline_constraint

inline_ref_constraint

out_of_line_constraint

out_of_line_ref_constraint

supplemental_logging_props

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

oid_clause::=

oid_index_clause::=

physical_properties::=

segment_attributes_clause::=

physical_attributes_clause::=

table_compression::=

CREATE TABLE 1111

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1111

OIDINDEX
index

(
physical_attributes_clause

TABLESPACE tablespace
)

segment_attributes_clause
table_compression

ORGANIZATION

HEAP
segment_attributes_clause table_compression

INDEX
segment_attributes_clause

index_org_table_clause

EXTERNAL external_table_clause

CLUSTER cluster (column

,

)

physical_attributes_clause

TABLESPACE tablespace

logging_clause

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

COMPRESS

NOCOMPRESS

OBJECT IDENTIFIER IS
SYSTEM GENERATED

PRIMARY KEY

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

table_properties::=

column_properties::=

object_type_col_properties::=

substitutable_column_clause::=

nested_table_col_properties::=

1112 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1112

object_type_col_properties

nested_table_col_properties

varray_col_properties

LOB_storage_clause

(LOB_partition_storage

,

)

XMLType_column_properties

COLUMN column substitutable_column_clause

column_properties table_partitioning_clauses

CACHE

NOCACHE

parallel_clause

ROWDEPENDENCIES

NOROWDEPENDENCIES

enable_disable_clause row_movement_clause AS subquery

ELEMENT
IS OF

TYPE
(ONLY type)

NOT
SUBSTITUTABLE AT ALL LEVELS

NESTED TABLE
nested_item

COLUMN_VALUE

substitutable_column_clause
STORE AS storage_table

(

(object_properties)

physical_properties

column_properties

)
RETURN AS

LOCATOR

VALUE

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

varray_col_properties::=

LOB_storage_clause::=

LOB_parameters::=

logging_clause::=

CREATE TABLE 1113

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1113

VARRAY varray_item

substitutable_column_clause
STORE AS LOB

LOB_segname
(LOB_parameters)

LOB_segname

substitutable_column_clause

LOB

(LOB_item

,

) STORE AS (LOB_parameters)

(LOB_item) STORE AS

LOB_segname (LOB_parameters)

LOB_segname

(LOB_parameters)

TABLESPACE tablespace

ENABLE

DISABLE
STORAGE IN ROW

storage_clause

CHUNK integer

PCTVERSION integer

RETENTION

FREEPOOLS integer

CACHE

NOCACHE

CACHE READS

logging_clause

LOGGING

NOLOGGING

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

LOB_partition_storage::=

XMLType_column_properties::=

XMLType_storage::=

XMLSchema_spec::=

row_movement_clause::=

index_org_table_clause::=

1114 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1114

XMLTYPE
COLUMN

column
XMLType_storage XMLSchema_spec

STORE AS

OBJECT RELATIONAL

CLOB

LOB_segname
(LOB_parameters)

LOB_parameters

XMLSCHEMA XMLSchema_URL
ELEMENT

element

XMLSchema_URL # element

ENABLE

DISABLE
ROW MOVEMENT

mapping_table_clause

PCTTHRESHOLD integer

key_compression index_org_overflow_clause

PARTITION partition
LOB_storage_clause

varray_col_properties

(SUBPARTITION subpartition
LOB_storage_clause

varray_col_properties
)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

mapping_table_clauses::=

key_compression::=

index_org_overflow_clause::=

supplemental_logging_props::=

supplemental_log_grp_clause::=

supplemental_id_key_clause::=

external_table_clause::=

CREATE TABLE 1115

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1115

COMPRESS
integer

NOCOMPRESS

INCLUDING column_name
OVERFLOW

segment_attributes_clause

supplemental_log_grp_clause

supplemental_id_key_clause

GROUP log_group (column
NO LOG

,

)
ALWAYS

DATA (

ALL

PRIMARY KEY

UNIQUE

FOREIGN KEY

,

) COLUMNS

(
TYPE access_driver_type

external_data_properties)

REJECT LIMIT
integer

UNLIMITED

MAPPING TABLE

NOMAPPING

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

external_data_properties::=

table_partitioning_clauses::=

range_partitioning::=

hash_partitioning::=

list_partitioning::=

1116 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1116

range_partitioning

hash_partitioning

list_partitioning

composite_partitioning

PARTITION BY RANGE (column

,

)

(PARTITION
partition

range_values_clause table_partition_description

,

)

PARTITION BY HASH (column

,

)
individual_hash_partitions

hash_partitions_by_quantity

PARTITION BY LIST (column)

(PARTITION
partition

list_values_clause table_partition_description

,

)

DEFAULT DIRECTORY directory

ACCESS PARAMETERS
(opaque_format_spec)

USING CLOB subquery

LOCATION (
directory :

’ location_specifier ’

,

)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

composite_partitioning::=

subpartition_by_hash::=

individual_hash_partitions::=

hash_partitions_by_quantity::=

subpartition_by_list::=

CREATE TABLE 1117

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1117

(PARTITION
partition partitioning_storage_clause

,

)

PARTITIONS hash_partition_quantity
STORE IN (tablespace

,

)

OVERFLOW STORE IN (tablespace

,

)

SUBPARTITION BY LIST (column)
subpartition_template

SUBPARTITION BY HASH (column

,

)

SUBPARTITIONS quantity
STORE IN (tablespace

,

)

subpartition_template

PARTITION BY RANGE (column_list)
subpartition_by_list

subpartition_by_hash

(PARTITION
partition

range_values_clause table_partition_description

,

)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

subpartition_template::=

range_values_clause::=

list_values_clause::=

table_partition_description::=

partition_level_subpartition::=

1118 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1118

VALUES (

value

NULL

,

DEFAULT

)

VALUES LESS THAN (
value

MAXVALUE

,

)

segment_attributes_clause

table_compression

key_compression

OVERFLOW
segment_attributes_clause

LOB_storage_clause

varray_col_properties partition_level_subpartition

SUBPARTITION TEMPLATE

(SUBPARTITION subpartition
list_values_clause partitioning_storage_clause

,

)

hash_subpartition_quantity

SUBPARTITIONS hash_subpartition_quantity
STORE IN (tablespace

,

)

(subpartition_spec

,

)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

subpartition_spec::=

partitioning_storage_clause::=

parallel_clause::=

enable_disable_clause::=

using_index_clause::=

CREATE TABLE 1119

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1119

SUBPARTITION
subpartition list_values_clause partitioning_storage_clause

TABLESPACE tablespace

OVERFLOW
TABLESPACE tablespace

LOB (LOB_item) STORE AS
LOB_segname

(TABLESPACE tablespace)

(TABLESPACE tablespace)

VARRAY varray_item STORE AS LOB LOB_segname

NOPARALLEL

PARALLEL
integer

ENABLE

DISABLE

VALIDATE

NOVALIDATE
UNIQUE (column

,

)

PRIMARY KEY

CONSTRAINT constraint

using_index_clause exceptions_clause CASCADE

KEEP

DROP
INDEX

USING INDEX

schema .
index

(create_index_statement)

index_properties

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

index_properties::=

index_attributes::=

DESCRIPTION user is the table owner. If the table owner is absent, user defaults to the user issuing
this command. table is the table name, and follows Oracle naming conventions.

column is the name of a column, and datatype is one of the Oracle-supplied datatypes (see DATATYPES)
or a user-defined type (see CREATE TYPE). DEFAULT specifies a value to be assigned to the column if
a row is inserted without a value for this column. The value can be a simple literal or the result of an
expression. The expression, however, cannot include a reference to a column, to Level, or to RowNum.

For an existing abstract datatype, you can create an object table. The following example creates an
object table called ANIMAL, based on the ANIMAL_TY datatype:

create table ANIMAL of ANIMAL_TY;

See Part V of this book for details on the usage of object tables.
See INTEGRITY CONSTRAINT for a full description of the column and table constraints.
CLUSTER includes this table in the named cluster. The table columns listed must correspond in order

and datatype to the cluster’s cluster columns. The names need not be the same as the corresponding
cluster’s columns, although matching names can help the user to understand what is being done.

INITRANS specifies the initial number of transactions that can update a data block concurrently
(selects are not counted). INITRANS ranges from 1 to 255. 1 is the default. Every transaction takes
space (23 bytes in most systems) in the data block itself until the transaction is completed. When more
than the INITRANS number of transactions are created for the block, space is automatically allocated

1120 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1120

physical_attributes_clause

logging_clause

ONLINE

COMPUTE STATISTICS

TABLESPACE
tablespace

DEFAULT

key_compression

SORT

NOSORT

REVERSE

parallel_clause

global_partitioned_index

local_partitioned_index

index_attributes

domain_index_clause

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

for them. Transactions queuing up for execution will occupy more and more free space in the block,
although usually there is more free space than is needed for all concurrent transactions.

Whenever Oracle inserts a row into a table, it first looks to see how much space is available in the
current block (the size of a block is operating system dependent—see the Oracle Installation and User’s
Guide for your system). If the size of the row will leave less than PCTFREE percent in the block, Oracle
puts the row in a newly allocated block instead. The default is 10; 0 is the minimum.

PCTUSED defaults to 40. This is the minimum percentage of available space in a block that will make
it a candidate for insertion of new rows. Oracle tracks how much space in a block has been made
available by deletions. If it falls below PCTUSED, Oracle makes the block available for insertions.

STORAGE contains subclauses that are described under STORAGE. TABLESPACE is the name of
the tablespace to which this table is assigned.

The ENABLE and DISABLE clauses enable and disable constraints, respectively.
PARALLEL, along with DEGREE and INSTANCES, specifies the parallel characteristics of the table.

DEGREE specifies the number of query servers to use; INSTANCES specifies how the table is to be split
among instances of Real Application Clusters for parallel query processing. An integer n specifies that
the table is to be split among the specified number of available instances.

The PARTITION clauses control how the table’s data is partitioned—by range, by hash, or by a
composite of multiple partition methods. See Chapter 17 for details on partitioning.

A temporary table contains data that is visible only to the session that creates it. If a temporary table
is defined as GLOBAL, its definition may be seen by all users. Temporary tables may not be partitioned
and cannot support many standard table features (such as varying array datatypes, LOB datatypes, and
index organization). For example, the following command creates a table whose rows will be deleted
at the end of the current session:

create global temporary table WORK_SCHEDULE (
StartDate DATE,
EndDate DATE,
PayRate NUMBER)
on commit preserve rows;

The AS clause creates the rows of the new table through the returned query rows. The columns
and types of the query must match those defined in the CREATE TABLE statement. The query used in
the AS clause may not contain any LONG datatype columns. You can turn off logging during the create
table ... as select operation via the NOLOGGING keyword. This option disables the redo log entries
that would normally be written during the population of the new table, thus improving performance
while impacting your ability to recover that data if an instance failure occurs prior to the next backup.

The LOB clause specifies the out-of-line data storage used for internally stored LOB (BLOB, CLOB,
and NCLOB) data. See Chapter 35 for details on LOB management.

The object table definition section applies to object tables, in which each row has an object ID (OID).
See Chapter 36.

CREATE TABLESPACE
SEE ALSO ALTER TABLESPACE, DROP TABLESPACE, Chapters 20 and 46
FORMAT
create_tablespace::=

CREATE TABLESPACE 1121

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1121

CREATE

BIGFILE

SMALLFILE
permanent_tablespace_clause

temporary_tablespace_clause

undo_tablespace_clause

;

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

permanent_tablespace_clause::=

logging_clause::=

table_compression::=

extent_management_clause::=

1122 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1122

TABLESPACE tablespace
DATAFILE file_specification

,

MINIMUM EXTENT integer

K

M

BLOCKSIZE integer
K

logging_clause

FORCE LOGGING

DEFAULT
table_compression

storage_clause

ONLINE

OFFLINE

extent_management_clause

segment_management_clause

flashback_mode_clause

;

LOGGING

NOLOGGING

COMPRESS

NOCOMPRESS

EXTENT MANAGEMENT

DICTIONARY

LOCAL

AUTOALLOCATE

UNIFORM
SIZE size_clause

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

size_clause::=

segment_management_clause::=

flashback_mode_clause::=

temporary_tablespace_clause::=

tablespace_group_clause::=

undo_tablespace_clause::=

CREATE TABLESPACE 1123

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1123

SEGMENT SPACE MANAGEMENT
MANUAL

AUTO

FLASHBACK
ON

OFF

TEMPORARY TABLESPACE tablespace
TEMPFILE file_specification

,

tablespace_group_clause extent_management_clause

TABLESPACE GROUP
tablespace_group_name

’ ’

UNDO TABLESPACE tablespace
DATAFILE file_specification

,

extent_management_clause tablespace_retention_clause

integer

K

M

G

T

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

tablespace_retention_clause::=

DESCRIPTION tablespace is the name of the tablespace, and follows Oracle naming conventions.
The DATAFILE is a file or series of files described according to a file_specification, which defines the file
names and sizes:

'file' [SIZE integer [K | M | G | T] [REUSE]

The file format is operating system specific. SIZE is the number of bytes set aside for this file, in
kilobytes (K), megabytes (M), gigabytes (G), or terabytes (T). DEFAULT STORAGE defines the default
storage for all objects created in this tablespace, unless those defaults are overridden in the CREATE
TABLE command itself. ONLINE, the default, indicates that this tablespace will become available to
users as soon as it is created. OFFLINE prevents access to the tablespace until ALTER TABLESPACE
changes it to ONLINE. DBA_TABLESPACES gives the status of all the tablespaces.

SIZE and REUSE together tell Oracle to reuse the file if it already exists (anything it contains will be
wiped out) or create it if it doesn’t already exist. SIZE without REUSE creates a file that does not exist,
but returns an error if it does. Without SIZE, the file must already exist.

The MINIMUM EXTENT size parameter specifies the minimum size for extents within the tablespace.
The default is operating system specific and database block size specific.

When turned ON, the AUTOEXTEND option dynamically extends a datafile as needed in increments
of NEXT size, to a maximum of MAXSIZE (or UNLIMITED). If a tablespace will be used only for temporary
segments created during query processing, you can create it as a TEMPORARY tablespace. If the tablespace
will contain permanent objects (such as tables), then you should use the default setting of PERMANENT.

EXTENT MANAGEMENT controls the manner in which the extent management data for a tablespace
is recorded. By default, extent usage is LOCAL—the extent location information is stored in a bitmap
within the tablespace’s datafiles.

As of Oracle Database 10g, you can use the BIGFILE clause to create a bigfile tablespace. Also,
you can assign a temporary tablespace to a temporary tablespace group (via the TABLESPACE GROUP
clause). For undo tablespaces, you can guarantee that unexpired data will be preserved even at the
expense of ongoing transactions requiring undo segment space (via RETENTION GUARANTEE).

CREATE TRIGGER
SEE ALSO ALTER TABLE, ALTER TRIGGER, BLOCK STRUCTURE, DROP TRIGGER, Chapters 30
and 33

1124 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1124

RETENTION
GUARANTEE

NOGUARANTEE

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT
create_trigger::=

DML_event_clause::=

CREATE TRIGGER 1125

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1125

DELETE

INSERT

UPDATE
OF column

,

OR

ON

schema .
table

NESTED TABLE nested_table_column OF schema .
view

referencing_clause FOR EACH ROW

CREATE
OR REPLACE

TRIGGER
schema .

trigger

BEFORE

AFTER

INSTEAD OF

dml_event_clause

ddl_event

OR

database_event

OR ON

schema .
SCHEMA

DATABASE

WHEN (condition) pl/sql_block

call_procedure_statement

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

referencing_clause::=

DESCRIPTION CREATE TRIGGER creates and enables a database trigger, a stored procedure block
associated with a table, specified in the ON clause, that Oracle automatically executes when the specified
SQL statement executes against the table. You can use triggers to enforce complex constraints and to
propagate changes throughout the database instead of in your applications. That way, you implement
the triggered code just once, instead of having to implement it in every application.

The main clause of the CREATE TRIGGER command specifies the SQL operation that triggers the
block (such as DELETE, INSERT, or UPDATE) and when the trigger fires (BEFORE, AFTER, or INSTEAD
OF executing the triggering operation). If you specify an OF clause on an UPDATE trigger, the trigger
fires only when you update one or more of the specified columns. Note that you can also create triggers
that fire when DDL events occur (including CREATE, ALTER, and DROP) and when specific database
events occur (logons, logoffs, database startups, shutdowns, and server errors).

The REFERENCING clause specifies a correlation name for the table for the OLD and NEW versions
of the table. This lets you use the name when referring to columns, to avoid confusion, particularly when
the table name is OLD or NEW. The default names are OLD and NEW.

The FOR EACH ROW clause specifies the trigger to be a row trigger, a trigger fired once for each
row affected by the triggering operation. The WHEN clause restricts the execution of the trigger to happen
only when the condition is met. This condition is a SQL condition, not a PL/SQL condition.

You can disable and enable triggers through the ALTER TRIGGER and ALTER TABLE commands.
If a trigger is disabled, Oracle does not fire the trigger when a potentially triggering operation occurs.
The CREATE TRIGGER command automatically enables the trigger.

To create a trigger on a table you own, you must have the CREATE TRIGGER system privilege. To
create a trigger on another user’s table, you must have the CREATE ANY TRIGGER system privilege.
The user must have been directly granted all privileges necessary to execute the stored procedure.

CREATE TYPE
SEE ALSO CREATE TABLE, CREATE TYPE BODY, Chapters 33 and 34
FORMAT
create_type::=

create_incomplete_type::=

1126 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1126

create_incomplete_type

create_object_type

create_varray_type

create_nested_table_type

REFERENCING

OLD
AS

old

NEW
AS

new

PARENT
AS

parent

CREATE
OR REPLACE

TYPE
schema .

type_name ;

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

create_object_type::=

invoker_rights_clause::=

sqlj_object_type::=

sqlj_object_type_attr::=

element_spec::=

CREATE TYPE 1127

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1127

AUTHID
CURRENT_USER

DEFINER

EXTERNAL NAME java_ext_name LANGUAGE JAVA USING

SQLData

CustomDatum

OraData

EXTERNAL NAME ’ field_name ’

CREATE
OR REPLACE

TYPE
schema .

type_name

OID ’ object_identifier ’ invoker_rights_clause

IS

AS
OBJECT

UNDER
schema .

supertype

sqlj_object_type

(attribute datatype
sqlj_object_type_attr

,

, element_spec

,

)

NOT
FINAL

NOT
INSTANTIABLE

;

inheritance_clauses
subprogram_spec

constructor_spec

map_order_function_spec

, pragma_clause

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

inheritance_clauses::=

subprogram_spec::=

procedure_spec::=

function_spec::=

constructor_spec::=

map_order_function_spec::=

1128 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1128

NOT
OVERRIDING

FINAL

INSTANTIABLE

MEMBER

STATIC

procedure_spec

function_spec

PROCEDURE name (parameter datatype

,

)

IS

AS
call_spec

FUNCTION name (parameter datatype

,

) return_clause

FINAL INSTANTIABLE
CONSTRUCTOR FUNCTION datatype

(
SELF IN OUT datatype ,

parameter datatype

,

)

RETURN SELF AS RESULT

IS

AS
call_spec

MAP

ORDER
MEMBER function_spec

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

return_clause::=

sqlj_object_type_sig::=

pragma_clause::=

call_spec::=

Java_declaration::=

C_declaration::=

CREATE TYPE 1129

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1129

RETURN
datatype

SELF AS RESULT
EXTERNAL

VARIABLE NAME ’ java_static_field_name ’

NAME ’ java_method_sig ’

PRAGMA RESTRICT_REFERENCES (
method_name

DEFAULT
,

RNDS

WNDS

RNPS

WNPS

TRUST

,

)

LANGUAGE
Java_declaration

C_declaration

JAVA NAME ’ string ’

C
NAME name

LIBRARY lib_name
AGENT IN (argument

,

)

WITH CONTEXT PARAMETERS (parameter

,

)

RETURN datatype

IS

AS
call_spec

sqlj_object_type_sig

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

create_varray_type::=

create_nested_table_type::=

DESCRIPTION CREATE TYPE creates an abstract datatype, named varying array (VARRAY), nested
table type, or an incomplete object type. To create or replace a type, you must have the CREATE TYPE
privilege. To create a type in another user’s schema, you must have the CREATE ANY TYPE system privilege.

When creating an abstract datatype, you can base it on Oracle’s provided datatypes (such as DATE
and NUMBER) and on previously defined abstract datatypes.

An “incomplete” type has a name but no attributes or methods. However, it can be referenced by
other object types, and so can be used to define object types that refer to each other. If you have two
types that refer to each other, you must create one as an incomplete type, then create the second, then
re-create the first with its proper definition.

If you plan to create methods for the type, you need to declare the method names in the type
specification.
EXAMPLES This example creates a type that will have associated methods:

create or replace type ANIMAL_TY as object
(Breed VARCHAR2(25),
Name VARCHAR2(25),
BirthDate DATE,

member function AGE (BirthDate IN DATE) return NUMBER,
PRAGMA RESTRICT_REFERENCES(AGE, WNDS));

This example creates a varying array:

create or replace type TOOLS_VA as varray(5) of VARCHAR2(25);

This example creates a type with no methods:

create type ADDRESS_TY as object
(Street VARCHAR2(50),
City VARCHAR2(25),
State CHAR(2),
Zip NUMBER);

This example creates a type that uses another type:

1130 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1130

CREATE
OR REPLACE

TYPE
schema. .

type_name

OID ’ object_identifier ’ IS

AS
TABLE OF datatype ;

CREATE
OR REPLACE

TYPE
schema .

type_name

OID ’ object_identifier ’ IS

AS

VARRAY

VARYING ARRAY
(limit) OF datatype ;

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

create type PERSON_TY as object
(Name VARCHAR2(25),
Address ADDRESS_TY);

CREATE TYPE BODY
SEE ALSO CREATE FUNCTION, CREATE PROCEDURE, CREATE TYPE, Chapters 31, 33, 34, and 36
FORMAT
create_type_body::=

subprogram_declaration::=

procedure_declaration::=

function_declaration::=

constructor_declaration::=

CREATE TYPE BODY 1131

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1131

CREATE
OR REPLACE

TYPE BODY
schema .

type_name

IS

AS

subprogram_declaration

map_order_func_declaration

,

END ;

MEMBER

STATIC

procedure_declaration

function_declaration

constructor_declaration

PROCEDURE name (parameter datatype

,

)
IS

AS

pl/sql_block

call_spec

FUNCTION name (parameter datatype

,

) RETURN datatype
IS

AS

pl/sql_block

call_spec

FINAL INSTANTIABLE
CONSTRUCTOR FUNCTION datatype

(
SELF IN OUT datatype ,

parameter datatype

,

)

RETURN SELF AS RESULT
IS

AS

pl/sql_block

call_spec

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

map_order_func_declaration::=

call_spec::=

Java_declaration::=

C_declaration::=

DESCRIPTION CREATE TYPE BODY specifies the methods to be applied to types created via CREATE
TYPE. You must have the CREATE TYPE privilege to create type bodies. To create a type body in another
user’s schema, you must have the CREATE ANY TYPE privilege.
EXAMPLE

create or replace type body ANIMAL_TY as
member function Age (BirthDate DATE) return NUMBER is
begin

RETURN ROUND(SysDate - BirthDate);
end;

end;

CREATE USER
SEE ALSO ALTER USER, CREATE PROFILE, CREATE ROLE, CREATE TABLESPACE, GRANT,
Chapter 18

1132 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1132

MAP

ORDER
MEMBER function_declaration

LANGUAGE
Java_declaration

C_declaration

JAVA NAME ’ string ’

C
NAME name

LIBRARY lib_name
AGENT IN (argument

,

)

WITH CONTEXT PARAMETERS (parameter

,

)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT
create_user::=

DESCRIPTION CREATE USER creates a user account that lets you log into the database with a
certain set of privileges and storage settings. If you specify a password, you must supply that password
to log on; if you specify the EXTERNALLY option, access is verified through operating system security.
External verification uses the OS_AUTHENT_PREFIX initialization parameter to prefix the operating
system user ID, so the username you specify in CREATE USER should contain that prefix (usually OPS$).

The DEFAULT TABLESPACE is the tablespace in which the user creates objects. The TEMPORARY
TABLESPACE is the tablespace in which temporary objects are created for the user’s operations.

You can put a QUOTA on either of these tablespaces that limits the amount of space, in bytes
(kilobytes or megabytes for K or M options, respectively), that a user can allocate. The PROFILE clause
assigns a named profile to the user to limit usage of database resources. Oracle assigns the DEFAULT
profile to the user if you don’t specify a profile.

When you first create a user, the user has no privileges. You must use the GRANT command to grant
roles and privileges to the user. You should usually grant CREATE SESSION as a minimal privilege.

For information on password expirations and account locking, see CREATE PROFILE and Chapter 18.
As of Oracle Database 10g, you can assign a user a temporary tablespace group as the designated

temporary tablespace, thereby effectively assigning multiple temporary tablespaces to the user.

CREATE VIEW
SEE ALSO CREATE SYNONYM, CREATE TABLE, DROP VIEW, RENAME, INTEGRITY CONSTRAINT,
Chapters 17 and 33

CREATE VIEW 1133

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1133

CREATE USER user IDENTIFIED

BY password

EXTERNALLY

GLOBALLY AS ’ external_name ’

DEFAULT TABLESPACE tablespace

TEMPORARY TABLESPACE
tablespace

tablespace_group_name

QUOTA
integer

K

M

UNLIMITED
ON tablespace

PROFILE profile

PASSWORD EXPIRE

ACCOUNT
LOCK

UNLOCK
;

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT
create_view::=

object_view_clause::=

XMLType_view_clause::=

XMLSchema_spec::=

subquery_restriction_clause::=

1134 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1134

CREATE
OR REPLACE

NO
FORCE

VIEW
schema .

view

(
alias

inline_constraint

out_of_line_constraint

,

)

object_view_clause

XMLType_view_clause
AS subquery

subquery_restriction_clause
;

OF
schema .

type_name

WITH OBJECT IDENTIFIER

DEFAULT

(attribute

,

)

UNDER
schema .

superview

(
out_of_line_constraint

attribute inline_constraint

,

)

OF XMLTYPE
XMLSchema_spec

WITH OBJECT IDENTIFIER

DEFAULT

(expr

,

)

XMLSCHEMA XMLSchema_URL
ELEMENT

element

XMLSchema_URL # element

WITH

READ ONLY

CHECK OPTION
CONSTRAINT constraint

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION CREATE VIEW defines a view named view. user is the name of the user for whom
the view is created. The OR REPLACE option re-creates the view if it already exists. The FORCE option
creates the view regardless of whether the tables to which the view refers exist or whether the user has
privileges on them. The user still can’t execute the view, but he or she can create it. The NO FORCE
option creates the view only if the base tables exist and the user has privileges on them.

If an alias is specified, the view uses the alias as the name of the corresponding column in the query.
If an alias is not specified, the view inherits the column name from the query; in this case each column
in a query must have a unique name, one that follows normal Oracle naming conventions. It cannot
be an expression. An alias in the query itself also can serve to rename the column.

AS query identifies the columns of tables and other views that are to appear in this view. Its WHERE
clause will determine which rows are to be retrieved.

WITH CHECK OPTION restricts INSERTs and UPDATEs performed through the view to prevent
them from creating rows that the view cannot itself select, based on the WHERE clause of the CREATE
VIEW statement. WITH CHECK OPTION may be used in a view that is based on another view; however,
if the underlying view also has a WITH CHECK OPTION, it is ignored.

constraint is a name given to the CHECK OPTION. constraint is an optional name assigned to this
constraint. Without it, Oracle will assign a name in the form SYS_Cn, where n is an integer. An Oracle-
assigned name will usually change during an import, while a user-assigned name will not change.

UPDATE and DELETE will work on rows in a view if the view is based on a single table and its
query does not contain the GROUP BY clause, the DISTINCT clause, group functions, or references to
the pseudo-column RowNum. You may UPDATE views containing other pseudo-columns or expressions,
as long as they are not referenced in the UPDATE.

You may insert rows through a view if the view is based on a single table and if its query does not
contain the GROUP BY clause, the DISTINCT clause, group functions, references to any pseudo-columns,
or any expressions; rows may also be inserted through a view with more than one table by using INSTEAD
OF triggers. If the view is created WITH READ ONLY, then only SELECTs are allowed against the view;
no data manipulation is allowed.

You can create object views to superimpose abstract datatypes on existing relational tables. See
Chapter 33.

To create a view, you must have the CREATE VIEW system privilege. To create a view in another
user’s schema, you must have the CREATE ANY VIEW system privilege.

CREATING A DATABASE
Creating a database is the process of making a database ready for initial use. It includes clearing the
database files and loading initial database tables required by the RDBMS. This is accomplished via
the SQL statement CREATE DATABASE.

CROSS JOIN
The CROSS keyword, used as part of the join syntax in a FROM clause of a query, lets you specify an
inner or cross join. A cross join produces the cross-product of two relations and is essentially the same
as the comma-delimited notation for tables in the FROM clause.

CTXCAT INDEX
A CTXCAT text index, available in Oracle Text, supports text queries executed with the CATSEARCH
operator. See Chapter 25 for information on Oracle Text.

CTXCAT INDEX 1135

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1135

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

CUBE
SEE ALSO GROUPING, ROLLUP, Chapter 12
FORMAT

GROUP BY CUBE (column1, column2)

DESCRIPTION CUBE groups rows based on the values of all possible combinations of expressions
for each row, and returns a single row of summary information for each group. You can use the CUBE
operation to produce crosstab reports. See Chapter 12.

CUME_DIST
SEE ALSO AGGREGATE FUNCTIONS
FORMAT For aggregates:

CUME_DIST (expr [, expr]...) WITHIN GROUP
(ORDER BY

expr [DESC | ASC] [NULLS { FIRST | LAST }]
[, expr [DESC | ASC] [NULLS { FIRST | LAST }]]...)

For analytics:

CUME_DIST () OVER ([query_partition_clause] order_by_clause)

DESCRIPTION CUME_DIST calculates the cumulative distribution of a value in a group of values.
The range of values returned by CUME_DIST is >0 to <=1. Tie values always evaluate to the same
cumulative distribution value.

CURRENT_DATE
SEE ALSO DATE FUNCTIONS
FORMAT

CURRENT_DATE

DESCRIPTION CURRENT_DATE returns the current date in the session time zone, in a value in
the Gregorian calendar of datatype DATE.
EXAMPLE

SELECT CURRENT_DATE FROM DUAL;

CURRENT_TIMESTAMP
SEE ALSO DATE FUNCTIONS
FORMAT

CURRENT_TIMESTAMP [(precision)]

DESCRIPTION CURRENT_TIMESTAMP returns the current date and time in the session time zone,
in a value of datatype TIMESTAMP WITH TIME ZONE. The time zone displacement reflects the current
local time of the SQL session. If you omit precision, the default is 6. The difference between this function
and LOCALTIMESTAMP is that CURRENT_TIMESTAMP returns a TIMESTAMP WITH TIME ZONE value
while LOCALTIMESTAMP returns a TIMESTAMP value. precision specifies the fractional second precision
of the time value returned.

1136 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1136

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXAMPLE

select CURRENT_TIMESTAMP from DUAL;

CURRVAL
See PSEUDO-COLUMNS.

CURSOR
Cursor is also a synonym for context area—a work area in memory where Oracle stores the current SQL
statement. For a query, the area in memory also includes column headings and one row retrieved by the
query.

CURSOR (PL/SQL)
SEE ALSO CREATE PACKAGE, CREATE PACKAGE BODY, Chapter 29
FORMAT

CURSOR cursor [(parameter datatype[,parameter datatype]...]
[IS query]

DESCRIPTION You can specify a cursor in a PL/SQL package and declare its body. The specification
contains only the list of parameters with their corresponding datatypes, not the IS clause, while the
body contains both. The parameters may appear anywhere in the query that a constant could appear.
You can specify the cursor as a part of the public declarations of the package specification, and then
the cursor body as part of the hidden package body.

CURSOR FOR LOOP
In FOR loops, the loop executes a specified number of times. In a cursor FOR loop, the results of a
query are used to dynamically determine the number of times the loop is executed. In a cursor FOR
loop, the opening, fetching, and closing of cursors is performed implicitly; you do not need to explicitly
code these actions.

The following listing shows a cursor FOR loop that queries the RADIUS_VALS table and inserts
records into the AREAS table:

declare
pi constant NUMBER(9,7) := 3.1415927;
area NUMBER(14,2);
cursor rad_cursor is

select * from RADIUS_VALS;
begin
for rad_val in rad_cursor
loop
area := pi*power(rad_val.radius,2);
insert into AREAS values (rad_val.radius, area);

end loop;
end;

In a cursor FOR loop, there is no OPEN or FETCH command. The

for rad_val in rad_cursor

CURSOR FOR LOOP 1137

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1137

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

command implicitly opens the rad_cursor cursor and fetches a value into the rad_val variable. Note
that the rad_val variable is not explicitly declared when you use a cursor FOR loop. When there are
no more records in the cursor, the loop is exited and the cursor is closed. In a cursor FOR loop, there is no
need for a CLOSE command. See Chapter 29 for further information on cursor management within PL/SQL.

CV
FORMAT

CV([dimension_column])

DESCRIPTION CV can be used only in the MODEL clause of a SELECT statement. It returns the
current value of a dimension column carried from the left side to the right side of a rule to provide relative
indexing with respect to the dimension column.

DATA CONTROL LANGUAGE (DCL) STATEMENTS
DCL statements are one category of SQL statements. DCL statements, such as GRANT, GRANT
SELECT, GRANT UPDATE, and REVOKE ALL, control access to the data and to the database. The other
categories are data definition language (DDL) and data manipulation language (DML) statements.

DATA DEFINITION LANGUAGE (DDL) STATEMENTS
DDL statements are one category of SQL statements. DDL statements define (create) or delete (drop)
database objects. Examples are CREATE VIEW, CREATE TABLE, CREATE INDEX, DROP TABLE,
CREATE FUNCTION, and RENAME TABLE. Executing any DDL command commits any pending
changes to the database. The other categories of SQL statements are data control language (DCL)
and data manipulation language (DML) statements.

DATA DEFINITION LOCKS
Data definition locks are locks placed on the data dictionary during changes to the structures (definitions)
of database objects (such as tables, indexes, views, and clusters) so that those changes occur with no
negative impact on the database data. There are three kinds of locks: dictionary operation locks, dictionary
definition locks, and table definition locks.

DATA DICTIONARY
The data dictionary is a comprehensive set of tables and views owned by the DBA users SYS and
SYSTEM. The data dictionary activates when Oracle is initially installed, and is a central source of
information for the Oracle RDBMS itself and for all users of Oracle. The tables are automatically
maintained by Oracle, and hold a set of views and tables containing information about database
objects, users, privileges, events, and use. See Chapter 42.

DATA DICTIONARY VIEWS
SEE ALSO Chapter 42
DESCRIPTION The Oracle data dictionary views are described in Chapter 42.

For details on the use of the DBA views in the data dictionary, see the Oracle DBA Handbook.

DATA INDEPENDENCE
Data independence is the property of well-defined tables that allows the physical and logical structure
of a table to change without affecting applications that access the table.

1138 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1138

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DATA MANIPULATION LANGUAGE (DML)
STATEMENTS
DML statements are one category of SQL statements. DML statements, such as select, insert, delete,
and update, query and update the actual data. The other categories are data control language (DCL)
and data definition language (DDL) statements.

DATABASE
Database has two definitions:

■ A set of dictionary tables and user tables that are treated as a unit.

■ One or more operating system files in which Oracle stores tables, views, and other objects;
also, the set of database objects used by a given application.

DATABASE ADMINISTRATOR (DBA)
A DBA is an Oracle user authorized to GRANT and REVOKE other users’ access to the system, modify
Oracle options that affect all users, and perform other administrative functions. See Chapter 46.

DATABASE LINK
A database link is an object stored in the local database that identifies a remote database, a communication
path to the remote database, and, optionally, a username and password for it. Once defined, the database
link is used to perform queries on tables in the remote database. See Chapter 23.

DATABASE NAME
A database name is a unique identifier used to name a database. It is assigned in the CREATE DATABASE
command or in the initialization parameter file.

DATABASE OBJECT
A database object is something created and stored in a database. Tables, views, synonyms, indexes,
sequences, clusters, and columns are all types of database objects.

DATAFILE
A datafile is any file used to store data in a database. A database is made up of one or more tablespaces,
which in turn are made up of one or more datafiles.

DATATYPES
SEE ALSO CHARACTER FUNCTIONS, CONVERSION FUNCTIONS, DATE FUNCTIONS, LIST
FUNCTIONS, NUMBER FUNCTIONS, OTHER FUNCTIONS
DESCRIPTION When a table is created and the columns in it are defined, they must each have
a datatype specified. Oracle’s primary datatypes are VARCHAR2, CHAR, DATE, LONG, LONG RAW,
NUMBER, RAW, and ROWID, but for compatibility with other SQL databases, its CREATE TABLE statements
will accept several versions of these. The following table summarizes the built-in Oracle datatypes:

Datatype Definition

VARCHAR2(size) Variable-length character string having a maximum of size bytes (up to 4000).

NVARCHAR2(size) Variable-length character string having a maximum of size bytes (up to 4000)
or characters, depending on the choice of national character set.

DATATYPES 1139

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1139

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Datatype Definition

NUMBER(precision, scale) For NUMBER column of specified precision with scale digits after the decimal
point. precision can range from 1 to 38; scale can range from –84 to 127.

LONG Character data of variable size up to 2GB in length.

DATE Valid dates range from January 1, 4712 B.C. to December 31, 9999 A.D.

BINARY_FLOAT 32-bit floating-point number.

BINARY_DOUBLE 64-bit floating-point number.

TIMESTAMP (precision) Date plus time, where precision is the number of digits in the fractional part
of the Seconds field (values range from 0 to 9, default is 6).

TIMESTAMP (precision)
WITH TIME ZONE

TIMESTAMP plus time zone displacement value. precision is the number
of digits in the fractional part of the Seconds field (values range from 0 to 9,
default is 6).

TIMESTAMP (precision)
WITH LOCAL TIME ZONE

TIMESTAMP, normalized to local time zone.

INTERVAL YEAR (precision)
TO MONTH

Period of time in years and months, where precision is the number of digits
in the YEAR datetime field (values range from 0 to 9, default is 2).

INTERVAL DAY
(day_precision)
TO SECOND
(second_precision)

Period of time in days, hours, minutes, and seconds, where day_precision
is the number of digits in the DAY datetime field (values range from 0 to 9,
default is 2) and second_precision is the number of digits in the fractional
part of the Seconds field (values range from 0 to 9, default is 6).

RAW(size) Raw binary data, size bytes long. Maximum size is 2000 bytes.

LONG RAW Raw binary data; otherwise the same as LONG.

ROWID Base 64 string representing the unique address of a row in its table.

UROWID (size) Base 64 string for the logical address of a row in an index-organized table;
maximum size is 4000 bytes.

CHAR(size) Fixed-length character data, size characters long. Maximum size is 2000.
Default is 1 byte. Padded on the right with blanks to full length of size.

NCHAR(size) Multibyte character set version of CHAR.

CLOB Character large object, up to 4GB in length.

NCLOB Same as CLOB, but containing Unicode characters.

BLOB Binary large object, up to 4GB in length.

BFILE Pointer to a binary operating system file.

DATE
DATE is a standard Oracle datatype to store date and time data. Standard date format is 22-APR-04.
A DATE column may contain a date and time between January 1, 4712 B.C. and December 31, 9999 A.D.

DATE FORMATS
SEE ALSO DATE FUNCTIONS, Chapter 10
DESCRIPTION Date format models are used in conversion functions. Date model components
are listed in the following table:

1140 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1140

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

/ , - : . ; Punctuation to be incorporated in display for TO_CHAR or ignored in format for TO_DATE

A.D. or AD AD indicator, with or without periods

A.M. or AM Displays A.M. or P.M., depending upon time of day, with or without periods

B.C. or BC Same as A.D. or AD

CC Century: (e.g., 21 for 2004)

SCC Century, with BC dates prefixed with -

D Number of days in week: 1 to 7

DAY Day fully spelled out, padded to 9 characters

DD Number of days in month: 1 to 31

DDD Number of days in year, since Jan 1: 1 to 366

DL Date in local long format; in U.S. format, this is equivalent to fmDay, Month dd, yyyy

DS Date in local short format; in U.S. format, this is equivalent to MM/DD/RRRR

DY Three-letter abbreviation of day: FRI

E Abbreviated era name (Japanese Imperial, ROC Official, and Thai Buddha calendars)

EE Full era name version of E format

FF [1..9] Fractional seconds; the number following FF specifies the number of digits in the fractional
seconds portion displayed

FM Suppresses leading and trailing blanks; without FM, all months and days are displayed
at same width

FX Format Exact: specifies exact format matching for the character argument and the date
format model

HH Hour of day: always 1 to 12

HH12 Same as HH

HH24 Hour of day, 24-hour clock: 0 to 23

I One-digit year from ISO standard

IW Weeks in year from ISO standard: 1 to 53

IY Two-digit year from ISO standard

IYY Three-digit year from ISO standard

IYYY Four-digit year from ISO standard

J Julian; days since December 31, 4712 B.C.

MI Minutes of hour: 0 to 59

MM Month of year (01 to 12)

MON Three-letter abbreviation of month: e.g., AUG

MONTH Month fully spelled out: e.g., AUGUST

P.M. Same effect as A.M.

Q Quarter of year: 1 to 4

RM Roman numeral month

DATE FORMATS 1141

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1141

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

RR Last two digits of year relative to current date

RRRR Rounded year, accepting either two- or four-digit input

SS Seconds of minute: 1 to 60

SSSSS Seconds since midnight: always 0 to 86399

TS Short time format, for use with DL or DS

TZD Daylight savings time information

TZH Time zone hour

TZM Time zone minute

TZR Time zone region

W Number of weeks in month, where week 1 starts on the first day of the month

WW Number of weeks in year, where week 1 starts on the first day of the year

X Local radix character

YEAR or SYEAR Year spelled out; S marks BC dates with a leading minus sign

YYYY or SYYYY Full four-digit year; S marks BC dates with a leading minus sign

Y,YYY Year, with comma

Y Last one digit of year

YY Last two digits of year

YYY Last three digits of year

Date formats that work only with TO_CHAR but not TO_DATE include:

“string” string is incorporated in display for TO_CHAR.

TH Suffix to a number: ddTH or DDTH produces 24th or 24TH. Capitalization comes from the case
of the number—dd or DD—not from the case of the TH. Works with any number in a date: YYYY,
DD, MM, HH, MI, SS, and so on.

SP Suffix to a number that forces number to be spelled out: DDSP, DdSP, or ddSP produces THREE,
Three, or three. Capitalization comes from case of number—dd or DD—not from the case of SP.
Works with any number in a date: YYYY, DD, MM, HH, MI, SS, and so on.

SPTH Suffix combination of TH and SP that forces number to be both spelled out and given an ordinal
suffix: Ddspth produces Third. Capitalization comes from case of number—dd or DD—not from
the case of SP. Works with any number in a date: YYYY, DD, MM, HH, MI, SS, and so on.

THSP Same as SPTH.

DATE FUNCTIONS
SEE ALSO DATE FORMATS, Chapter 10
DESCRIPTION This is an alphabetical list of all current date functions in Oracle version of SQL.
Each of these is listed elsewhere in this reference under its own name, with its proper format and use.

■ ADD_MONTHS(date,count) Adds count months to date.

■ CURRENT_DATE Returns the current date in the session’s time zone.

■ CURRENT_TIMESTAMP Returns the current timestamp with the active time zone information.

1142 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1142

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ DBTIMEZONE Returns the current database timezone, in UTC format.

■ EXTRACT(datetime) Extracts a portion of a date from a date value, such as extracting the month
value from a date column’s values.

■ FROM_TZ Converts a timestamp value to a timestamp with timezone value.

■ LAST_DAY(date) Gives date of last day of month that date is in.

■ LOCALTIMESTAMP Returns the local timestamp in the active time zone, with no time zone
information shown.

■ MONTHS_BETWEEN(date2,date1) Gives date2 date1 in months (can be fractional months).

■ NEW_TIME(date, 'this', 'other') Gives the date (and time) in this time zone. this will be
replaced by a three-letter abbreviation for the current time zone. other will be replaced by a
three-letter abbreviation for the other time zone for which you’d like to know the time and date.

Time zones are as follows:

AST/ADT Atlantic standard/daylight time

BST/BDT Bering standard/daylight time

CST/CDT Central standard/daylight time

EST/EDT Eastern standard/daylight time

GMT Greenwich mean time

HST/HDT Alaska-Hawaii standard/daylight time

MST/MDT Mountain standard/daylight time

NST Newfoundland standard time

PST/PDT Pacific standard/daylight time

YST/YDT Yukon standard/daylight time

■ NEXT_DAY(date,'day') Gives date of next day after date, where 'day' is 'Monday', 'Tuesday',
and so on.

■ NUMTODSINTERVAL(n,'value') Converts a number or expression n to an INTERVAL DAY
TO SECOND literal where value is the unit of n: 'DAY', 'HOUR', 'MINUTE', 'SECOND'.

■ NUMTOYMINTERVAL(n,'value') Converts a number or expression n to an INTERVAL YEAR
TO MONTH literal where value is the unit of n: 'YEAR', 'MONTH'.

■ ROUND(date,'format') Without format specified, rounds a date to 12 A.M. (midnight, the
beginning of that day) if time of date is before noon; otherwise, rounds up to next day. For
use of format for rounding, see ROUND.

■ SESSIONTIMEZONE Returns the value of the current session’s timezone.

■ SYS_EXTRACT_UTC(datetime_with_timezone) Extracts the Coordinated Universal Time (UTC)
from a datetime field with time zone displacement.

■ SYSDATE Returns the current date and time.

■ SYSTIMESTAMP Returns the system date, including fractional seconds and time zone of the
database.

■ TO_CHAR(date,'format') Reformats date according to format.

DATE FUNCTIONS 1143

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1143

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ TO_DATE(string,'format') Converts a string in a given 'format' into an Oracle date. Will also
accept a number instead of a string, with certain limits. 'format' is restricted.

■ TO_DSINTERVAL('value') Converts value of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
datatype to an INTERVAL DAY TO SECOND type.

■ TO_TIMESTAMP('value') Converts value of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
datatype to a value of TIMESTAMP datatype.

■ TO_TIMESTAMP_TZ('value') Converts value of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
datatype to a value of TIMESTAMP WITH TIMEZONE datatype.

■ TO_YMINTERVAL('value') Converts value of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
datatype to a value of INTERVAL YEAR TO MONTH datatype.

■ TRUNC(date,'format') Without format specified, sets a date to 12 A.M. (midnight, the beginning
of that day). For use of format for truncating, see TRUNC.

■ TZ_OFFSET('value') Returns the time zone offset corresponding to the value entered based
on the date the statement is executed.

DBA
See DATABASE ADMINISTRATOR (DBA).

DBTIMEZONE
SEE ALSO DATE FUNCTIONS
FORMAT

DBTIMEZONE

DESCRIPTION DBTIMEZONE returns the value of the database time zone.
EXAMPLE

select DBTIMEZONE from DUAL;

DBWR PROCESS
One of the background processes used by Oracle. The Database Writer process writes new data to the
database. Also referred to as DBWn.

DCL
See DATA CONTROL LANGUAGE (DCL) STATEMENTS.

DDL
See DATA DEFINITION LANGUAGE (DDL) STATEMENTS.

DDL LOCK
When a user executes a DDL command, Oracle locks the objects referred to in the command with DDL
locks. A DDL lock locks objects in the data dictionary.

DEADLOCK
A deadlock is a rare situation in which two or more user processes of a database cannot complete their
transactions, because each process is holding a resource that the other process requires (such as a row

1144 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1144

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

in a table) in order to complete. Although these situations occur rarely, Oracle detects and resolves
deadlocks by rolling back the work of one of the processes.

DECLARE
The DECLARE command allows you to declare cursors, variables, and exceptions for use within PL/SQL
blocks. See Chapter 29.

DECLARE CURSOR (Form 1—Embedded SQL)
SEE ALSO CLOSE, DECLARE DATABASE, DECLARE STATEMENT, FETCH, OPEN, PREPARE, SELECT,
SELECT (Embedded SQL), Programmer’s Guide to the Oracle Precompilers
FORMAT

EXEC SQL [AT {database | :host_variable}]
DECLARE cursor CURSOR

FOR {SELECT command | statement}

DESCRIPTION The DECLARE CURSOR statement must appear before any SQL that references
this cursor, and must be compiled in the same source as procedures that reference it. Its name must
be unique to the source.

database is the name of a database already declared in a DECLARE DATABASE statement and
used in a CONNECT; host_variable is a variable with such a name as its value. cursor is the name you
assign to this cursor. SELECT command is a query with no INTO clause. Alternatively, a SQL statement
or a PL/SQL block already declared in a SQL DECLARE STATEMENT statement can be used.

When the FOR UPDATE OF clause is included in the SELECT statement, an UPDATE can
reference the cursor with WHERE CURRENT OF cursor, although the cursor must still be open, and a
row must be present from a FETCH.

DECLARE CURSOR (Form 2—PL/SQL)
SEE ALSO CLOSE, FETCH, OPEN, SELECT. . .INTO, Chapter 29
FORMAT

DECLARE
CURSOR cursor (parameter datatype [,parameter datatype]...)

IS select_statement
[FOR UPDATE OF column [,column]...];

DESCRIPTION A cursor is a work area that Oracle uses to control the row currently being processed.
DECLARE CURSOR names a cursor and declares that it IS (the result of) a certain select_statement. The
select_statement is required, and may not contain an INTO clause. The cursor must be declared. It can then
be OPENed, and rows can then be FETCHed into it. Finally, it can be CLOSEd.

Variables cannot be used directly in the WHERE clause of the select_statement unless they’ve first
been identified as parameters, in a list that precedes the select. Note that DECLARE CURSOR does not
execute the SELECT statement, and the parameters have no values until they are assigned in an OPEN
statement. Parameters have standard object names, and datatypes including VARCHAR2, CHAR,
NUMBER, DATE, and BOOLEAN, all without size or scale, however.

FOR UPDATE OF is required if you wish to affect the current row in the cursor using either UPDATE
or DELETE commands with the CURRENT OF clause.

DECLARE CURSOR (Form 2—PL/SQL) 1145

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1145

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DECLARE DATABASE (Embedded SQL)
SEE ALSO COMMIT RELEASE (Embedded SQL), CONNECT (Embedded SQL), Programmer’s Guide
to the Oracle Precompilers
FORMAT

EXEC SQL DECLARE database DATABASE

DESCRIPTION DECLARE DATABASE declares the name of a remote database for use in later AT
clauses of SQL statements, including COMMIT, DECLARE CURSOR, DELETE, INSERT, ROLLBACK,
SELECT, and UPDATE.

DECLARE STATEMENT (Embedded SQL)
SEE ALSO CLOSE, FETCH, OPEN, PREPARE, Programmer’s Guide to the Oracle Precompilers
FORMAT

EXEC SQL [AT {database | :host_variable}]
DECLARE STATEMENT {statement | block_name} STATEMENT

DESCRIPTION statement is the name of the statement in a DECLARE CURSOR statement, and
must be identical to the statement name here. database is the name of a database previously declared
with DECLARE DATABASE; host_variable may contain such a name as its value. This command is only
needed if DECLARE CURSOR will come before a PREPARE command. When it is used, it should come
prior to DECLARE, DESCRIBE, OPEN, or PREPARE, and must be compiled in the same source as procedures
that reference it.

DECLARE TABLE
SEE ALSO CREATE TABLE, Programmer’s Guide to the Oracle Precompilers
FORMAT

EXEC SQL DECLARE table TABLE
(column datatype [NULL|NOT NULL],

...);

DESCRIPTION table is the name of the table being declared. column is a column name, and
datatype is its datatype. This structure is nearly identical to that of CREATE TABLE, including the use
of NULL and NOT NULL.

You use DECLARE TABLE to tell precompilers to ignore actual Oracle database table definitions when
running with SQLCHECK=FULL. The precompilers will regard the table description here as relevant
to the program and ignore the table definitions in the database. Use this when table definitions will
change, or when a table has not yet been created. If SQLCHECK is not equal to FULL (which means
tables and columns will not be checked against the database anyway), this command is ignored by the
precompiler and becomes simply documentation.
EXAMPLE

EXEC SQL DECLARE COMFORT TABLE (
City VARCHAR2(13) NOT NULL,
SampleDate DATE NOT NULL,
Noon NUMBER(3,1),
Midnight NUMBER(3,1),
Precipitation NUMBER
);

1146 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1146

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DECODE
SEE ALSO OTHER FUNCTIONS, CASE, TRANSLATE, Chapter 16
FORMAT

DECODE(value,if1,then1[,if2,then2,]... ,else)

DESCRIPTION value represents any column in a table, regardless of datatype, or any result of
a computation, such as one date minus another, a SUBSTR of a character column, one number times
another, and so on. For each row, value is tested. If it equals if1, then the result of the DECODE is then1;
if value equals if2, then the result of the DECODE is then2, and so on, for virtually as many if/then pairs
as you can construct. If value equals none of the ifs, then the result of the DECODE is else. Each of the
ifs, thens, and the else also can be a column or the result of a function or computation. Chapter 16 is
devoted entirely to DECODE.
EXAMPLE

select DISTINCT City,
DECODE(City, 'SAN FRANCISCO', 'CITY BY THE BAY', City)

from COMFORT;

CITY DECODE(CITY,'SA
------------- ---------------
KEENE KEENE
SAN FRANCISCO CITY BY THE BAY

DECOMPOSE
SEE ALSO CONVERSION FUNCTIONS
FORMAT

DECOMPOSE ('string')

DESCRIPTION DECOMPOSE translates a string in any datatype to a Unicode string after canonical
decomposition in the same character set as the input.

DEFAULT
Default is a clause or option value that is used if no alternative is specified. You can specify the default
value for a column in a table via a DEFAULT column constraint.

DEFAULT VALUE
The default value is a value that is used unless a different one is specified or entered.

DEFINE (SQL*Plus)
SEE ALSO SET, EDIT
FORMAT

DEF[INE] [variable] | [variable = text]

DESCRIPTION variable is a user or predefined variable whose value you wish to assign or list.
text is the new value for the variable; it must be a CHAR value and should be enclosed within single
quotes if it contains punctuation or blanks. DEFINE without a variable will list all variables.

DEFINE (SQL*Plus) 1147

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1147

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following variables are predefined by Oracle for each session:

Variable Description

_CONNECT_IDENTIFIER Connection identifier used to make current connection

_DATE Current date, or a user-defined fixed string

_EDITOR Specifies the editor to be used via the EDIT command

_O_RELEASE Full release number of the database

_O_VERSION Current version of the database

_PRIVILEGE Privilege level of the current connection (for example, AS SYSDBA)

_SQLPLUS_RELEASE Full release number of the SQL*Plus version in use

_USER Username for current connection

DEL (SQL*Plus)
SEE ALSO APPEND, CHANGE, EDIT, INPUT, LIST, Chapter 6
FORMAT

DEL [n | n m | n* | n LAST | * | *n | * LAST | LAST]

DESCRIPTION DEL deletes the current line of the current buffer. You can delete multiple lines with
a single DEL command. DEL is not available in iSQL*Plus.
EXAMPLE

del

deletes the current line in the SQL*Plus buffer.
To delete a range of lines with one command, specify the line numbers of the beginning and ending

of the range in the DEL command. The following command would delete lines 2 through 8 in the current
buffer:

del 2 8

To delete from line 4 to the end, use the * character:

del 4*

DELETE (Form 1—PL/SQL)
SEE ALSO DECLARE CURSOR, UPDATE, Chapter 29
DESCRIPTION In PL/SQL, DELETE follows the normal SQL command rules, with these added
features:

■ A PL/SQL function and/or variable can be used in the WHERE clause just as a literal could be.

■ DELETE. . .WHERE CURRENT OF cursor can be used in conjunction with a SELECT FOR UPDATE
to delete the last row FETCHed. The FETCH can either be explicit or implicit from a FOR loop.

■ Like UPDATE and INSERT, the DELETE command executes only within the SQL cursor. The
SQL cursor’s attributes can be checked for the success of the DELETE. SQL%ROWCOUNT
will contain the number of rows deleted. If this is 0, none were DELETEd. (Also, SQL%FOUND
will be FALSE if none were DELETEd.)

1148 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1148

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DELETE (Form 2—SQL Command)
SEE ALSO DROP TABLE, FROM, INSERT, SELECT, UPDATE, WHERE, Chapter 15
FORMAT
delete::=

DML_table_expression_clause::=

subquery_restriction_clause::=

table_collection_expression::=

where_clause::=

returning_clause::=

DELETE (Form 2—SQL Command) 1149

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1149

DELETE
hint FROM dml_table_expression_clause

ONLY (dml_table_expression_clause)

t_alias

where_clause returning_clause
;

schema . table

PARTITION (partition)

SUBPARTITION (subpartition)

@ dblink

view

materialized view

@ dblink

(subquery
subquery_restriction_clause

)

table_collection_expression

WITH

READ ONLY

CHECK OPTION
CONSTRAINT constraint

TABLE (collection_expression)
(+)

WHERE condition

RETURNING expr

,

INTO data_item

,

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION DELETE deletes from table all rows that satisfy condition. The condition may
include a correlated query and use the alias for correlation. If the table is remote, a database link has
to be defined. @link specifies the link. If link is entered, but user is not, the query seeks a table owned
by the same user on the remote database.

When using the DELETE command, you may specify a partition or subpartition. To delete rows from
a table, you must have DELETE privileges on the table. If the SQL92_SECURITY initialization parameter is
set to TRUE, then you must also have SELECT privileges if the DELETE refers to columns in the table itself.
EXAMPLE This example deletes all rows for the city of Keene from the COMFORT table:

delete from COMFORT
where City = 'KEENE';

DELETE (Form 3—Embedded SQL)
FORMAT

EXEC SQL [AT {db_name | :host_variable}] [FOR :host_integer | integer]
DELETE [FROM]
[(subquery)
| [user.] {table | view } [@dblink |PARTITION (partition_name)]]
[alias] [WHERE {condition | CURRENT OF cursor}]
[{ RETURN | RETURNING } expr [, expr]... INTO
:host_variable [[INDICATOR] :ind_variable]
[, :host_variable [[INDICATOR] :ind_variable]]...]

DESCRIPTION This form of the DELETE command allows you to delete rows (from a table, view,
or index-only table) from within a precompiler program.

DENSE_RANK
SEE ALSO AGGREGATE FUNCTIONS, Chapter 12
FORMAT

DENSE_RANK (expr [, expr]...) WITHIN GROUP
(ORDER BY
expr [DESC | ASC] [NULLS { FIRST | LAST }]
[, expr [DESC | ASC] [NULLS { FIRST | LAST }]]...)

For analytics:

DENSE_RANK () OVER ([query_partition_clause] order_by_clause)

DESCRIPTION DENSE_RANK computes the rank of a row in an ordered group of rows.
See Chapter 12 for related examples.

DEPTH
FORMAT

DEPTH(integer)

DESCRIPTION DEPTH is an ancillary function used only with the UNDER_PATH and EQUALS_
PATH conditions. It returns the number of levels in the path specified by the UNDER_PATH condition
with the same correlation variable. The integer value can be any NUMBER integer.

1150 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1150

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DEREF
The DEREF operator returns the value of a referenced object. See Chapter 36.

DESCRIBE (Form 1—SQL*Plus)
SEE ALSO CREATE TABLE
FORMAT

DESC[RIBE] {[user.]object[@connect_identifier]}

DESCRIPTION DESCRIBE displays a specified object’s definition. If user is omitted, SQL*Plus
displays the table owned by you. The definition includes the table and its columns, with each column’s
name, NULL or NOT NULL status, datatype, and width or precision. DESCRIBE can also be used on
views, synonyms, and function and procedure specifications.
EXAMPLE

describe COMFORT

Name Null? Type
------------------------------- -------- ------------
CITY NOT NULL VARCHAR2(13)
SAMPLEDATE NOT NULL DATE
NOON NUMBER(3,1)
MIDNIGHT NUMBER(3,1)
PRECIPITATION NUMBER

DESCRIBE (Form 2—Embedded SQL)
SEE ALSO PREPARE
FORMAT

EXEC SQL DESCRIBE [BIND VARIABLES FOR
| SELECT LIST FOR]

statement_name INTO descriptor

DESCRIPTION The DESCRIBE command initializes a descriptor to hold descriptions of host variables
for a dynamic SQL statement or PL/SQL block. The DESCRIBE command follows the PREPARE command.

DICTIONARY CACHE
The dictionary cache stores data dictionary information in the SGA. Caching dictionary information
improves performance because the dictionary information is used frequently. The dictionary cache is
part of the Shared SQL Pool.

DICTIONARY LOCKS
A dictionary lock is a shared lock owned by users parsing DML statements, or an exclusive lock owned
by users doing DDL commands, to prevent a table from being altered while the dictionaries are queried.
There may be many such locks concurrently.

DIMENSION
A dimension is a named set of hierarchies among columns of tables. For example, in the geography
dimension, countries are parts of continents, and states are parts of countries. When you define the dimension

DIMENSION 1151

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1151

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

relationships, Oracle can use that information when evaluating optimizer choices. If there are materialized
views that contain aggregated data, the optimizer can use the dimension definitions to determine if the
materialized view can be accessed instead of the base table. See CREATE DIMENSION.

DIRECTORY
A logical name that points to a physical directory, used by BFILE LOBs and external tables. See CREATE
DIRECTORY and Chapter 26.

DISASSOCIATE STATISTICS
SEE ALSO ASSOCIATE STATISTICS
FORMAT
disassociate_statistics::=

DESCRIPTION ASSOCIATE STATISTICS associates a set of statistics functions with one or more
columns, stand-alone functions, packages, types, or indexes. DISASSOCIATE STATISTICS revokes the
associations. You must have ALTER privilege on the base object.

DISCONNECT (SQL*Plus)
SEE ALSO CONNECT, EXIT, QUIT
FORMAT

DISC[ONNECT]

1152 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1152

DISASSOCIATE STATISTICS FROM

COLUMNS
schema .

table . column

,

FUNCTIONS
schema .

function

,

PACKAGES
schema .

package

,

TYPES
schema .

type

,

INDEXES
schema .

index

,

INDEXTYPES
schema .

indextype

,

FORCE
;

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION DISCONNECT commits pending changes to the database and logs you off of
Oracle. Your SQL*Plus session remains active and the features of SQL*Plus continue to function, but
without any connection to the database. You can edit buffers, use your own editor, spool and stop
spooling, or connect to Oracle again, but until a connection is established, no SQL can be executed.

EXIT or QUIT will return you to your host’s operating system. If you are still connected when you
EXIT or QUIT, you will be automatically disconnected and logged off of Oracle.

DISTINCT
Distinct means unique. It is used as a part of SELECT statements and group functions. See AGGREGATE
FUNCTIONS, SELECT.

DISTRIBUTED DATABASE
A distributed database is a collection of databases that can be operated and managed separately and
also share information.

DISTRIBUTED PROCESSING
Distributed processing means to perform computation on multiple CPUs to achieve a single result.

DISTRIBUTED QUERY
A distributed query is one that selects data from multiple databases, usually across multiple nodes of
a network.

DML
See DATA MANIPULATION LANGUAGE (DML) STATEMENTS.

DML LOCK
When a user executes a SQL statement, the data to which the statement refers is locked in one of several
lock modes. The user can also lock data explicitly with a LOCK statement.

DROP CLUSTER
SEE ALSO CREATE CLUSTER, DROP TABLE, Chapter 17
FORMAT

DROP CLUSTER [schema .] cluster
[INCLUDING TABLES [CASCADE CONSTRAINTS]];

DESCRIPTION DROP CLUSTER deletes a cluster from the database. You must have DROP ANY
CLUSTER privilege if the cluster is not in your own schema. You cannot drop a cluster that contains
tables. The tables must be dropped first. The INCLUDING TABLES clause drops all the clustered tables
automatically. The CASCADE CONSTRAINTS option drops all referential integrity constraints from
tables outside the cluster that refer to keys in the clustered tables.

Individual tables cannot be removed from a cluster. To accomplish the same effect, copy the table
under a new name (use CREATE TABLE with AS SELECT), drop the old one (this will remove it from the
cluster), RENAME the copy to the name of the table you dropped, and then issue the appropriate
GRANTs, and create the needed indexes.

DROP CLUSTER 1153

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1153

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DROP CONTEXT
SEE ALSO CREATE CONTEXT
FORMAT

DROP CONTEXT namespace;

DESCRIPTION DROP CONTEXT deletes a context namespace from the database. You must have
the DROP ANY CONTEXT system privilege.

DROP DATABASE
SEE ALSO CREATE DATABASE, Chapter 46
FORMAT

DROP DATABASE ;

DESCRIPTION DROP DATABASE drops the current database (which must be mounted and
closed) and deletes all control files and datafiles listed in the control file. Any related spfile is also
deleted. Archived logs and backups are not removed. If the database is on raw disks, DROP DATABASE
does not delete the actual raw disk special files.

DROP DATABASE LINK
SEE ALSO CREATE DATABASE LINK, Chapter 23
FORMAT

DROP [PUBLIC] DATABASE LINK link;

DESCRIPTION DROP DATABASE LINK drops a database link you own. For a public link, the
optional PUBLIC keyword must be used, and you must be a DBA to use it. PUBLIC cannot be used
when dropping a private link. link is the name of the link being dropped. You must have the DROP
PUBLIC DATABASE LINK system privilege to drop a public database link. You may drop private
database links in your account.
EXAMPLE The following will drop a database link named ADAH_AT_HOME:

drop database link ADAH_AT_HOME;

DROP DIMENSION
SEE ALSO CREATE DIMENSION, Chapter 24
FORMAT

DROP DIMENSION [schema .] dimension;

DESCRIPTION DROP DIMENSION drops a dimension that you own. You must have the DROP
ANY DIMENSION system privilege.
EXAMPLE The following will drop the GEOGRAPHY dimension:

drop dimension GEOGRAPHY;

DROP DIRECTORY
SEE ALSO CREATE DIRECTORY, Chapters 22, 26, and 35

1154 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1154

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9B.vp
Friday, August 13, 2004 4:26:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

DROP DIRECTORY directory_name;

DESCRIPTION DROP DIRECTORY drops an existing directory. You must have the DROP ANY
DIRECTORY privilege to drop a directory.

NOTE
Do not drop a directory while its files are in use.

EXAMPLE The following will drop a directory called REVIEWS:

drop directory REVIEWS;

DROP DISKGROUP
SEE ALSO ALTER DISKGROUP, CREATE DISKGROUP, Chapter 46
FORMAT

DROP DISKGROUP diskgroup_name [{INCLUDING | EXCLUDING} CONTENTS];

DESCRIPTION For databases using Automated Storage Management (ASM), DROP DISKGROUP
drops an ASM disk group along with all the files in the disk group. ASM first ensures that no files in the
disk group are open; if a file is open, the disk group is not dropped.

DROP FUNCTION
SEE ALSO ALTER FUNCTION, CREATE FUNCTION, Chapter 31
FORMAT

DROP FUNCTION [schema.] function_name;

DESCRIPTION DROP FUNCTION drops the specified function. Oracle invalidates any objects
that depend on or call the function. You must have the DROP ANY PROCEDURE system privilege to
drop a function that you do not own.

DROP INDEX
SEE ALSO ALTER INDEX, CREATE INDEX, CREATE TABLE, Chapters 17 and 46
FORMAT

DROP INDEX [schema.] index [FORCE];

DESCRIPTION DROP INDEX drops the specified index. You must either own the index or have the
DROP ANY INDEX system privilege. FORCE applies only to domain indexes. This clause drops the domain
index even if the indextype routine invocation returns an error or the index is marked IN PROGRESS.

DROP INDEXTYPE
SEE ALSO CREATE INDEXTYPE
FORMAT

DROP INDEXTYPE [schema.] indextype [FORCE];

DROP INDEXTYPE 1155

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1155

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION DROP INDEXTYPE drops the specified indextype and any association with statistics
types. You must have the DROP ANY INDEXTYPE system privilege.

DROP JAVA
SEE ALSO CREATE JAVA, Chapter 37
FORMAT

DROP JAVA { SOURCE | CLASS | RESOURCE } [schema.] object_name;

DESCRIPTION DROP JAVA drops the specified Java class, source, or resource. You must have
the DROP PROCEDURE system privilege. If the object is in another user’s schema, you must have the
DROP ANY PROCEDURE system privilege.

DROP LIBRARY
SEE ALSO CREATE LIBRARY, Chapter 31
FORMAT

DROP LIBRARY library_name;

DESCRIPTION DROP LIBRARY drops the specified library. You must have the DROP ANY LIBRARY
system privilege.

DROP MATERIALIZED VIEW
SEE ALSO ALTER MATERIALIZED VIEW, CREATE MATERIALIZED VIEW, Chapter 24
FORMAT

DROP MATERIALIZED VIEW [schema.] materialized_view [PRESERVE TABLE];

DESCRIPTION DROP MATERIALIZED VIEW drops the indicated materialized view. You must
either own the materialized view or have the DROP ANY SNAPSHOT or DROP ANY MATERIALIZED
VIEW system privilege.

The keyword SNAPSHOT is supported in place of MATERIALIZED VIEW for backward compatibility.
PRESERVE TABLE lets you retain the materialized view container table and its contents after the

materialized view object is dropped. The resulting table has the same name as the dropped materialized
view. The metadata associated with the materialized view is dropped but the indexes, nested table
columns, and storage tables for those columns are preserved along with their metadata.

If you drop a materialized view that was created on a prebuilt table, the database drops the
materialized view and the prebuilt table reverts to its identity as a table.

DROP MATERIALIZED VIEW LOG
SEE ALSO ALTER MATERIALIZED VIEW LOG, CREATE MATERIALIZED VIEW LOG, Chapter 24
FORMAT

DROP MATERIALIZED VIEW LOG ON [schema.] table;

DESCRIPTION DROP MATERIALIZED VIEW LOG drops the indicated log table. To drop a
materialized view log, you must have the privileges to drop a table. After dropping the log, any materialized
views on the master table will get COMPLETE refreshes, not FAST refreshes.

The keyword SNAPSHOT is supported in place of MATERIALIZED VIEW for backward compatibility.

1156 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1156

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DROP OPERATOR
SEE ALSO ALTER OPERATOR
FORMAT

DROP OPERATOR [schema.] operator [FORCE];

DESCRIPTION DROP OPERATOR drops a user-defined operator. You must either own the operator
or have the DROP ANY OPERATOR system privilege. Specify FORCE to drop the operator even if it is
currently being referenced by one or more schema objects (indextypes, packages, functions, procedures,
and so on), and mark those dependent objects INVALID.

DROP OUTLINE
SEE ALSO CREATE OUTLINE
FORMAT

DROP OUTLINE outline;

DESCRIPTION DROP OUTLINE drops a stored outline from the database. You must have the
DROP ANY OUTLINE system privilege. Subsequent executions of SQL statements that used the outline
will have their execution paths evaluated at run time.

DROP PACKAGE
SEE ALSO ALTER PACKAGE, CREATE PACKAGE, Chapter 31
FORMAT

DROP PACKAGE [BODY] [schema.] package;

DESCRIPTION DROP PACKAGE drops the specified package. Using the optional BODY clause
drops only the body without dropping the package specification. Oracle invalidates any objects that
depend on the package if you drop the package specification, but not if you just drop the body. You
must either own the package or have the DROP ANY PROCEDURE system privilege.

DROP PROCEDURE
SEE ALSO ALTER PROCEDURE, CREATE PROCEDURE, Chapter 31
FORMAT

DROP PROCEDURE [schema.] procedure;

DESCRIPTION DROP PROCEDURE drops the specified procedure. Oracle invalidates any objects
that depend on or call the procedure. You must either own the procedure or have the DROP ANY
PROCEDURE system privilege.

DROP PROFILE
SEE ALSO ALTER PROFILE, CREATE PROFILE, Chapter 18
FORMAT

DROP PROFILE profile [CASCADE];

DESCRIPTION DROP PROFILE drops the specified profile. You must have the DROP PROFILE
system privilege. CASCADE deassigns the profile from any users to whom it has been assigned; they

DROP PROFILE 1157

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1157

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

are automatically assigned the DEFAULT profile in its place. You must use CASCADE if the profile
being dropped is currently assigned to users.

DROP ROLE
SEE ALSO ALTER ROLE, CREATE ROLE, Chapter 18
FORMAT

DROP ROLE role;

DESCRIPTION DROP ROLE drops the specified role. You must either have been granted the role
WITH ADMIN OPTION or have the DROP ANY ROLE system privilege.

DROP ROLLBACK SEGMENT
SEE ALSO ALTER ROLLBACK SEGMENT, CREATE ROLLBACK SEGMENT, CREATE TABLESPACE,
SHUTDOWN, STARTUP, Chapter 46
FORMAT

DROP ROLLBACK SEGMENT rollback_segment;

DESCRIPTION rollback_segment is the name of an existing rollback segment to be dropped. The
segment must not be in use when this statement is executed. PUBLIC is required for dropping public
rollback segments.

The Status column of the data dictionary view DBA_ROLLBACK_SEGS can reveal which rollback
segments are in use. If the segment is in use, you can either wait until it no longer is in use, or SHUTDOWN
the database using IMMEDIATE, and then bring it up in EXCLUSIVE mode using STARTUP. You must
have the DROP ROLLBACK SEGMENT system privilege to drop a rollback segment.

DROP SEQUENCE
SEE ALSO ALTER SEQUENCE, CREATE SEQUENCE, Chapter 17
FORMAT

DROP SEQUENCE [schema.] sequence_name;

DESCRIPTION sequence_name is the name of the sequence being dropped. To drop a sequence,
you must either own the sequence or have the DROP ANY SEQUENCE system privilege.

DROP SYNONYM
SEE ALSO CREATE SYNONYM, Chapter 23
FORMAT

DROP [PUBLIC] SYNONYM [schema.] synonym [FORCE];

DESCRIPTION DROP SYNONYM drops the specified synonym. To drop a public synonym, you
must have the DROP ANY PUBLIC SYNONYM system privilege. To drop a private synonym, you must
own the synonym or have the DROP ANY SYNONYM system privilege. You must specify FORCE if
the synonym has dependent tables or user-defined types.

DROP TABLE
SEE ALSO ALTER TABLE, CREATE INDEX, CREATE TABLE, DROP CLUSTER, Chapter 17

1158 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1158

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

DROP TABLE [schema.] table [CASCADE CONSTRAINTS] [PURGE] ;

DESCRIPTION DROP TABLE drops the specified table. To drop a table, you must either own the
table or have the DROP ANY TABLE system privilege. Dropping a table also drops indexes and grants
associated with it. Objects built on dropped tables are marked invalid and cease to work.

The CASCADE CONSTRAINTS option drops all referential integrity constraints referring to keys in
the dropped table.

You can drop a cluster and all of its tables by using the INCLUDING TABLES clause on DROP
CLUSTER.

As of Oracle Database 10g, using the DROP TABLE statement moves a table or object table to the
recycle bin or removes the table and all its data from the database entirely. Unless you specify the PURGE
clause, the DROP TABLE statement does not result in space being released back to the tablespace for
use by other objects, and the space continues to count toward the user’s space quota. Objects may be
automatically purged from the recycle bin if the tablespace runs out of space for new objects.

DROP TABLESPACE
SEE ALSO ALTER TABLESPACE, CREATE DATABASE, CREATE TABLESPACE, Chapter 46
FORMAT

DROP TABLESPACE tablespace
[INCLUDING CONTENTS [AND DATAFILES] [CASCADE CONSTRAINTS]];

DESCRIPTION tablespace is the name of the tablespace being dropped. The INCLUDING CONTENTS
option allows you to drop a tablespace that contains data. Without INCLUDING CONTENTS, only
an empty tablespace can be dropped. Tablespaces should be offline (see ALTER TABLESPACE) before
dropping, or the drop operation will be prevented if any users are accessing data, index, rollback, or
temporary segments in the tablespace. You must have the DROP TABLESPACE system privilege to use
this command.

DROP TRIGGER
SEE ALSO ALTER TRIGGER, CREATE TRIGGER, Chapters 30 and 33
FORMAT

DROP TRIGGER [schema.] trigger;

DESCRIPTION DROP TRIGGER drops the specified trigger. You must either own the trigger or
have the DROP ANY TRIGGER system privilege.

DROP TYPE
SEE ALSO CREATE TYPE, Chapter 33
FORMAT

DROP TYPE [schema.] type_name [FORCE | VALIDATE];

DESCRIPTION DROP TYPE drops the specification and body of an abstract datatype. You must
either own the type or have the DROP ANY TYPE system privilege. Unless you use FORCE, you cannot
drop a type if a table or other object references it.

DROP TYPE 1159

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1159

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DROP TYPE BODY
SEE ALSO CREATE TYPE, CREATE TYPE BODY, DROP TYPE, Chapter 33
FORMAT

DROP TYPE BODY [schema.] type_name;

DESCRIPTION DROP TYPE BODY drops the body of the specified type. You must either own the
type or have the DROP ANY TYPE system privilege.

DROP USER
SEE ALSO ALTER USER, CREATE USER, Chapter 18
FORMAT

DROP USER user [CASCADE];

DESCRIPTION DROP USER drops the specified user. You must have the DROP USER system
privilege. The CASCADE option drops all the objects in the user’s schema before dropping the user,
and you must specify CASCADE if the user has any objects in the schema.

DROP VIEW
SEE ALSO CREATE SYNONYM, CREATE TABLE, CREATE VIEW, Chapter 17
FORMAT

DROP VIEW [schema.] view [CASCADE CONSTRAINTS];

DESCRIPTION DROP VIEW drops the specified view. To drop a view, either the view must be
in your schema or you must have the DROP ANY VIEW system privilege.

DROPJAVA
DROPJAVA is a utility for removing Java classes from the database. See LOADJAVA.

DUAL
SEE ALSO FROM, SELECT, Chapter 10
DESCRIPTION DUAL is a table with only one row and one column in it. Since Oracle’s many
functions work on both columns and literals, it is possible to demonstrate some of its functionality by
using just literals or pseudo-columns. When doing this, the SELECT statement doesn’t care which columns
are in the table, and a single row is more than sufficient to demonstrate a point.
EXAMPLE The following shows the current User and SysDate:

select User, SysDate from DUAL;

DUMP
SEE ALSO RAWTOHEX
FORMAT

DUMP(string [,format [,start [,length]]])

DESCRIPTION DUMP displays the value of string in internal data format, in ASCII, octal, decimal,
hex, or character format. format defaults to ASCII or EBCDIC, depending upon your machine; 8 produces

1160 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1160

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

octal, 10 decimal, 16 hex, and 17 character (the same as ASCII or EBCDIC). start is the beginning position
in the string, and length is the number of characters to display. string can be a literal or an expression.
EXAMPLE The following shows how characters 1 through 8 are represented in hex for just the City
in the first row of the COMFORT table:

select City, DUMP(City,16,1,8) from COMFORT where rownum < 2;

CITY DUMP(CITY,16,1,8)
------------- --------------------------------------
SAN FRANCISCO Typ=1 Len= 13: 53,41,4e,20,46,52,41,4e

ECHO (SQL*Plus)
See SET.

EDIT (SQL*Plus)
SEE ALSO DEFINE, SET, Chapter 6
FORMAT

ED[IT] [file[.ext]]

DESCRIPTION EDIT calls an external standard text editor and passes to it the name of the file.
If .ext is omitted, the extension .sql is appended. If file and .ext are both omitted, the editor is called
and passed the name of a file (constructed by SQL*Plus) that contains the contents of the current
buffer. The local user variable _EDITOR determines which text editor is used by EDIT. _EDITOR can
be changed with DEFINE, and this is usually best done in the login.sql file, which is read whenever
SQL*Plus is invoked.

EDIT will fail if the current buffer is empty and EDIT is called without a filename. You can use
the SET EDITFILE command to set the default name of the file created by the EDIT command.

EMBEDDED (SQL*Plus)
See SET.

EMPTY_BLOB
SEE ALSO Chapter 35
FORMAT

EMPTY_BLOB()

DESCRIPTION EMPTY_BLOB returns an empty LOB locator that can be used to initialize a LOB
variable or, in an INSERT or UPDATE statement, to initialize a LOB column or attribute to EMPTY.
EMPTY means that the LOB is initialized, but not populated with data.
EXAMPLE

UPDATE BOOK_TEXT set BlobCol = EMPTY_BLOB();

EMPTY_CLOB
SEE ALSO Chapter 35
FORMAT

EMPTY_CLOB()

EMPTY_CLOB 1161

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1161

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION EMPTY_CLOB returns an empty LOB locator that can be used to initialize a LOB
variable or, in an INSERT or UPDATE statement, to initialize a LOB column or attribute to EMPTY.
EMPTY means that the LOB is initialized, but not populated with data.
EXAMPLE

UPDATE BOOK_TEXT set ClobCol = EMPTY_CLOB();

END
SEE ALSO BEGIN, BLOCK STRUCTURE, Chapter 29
FORMAT

END [block label] ;

DESCRIPTION END is unrelated to the END IF and END LOOP statements. See IF and LOOP for
details on either of them.

END is the closing statement of a PL/SQL block’s executable section (and the entire block). If the block
is named at the BEGIN, the name must also follow the word END. At least one executable statement is
required between BEGIN and END. See BLOCK STRUCTURE and Chapters 29 and 31 for more details.

ENQUEUE
Enqueue is the lock on a given resource. Those waiting for a given resource have not yet gotten the
enqueue. Enqueues exist for many database resources.

ENTITY
An entity is a person, place, or thing represented by a table. In a table, each row represents an occurrence
of that entity.

ENTITY-RELATIONSHIP MODEL
An entity-relationship model is a framework used to model systems for a database. It divides all elements
of a system into two categories: entities or relationships.

EQUI-JOIN
An equi-join is a join in which the join comparison operator is an equality, such as

where BOOKSHELF.Title = BOOKSHELF_CHECKOUT.Title

ESCAPE (SQL*Plus)
See SET.

EXCEPTION
SEE ALSO BLOCK STRUCTURE, DECLARE EXCEPTION, RAISE, Chapter 29
FORMAT

EXCEPTION
{WHEN {OTHERS | exception [OR exception]...}

THEN statement; [statement;]...}
[WHEN {OTHER | exception [OR exception]...}

THEN statement; [statement;]...]...

1162 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1162

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION The EXCEPTION section of a PL/SQL block is where program control is transferred
whenever an exception flag is raised. Exception flags are either user-defined or system exceptions raised
automatically by PL/SQL. See RAISE for details on user-defined exception flags. The system exception
flags are all, in effect, BOOLEAN variables that are either TRUE or FALSE. The WHEN clause is used
to test these. For example, the NOT_LOGGED_ON flag is raised if you attempt to issue a command to
Oracle without being logged on. You do not need to have DECLAREd an exception, or RAISEd this flag
yourself. PL/SQL will do it for you.

When any exception flag is raised, the program immediately halts whatever it was doing and jumps
to the EXCEPTION section of the current block. This section, however, doesn’t know automatically
which exception flag was raised, nor what to do. Therefore, you must code the EXCEPTION section
first to check all of the exception flags that are likely to have occurred, and then give action instructions
for each. This is what the WHEN...THEN logic does. You can use WHEN OTHERS as a catch-all to
handle unanticipated errors for which you have not declared exceptions.
EXAMPLE Here, one exception flag is tested in the EXCEPTION section. The ZERO_DIVIDE flag
is raised when any calculation attempts to divide by zero.

declare
pi constant NUMBER(9,7) := 3.1415927;
radius INTEGER(5);
area NUMBER(14,2);
some_variable NUMBER(14,2);

begin
radius := 3;
loop
some_variable := 1/(radius-4);
area := pi*power(radius,2);
insert into AREAS values (radius, area);

radius := radius+1;
exit when area > 100;

end loop;
exception
when ZERO_DIVIDE
then insert into AREAS values (0,0);

end;

The system-raised exception flags are as follows:

ACCESS_INTO_NULL Your program attempts to assign values to the attributes of an uninitialized
(atomically null) object.

CASE_NOT_FOUND None of the choices in the WHEN clauses of a CASE statement is selected,
and there is no ELSE clause.

COLLECTION_IS_NULL Your program attempts to apply collection methods other than EXISTS
to an uninitialized (atomically null) nested table or varying array, or the
program attempts to assign values to the elements of an uninitialized nested
table or varying array.

CURSOR_ALREADY_OPEN Your program attempts to open an already open cursor. A cursor must be
closed before it can be reopened. A CURSOR FOR LOOP automatically
opens the cursor to which it refers. So, your program cannot open that
cursor inside the loop.

EXCEPTION 1163

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1163

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1164 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1164

DUP_VAL_ON_INDEX Your program attempts to store duplicate values in a database column that
is constrained by a unique index.

INVALID_CURSOR Your program attempts an illegal cursor operation such as closing an unopened
cursor.

INVALID_NUMBER In a SQL statement, the conversion of a character string into a number fails
because the string does not represent a valid number. (In procedural statements,
VALUE_ERROR is raised.) This exception is also raised when the LIMIT-clause
expression in a bulk FETCH statement does not evaluate to a positive number.

LOGIN_DENIED Your program attempts to log on to Oracle with an invalid username
and/or password.

NO_DATA_FOUND A SELECT INTO statement returns no rows, or your program references a
deleted element in a nested table or an uninitialized element in an index-by
table. SQL aggregate functions such as AVG and SUM always return a value
or a null. So, a SELECT INTO statement that calls an aggregate function
never raises NO_DATA_FOUND. The FETCH statement is expected to return
no rows eventually, so when that happens, no exception is raised.

NOT_LOGGED_ON Your program issues a database call without being connected to Oracle.

PROGRAM_ERROR PL/SQL has an internal problem.

ROWTYPE_MISMATCH The host cursor variable and PL/SQL cursor variable involved in an assignment
have incompatible return types. For example, when an open host cursor
variable is passed to a stored subprogram, the return types of the actual and
formal parameters must be compatible.

SELF_IS_NULL Your program attempts to call a MEMBER method on a null instance. That
is, the built-in parameter SELF (which is always the first parameter passed
to a MEMBER method) is null.

STORAGE_ERROR PL/SQL runs out of memory or memory has been corrupted.

SUBSCRIPT_BEYOND_COUNT Your program references a nested table or varying array element using an
index number larger than the number of elements in the collection.

SUBSCRIPT_OUTSIDE_LIMIT Your program references a nested table or varying array element using an
index number (–1 for example) that is outside the legal range.

SYS_INVALID_ROWID The conversion of a character string into a universal ROWID fails because
the character string does not represent a valid ROWID.

TIMEOUT_ON_RESOURCE A time-out occurs while Oracle is waiting for a resource.

TOO_MANY_ROWS A SELECT INTO statement returns more than one row.

VALUE_ERROR An arithmetic, conversion, truncation, or size-constraint error occurs.
For example, when your program selects a column value into a character
variable, if the value is longer than the declared length of the variable,
PL/SQL aborts the assignment and raises VALUE_ERROR. In procedural
statements, VALUE_ERROR is raised if the conversion of a character string
into a number fails. (In SQL statements, INVALID_NUMBER is raised.)

ZERO_DIVIDE Your program attempts to divide a number by zero.

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXCEPTION 1165

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1165

The associated Oracle error numbers and SQLCode values are as follows:

Exception Oracle Error # SQLCode

ACCESS_INTO_NULL ORA-06530 –6530

CASE_NOT_FOUND ORA-06592 –6592

COLLECTION_IS_NULL ORA-06531 –6531

CURSOR_ALREADY_OPEN ORA-06511 –6511

DUP_VAL_ON_INDEX ORA-00001 –1

INVALID_CURSOR ORA-01001 –1001

INVALID_NUMBER ORA-01722 –1722

LOGIN_DENIED ORA-01017 –1017

NO_DATA_FOUND ORA-01403 +100

NOT_LOGGED_ON ORA-01012 –1012

PROGRAM_ERROR ORA-06501 –6501

ROWTYPE_MISMATCH ORA-06504 –6504

SELF_IS_NULL ORA-30625 –30625

STORAGE_ERROR ORA-06500 –6500

SUBSCRIPT_BEYOND_COUNT ORA-06533 –6533

SUBSCRIPT_OUTSIDE_LIMIT ORA-06532 –6532

SYS_INVALID_ROWID ORA-01410 –1410

TIMEOUT_ON_RESOURCE ORA-00051 –51

TOO_MANY_ROWS ORA-01422 –1422

VALUE_ERROR ORA-06502 –6502

ZERO_DIVIDE ORA-01476 –1476

OTHERS is the catch-all for any exception flags you did not check for in your EXCEPTION section.
It must always be the last WHEN statement, and must stand alone. It cannot be included with any other
exceptions.

Exception handling, particularly as it relates to exceptions you declare, should really be reserved
for errors that are fatal—that means normal processing should stop.

If an exception flag is raised that is not tested for in the current block, the program will branch to
the EXCEPTION block in the enclosing block, and so on, until either the exception raised is found or
control falls through to the host program.

EXCEPTION sections can reference variables in the same manner that the execution block can.
That is, they can reference local variables directly, or variables from other blocks by prefixing them
with the other block’s name.

Use caution in testing for certain kinds of exceptions. For instance, if the EXCEPTION section takes
the error message and inserts it into a database table, a NOT_LOGGED_ON exception would put the
EXCEPTION section into an infinite loop. Design the statements that follow THEN not to duplicate the
error that got the program there in the first place. You also may use RAISE without an exception name.

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This will automatically pass control to the next outer EXCEPTION block, or the main program. See
RAISE for further details.

EXCEPTION_INIT
SEE ALSO DECLARE CURSOR, EXCEPTION, SQLCODE, Programmer’s Guide to the Oracle
Precompilers
FORMAT

PRAGMA EXCEPTION_INIT(exception,integer);

DESCRIPTION The standard system exceptions, such as ZERO_DIVIDE, which are referenced
by name, are actually no more than the association of a name with the internal Oracle error number.
There are hundreds of these error numbers, and only the most common have been given names. Any
that are not named will still raise an exception flag and transfer control to the EXCEPTION block, but
they will all be caught by OTHERS, rather than by name.

You can change this by assigning your own names to other Oracle error numbers. EXCEPTION_INIT
allows you to do this. exception is the one-word name you assign to the integer error number (see Oracle’s
Error Messages and Codes Manual for a complete list). integer should be negative if the error code is
negative (true for fatal errors), and exception must follow normal object naming rules.

Note that the format of this command requires the word PRAGMA before EXCEPTION_INIT. A pragma
is an instruction to the PL/SQL compiler, rather than executable code. The pragma must be in the DECLARE
section of a PL/SQL block, and must be preceded by an exception declaration.
EXAMPLE

DECLARE
some_bad_error exception;
pragma exception_init(some_bad_error, -660);

BEGIN
...
EXCEPTION

when some_bad_error
then ...

END;

EXCLUSIVE LOCK
An exclusive lock is one that permits other users to query data, but not change it. It differs from a SHARE
lock because it does not permit another user to place any type of lock on the same data; several users may
place SHARE locks on the same data at the same time.

EXECUTE
SEE ALSO CALL, CREATE FUNCTION, CREATE PACKAGE, CREATE PACKAGE BODY, CREATE
PROCEDURE, GRANT, Chapter 31
FORMAT

EXECUTE procedural_object_name [arguments];

DESCRIPTION EXECUTE executes a procedure, package, or function. To execute a procedure within
a package, specify both the package name and the procedure name in the EXECUTE command, as shown

1166 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1166

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

in the following example. This example executes a procedure named NEW_BOOK, in a package named
BOOKSHELF_PACKAGE; the value 'TALE OF TWO CITIES' is passed as input to the procedure.

execute BOOKSHELF_PACKAGE.NEW_BOOK('TALE OF TWO CITIES');

To execute a procedural object, you must have been granted the EXECUTE privilege on that object.
See GRANT.

EXECUTE (Dynamic Embedded SQL)
SEE ALSO EXECUTE IMMEDIATE, PREPARE, Programmer’s Guide to the Oracle Precompilers
FORMAT

EXEC SQL [FOR { integer | :array_size }]
EXECUTE statement_id
[USING
{ DESCRIPTOR SQLDA_descriptor
| :host_variable [[INDICATOR] :indicator_variable]

[, :host_variable [[INDICATOR] :indicator_variable]]... }]

DESCRIPTION integer is a host variable used to limit the number of iterations when the WHERE
clause uses arrays. statement_id is the identifier for a prepared INSERT, DELETE, or UPDATE statement
to be executed (SELECT is not allowed). USING introduces a list of substitutions into the host variables
of the previously prepared statement.

NOTE
See the Programmer’s Guide to the Oracle Precompilers for a full list
of all commands. This reference does not contain all of the possible
precompiler commands.

EXECUTE IMMEDIATE (Dynamic Embedded SQL)
SEE ALSO EXECUTE, PREPARE, Programmer’s Guide to the Oracle Precompilers
FORMAT

EXEC SQL [AT {database | :host_variable}]
EXECUTE IMMEDIATE {:string | literal}

DESCRIPTION database is the name of a database connection other than the default; host_variable
may contain such a name as its value. string is a host variable string containing a SQL statement. literal is
a character string containing a SQL statement. The EXECUTE IMMEDIATE statement cannot contain host
variable references other than an executable SQL statement in string. The SQL statement is parsed, put
into executable form, and executed, and the executable form is destroyed. It is intended only for statements
to be executed just once. Statements that require multiple executions should use PREPARE and EXECUTE,
as this eliminates the overhead of parsing for each execution.

NOTE
See the Programmer’s Guide to the Oracle Precompilers for a full list
of all commands. This reference does not contain all of the possible
precompiler commands.

EXECUTE IMMEDIATE (Dynamic Embedded SQL) 1167

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1167

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXISTS
SEE ALSO ALL, ANY, IN, NOT EXISTS, Chapter 13
FORMAT

select ...
where EXISTS (select...)

DESCRIPTION EXISTS returns TRUE in a WHERE clause if the subquery that follows it returns at
least one row. The SELECT clause in the subquery can be a column, a literal, or an asterisk—it doesn’t
matter. (Convention suggests an asterisk or an x.)

Many people prefer EXISTS over ANY and ALL because it is easier to remember and understand,
and most formulations of ANY and ALL can be reconstructed using EXISTS.
EXAMPLE The query shown in the following example uses EXISTS to list from the BOOKSHELF
table all Publishers that have had books checked out:

select Publisher
from BOOKSHELF B
where EXISTS

(select 'x' from BOOKSHELF_CHECKOUT
where BOOKSHELF_CHECKOUT.Title = B.Title);

EXISTSNODE
SEE ALSO Chapter 47
FORMAT

EXISTSNODE (XMLType_instance , Xpath_string)

DESCRIPTION EXISTSNODE determines whether traversal of the document using the path results in
any nodes. It takes as arguments the XMLType instance containing an XML document and a VARCHAR2
string designating a path.

The return value is NUMBER: 0 if no nodes remain after applying the XPath traversal on the document,
>0 if any nodes remain.

EXIT (Form 1—PL/SQL)
SEE ALSO END, LOOP, Chapter 29
FORMAT

EXIT [loop] [WHEN condition];

DESCRIPTION Without any of its options, EXIT simply takes you out of the current loop, and
branches control to the next statement following the loop. If you are in a nested loop, you can exit from
any enclosing loop simply by specifying the loop name. If you specify a condition, you will exit when the
condition evaluates to TRUE. Any cursor within a loop is automatically closed when you EXIT.

EXIT (Form 2—SQL*Plus)
SEE ALSO COMMIT, DISCONNECT, QUIT, START
FORMAT

{EXIT | QUIT} [SUCCESS|FAILURE|WARNING|integer|variable|:BindVariable]
[COMMIT|ROLLBACK]

1168 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1168

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION EXIT ends a SQL*Plus session and returns the user to the operating system, calling
program, or menu. Unless ROLLBACK is specified, EXIT commits pending changes to the database. A
return code is also returned. SUCCESS, FAILURE, and WARNING have values that are operating system
specific; FAILURE and WARNING may be the same on some operating systems.

integer is a value that you can pass back explicitly as the return code; variable allows you to set this
value dynamically. This can be a user-defined variable, or a system variable, such as SQL.SQLCODE,
which always contains the SQLCODE of the last SQL statement executed, either in SQL*Plus or an
embedded PL/SQL block.

EXP
SEE ALSO LN, NUMBER FUNCTIONS, Chapter 9
FORMAT

EXP(n)

DESCRIPTION EXP returns e raised to the nth power; e = 2.718281828....

EXPLAIN PLAN
SEE ALSO Chapter 43
FORMAT

EXPLAIN PLAN [SET STATEMENT_ID = 'name']
[INTO [schema.] table [@ dblink]]
FOR statement;

DESCRIPTION name identifies this plan explanation for this statement when it appears in the
output table, and follows normal object-naming conventions. If name is not specified, the STATEMENT_ID
column in the table will be NULL. table is the name of the output table into which the plan explanation
will go. It must be previously created before this procedure can be executed. The start file utlxplan.sql
contains the format and can be used to create the default table, named PLAN_TABLE. If table is not
specified, EXPLAIN PLAN will use PLAN_TABLE. statement is the simple text of any SELECT, INSERT,
UPDATE, or DELETE statement you wish to have analyzed for Oracle’s execution plan for it.

EXPORT
To export is to use one of Oracle’s utilities to write selected table data to a file for later retrieval via an
import utility. There are two export utilities available: Export, and Data Pump Export. Data Pump Export
is available as of Oracle Database 10g; see Chapter 22 for details. The Export utility is available for all
Oracle versions. For details on the Export utility, see Chapter 46. Both utilities are described in the Oracle
Database Utilities 10g Release 1 documentation provided with the Oracle software.

EXPRESSION
An expression is any form of a column. This could be a literal, a variable, a mathematical computation, a
function, or virtually any combination of functions and columns whose final result is a single value, such
as a string, a number, or a date.

EXTERNAL TABLE
An external table is a file outside the database that is accessible via SQL commands. See Chapter 26
for details on the creation and use of external tables.

EXTERNAL TABLE 1169

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1169

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXTRACT (datetime)
SEE ALSO DATE FUNCTIONS, Chapter 10
FORMAT

EXTRACT
({ { YEAR

| MONTH
| DAY
| HOUR
| MINUTE
| SECOND }

| { TIMEZONE_HOUR
| TIMEZONE_MINUTE }

| { TIMEZONE_REGION
| TIMEZONE_ABBR
} }

FROM { datetime_value_expression | interval_value_expression })

DESCRIPTION EXTRACT extracts and returns the value of a specified datetime field from a datetime
or interval value expression.
EXAMPLE

select BirthDate,
EXTRACT(Month from BirthDate) AS Month

from BIRTHDAY
where FirstName = 'VICTORIA';

BIRTHDATE MONTH
--------- ----------
20-MAY-49 5

EXTRACT (XML)
SEE ALSO Chapter 47
FORMAT

EXTRACT (XMLType_instance , Xpath_string)

DESCRIPTION EXTRACT is similar to the EXISTSNODE function. It applies a VARCHAR2 XPath
string and returns an XMLType instance containing an XML fragment.

EXTRACTVALUE
SEE ALSO XMLType
FORMAT

EXTRACTVALUE(XMLType_instance, Xpath_string [,namespace_string])

DESCRIPTION EXTRACTVALUE takes as arguments an XMLType instance and an XPath expression
and returns a scalar value of the resultant node. The result must be a single node and must be a text
node, an attribute, or an element. By comparison, the EXTRACT function returns an XML fragment;
EXTRACTVALUE returns the scalar value of the XML fragment.

1170 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1170

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FEEDBACK (SQL*Plus)
See SET.

FETCH
One phase of query execution is the fetch phase, where actual rows of data meeting all search criteria
are retrieved from the database.

FETCH (Form 1—Embedded SQL)
SEE ALSO CLOSE, DECLARE CURSOR, DESCRIBE, INDICATOR VARIABLE, OPEN, PREPARE,
Programmer’s Guide to the Oracle Precompilers
FORMAT

EXEC SQL [FOR { integer | :array_size }]
FETCH { cursor | :cursor_variable }
{ USING DESCRIPTOR SQLDA_descriptor
| INTO :host_variable [[INDICATOR] :indicator_variable]

[, :host_variable [[INDICATOR] :indicator_variable]]... }

DESCRIPTION integer is a host variable that sets the maximum number of rows to fetch into the
output variables. cursor is the name of a cursor previously set up by DECLARE CURSOR. :host_variable
is one or more host variables into which fetched data will be placed. If any of the host variables is an
array, then all of them (in the INTO list) must be arrays. The INDICATOR keyword is optional.

NOTE
See the Programmer’s Guide to the Oracle Precompilers for a full list
of all commands. This reference does not contain all of the possible
precompiler commands.

FETCH (Form 2—PL/SQL)
SEE ALSO %FOUND, %ROWTYPE, CLOSE, DECLARE CURSOR, LOOP, OPEN, SELECT … INTO,
Chapter 29
FORMAT

FETCH cursor INTO {record | variable [,variable]...};

DESCRIPTION FETCH gets a row of data. The named cursor’s SELECT statement determines which
columns are retrieved, and its WHERE statement determines which (and how many) rows can be retrieved.
This is called the “active set,” but it is not available to you for processing until you fetch it, row by row,
using the FETCH statement. The FETCH gets a row from the active set and drops the row’s values into
the record (or string of variables), which has been defined in the DECLARE.

If you use the variable-list method, each column in the select list of the cursor must have
a corresponding variable, and each of them must have been declared in the DECLARE section.
The datatypes must be the same or compatible.

If you use the record method, the record is DECLAREd using the %ROWTYPE attribute, which
declares the structure of the record to be the same (with the same datatypes) as the column list in the
SELECT. Each variable within this record can then be accessed individually using the record name as
a prefix, and a variable name that is the same as the column name.

FETCH (Form 2—PL/SQL) 1171

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1171

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXAMPLE

declare
pi constant NUMBER(9,7) := 3.1415927;
area NUMBER(14,2);
cursor rad_cursor is

select * from RADIUS_VALS;
rad_val rad_cursor%ROWTYPE;

begin
open rad_cursor;
loop
fetch rad_cursor into rad_val;
exit when rad_cursor%NOTFOUND;
area := pi*power(rad_val.radius,2);
insert into AREAS values (rad_val.radius, area);

end loop;
close rad_cursor;

end;

FIELD
In a table, a field is the information stored at the intersection of a row and a column. Field is generally
synonymous with column, but also can mean an actual column value.

FILE TYPES
Files usually have a name and an extension, for example comfort.tab, where comfort is the filename
and .tab is the extension, or file “type.” In SQL*Plus, start files that are created using EDIT are given
the default extension .sql if no extension is specified. In other words,

edit misty

will create or edit a file named misty.sql, while

start misty

will attempt to start a file named misty.sql because no extension was specified. Similarly,

spool bellwood

will create an output file named bellwood.lst, because .lst is the default extension for spooled files. Of
course, if either edit or spool is followed by both a filename and extension, the given extension will be
used, not the default.

file_specification
SEE ALSO ALTER TABLESPACE, CREATE CONTROLFILE, CREATE DATABASE, CREATE
LIBRARY, CREATE TABLESPACE
FORMAT
file_specification::=

1172 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1172

datafile_tempfile_spec

redo_log_file_spec

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

datafile_tempfile_spec::=

redo_log_file_spec::=

size_clause::=

ASM_filename::=

fully_qualified_file_name::=

numeric_file_name::=

incomplete_file_name::=

file_specification 1173

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1173

’
filename

ASM_filename
’

SIZE size_clause REUSE autoextend_clause

’
filename

ASM_filename
’

(’
filename

ASM_filename
’

,

)
SIZE size_clause REUSE

integer

K

M

G

T

fully_qualified_file_name

numeric_file_name

incomplete_file_name

alias_file_name

+ diskgroup_name / db_name / file_type / file_type_tag . filenumber . incarnation_number

+ diskgroup_name . filenumber . incarnation_number

+ diskgroup_name
(template_name)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1174 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1174

alias_file_name::=

autoextend_clause::=

maxsize_clause::=

DESCRIPTION file_specification defines the name, location, and size of a file used by the database.
For example, when you create a tablespace, you must specify at least one datafile for the tablespace to
use. file_specification provides the format for the datafile portion of the CREATE TABLESPACE command.

As of Oracle Database 10g, the file specification subclauses datafile_tempfile_spec and redo_log_
file_spec let you specify Automatic Storage Management files in addition to file system files.

FIRST
SEE ALSO DENSE_RANK, LAST
FORMAT

aggregate_function KEEP
(DENSE_RANK FIRST ORDER BY
expr [DESC | ASC] [NULLS { FIRST | LAST }]
[, expr [DESC | ASC] [NULLS { FIRST | LAST }]]...

) [OVER query_partitioning_clause]

DESCRIPTION FIRST is both an aggregate and analytic function that operates on a set of values
from a set of rows that rank as the first with respect to a given sorting specification. aggregate_function
is one of the standard numeric grouping functions (such as MIN, MAX, AVG, and STDDEV).

FIRST_VALUE
SEE ALSO LAST_VALUE
FORMAT

FIRST_VALUE (expr) [IGNORE NULLS] OVER (analytic_clause)

DESCRIPTION FIRST_VALUE is an analytic function. It returns the first value in an ordered set of
values. If the first value in the set is null, then FIRST_VALUE returns NULL unless you specify IGNORE
NULLS.

+ diskgroup_name
(template_name)

/ alias_name

AUTOEXTEND

OFF

ON
NEXT size_clause maxsize_clause

MAXSIZE
UNLIMITED

size_clause

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FLASHBACK TABLE 1175

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1175

FLASHBACK DATABASE
SEE ALSO FLASHBACK TABLE, Chapter 28
FORMAT
flashback_database::=

DESCRIPTION FLASHBACK DATABASE returns the database to a past time or system change
number (SCN). This command provides a fast alternative to performing incomplete database recovery.
Following a FLASHBACK DATABASE operation, in order to have write access to the flashed-back
database, you must reopen it with an ALTER DATABASE OPEN RESETLOGS command.

NOTE
The database must have been put in FLASHBACK mode with an
ALTER DATABASE FLASHBACK ON command. The database must
be mounted in EXCLUSIVE mode but not open.

You can determine how far back you can flash back the database by querying the V$FLASHBACK_
DATABASE_LOG view. The amount of flashback data retained in the database is controlled by the
DB_FLASHBACK_RETENTION_TARGET initialization parameter and the size of the flash recovery
area. See Chapter 28 for further restrictions and examples.
EXAMPLE

STARTUP MOUNT EXCLUSIVE;
ALTER DATABASE FLASHBACK ON;
ALTER DATABASE OPEN;

With the database open for over an hour, flash it back:

SHUTDOWN DATABASE;
STARTUP MOUNT EXCLUSIVE;
FLASHBACK DATABASE TO TIMESTAMP SYSDATE-1/24;

FLASHBACK TABLE
SEE ALSO FLASHBACK DATABASE, Chapter 28

FLASHBACK
STANDBY

DATABASE
database

TO
SCN

TIMESTAMP
expr

TO BEFORE
SCN

TIMESTAMP
expr

;

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT
flashback_table::=

DESCRIPTION FLASHBACK TABLE restores an earlier state of a table in the event of human or
application error. Oracle cannot restore a table to an earlier state across any DDL operations that change
the structure of the table.

NOTE
The database must be using Automatic Undo Management for
FLASHBACK TABLE to work. The ability to flash back to old data is
limited by the amount of undo retained in the undo tablespace and
the UNDO_RETENTION initialization parameter setting.

You cannot roll back a FLASHBACK TABLE statement. However, you can issue another FLASHBACK
TABLE statement and specify a time just prior to the current time.

NOTE
Record the current SCN before you issue a FLASHBACK TABLE
command.

You must have either the FLASHBACK object privilege on the table or the FLASHBACK ANY TABLE
system privilege. You must also have SELECT, INSERT, DELETE, and ALTER object privileges on the
table. Row movement must be enabled for all tables in the flashback list. To flash back a table to before
a DROP TABLE operation, you only need the privileges necessary to drop the table.

During a FLASHBACK TABLE operation, Oracle acquires exclusive DML locks on all tables specified.
The command is executed in a single transaction across all tables; if any of them fails, then the entire
statement fails.

NOTE
FLASHBACK TABLE TO SCN or TO TIMESTAMP does not preserve
ROWIDs. FLASHBACK TABLE TO BEFORE DROP does not recover
referential constraints.

1176 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1176

FLASHBACK TABLE
schema .

table

,

TO

SCN

TIMESTAMP
expr

ENABLE

DISABLE
TRIGGERS

BEFORE DROP
RENAME TO table

;

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

When a table is flashed back, its statistics are not flashed back. Indexes that exist on the table are
reverted and reflect the state of the table at the flashback point. Indexes dropped since the flashback
point are not restored. Indexes created since the flashback point continue to exist and will be updated
to reflect the older data.

To see the contents of your recycle bin, query USER_RECYCLEBIN.
See Chapter 28 for additional restrictions and examples.

EXAMPLE

FLASHBACK TABLE emp TO BEFORE DROP;

FLASHBACK QUERY
A flashback query shows data as it existed prior to a COMMIT. See Chapter 27 for examples and
restrictions related to flashback queries.

FLOOR
SEE ALSO CEIL, NUMBER FUNCTIONS, Chapter 9
FORMAT

FLOOR(value)

DESCRIPTION FLOOR is the largest integer smaller than or equal to value.
EXAMPLE

FLOOR(2) = 2
FLOOR(-2.3) = -3

FLUSH (SQL*Plus)
See SET.

FOR
See LOOP and CURSOR FOR LOOP.

FOREIGN KEY
A foreign key is one or more columns whose values are based on the primary or candidate key values
from another table.

FORMAT
See BTITLE, CHAR FORMAT, COLUMN, DATE FORMAT, TO_CHAR, TO_DATE, TTITLE.

FORMAT MODEL
A format model is a clause that controls the appearance of numbers, dates, and character strings. Format
models for DATE columns are used in date conversion functions such as TO_CHAR and TO_DATE.

FREE EXTENTS
Free extents are extents of database blocks that have not been allocated to any table or index segment.
Free extents is another term for free space.

FREE EXTENTS 1177

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1177

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FROM
SEE ALSO DELETE, SELECT, Chapter 5
FORMAT

DELETE FROM [user.]table[@link] [alias]
WHERE condition

SELECT... FROM [user.]table[@link] [, [user.]table[@link]]...

DESCRIPTION table is the name of the table used by DELETE or SELECT. link is the link to a
remote database. Both DELETE and SELECT commands require a FROM clause to define the tables
from which rows will be deleted or selected. If the table is owned by another user, its name must be
prefixed by the owner’s username.

If the table is remote, a database link has to be defined. @link specifies the link. If link is entered
but user is not, the query seeks a table owned by the user on the remote database. The condition may
include a correlated query and use the alias for correlation.

FROM_TZ
SEE ALSO TIMESTAMP WITH TIME ZONE, Chapter 10
FORMAT

FROM_TZ (timestamp_value , time_zone_value)

DESCRIPTION FROM_TZ converts a timestamp value at a time zone to a TIMESTAMP WITH TIME
ZONE value. time_zone_value is a character string in the format 'TZH:TZM' or a character expression
that returns a string in TZR with optional TZD format.

FULL OUTER JOIN
A full outer join performs an outer join in which both tables are used as the “outer” table in the join. Thus,
A FULL OUTER JOIN B returns all rows in common between A and B, all rows from A not matched in
B matched to NULL values, and all rows in B not matched in A matched to NULL values.

FULL TABLE SCAN
A full table scan is a method of data retrieval in which Oracle directly searches in a sequential manner
all the database blocks for a table (rather than using an index) when looking for the specified data. See
Chapter 43.

FUNCTION
A function is a predefined operation, such as “convert to uppercase,” that may be performed by
placing the function’s name and arguments in a SQL statement. See CHARACTER FUNCTIONS,
CONVERSION FUNCTIONS, DATE FUNCTIONS, AGGREGATE FUNCTIONS, ANALYTIC FUNCTIONS,
OTHER FUNCTIONS, NUMBER FUNCTIONS, and individual functions.

FUZZY MATCH
A fuzzy match is a type of text search that allows for misspellings or variant spellings. See CONTAINS
and Chapter 25.

1178 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1178

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

GET (SQL*Plus)
SEE ALSO EDIT, SAVE
FORMAT

GET file[.ext] [LIS[T] | NOL[IST]]

DESCRIPTION GET loads a host system file named file into the current buffer (whether the SQL
buffer or a named buffer). If the file type is not included, GET assumes a file type of SQL. LIST makes
SQL*Plus list the lines being loaded into the buffer. This is the default. NOLIST gets the file without
listing its contents. If you do not specify a filename extension, .sql is the default value. To change the
default filename extension, use the SET SUFFIX command; see SET.
EXAMPLE This example gets a file called work.sql:

get work

GLOBAL INDEX
When a table is partitioned, its data is stored in separate segments. When an index is created on the
partitioned table, the index can be partitioned so that each of the table partitions has a matching index
partition. If the index partitions do not match the table partitions, then the index is a global index. See
Chapter 17.

GOTO
SEE ALSO BLOCK STRUCTURE, Chapter 29
FORMAT

GOTO label;

DESCRIPTION GOTO transfers control to a section of code preceded by the named label. Such a
label can be used to precede any legitimate statement within an execution block, or within an EXCEPTION
section. There are certain restrictions:

■ A GOTO cannot transfer control to a block enclosed in the current block, or inside of a FOR
loop or an IF statement.

■ A GOTO cannot transfer to a label outside of its own block unless it is to a block that encloses
its block.

EXAMPLE Here’s an informal loop built from a GOTO that, without actually knowing ahead of time
what the top number will be, INSERTs a geometric progression from 1 to about 10,000 into a table:

DECLARE
...

BEGIN
x := 0;
y := 1;

<<alpha>>
x := x + 1;
y := x*y;
insert ...
if y > 10000

then goto beta;

GOTO 1179

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1179

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1180 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1180

goto alpha;
<<beta>>

exit;

GRANT
SEE ALSO ALTER USER, CREATE USER, PRIVILEGE, REVOKE, ROLE, Chapter 18
FORMAT
grant::=

grant_system_privileges::=

grant_object_privileges::=

on_object_clause::=

GRANT
grant_system_privileges

grant_object_privileges
;

system_privilege

role

ALL PRIVILEGES

,

TO grantee_clause

IDENTIFIED BY password WITH ADMIN OPTION

object_privilege

ALL
PRIVILEGES

(column

,

)

,

on_object_clause

TO grantee_clause
WITH HIERARCHY OPTION WITH GRANT OPTION

ON

schema . object

DIRECTORY directory_name

JAVA
SOURCE

RESOURCE

schema .
object

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

grantee_clause::=

DESCRIPTION The first form of GRANT extends one or more system privileges to users and roles.
A system privilege is an authorization to perform one of the various data definition or control commands,
such as ALTER SYSTEM, CREATE ROLE, or GRANT itself. See PRIVILEGE for details of these privileges.
A user is created by CREATE USER and is then granted system privileges to enable logging into the
database and other operations. A user without grants is unable to do anything at all in Oracle. A role is
a collection of privileges created by CREATE ROLE. As with a user, a role has no privileges when created,
but gets them through one or more GRANTs. One can grant one role to another role to create a nested
network of roles, which gives the database administrator a great deal of flexibility in managing the security
of the system.

The WITH ADMIN OPTION option lets the granted user or role (the grantee) grant the system
privilege or role to other grantees. The grantee can also alter or drop a role granted WITH ADMIN
OPTION.

The second form of the GRANT command grants object privileges, privileges that affect specific kinds
of objects in Oracle databases, to any user or role. object can be a table, view, sequence, procedure,
function, package, materialized view, or a synonym for one of these objects. GRANTs on a synonym
actually become grants on the underlying object that the synonym references. See PRIVILEGE for a
complete list of object privileges and a discussion of which can be granted for the various objects.

If you are granting INSERT, REFERENCES, or UPDATE privileges on a table or view, GRANT can also
specify a list of columns of the table or view to which the GRANT applies. The GRANT applies only to
those columns. If GRANT has no list of columns, the GRANT applies to all columns in the table or view.

PUBLIC grants the privileges to all users present and future.
The WITH GRANT OPTION passes along the right to grant the granted privileges to another user

or role.

GREATEST
SEE ALSO COLLATION, LEAST, LIST FUNCTIONS, MAX, Chapters 9 and 10
FORMAT

GREATEST(value1, value2, ...)

DESCRIPTION GREATEST chooses the greatest of a list of values. These can be columns, literals,
or expressions, and CHAR, VARCHAR2, NUMBER, or DATE datatypes. A number with a larger value
is considered greater than a number with a smaller value. All negative numbers are smaller than all
positive numbers. Thus, –10 is smaller than 10; –100 is smaller than –10. A later date is considered
greater than an earlier date.

Character strings are compared position by position, starting at the leftmost end of the string, up
to the first character that is different. Whichever string has the greater character in that position is
considered the greater string. One character is considered greater than another if it appears after the
other in the computer’s collation sequence. Usually this means that a B is greater than an A, but the
value of A compared to a, or compared to the number 1, will differ by computer.

GREATEST 1181

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1181

user

role

PUBLIC

,

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If two strings are identical through to the end of the shorter one, the longer string is considered greater.
If two strings are identical and the same length, they are considered equal. In SQL, it is important that literal
numbers be typed without enclosing single quotes, as '10' would be considered smaller than '6', since the
quotes will cause these to be regarded as character strings rather than numbers, and the '6' will be seen as
greater than the 1 in the first position of '10'.

Unlike many other Oracle functions and logical operators, the GREATEST and LEAST functions
will not evaluate literal strings that are in date format as dates. In order for LEAST and GREATEST to
work properly, the TO_DATE function must be applied to the literal strings.

GROUP BY
SEE ALSO CUBE, HAVING, ORDER BY, ROLLUP, WHERE, Chapter 12
FORMAT

SELECT expression [,expression]...
GROUP BY expression [,expression]...

HAVING condition
...

DESCRIPTION GROUP BY causes a SELECT to produce one summary row for all selected rows
that have identical values in one or more specified columns or expressions. Each expression in the
SELECT clause must be one of these things:

■ A constant

■ A function without parameters (SysDate, User)

■ A group function such as SUM, AVG, MIN, MAX, or COUNT

■ Matched identically to an expression in the GROUP BY clause

Columns referenced in the GROUP BY clause need not be in the SELECT clause, though they must
be in the table.

You use HAVING to determine which groups the GROUP BY is to include. A WHERE clause, on
the other hand, determines which rows are to be included in groups.

GROUP BY and HAVING follow WHERE, CONNECT BY, and START WITH. The ORDER BY
clause is executed after the WHERE, GROUP BY, and HAVING clauses (which execute in that order).
It can employ group functions or columns from the GROUP BY clause, or a combination. If it uses
a group function, that function operates on the groups, and then the ORDER BY sorts the results of the
function in order. If the ORDER BY clause uses a column from the GROUP BY clause, it sorts the rows
that are returned based on that column. Group functions and single columns can be combined in the
ORDER BY clause (so long as the column is in the GROUP BY clause).

In the ORDER BY clause, you can specify a group function and the column it affects even though
they have nothing at all to do with the group functions or columns in the SELECT, GROUP BY, or
HAVING clause. On the other hand, if you specify a column in the ORDER BY clause that is not part
of a group function, it must be in the GROUP BY clause.
EXAMPLE

select Title, COUNT(*)
from BOOKSHELF_AUTHOR
group by Title

having COUNT(*) > 1;

1182 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1182

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

GROUP_ID
SEE ALSO AGGREGATE FUNCTIONS, GROUP BY, GROUPING_ID, Chapter 12
FORMAT

GROUP_ID ()

DESCRIPTION GROUP_ID distinguishes duplicate groups resulting from a GROUP BY specification.

GROUPING
GROUPING is a function used in conjunction with the ROLLUP and CUBE functions to detect NULLs.
See ROLLUP.

GROUPING_ID
GROUPING_ID returns a number corresponding to the GROUPING bit vector associated with a row.
See ROLLUP, CUBE, and Chapter 12.

HASH CLUSTER
A hash cluster is a cluster stored by a hash key instead of by an index key. A hash key is a value computed
from the key values that represents the location on disk. An index key requires Oracle to look up the
location in the index, while a hash key lets Oracle calculate the location.

HASH JOIN
A hash join is a method of performing a join of two tables. A hash join uses hash algorithms (similar
to those used for hash clusters) to evaluate rows that meet the join criteria. Although they use similar
algorithms, there is no direct relation between hash joins and hash clusters.

HASH PARTITION
In a hash partition, data to be partitioned is processed by a hash algorithm rather than simply being
partitioned by range. Hash partitioning therefore spreads small sets of sequential data over more partitions
than does range partitioning. See CREATE TABLE.

HAVING
See GROUP BY.

HEADING (SQL*Plus)
See SET.

HEADSEP (SQL*Plus)
See SET.

HELP (SQL*Plus)
FORMAT

HELP | ? [topic]

HELP (SQL*Plus) 1183

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1183

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION The HELP command accesses the SQL*Plus help system. HELP INDEX displays
a list of topics.

HEXTORAW
SEE ALSO RAWTOHEX
FORMAT

HEXTORAW(hex_string)

DESCRIPTION HEXTORAW (HEXadecimal TO RAW) changes a character string of hex numbers
into binary.

HINT
Within a query, you can specify hints that direct the cost-based optimizer in its processing of the query.
To specify a hint, use the following syntax. Immediately after the SELECT keyword, enter the string

/*+

Next, add the hint, such as

FULL(bookshelf)

Close the hint with the following string:

*/

See Chapter 43 for a description of the available hints and their impact on query processing.

HISTOGRAM
A histogram shows the distribution of data values for a column. The Oracle optimizer can use histograms
to determine the efficiency of indexes for specific data value ranges. See ANALYZE.

HOST (SQL*Plus)
SEE ALSO $, !, @, @@, START
FORMAT

HO[ST] command

DESCRIPTION A host is a computer on which the Oracle RDBMS is running. The HOST command
in SQL*Plus passes any HOST command back to the operating system for execution without exiting
SQL*Plus. SQL*Plus permits embedding local or PL/SQL variables in the HOST command string. This
doesn’t work on all hardware or operating systems. HOST is not available within iSQL*Plus.

IF
SEE ALSO LOOP, Chapter 29
FORMAT

IF condition
THEN statement; [statement;]...

[ELSIF condition THEN statement; [statement;]...
[ELSIF condition THEN statement; [statement;]...]...]

1184 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1184

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

[ELSE statement; [statement;]...]
END IF;

DESCRIPTION The IF statement will execute one or more statements if condition evaluates to
TRUE, after which the program branches to END IF. If the condition is FALSE, then any number of a
series of optional ELSIF conditions are tested. If any one is TRUE, the associated statements (following
THEN) are executed, and then the program branches to END IF. If none of the ELSIF conditions is
TRUE (and the original IF condition was not TRUE), then the statements following the optional ELSE
are executed. Note that the final ELSE does not have a condition.
EXAMPLE

declare
pi constant NUMBER(9,7) := 3.1415927;
area NUMBER(14,2);
cursor rad_cursor is
select * from RADIUS_VALS;

rad_val rad_cursor%ROWTYPE;
begin

open rad_cursor;
fetch rad_cursor into rad_val;
area := pi*power(rad_val.radius,2);
if area > 30
then
insert into AREAS values (rad_val.radius, area);

end if;
close rad_cursor;

end;

IMPORT
To import is to use one of Oracle’s utilities to read data from an export dump file and insert it into a
database via an import utility. There are two import utilities available: Import and Data Pump Import.
Data Pump Import is available as of Oracle Database 10g; see Chapter 22 for details. The Import utility
is available for all Oracle versions. For details on the Import utility, see Chapter 46. Both utilities are
described in the Oracle Database Utilities 10g Release 1 documentation provided with the Oracle software.

IN
SEE ALSO ALL, ANY, LOGICAL OPERATORS, WHERE, Chapter 5
FORMAT

WHERE expression IN ({'string' [,'string']... | select...})

DESCRIPTION IN is equivalent to =ANY. In the first option, IN means the expression is equal
to any member of the following list of literal strings. In the second option, it means the expression is
equal to any value in any row selected from the subquery. The two are logically equivalent, with the
first giving a list made of literal strings, and the second building a list from a query.

INDEX
Index is a general term for an Oracle/SQL feature used primarily to speed execution and impose
uniqueness upon certain data. In general, indexes provide a faster access method to table data than doing a

INDEX 1185

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1185

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1186 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1186

full table scan. There are several types of indexes; see CONCATENATED INDEX, COMPRESSED
INDEX, and UNIQUE INDEX. An index has an entry for each value found in the table’s indexed field(s)
(except those with a NULL value) and pointer(s) to the row(s) having that value.

INDEX SEGMENT
The index segment is the storage that is allocated for an index, as compared to storage allocated to the
data in a table.

INDEX-ORGANIZED TABLE
An index-organized table keeps its data sorted according to the primary key column values for the
table. An index-organized table allows you to store the entire table’s data in an index. A normal index
stores only the indexed columns in the index; an index-organized table stores all of the table’s columns
in the index.

To create an index-organized table, use the ORGANIZATION INDEX clause of the CREATE TABLE
command, as shown in the following example:

create table TROUBLE (
City VARCHAR2(13),
SampleDate DATE,
Noon NUMBER(4,1),
Midnight NUMBER(4,1),
Precipitation NUMBER,
constraint TROUBLE_PK PRIMARY KEY (City, SampleDate))
organization index;

To create TROUBLE as an index-organized table, you must create a PRIMARY KEY constraint on it.
In general, index-organized tables are appropriate for associative tables in many-to-many relationships.

Ideally, an index-organized table will have few (or no) columns that are not part of its primary key.
See Chapter 17 and CREATE TABLE.

INDICATOR VARIABLE
SEE ALSO : (colon, the host variable prefix), Programmer’s Guide to the Oracle Precompilers
FORMAT

:name [INDICATOR] :indicator

DESCRIPTION An indicator variable—used when both name and indicator are host language
variable names—is a data field whose value indicates whether a host variable should be regarded as
NULL. (The INDICATOR keyword is for readability and has no effect.)

name may be any legitimate host variable data name used in the host program and included in the
precompiler’s DECLARE section. indicator is defined in the precompiler’s DECLARE section as a two-
byte integer.

Few procedural languages directly support the idea of a variable with a NULL or unknown value,
although Oracle and SQL do so easily. To extend languages for which Oracle has developed precompilers
to support the NULL concept, an indicator variable is associated with the host variable, almost like a
flag, to indicate whether it is NULL. The host variable and its indicator variable may be referenced and
set separately in the host language code, but are always concatenated in SQL or PL/SQL.
EXAMPLE

BEGIN
select Title, AuthorName into :Title, :AuthorName:AuthorNameInd

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

from BOOKSHELF_AUTHOR;

IF :AuthorName:AuthorNameInd IS NULL
THEN :AuthorName:AuthorNameInd := 'No Auth'

END IF;
END;

Note that both the test to see whether the variable is NULL and, if it is, the assignment of 'No Auth'
to it are done with the concatenated variable name. PL/SQL knows enough to check the indicator in
the first case and set the variable value in the second case. The two variables together are treated just
like a single Oracle column. These important points must be noted:

■ Within any single PL/SQL block, a host variable must either always stand alone or always
be concatenated with its indicator variable.

■ An indicator variable cannot be referenced alone within PL/SQL, although it can be in the
host program.

When setting host variables within the host program, but outside of PL/SQL, note these points:

■ Setting the indicator variable equal to –1 will force the concatenated variable to be regarded
within PL/SQL as NULL, both in logic tests and for INSERTs or UPDATEs.

■ Setting the indicator variable greater than or equal to 0 will force the concatenated variable
to be regarded as equal to the value in the host variable, and NOT NULL.

■ PL/SQL tests the value of all indicator variables on entering a block, and sets them on exiting
the block.

When loading concatenated host variables within PL/SQL, via a SQL statement with an INTO
clause, the following rules apply when checking the indicator variable within the host program, but
outside of PL/SQL:

■ The indicator variable will be equal to –1 if the value loaded from the database was NULL.
The value of the host variable is uncertain, and should be treated as such.

■ The indicator variable will be equal to 0 if the value from the database is loaded completely
and correctly into the host variable.

■ The indicator variable will be greater than 0 and equal to the actual length of the data in the
database column if only a portion of it could fit in the host variable. The host variable will
contain a truncated version of what was in the database column.

init.ora
The init.ora file is a database system parameter file that contains settings and filenames used when a
system is started using the CREATE DATABASE, STARTUP, or SHUTDOWN command. You can either
use an init.ora file or create a system parameter file via the CREATE SPFILE command. See CREATE
PFILE and CREATE SPFILE.

INITCAP
SEE ALSO CHARACTER FUNCTIONS, LOWER, UPPER, Chapter 7
FORMAT

INITCAP(string)

INITCAP 1187

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1187

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1188 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1188

DESCRIPTION INITCAP (INITial CAPital) changes the first letter of a word or series of words into
uppercase. It also notes the presence of symbols, and will INITCAP any letter that follows a space or a
symbol, such as a comma, period, colon, semicolon, !, @, #, $, and so on.
EXAMPLE

INITCAP('this.is,an-example of!how@initcap#works')

produces this:

This.Is,An-Example Of!How@Initcap#Works

INNER JOIN
Inner joins return rows based on the key values two tables have in common. They support both the ON
and USING clauses. For example, the following query joins BOOK_ORDER to BOOKSHELF based on
their Title column values:

select BO.Title
from BOOK_ORDER BO inner join BOOKSHELF B
on BO.Title = B.Title;

That query can be rewritten as:

select Title
from BOOK_ORDER BO inner join BOOKSHELF B
using (Title);

INPUT (SQL*Plus)
SEE ALSO APPEND, CHANGE, DEL, EDIT, Chapter 6
FORMAT

I[NPUT] [text]

DESCRIPTION INPUT adds a new line of text after the current line in the current buffer. Using
INPUT by itself allows multiple lines to be keyed in after the current line, which stops when the system
encounters ENTER with nothing else on the line. The space between INPUT and text will not be added
to the line but any additional spaces will be. See DEL for a discussion of current line. INPUT is not
available in iSQL*Plus.

INSERT (Form 1—Embedded SQL)
SEE ALSO EXECUTE, FOR, Programmer’s Guide to the Oracle Precompilers
FORMAT

EXEC SQL [AT { db_name | :host_variable }]
[FOR { :host_integer | integer }]
INSERT INTO
[[schema.] { table | view }
[@db_link | PARTITION (part_name)]]

[(column) [, (column)]...]
{ VALUES (expr [, expr]...) | subquery }
[{ RETURN | RETURNING } expr [, expr]... INTO
:host_variable [[INDICATOR] :ind_variable]
[, :host_variable [[INDICATOR] :ind_variable]]...]

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

INSERT (Form 3—SQL Command) 1189

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1189

DESCRIPTION db_name is a database other than the user’s default, and host_variable contains
the name of the database. :host_integer is a host value that limits the number of times the INSERT will
be processed (see FOR). table is any existing table, view, or synonym, and db_link is the name of a
remote database where the table is stored. (See the INSERT Form 3 definition for a discussion of the
VALUES clause, columns, and query.) expression here can be an expression or a host variable in the
form :variable[:indicator].

NOTE
See the Programmer’s Guide to the Oracle Precompilers for a full list
of all commands. This reference does not contain all of the possible
precompiler commands.

INSERT (Form 2—PL/SQL)
SEE ALSO SQL CURSOR, Chapter 29
FORMAT

INSERT INTO [user.]table[@db_link] [(column [,column]...)]
VALUES (expression [,expression]...) | query...);

DESCRIPTION PL/SQL’s use of INSERT is identical to its general form (Form 3 in the following
section), with these exceptions:

■ You may use a PL/SQL variable in an expression for the value in the VALUES list.

■ Each variable will be treated in the same way that a constant, with the value of the variable,
would be treated.

■ If you use the query… version of the INSERT, you cannot use the INTO clause of the SELECT.

INSERT (Form 3—SQL Command)
SEE ALSO CREATE TABLE, Chapters 5, 15, 33, and 34
FORMAT
insert::=

single_table_insert::=

insert_into_clause::=::=

INSERT
hint single_table_insert

multi_table_insert
;

insert_into_clause
values_clause

returning_clause

subquery

INTO dml_table_expression_clause
t_alias (column

,

)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1190 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1190

values_clause::=

returning_clause::=

multi_table_insert::=

conditional_insert_clause::=

DML_table_expression_clause::=

VALUES (
expr

DEFAULT

,

)

RETURNING expr

,

INTO data_item

,

ALL insert_into_clause
values_clause

conditional_insert_clause
subquery

ALL

FIRST
WHEN condition THEN insert_into_clause

values_clause

ELSE insert_into_clause
values_clause

schema . table

PARTITION (partition)

SUBPARTITION (subpartition)

@ dblink

view

materialized view

@ dblink

(subquery
subquery_restriction_clause

)

table_collection_expression

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

INSTANCE IDENTIFIER 1191

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1191

subquery_restriction_clause::=

table_collection_expression::=

DESCRIPTION INSERT adds one or more new rows to the table or view. The optional schema
must be a user to whose table you have been granted insert authority. table is the table into which
rows are to be inserted. If a list of columns is given, an expression (SQL expression) must be matched
for each of those columns. Any columns not in the list receive the value NULL, and none of them can
be defined NOT NULL or the INSERT will fail. If a list of columns is not given, values must be given
for all columns in the table.

INSERT with a subquery adds as many rows as the query returns, with each query column being
matched, position for position, with columns in the column list. If no column list is given, the tables
must have the same number and type of columns. The USER_TAB_COLUMNS data dictionary view
shows these, as does DESCRIBE in SQL*Plus.
EXAMPLE The following inserts a row into the COMFORT table:

insert into COMFORT values ('KEENE','23-SEP-03',99.8,82.6,NULL);

The following inserts City, SampleDate (both NOT NULL columns), and Precipitation into COMFORT:

insert into COMFORT (City, SampleDate, Precipitation) values
('KEENE','22-DEC-03',3.9);

To copy just the data for the city of KEENE into a new table named NEW_HAMPSHIRE, use this:

insert into NEW_HAMPSHIRE
select * from COMFORT
where City = 'KEENE';

See Chapter 33 for information on inserting rows into tables that use abstract datatypes. See Chapter 34
for details on inserting rows into nested tables and varying arrays.

INSTANCE
An instance is everything required for Oracle to run: background processes (programs), memory,
and so on. An instance is the means of accessing a database.

INSTANCE IDENTIFIER
An instance identifier is a means of distinguishing one instance from another when multiple instances
exist on one host.

TABLE (collection_expression)
(+)

WITH

READ ONLY

CHECK OPTION
CONSTRAINT constraint

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

INSTANCE RECOVERY
Instance recovery is recovery in the event of software or hardware failure. This occurs if the software
aborted abnormally due to a severe bug, deadlock, or destructive interaction between programs. See
also MEDIA RECOVERY.

INSTEAD OF TRIGGER
An INSTEAD OF trigger executes a block of PL/SQL code in place of the transaction that causes the
trigger to be executed. INSTEAD OF triggers are commonly used to redirect transactions against views.
See CREATE TRIGGER and Chapters 30 and 33.

INSTR
SEE ALSO CHARACTER FUNCTIONS, SUBSTR, Chapter 7
FORMAT

INSTR(string,set[,start[,occurrence]])

DESCRIPTION INSTR finds the location of a set of characters in a string, starting at position start
in the string, and looking for the first, second, third, and so on occurrence of the set. This function will
also work with NUMBER and DATE datatypes. start also can be negative, meaning the search begins
with the characters at the end of the string and searches backward.
EXAMPLE To find the third occurrence of 'PI' in this string, use this:

INSTR('PETER PIPER PICKED A PECK OF PICKLED PEPPERS','PI',1,3)

The result of this function is 30, the location of the third occurrence of 'PI'.

INTEGRITY CONSTRAINT
An integrity constraint is a rule that restricts the range of valid values for a column. It is placed on
a column when the table is created. For the syntax, see CONSTRAINTS.

If you do not name a constraint, Oracle assigns a name in the form SYS_Cn, where n is an integer.
An Oracle-assigned name will usually change during an import, while a user-assigned name will not
change.

NULL permits NULL values. NOT NULL specifies that every row must have a non-NULL value
for this column.

UNIQUE forces column values to be unique. There can be only one PRIMARY KEY constraint
on a table. If a column is UNIQUE it cannot also be declared the PRIMARY KEY (PRIMARY KEY also
enforces uniqueness). An index enforces the UNIQUE or PRIMARY KEY, and the USING INDEX
clause and its options specify the storage characteristics of that index. See CREATE INDEX for more
information on the options.

REFERENCES identifies this column as a foreign key from [user.]table [(column)]. Omitting column
implies that the name in the user.table is the same as the name in this table. Note that when REFERENCES is
used in a table_constraint (described shortly), it must be preceded by FOREIGN KEY. This is not used
here, as only this column is referenced; table_constraint can reference several columns for FOREIGN KEY.
ON DELETE CASCADE instructs Oracle to maintain referential integrity automatically by removing foreign
key rows in the dependent tables if you remove the primary key row in this table.

CHECK assures that the value for this column passes a condition such as this:

Amount number(12,2) CHECK (Amount >= 0)

1192 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1192

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

condition may be any valid expression that tests TRUE or FALSE. It can contain functions, any
columns from this table, and literals.

The EXCEPTIONS INTO clause specifies a table into which Oracle puts information about rows
that violate an enabled integrity constraint. This table must be local.

The DISABLE option lets you disable the integrity constraint when you create it. When the constraint
is disabled, Oracle does not automatically enforce it. You can later enable the constraint with the ENABLE
clause in ALTER TABLE.

You can also create constraints at the table level. Table constraints are identical to column constraints
except that a single constraint can reference multiple columns—for example, in declaring a set of three
columns as a primary or foreign key.

INTERSECT
SEE ALSO MINUS, QUERY OPERATORS, UNION, Chapter 13
FORMAT

select...
INTERSECT
select...

DESCRIPTION INTERSECT combines two queries and returns only those rows from the first SELECT
statement that are identical to at least one row from the second SELECT statement. The number of columns
and datatypes must be identical between SELECT statements, although the names of the columns do not
need to be. The data, however, must be identical in the rows produced for the INTERSECTion to pass them.

INTERVAL DAY TO SECOND
The INTERVAL DAY (day_precision) TO SECOND (second_precision) datatype stores the period of
time in days, hours, minutes, and seconds. You can specify a day_precision as the number of digits in
the DAY datetime field (default is 2) and a second_precision as the number of digits in the fractional
part of the Seconds field (default is 6).

INTERVAL YEAR TO MONTH
The INTERVAL YEAR (precision) TO MONTH datatype stores the period of time in years and months,
where precision is the number of digits in the YEAR datetime field (default is 2).

IS A SET
SEE ALSO IS EMPTY, Chapter 34
FORMAT

nested_table IS [NOT] A SET

DESCRIPTION Use an IS A SET condition to test whether a specified nested table is composed of
unique elements. The condition returns TRUE is the nested table is a set, even if it is a nested table of
length zero, and returns FALSE otherwise. It returns NULL if the nested table is empty.

IS ANY
SEE ALSO SELECT

IS ANY 1193

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1193

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

dimension_column IS ANY

DESCRIPTION The IS ANY clause is relevant only for interrow calculations, and can be used only
in the MODEL clause of a SELECT statement. Use this condition to qualify all values of a dimension
column, including NULL. The condition always returns a Boolean value of TRUE to qualify all values of
the column.

IS EMPTY
SEE ALSO IS A SET, Chapter 34
FORMAT

nested table IS [NOT] EMPTY

DESCRIPTION Use the IS [NOT] EMPTY conditions to test whether a specified nested table is empty,
regardless of whether any elements of the collection are NULL. The condition returns a Boolean value:
TRUE for an IS EMPTY condition if the condition is empty, TRUE for an IS NOT EMPTY condition if
the condition is not empty. If you specify NULL for the nested table or array, the result is NULL.

IS NULL
SEE ALSO LOGICAL OPERATORS, Chapters 5 and 9
FORMAT

WHERE column IS [NOT] NULL

DESCRIPTION IS NULL tests a column (or an expression) for the absence of any data. A NULL
test is distinctly different from a test for equality, because NULL means that the value is unknown or
irrelevant, and it therefore cannot be said to be equal to anything, including another NULL.

IS OF type
SEE ALSO VALUE, Chapter 33
FORMAT
is_of_type_conditions::=

DESCRIPTION Use the IS OF type condition to test object instances based on their specific type
information. The condition evaluates to NULL if expr is NULL. If expr is not null, then the condition
evaluates to TRUE (or FALSE if you specify the NOT keyword) under either of these circumstances:

■ The most specific type of expr is the subtype of one of the types specified in the type list and
you have not specified ONLY for the type.

■ The most specific type of expr is explicitly specified in the type list.

The expr frequently takes the form of the VALUE function with a correlation variable.

1194 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1194

expr IS
NOT

OF
TYPE

(
ONLY schema .

type

,

)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:01:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

IS PRESENT
SEE ALSO SELECT
FORMAT

cell_reference IS PRESENT

DESCRIPTION The IS PRESENT condition is relevant only for interrow calculations, and can
be used only in the MODEL clause of a SELECT statement. Use this condition to test whether the cell
referenced is present prior to the execution of the MODEL clause. The condition returns TRUE if the
cell exists prior to the execution of the MODEL clause, and returns FALSE if it does not.

ITERATION_NUMBER
SEE ALSO SELECT
FORMAT

ITERATION_NUMBER

DESCRIPTION The ITERATION_NUMBER function is relevant only for interrow calculations. It can
be used only in the MODEL clause of the SELECT statement and then only when ITERATE(number) is
specified in the MODEL RULES clause. It returns an integer representing the completed iteration through the
model rules. The ITERATION_NUMBER function returns 0 during the first iteration. For each subsequent
iteration, the ITERATION_NUMBER function returns the equivalent of iteration_number plus one.

JAVA
Java is a programming language originally developed by Sun Microsystems. You can write stored
procedural objects in either PL/SQL or Java. See Chapter 37.

JDBC
JDBC is an industry standard application programming interface to databases. Oracle supports JDBC
connections. See Chapter 38.

JOIN
SEE ALSO SELECT, Chapter 5
FORMAT

WHERE TableA.column = TableB.column

or

FROM TableA INNER JOIN TableB
on TableA.Column = TableB.Column

or

FROM TableA INNER JOIN TableB
using(Column)

or

FROM TableA NATURAL JOIN TableB

JOIN 1195

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1195

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION A join combines columns and data from two or more tables (and, in rare cases,
of one table with itself). The tables are all listed in the FROM clause of the SELECT statement, and the
relationship between the two tables may specified in the WHERE clause, usually by a simple equality,
such as this:

where BOOK_ORDER.Title = BOOKSHELF.Title

This is often called an equi-join because it uses the equal sign in the WHERE clause. You could join
tables using other forms of equality, such as >=, <, and so on, but the results are seldom meaningful.
There also are cases in which one or both sides of the equal sign contain an expression, perhaps a
SUBSTR or a combination of columns, which is used for equality with the other side. This is a fairly
common usage.

Joining two tables together without a join clause—either in the FROM clause or in the WHERE
clause—produces a Cartesian product, which combines every row in one table with every row in the
other table. An 80-row table combined with a 100-row table would produce an 8000-row result (which
is usually quite meaningless).

An outer join is a method for intentionally retrieving selected rows from one table that don’t match
rows in the other table. As of Oracle9i, you can use the ANSI standard outer join syntax options (CROSS
JOIN, NATURAL JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN, and FULL OUTER JOIN). See Chapter 13
for examples of the syntax for outer joins.

JOIN COLUMN
A join column is a column used to join one table to another. You identify a join column by using it in
a WHERE clause, USING clause, or ON clause that specifies the relationship between the two tables.

JULIAN DATE
Julian dates are a means of converting date data so that every date can be expressed as a unique integer.
Julian dates can be obtained by using the format mask 'J' with functions on date data. See DATE FORMATS.

KEY
A key is a column or columns used to identify rows; it is not the same as an index, although indexes
are often used with such columns. See FOREIGN KEY, PRIMARY KEY, and UNIQUE KEY.

LABEL (PL/SQL)
A label is a word associated with an executable statement, usually for the purpose of being the target
of a GOTO statement.

LAG
SEE ALSO LEAD
FORMAT

LAG (value_expr [, offset] [, default])
OVER ([query_partition_clause] order_by_clause)

DESCRIPTION LAG provides access to more than one row of a table at the same time without
a self-join. Given a series of rows returned from a query and a position of the cursor, LAG provides
access to a row at a given physical offset prior to that position.

1196 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1196

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

LAST
SEE ALSO DENSE_RANK, FIRST
FORMAT

aggregate_function KEEP
(DENSE_RANK LAST ORDER BY
expr [DESC | ASC] [NULLS { FIRST | LAST }]
[, expr [DESC | ASC] [NULLS { FIRST | LAST }]]...

) [OVER query_partition_clause]

DESCRIPTION LAST is both an aggregate and analytic function that operates on a set of values
from a set of rows that rank as the last with respect to a given sorting specification. aggregate_function
is one of the standard numeric grouping functions (such as MIN, MAX, AVG, and STDDEV).

LAST_DAY
SEE ALSO ADD_MONTHS, DATE FUNCTIONS, NEXT_DAY, Chapter 10
FORMAT

LAST_DAY (date)

DESCRIPTION LAST_DAY gives the date of the last day of the month that date is in.
EXAMPLE

LAST_DAY ('05-NOV-04')

produces a result of 30-NOV-04.

LAST_VALUE
SEE ALSO FIRST_VALUE
FORMAT

LAST_VALUE (expr [IGNORE NULLS]) OVER (analytic_clause)

DESCRIPTION LAST_VALUE is an analytic function. It returns the last value in an ordered set of
values. If the last value in the set is null, then the function returns NULL unless you specify IGNORE
NULLS.

LEAD
SEE ALSO LAG
FORMAT

LEAD (value_expr [, offset] [, default])
OVER ([query_partition_clause] order_by_clause)

DESCRIPTION LEAD provides access to more than one row of a table at the same time without
a self-join. Given a series of rows returned from a query and a position of the cursor, LEAD provides
access to a row at a given physical offset beyond that position.

LEAST
SEE ALSO GREATEST, LIST FUNCTIONS, Chapter 10

LEAST 1197

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1197

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1198 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1198

FORMAT

LEAST(value1, value2, ...)

DESCRIPTION LEAST is the value of a list of columns, expressions, or values. Values may be
VARCHAR2, CHAR, DATE, or NUMBER datatypes, although LEAST will not properly evaluate literal
dates (such as '20-MAY-04') without the TO_DATE function. See GREATEST for a discussion of
evaluating relative values.

LENGTH
SEE ALSO CHARACTER FUNCTIONS, VSIZE, Chapter 7
FORMAT

LENGTH(string)

DESCRIPTION LENGTH tells the length of a string, number, date, or expression. The string can
be CHAR (returned length will include all trailing blanks), VARCHAR2, NCHAR, NVARCHAR2, CLOB,
or NCLOB. There are several LENGTH functions, all following the same format:

■ LENGTH calculates the length using characters as defined by the input character set.

■ LENGTHB uses bytes instead of characters.

■ LENGTHC uses Unicode complete characters.

■ LENGTH2 uses UCS2 code points.

■ LENGTH4 uses UCS4 code points.

LEVEL
SEE ALSO CONNECT BY, PSEUDO-COLUMNS, Chapter 14
FORMAT

LEVEL

DESCRIPTION Level is a pseudo-column, used with CONNECT BY, that is equal to 1 for a root
node, 2 for a child of a root, 3 for a child of a child of a root, and so on. Level tells basically how far
down a tree you’ve traveled.

LGWR
LGWR (LoG WRiter process) writes redo log entries from the System Global Area to the online redo
logs. See BACKGROUND PROCESS.

LIBRARY
PL/SQL blocks can reference external subprograms, stored in libraries. See CREATE LIBRARY.

LIKE
SEE ALSO LOGICAL OPERATORS, Chapter 3
FORMAT

WHERE string LIKE string

DESCRIPTION LIKE performs pattern matching. An underline represents exactly one space. A percent
sign represents any number of spaces or characters, including zero. If LIKE uses either the _ or % in the first
position of a comparison (as in the second and third examples following), any index on the column is ignored.

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXAMPLES

Feature LIKE 'MO%' "Feature begins with the letters MO."
Feature LIKE '_ _I%' "Feature has an I in the third position."
Feature LIKE '%0%0%' "Feature has at least two 0's in it."

LINESIZE (SQL*Plus)
See SET.

LIST (SQL*Plus)
SEE ALSO APPEND, CHANGE, EDIT, INPUT, RUN, Chapter 6
FORMAT

L[IST] [n |n m|n*|n LAST|*|*n|*LAST|LAST]

DESCRIPTION LIST lists lines of the current buffer starting at n and ending at m, both of which
are integers. The end line becomes the current line of the buffer, and is flagged with an asterisk. LIST
without n or m lists all lines. LIST with a single number will display just that line. The space between
LIST and n is not necessary but it does help readability. LIST n* lists all lines from n to the end of the
buffer. LIST *n lists all lines from the beginning to the specified line.
EXAMPLE Use this to list the current SQL buffer:

LIST

An asterisk will designate the current line. To list just the second line, use this:

LIST 2

This also makes 2 the current line in the current buffer.

LIST FUNCTIONS
SEE ALSO All other functions, Chapter 10
DESCRIPTION The following is an alphabetical list of all current list functions in the Oracle version of
SQL. Each of these is listed elsewhere in this reference under its own name, with its proper format and use.

This gives the first non-NULL value in the set:

COALESCE(value1, value2, ...)

This gives the greatest value of a list:

GREATEST(value1, value2, ...)

This gives the least value of a list:

LEAST(value1, value2, ...)

LN
SEE ALSO NUMBER FUNCTIONS, Chapter 9
FORMAT

LN(number)

LN 1199

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1199

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION LN is the “natural,” or base e, logarithm of a number. If number is BINARY_FLOAT,
then the function returns BINARY_DOUBLE.

LNNVL
SEE ALSO SELECT
FORMAT

LNNVL (condition)

DESCRIPTION LNNVL provides a way to evaluate a condition when one or both operands of the
condition may be null. The function can be used only in the WHERE clause of a query. It takes as an
argument a condition and returns TRUE if the condition is FALSE or UNKNOWN and returns FALSE if
the condition is TRUE. LNNVL can be used anywhere a scalar expression can appear, even in contexts
where the IS [NOT] NULL, AND, or OR conditions are not valid but would otherwise be required to
account for potential nulls. LNNVL may show up in explain plans when Oracle internally requires
NOT IN conditions as NOT EXISTS conditions.
EXAMPLES If you want to retrieve all rows for which a column is greater than a given value, the
standard format would be

where column > value

To also return the rows for which column is NULL, use LNNVL:

where LNNVL(column > value)

LOADJAVA
LOADJAVA is a utility for loading Java classes, resources, and sources into the database. You must
load your Java classes into the database if you plan to use them in stored procedures. To remove the
Java classes from the database, use the DROPJAVA utility. See Chapter 39.

LOB
A LOB is a large object. Oracle supports several large object datatypes, including BLOBs (binary large
objects), CLOBs (character large objects), and BFILEs (binary files, stored outside the database). See
Chapter 35 and the LOB clause of CREATE TABLE.

LOBOFFSET (SQL*Plus)
See SET.

LOCAL DATABASE
The local database is usually a database on your host computer. See REMOTE DATABASE.

LOCAL INDEX
When a table is partitioned, its data is stored in separate tables. When an index is created on the partitioned
table, the index can be partitioned so that each of the table partitions has a matching index partition. The
matching index partitions are called local indexes. See Chapter 17.

LOCALTIMESTAMP
SEE ALSO DATE FUNCTIONS, Chapter 10

1200 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1200

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

LOCALTIMESTAMP [(timestamp_precision)]

DESCRIPTION LOCALTIMESTAMP returns the current date and time in the session time zone as
a value of datatype TIMESTAMP.
EXAMPLE

SELECT LOCALTIMESTAMP FROM DUAL;

LOCALLY MANAGED TABLESPACE
A locally managed tablespace maintains its extent usage information in bitmaps within the
tablespace’s datafiles. See CREATE TABLESPACE.

LOCK
To lock data is to temporarily restrict other users’ access to data. The restriction that is placed on such
data is called “a lock.” Lock modes are SHARE, SHARE UPDATE, EXCLUSIVE, SHARE EXCLUSIVE,
ROW SHARE, and ROW EXCLUSIVE. Not all locks can be acquired in all modes.

LOCK TABLE
SEE ALSO COMMIT, DELETE, INSERT, ROLLBACK, SAVEPOINT, UPDATE
FORMAT

LOCK TABLE
[schema.] { table | view }
[{ PARTITION (partition) | SUBPARTITION (subpartition) }
| @ dblink]
[, [schema.] { table | view }
[{ PARTITION (partition) | SUBPARTITION (subpartition) }
| @ dblink]]...

IN lockmode MODE [NOWAIT];

DESCRIPTION LOCK TABLE locks a table in one of several specified modes, allowing it to be
shared, but without loss of data integrity. Using LOCK TABLE allows you to give other users continued
but restricted access to the table. Regardless of which option you choose, the table will remain in that
lock mode until you COMMIT or ROLLBACK your transactions.

Lock modes include ROW SHARE, ROW EXCLUSIVE, SHARE UPDATE, SHARE, SHARE ROW
EXCLUSIVE, and EXCLUSIVE.

EXCLUSIVE locks permit users to query the locked table but not to do anything else. No other user
may lock the table. SHARED locks permit concurrent queries but no updates to the locked table.

With a ROW SHARE or SHARE UPDATE lock, no user can lock the whole table for exclusive access,
allowing concurrent access for all users to the table. The two types of lock are synonymous, and SHARE
UPDATE exists for compatibility with previous versions of Oracle.

ROW EXCLUSIVE locks are similar to ROW SHARE but they prohibit shared locking, so only one
user may access the table at a time.

If a LOCK TABLE command cannot be completed (usually because someone else has executed a
prior and competing LOCK TABLE of some sort), then your LOCK TABLE will wait until it can complete.
If you wish to avoid this, and simply have control returned to you, use the NOWAIT option. Note that
you can lock specific partitions and subpartitions.

LOCK TABLE 1201

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1201

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1202 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1202

LOG
SEE ALSO NUMBER FUNCTIONS, Chapter 9
FORMAT

LOG(base, number)

DESCRIPTION LOG gives the logarithm of a number for a specified base.
EXAMPLE

LOG(EXP(1),3) = 1.098612 -- log(e) of 3
LOG(10,100) = 2 -- log(10) of 100

LOGICAL EXPRESSION
A logical expression is one whose value evaluates to either TRUE or FALSE. It is a synonym for CONDITION.

LOGICAL OPERATORS
SEE ALSO PRECEDENCE
FORMAT The following lists all current logical operators in the Oracle version of SQL. Most of
these are listed elsewhere in this reference under their own names with their proper format and use.
All of these operators work with columns or literals.

Logical Operators that Test a Single Value
= expression is equal to expression
> expression is greater than expression
>= expression is greater than or equal to expression
< expression is less than expression
<= expression is less than or equal to expression
!= expression is not equal to expression
^= expression is not equal to expression
<> expression is not equal to expression

EXISTS (query)
NOT EXISTS (query)

LIKE expression
NOT LIKE expression

expression IS NULL
expression IS NOT NULL

Logical Operators that Test More than a Single Value
ANY (expression [,expression]... | query)
ALL (expression [,expression]... | query)

ANY and ALL require an equality operator as a prefix, such as >ANY, =ALL, and so on.

IN (expression [,expression]... | query)
NOT IN (expression [,expression]... | query)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

BETWEEN expression AND expression
NOT BETWEEN expression AND expression

Other Logical Operators
+ Addition
- Subtraction
* Multiplication
/ Division
** Exponentiation
|| Concatenation
() Overrides normal precedence rules, or encloses a

subquery
NOT Reverses logical expression
AND Combines logical expressions
OR Combines logical expressions
UNION Combines results of queries
UNION ALL Combines results of queries without eliminating duplicates
INTERSECT Combines results of queries
MINUS Combines results of queries

LOGIN ACCOUNT
A login account is a username and password combination that allows people to use the Oracle RDBMS.
This account is usually separate from your operating system account.

LOBSOURCE (SQL*Plus)
See SET.

LONG (SQL*Plus)
See SET.

LONG DATATYPE
See DATATYPES.

LONG RAW DATATYPE
A LONG RAW column contains raw binary data, but is otherwise the same as a LONG column. Values
entered into LONG RAW columns must be in hex notation.

LOOP
You can use loops to process multiple records within a single PL/SQL block. PL/SQL supports three types
of loops:

Simple loops A loop that keeps repeating until an EXIT or EXIT WHEN statement is reached within the loop

FOR loops A loop that repeats a specified number of times

WHILE loops A loop that repeats until a condition is met

LOOP 1203

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1203

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1204 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1204

You can use loops to process multiple records from a cursor. The most common cursor loop is a
cursor FOR loop. See CURSOR FOR LOOP and Chapter 29 for details on using loops for both simple
and cursor-based processing logic.

LOWER
SEE ALSO CHARACTER FUNCTIONS, INITCAP, UPPER, Chapter 7
FORMAT

LOWER(string)

DESCRIPTION LOWER converts every letter in a string to lowercase.
EXAMPLE

LOWER('PeninSula') = peninsula

LPAD
SEE ALSO CHARACTER FUNCTIONS, LTRIM, RPAD, RTRIM, Chapter 7
FORMAT

LPAD(string,length [,'set'])

DESCRIPTION Left PAD makes a string a certain length by adding a certain set of characters to
the left of the string. If set is not specified, the default pad character is a space.
EXAMPLE

LPAD('>',11,'- ')

produces

- - - - - >

LTRIM
SEE ALSO CHARACTER FUNCTIONS, LPAD, RPAD, RTRIM, Chapter 7
FORMAT

LTRIM(string [,'set'])

DESCRIPTION Left TRIM trims all the occurrences of any one of a set of characters off of the left
side of a string.
EXAMPLE

LTRIM('NANCY','AN')

produces this:

CY

MAKE_REF
SEE ALSO Chapter 36
FORMAT

MAKE_REF (table | view , key [,key])

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION MAKE_REF constructs a REF (reference) from the foreign key of a table that references
the base table of an object view. MAKE_REF allows you to construct references superimposed on existing
foreign key relationships. See Chapter 36 for examples.

MATERIALIZED VIEW
You can use materialized views to pre-aggregate data and improve query performance. When you
create a materialized view, Oracle creates a physical table to hold data that would usually be read via
a view. When you create a materialized view, you specify the view’s base query as well as a schedule
for the refreshes of its data. You can then index the materialized view to enhance the performance of
queries against it. As a result, you can provide data to your users in the format they need, indexed
appropriately. See CREATE MATERIALIZED VIEW and Chapter 24.

MATERIALIZED VIEW LOG
When you refresh a materialized view, you can perform a full or incremental refresh. An incremental
refresh, called a “fast” refresh, sends only the DML changes from the master table to the materialized
view. To track changes to the master table for the materialized view, you must create a materialized view
log. The materialized view log must be in the same schema as the master table for the materialized
view. Fast refreshes are not available for complex materialized views. See CREATE MATERIALIZED
VIEW LOG and Chapter 24.

MAX
SEE ALSO AGGREGATE FUNCTIONS, COMPUTE, MIN, Chapter 9
FORMAT

MAX([DISTINCT | ALL] value) [OVER analytic_clause]

DESCRIPTION MAX is the maximum of all values for a group of rows. MAX ignores NULL values.
The DISTINCT option is not meaningful, since the maximum of all values is identical to the maximum of
the distinct values.

MEDIA RECOVERY
Media recovery is recovery in the event of hardware failure that would prevent reading or writing of
data and thus operation of the database. See also INSTANCE RECOVERY.

MEDIAN
SEE ALSO AVG, COUNT
FORMAT

MEDIAN (expr) [OVER (query_partition_clause)]

DESCRIPTION MEDIAN takes a numeric or datetime value and returns the middle value or an
interpolated value that would be the middle value once the values are sorted. NULLs are ignored.

MERGE
SEE ALSO INSERT, UPDATE, Chapter 15

MERGE 1205

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1205

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT
merge::=

merge_update_clause::=

merge_insert_clause::=

where_clause::=

DESCRIPTION MERGE performs updates and inserts of a target table in a single command, based on
a selected set of rows. You specify the conditions to determine whether an insert or update is performed on
a row-by-row basis. See Chapter 15 for detailed examples.

NOTE
Since MERGE performs queries, you can use hints.

As of Oracle Database 10g, you can specify either the UPDATE or the INSERT operation, or both.
Also, you can delete rows from the target table during the UPDATE operation.

1206 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1206

MERGE
hint

INTO
schema .

table
t_alias

USING
schema .

table

view

subquery

t_alias
ON (condition)

merge_update_clause merge_insert_clause

WHEN MATCHED THEN UPDATE SET column =
expr

DEFAULT

,

where_clause DELETE where_clause

WHEN NOT MATCHED THEN INSERT
(column

,

)

VALUES (
expr

,

DEFAULT
)

where_clause

WHERE condition

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

MOD 1207

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1207

METHOD
A method is a block of code. In reference to user-defined datatypes, a method is a block of PL/SQL
code used to encapsulate the data access method for an object. Methods are specified as part of the
datatype specification (see CREATE TYPE) and their body is specified as part of the CREATE TYPE
BODY command. Users can execute methods on the datatypes for which the methods are defined.
The constructor method created for each user-defined datatype is an example of a method. See
Chapter 33 for examples of methods.

In Java, a method is a member of a class. You can call a class method and pass parameters to it
for it to use when executing its commands. See Chapter 33 for examples.

MIN
SEE ALSO AGGREGATE FUNCTIONS, COMPUTE, MAX, Chapter 9
FORMAT

MIN([DISTINCT | ALL] value) [OVER (analytic_clause)]

DESCRIPTION MIN is the minimum of all values for a group of rows. MIN ignores NULL values.
The DISTINCT option is not meaningful, since the minimum of all values is identical to the minimum
of the distinct values.

MINUS
SEE ALSO INTERSECT, QUERY OPERATORS, TEXT SEARCH OPERATORS, UNION, Chapters 13
and 25
FORMAT

select
MINUS
select

within Oracle Text queries against CONTEXT indexes:

select column
from TABLE

where CONTAINS(Text,'text MINUS text') >0;

DESCRIPTION MINUS combines two queries. It returns only those rows from the first SELECT
statement that are not produced by the second SELECT statement (the first SELECT MINUS the second
SELECT). The number of columns and datatypes must be identical between SELECT statements, although
the names of the columns do not need to be. The data, however, must be identical in the rows produced
for the MINUS to reject them. See Chapter 13 for a discussion of the important differences and effects
of INTERSECT, MINUS, and UNION.

Within text searches against CONTEXT indexes, MINUS tells the text search of two terms to subtract
the score of the second term’s search from the score of the first term’s search before comparing the result
to the threshold score.

MOD
SEE ALSO NUMBER FUNCTIONS, Chapter 9
FORMAT

MOD(value, divisor)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1208 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1208

DESCRIPTION MOD divides a value by a divisor, and gives the remainder. MOD(23,6) = 5 means
divide 23 by 6. The answer is 3 with 5 left over, so 5 is the result of the modulus. value and divisor can
both be any real number, except that divisor cannot be 0.
EXAMPLES

MOD(100,10) = 0
MOD(22,23) = 22
MOD(10,3) = 1
MOD(-30.23,7) = -2.23
MOD(4.1,.3) = .2

The second example shows what MOD does whenever the divisor is larger than the dividend (the
number being divided). It produces the dividend as a result. Also note this important case:

MOD(value,1) = 0

if value is an integer. This is a good test to see if a number is an integer.

MODEL FUNCTIONS
Model functions are relevant only for interrow calculations and can be used only in the MODEL clause
of the SELECT statement. They are nonrecursive. The model functions are CV, ITERATION_NUMBER,
PRESENTNNV, PRESENTV, and PREVIOUS.

MONTHS_BETWEEN
SEE ALSO ADD_MONTHS, DATE FUNCTIONS, Chapter 10
FORMAT

MONTHS_BETWEEN(date2,date1)

DESCRIPTION MONTHS_BETWEEN gives date2 minus date1 in months. The result is usually
not an integer.

MOUNT A DATABASE
To mount a database is to make it available to the database administrator.

MOUNT AND OPEN A DATABASE
To mount and open a database is to make it available to users.

MULTITHREADED SERVER
See SHARED SERVER.

NANVL
SEE ALSO LNNVL
FORMAT

NANVL (m, n)

DESCRIPTION NANVL is useful only for floating-point numbers of type BINARY_FLOAT or
BINARY_DOUBLE. Oracle will return an alternative value n if the input value m is not a number;
otherwise it returns m.

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NEWPAGE (SQL*Plus) 1209

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1209

NATURAL JOIN
A natural join joins two tables based on the key columns they have in common. The syntax is

FROM TableA NATURAL JOIN TableB

which is equivalent to

FROM TableA, TableB
WHERE TableA.KeyColumn = TableB.KeyColumn

See Chapter 13 for examples of different types of join syntax.

NCHAR
NCHAR is a multibyte version of the CHAR datatype. It stores fixed-length character data up to 2000 bytes
in length. See DATATYPES.

NCHR
SEE ALSO CHR
FORMAT

NCHR(number)

DESCRIPTION NCHR returns the character having the binary equivalent to number in the national
character set.

NCLOB
The NCLOB datatype is the multibyte version of the CLOB datatype. NCLOB stores character large
objects containing Unicode characters, up to a maximum length of 4GB. See DATATYPES.

NEAR
SEE ALSO CONTAINS, Chapter 25
DESCRIPTION Within CONTEXT indexes, NEAR indicates that a proximity search should be
executed for the specified text strings. If the search terms are 'summer' and 'lease', then a proximity
search for the two terms could be

select Text
from SONNET
where CONTAINS(Text,'summer NEAR lease') >0;

When evaluating the text search results, text with the words 'summer' and 'lease' near each other in
the text will have higher scores than text with the words 'summer' and 'lease' farther apart.

NESTED TABLE
A nested table is a table within a table. In this case, it is a table that is represented as a column within
another table. You can have multiple rows in the nested table for each row in the main table. There is
no limit to the number of entries per row. See Chapter 34 for details on creating, using, and querying
nested tables.

NEWPAGE (SQL*Plus)
See SET.

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NEW_TIME
See DATE FUNCTIONS.

NEXT_DAY
See DATE FUNCTIONS.

NEXTVAL
See PSEUDO-COLUMNS.

NLS_CHARSET_DECL_LEN
SEE ALSO NCHAR
FORMAT

NLS_CHARSET_DECL_LEN (byte_count , char_set_id)

DESCRIPTION NLS_CHARSET_DECL_LEN returns the declaration width (in number of characters)
of an NCHAR column.

NLS_CHARSET_ID
SEE ALSO NLS_CHARSET_NAME
FORMAT

NLS_CHARSET_ID (text)

DESCRIPTION NLS_CHARSET_ID returns the character set ID number corresponding to the
character set name text.

NLS_CHARSET_NAME
SEE ALSO NLS_CHARSET_ID
FORMAT

NLS_CHARSET_NAME (number)

DESCRIPTION NLS_CHARSET_NAME returns the name of the character set corresponding to
ID number number.

NLS_INITCAP
SEE ALSO CHARACTER FUNCTIONS, INITCAP, Chapter 7
FORMAT

NLS_INITCAP(number[, nls_parameters])

DESCRIPTION NLS_INITCAP is like the INITCAP function except with the addition of a parameter
string. The nls_parameters string, enclosed in single quotation marks, gives a sort sequence for capitalizing
special linguistic sequences. You would usually use INITCAP with the default sort sequence for the
session, but this function lets you specify the exact sort sequence to use.

1210 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1210

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOAUDIT 1211

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1211

NLS_LOWER
SEE ALSO CHARACTER FUNCTIONS, LOWER, Chapter 7
FORMAT

NLS_LOWER(number[, nls_parameters])

DESCRIPTION NLS_LOWER is like the LOWER function except with the addition of a parameter
string. The nls_parameters string, enclosed in single quotation marks, gives a sort sequence for lowercasing
special linguistic sequences. You would usually use LOWER with the default sort sequence for the
session, but this function lets you specify the exact sort sequence to use.

NLS_UPPER
SEE ALSO CHARACTER FUNCTIONS, UPPER, Chapter 7
FORMAT

NLS_UPPER(number[, nls_parameters])

DESCRIPTION NLS_UPPER is like the UPPER function except with the addition of a parameter
string. The nls_parameters string, enclosed in single quotation marks, gives a sort sequence for capitalizing
special linguistic sequences. You would usually use UPPER with the default sort sequence for the
session, but this function lets you specify the exact sort sequence to use.

NLSSORT
SEE ALSO CREATE DATABASE
FORMAT

NLSSORT(character[, nls_parameters])

DESCRIPTION NLSSORT (National Language Support SORT) gives the collating sequence value
(an integer) of the given character based on the National Language Support option chosen for the site.
The nls_parameters string, enclosed in single quotation marks, gives a sort sequence for special linguistic
sequences if you do not want to use the session or database default.

NOAUDIT
SEE ALSO AUDIT, PRIVILEGE
FORMAT
noaudit::=

NOAUDIT

sql_statement_clause

,

schema_object_clause

,
WHENEVER

NOT
SUCCESSFUL

;

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

sql_statement_clause::=

auditing_by_clause::=

schema_object_clause::=

auditing_on_clause::=

DESCRIPTION NOAUDIT stops auditing of SQL statements being audited as a result of the AUDIT
command. It stops auditing either a statement (see AUDIT) or a statement authorized by a system
privilege (see PRIVILEGE). If there is a BY clause with a list of users, the command stops the auditing of
statements issued by these users. If there is no BY clause, Oracle stops auditing the statements for all
users. The WHENEVER SUCCESSFUL option stops auditing only for those statements that successfully
complete; WHENEVER NOT SUCCESSFUL stops only for those statements that result in an error.

NOAUDIT also stops the audit for an option of the use of a table, view, or synonym. To stop the
audit of any table, view, or synonym, you must either own them or have DBA authority. option refers
to the options described shortly. user is the username of the object owner. object is a table, view, or
synonym. option specifies what commands the audit should be stopped for. ON object names the
object being audited, and includes a table, view, or synonym of a table, view, or sequence. ALL stops
the audits of all commands on the object.

See Chapter 42 for details on the auditing views in the data dictionary.

1212 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1212

BY

proxy

,

user

,

object_option

,

ALL
auditing_on_clause

ON

schema .
object

DIRECTORY directory_name

DEFAULT

statement_option

ALL

,

system_privilege

ALL PRIVILEGES

,
auditing_by_clause

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXAMPLES The following stops auditing of all attempts at UPDATE or DELETE on the BOOKSHELF
table:

noaudit update, delete on BOOKSHELF;

This stops auditing of all unsuccessful access to BOOKSHELF:

noaudit all on BOOKSHELF whenever not successful;

NODE
Node can be either of two definitions:

■ In a tree-structured table, a node is one row.

■ In a network, a node is the location in the network where a computer is attached.

NOLOGGING
The NOLOGGING clause for object creation (tables, LOBs, indexes, partitions, etc.) specifies that the
creation of the object will not be logged in the online redo log files, and thus will not be recoverable
following a media failure. The object creation is not logged, and neither are certain types of transactions
against the object. See Chapters 21 and 46.

NON-EQUI-JOIN
A non-equi-join is a join condition other than “equals” (=). See EQUI-JOIN.

NOT
SEE ALSO LOGICAL OPERATORS, Chapter 5
DESCRIPTION NOT comes before and reverses the effect of any of these logical operators:
BETWEEN, IN, LIKE, and EXISTS. NOT can also come before NULL, as in IS NOT NULL.

NOT EXISTS
SEE ALSO ALL, ANY, EXISTS, IN, Chapter 13
FORMAT

select ...
where NOT EXISTS (select...);

DESCRIPTION NOT EXISTS returns false in a WHERE clause if the subquery that follows it returns
one or more rows. The SELECT clause in the subquery can be a column, a literal, or an asterisk—it doesn’t
matter. The only part that matters is whether the WHERE clause in the subquery will return a row.
EXAMPLE NOT EXISTS is frequently used to determine which records in one table do not have
matching records in another table. See Chapter 13 for examples of the use of NOT EXISTS.

NTILE
SEE ALSO WIDTH_BUCKET
FORMAT

NTILE (expr) OVER ([query_partition_clause] order_by_clause)

NTILE 1213

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1213

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION NTILE is an analytic function. It divides an ordered dataset into a number of buckets
indicated by an expression and assigns the appropriate bucket number to each row. The buckets are
numbered and the expression must resolve to a positive constant for each partition.

NULL (Form 1—PL/SQL)
SEE ALSO BLOCK STRUCTURE
FORMAT

NULL;

DESCRIPTION The NULL statement has nothing to do with NULL values. Its main purpose is
to make a section of code more readable by saying, in effect, “do nothing.” It also provides a means
of having a null block (since PL/SQL requires at least one executable statement between BEGIN and
END). It is usually used as the statement following one (usually the last) of a series of condition tests.
EXAMPLE

IF Age > 65 THEN
...

ELSEIF AGE BETWEEN 21 and 65 THEN
...

ELSE
NULL;

ENDIF;

NULL (Form 2—SQL Column Value)
SEE ALSO AGGREGATE FUNCTIONS, CREATE TABLE, INDICATOR VARIABLE, NVL, Chapter 5
DESCRIPTION A NULL value is one that is unknown, irrelevant, or not meaningful. Any Oracle
datatype can be NULL. That is, any Oracle column in a given row can be without a value (unless the table
was created with NOT NULL for that column). NULL in a NUMBER datatype is not the same as zero.

Few procedural languages directly support the idea of a variable with a NULL or unknown value,
although Oracle and SQL do so easily. In order to extend languages for which Oracle has developed
precompilers to support the NULL concept, an INDICATOR VARIABLE is associated with the host
variable, almost like a flag, to indicate whether it is NULL. The host variable and its indicator variable
may be referenced and set separately in the host language code, but are always concatenated in SQL
or PL/SQL.

You use the NVL function to detect the absence of a value for a column, and convert the NULL
value into a real value of the datatype of the column. For instance, NVL(Name,'NOT KNOWN')
converts a NULL value in the column Name into the words NOT KNOWN. For a non-NULL value
(that is, where a name is present), the NVL function simply returns the name. NVL works similarly with
NUMBERs and DATEs.

Except for COUNT(*) and COMPUTE NUMBER, aggregate functions ignore NULL values. Other
functions return a NULL value when a NULL is present in the value or values they are evaluating:

NULL + 1066 is NULL.
LEAST(NULL,'A','Z') is NULL.

Since NULL represents an unknown value, two columns that are each NULL are not equal to each
other. Therefore, the equal sign and other logical operators (except for IS NULL and IS NOT NULL) do
not work with NULL. For example,

1214 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1214

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

where Name = NULL

is not a valid WHERE clause. NULL requires the word IS:

where Name IS NULL

During ORDER BY sorts, NULL values always come first when the order is ascending, and last
when it is descending.

When NULL values are stored in the database, they are represented with a single byte if they fall
between two columns that have real values, and no bytes if they fall at the end of the row (last in the
column definition in the CREATE TABLE). If some of the columns in a table are likely to often contain
NULL values, those columns can be usefully grouped near the end of the CREATE TABLE column list;
this will save a minor amount of disk space.

NULL values do not appear in indexes, except in the single case where all the values in a cluster
key are NULL.

NULLIF
SEE ALSO COALESCE, DECODE, NULL, Chapter 16
FORMAT

NULLIF (expr1 , expr2)

DESCRIPTION NULLIF compares expr1 and expr2. If they are equal, the function returns NULL.
If they are not equal, the function returns expr1. You cannot specify the literal NULL for expr1.

The NULLIF function is logically equivalent to the following CASE expression:

CASE WHEN expr1 = expr2 THEN NULL
ELSE expr1 END

NUMBER DATATYPE
A NUMBER datatype is a standard Oracle datatype that may contain a number, with or without a decimal
point and a sign. Valid values are 0, and positive and negative numbers. NUMBER datatypes are defined as
having precision and scale. Precision can range from 1 to 38; scale can range from –84 to 127.

NUMBER FORMATS
SEE ALSO COLUMN, Chapter 9
DESCRIPTION These options work with both the SET NUMFORMAT and COLUMN FORMAT
commands:

9999990 The count of nines and zeros determines the maximum digits that can be displayed.

999,999,999.99 Commas and decimals will be placed in the pattern shown.

999990 Displays trailing zeroes.

099999 Displays leading zeroes.

$99999 A dollar sign is placed in front of every number.

B99999 Displays a blank for the integer portion of a fixed-point number when the integer is zero.

99999MI If the number is negative, a minus sign follows the number. The default is for the negative
sign to be on left.

NUMBER FORMATS 1215

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1215

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1216 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1216

S9999 Returns leading + for positive values, – for negative values.

9999S Returns trailing + for positive values, – for negative values.

99999PR Negative numbers are displayed within < and >.

99D99 Displays the decimal in the position indicated.

9G999 Displays the group separator in the position shown.

C9999 Displays the ISO currency symbol in this position.

L999 Displays the local currency symbol in the position specified.

, Displays a comma.

. Displays a period.

9.999EEEE The display will be in scientific notation (4 E’s are required).

999V99 Multiplies number by 10n, where n is the number of digits to the right of V. 999V99 turns
1234 into 123400.

9999RN Displays Roman numeral values, for integer values between 1 and 3999.

TM Returns the smallest number of characters possible (text minimum).

U999 Returns the Euro or other dual currency symbol in the specified position.

X Returns the hexadecimal value of the specified number of digits.

NUMBER FUNCTIONS
The following is an ordered list of all current single-value number functions in the Oracle version of
SQL. Each of these is listed elsewhere in this reference under its own name, with its proper format
and use. Each can be used as a regular SQL function as well as a PL/SQL function. See AGGREGATE
FUNCTIONS and LIST FUNCTIONS.

Function Definition

value1 + value2 Addition

value1 – value2 Subtraction

value1 * value2 Multiplication

value1 / value2 Division

ABS(value) ABSolute value

ACOS(value) Arc COSine of value, in radians

ASIN(value) Arc SINe of value, in radians

ATAN(value) Arc TANgent of value, in radians

ATAN2(value1, value2) Arc TANgent of value1 and value2, in radians

BITAND (value1, value2) BITwise AND of value1 and value2, both of which must resolve to
nonnegative integers, and returns an integer

CEIL(value) Numeric CEILing: the smallest integer larger than or equal to value

COS(value) COSine of value

COSH(value) Hyperbolic COSine of value

EXP(value) e raised to value EXPonent

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NUMWIDTH (SQL*Plus) 1217

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1217

Function Definition

FLOOR(value) Largest integer smaller than or equal to value

LN(value) Natural Logarithm of value

LOG(value) Base 10 LOGarithm of value

MOD(value, divisor) MODulus

NANVL(value1,value2) For BINARY_FLOAT and BINARY_DOUBLE numbers, returns value2
if value1 is not a number

POWER(value, exponent) value raised to an exponent POWER

REMAINDER(value1,value2) Remainder of value1 divided by value2

ROUND(value, precision) ROUNDing of value to precision

SIGN(value) 1 if value is positive, –1 if negative, 0 if zero

SIN(value) SINe of value

SINH(value) Hyperbolic SINe of value

SQRT(value) SQuare RooT of value

TAN(value) TANgent of value

TANH(value) Hyperbolic TANgent of value

TRUNC(value, precision) value TRUNCated to precision

WIDTH_BUCKET(expr,min,max,num) Constructs equal-width histograms

NUMTODSINTERVAL
SEE ALSO DATATYPES, Chapter 11
FORMAT

NUMTODSINTERVAL (n , 'char_expr')

DESCRIPTION NUMTODSINTERVAL converts n to an INTERVAL DAY TO SECOND literal. n can
be a number or an expression resolving to a number. char_expr can be of CHAR, VARCHAR2, NCHAR,
or NVARCHAR2 datatype. The value for char_expr specifies the unit of n and must resolve to one of
the following string values: 'DAY', 'HOUR', 'MINUTE', or 'SECOND'.

NUMTOYMINTERVAL
SEE ALSO DATATYPES, Chapter 11
FORMAT

NUMTOYMINTERVAL (n , 'char_expr')

DESCRIPTION NUMTOYMINTERVAL converts number n to an INTERVAL YEAR TO MONTH
literal. n can be a number or an expression resolving to a number. char_expr can be of CHAR, VARCHAR2,
NCHAR, or NVARCHAR2 datatype. The value for char_expr specifies the unit of n, and must resolve
to either 'YEAR' or 'MONTH'.

NUMWIDTH (SQL*Plus)
See SET.

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NVARCHAR2
NVARCHAR2 is the multibyte equivalent of the VARCHAR2 datatype. Its maximum length is 4000 bytes.
See DATATYPES.

NVL
SEE ALSO AGGREGATE FUNCTIONS, NULL, OTHER FUNCTIONS, Chapter 9
FORMAT

NVL(value, substitute)

DESCRIPTION If value is NULL, this function returns substitute. If value is not NULL, this function
returns value. value can be any Oracle datatype. substitute can be a literal, another column, or an
expression, but must be the same datatype as value.

NVL2
SEE ALSO AGGREGATE FUNCTIONS, NULL, OTHER FUNCTIONS, Chapter 9
FORMAT

NVL2 (expr1 , expr2 , expr3)

DESCRIPTION NVL2 is an extended form of NVL. In NVL2, expr1 can never be returned; either
expr2 or expr3 will be returned. If expr1 is not NULL, NVL2 returns expr2. If expr1 is NULL, NVL2
returns expr3. The argument expr1 can have any datatype. The arguments expr2 and expr3 can have
any datatypes except LONG.

OBJECT NAMES
These database objects may be given names: tables, views, synonyms, aliases, columns, indexes, users,
sequences, tablespaces, and so on. The following rules govern naming objects:

■ The name of an object can be from 1 to 30 characters long, except for database names, which
are up to eight characters, and host filenames, whose length is operating-system dependent.

■ A name may not contain a quotation mark.

■ A name must:
Begin with a letter
Contain only the characters A–Z, 0–9, $, #, and _
Not be an Oracle reserved word (see RESERVED WORDS)
Not duplicate the name of another database object owned by the same user

Object names are not case sensitive. Object names should follow a sensible naming convention.

OBJECT REFERENCE FUNCTIONS
Object reference functions manipulate REFs, which are references to objects of specified object types.
The object reference functions are described under their individual entries in this reference. The functions
are DEREF, MAKE_REF, REF, REFTOHEX, and VALUE.

OBJECT TABLE
An object table is a table in which each of its rows is a row object. See Chapter 36 and CREATE TABLE.

1218 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1218

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

OBJECT VIEW
An object view superimposes abstract datatypes on existing relational tables. Object views allow you to
access the relational table’s data either via normal SQL commands or via its abstract datatype structures.
Object views provide a technological bridge between relational and object-relational databases. See
Chapters 33 and 36 for examples of object views.

OBJECT-RELATIONAL DATABASE
MANAGEMENT SYSTEM
An object-relational database management system (ORDBMS) supports both relational database
features (such as primary keys and foreign keys) and object-oriented features (such as inheritance and
encapsulation). See Part I and Part V of this book for a description of Oracle’s implementation of an
ORDBMS.

OFFLINE BACKUP
An offline backup is a physical backup of the database files while the database is shut down.

OID
An OID is an object identifier, assigned by Oracle to each object in a database. For example, each row
object within an object table has an OID value assigned to it; the OID is used to resolve references to
the row objects. Oracle does not reuse OID values after an object is dropped. See Chapter 36.

ONLINE BACKUP
Online backup is the ability of Oracle to archive data while the database is still running. The DBA does
not need to shut down the database to archive data. Even data currently being accessed can be archived.

ONLINE REDO LOG
Online redo logs are redo log files that are not yet archived. They may be available to the instance for
recording activity, or have previously been written but are awaiting archiving.

OPEN
SEE ALSO CLOSE, DECLARE CURSOR, FETCH, LOOP, Chapter 29
FORMAT

OPEN cursor [(parameter[,parameter]...]

DESCRIPTION OPEN works in conjunction with DECLARE CURSOR and FETCH. DECLARE
CURSOR sets up a SELECT statement to be executed, and establishes a list of parameters (PL/SQL
variables) that are to be used in its WHERE clause, but it does not execute the query.

OPEN cursor, in effect, executes the query in the named cursor and keeps its results in a staging
area, where they can be called in, a row at a time, with FETCH, and their column values put into local
variables with the INTO clause of the FETCH. If the cursor SELECT statement used parameters, then
their actual values are passed to the SELECT statement in the parameter list of the OPEN statement.
They must match in number and position and have compatible datatypes.

There is also an alternative method of associating the values in the OPEN statement with those in
the SELECT list:

DECLARE
cursor mycur(Title, Publisher) is select ...

OPEN 1219

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1219

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1220 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1220

BEGIN
open my_cur(new_book => Title, 'PANDORAS' => Publisher);

Here, new_book, a PL/SQL variable, loaded perhaps from a data entry screen, is pointed to Title,
and therefore loads it with whatever is currently in the variable new_book. Publisher is loaded with
the value 'PANDORAS', and these then become the parameters of the cursor my_cur. (See DECLARE
CURSOR for more details on parameters in cursors.)

You also may combine pointed associations with positional ones, but the positional ones must
appear first in the OPEN statement’s list.

You cannot reopen an open cursor, though you can CLOSE it and reOPEN it, and you cannot use
a cursor for which you have a current OPEN statement in a CURSOR FOR LOOP.

OPEN CURSOR (Embedded SQL)
SEE ALSO CLOSE, DECLARE CURSOR, FETCH, PREPARE, Programmer’s Guide to the Oracle
Precompilers
FORMAT

EXEC SQL [FOR { integer | :array_size }]
OPEN cursor
[USING
{DESCRIPTOR SQLDBA_descriptor
| :variable[[INDICATOR]:indicator_variable
[,:variable[INDICATOR]:indicator_variable]]... }]

DESCRIPTION cursor is the name of a cursor previously named in a DECLARE CURSOR statement.
The optional USING references either the host variable list of variables that are to be substituted in the
statement in the DECLARE CURSOR, based on position (the number and type of variables must be the
same), or a descriptor name that references the result of a previous DESCRIBE.

OPEN cursor allocates a cursor, defines the active set of rows (the host variables are substituted
when the cursor is opened), and positions the cursor just before the first row of the set. No rows are
retrieved until a FETCH is executed. Host variables do not change once they’ve been substituted.
To change them, you must reopen the cursor (you don’t have to CLOSE it first).

NOTE
See the Programmer’s Guide to the Oracle Precompilers for a full list
of all commands. This reference does not contain all of the possible
precompiler commands.

OPERATOR
An operator is a character or reserved word used in an expression to perform an operation, such as addition
or comparison, on the elements of the expression. Some examples of operators are * (multiplication), >
(greater than comparison), and ANY (compares a value to each value returned by a subquery).

OPS$ LOGINS
OPS$ LOGINS are a type of Oracle username in which OPS$ is prefixed to the user’s operating system
account ID, to simplify logging into Oracle from that ID.

OPTIMIZER
An optimizer is the part of an Oracle kernel that chooses the best way to use the tables and indexes to
complete the request made by a SQL statement. See Chapter 43.

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORDER BY 1221

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1221

OR
SEE ALSO AND, CONTAINS, Chapters 5 and 25
DESCRIPTION OR combines logical expressions so that the result is TRUE if either logical expression
is true.
EXAMPLE The following will produce data for both KEENE and SAN FRANCISCO:

select * from COMFORT
where City = 'KEENE' OR City = 'SAN FRANCISCO'

Within CONTEXT queries, an OR operator can be used for searches involving multiple search terms.
If either of the search terms is found, and its search score exceeds the specified threshold value, the text
will be returned by the search. See Chapter 25.

ORACLE ENTERPRISE MANAGER
Oracle Enterprise Manager (OEM) is a product from Oracle Corporation. OEM provides a graphical
interface for common DBA tasks, including features for performance tuning and data management
functions. OEM provides a web-based interface to all of the grid components, including the ASM
diskgroups.

ORACLE REAL APPLICATION CLUSTERS
In an Oracle Real Application Clusters (RAC) environment, multiple instances (usually on a cluster of
servers) access a single set of datafiles. RAC provides server failover capability in a high-availability
environment, since users can be directed to multiple servers to access the same data.

ORACLE APPLICATION SERVER 10g
Oracle Application Server 10g allows developers to access Oracle databases from Web-based applications.
The developers call procedures from within the database. The procedures, in turn, retrieve or manipulate
data and return results to the developers. See Chapter 45.

ORA_HASH
FORMAT

ORA_HASH (expr [, max_bucket [,seed_value]])

DESCRIPTION ORA_HASH computes a hash value for a given expression. This function is useful
for operations such as analyzing a subset of data and generating a random sample. expr is the data for
which Oracle will compute a hash value (usually a column name). max_bucket determines the maximum
bucket value (0 to 4294967295). The seed_value argument (0 to 4294967295) enables Oracle to produce
different results with the same expr.

ORDBMS
See OBJECT-RELATIONAL DATABASE MANAGEMENT SYSTEM.

ORDER BY
SEE ALSO COLLATION, FROM, GROUP BY, HAVING, SELECT, WHERE, Chapter 5
FORMAT

ORDER BY { expression [,expression]... |
position [,position]... }
alias [,alias]... }

[ASC | DESC]

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION The ORDER BY clause causes Oracle to sort the results of a query before they are
displayed. This can be done either by expression, which can be a simple column name or a complex set
of functions, an alias (see Note below), or a column position in the SELECT clause (see Note below).
Rows are ordered first by the first expression or position, then by the second, and so on, based on the
collating sequence of the host. If ORDER BY is not specified, the order in which rows are selected from
a table is indeterminate, and may change from one query to the next.

NOTE
Oracle still supports the use of column positions in ORDER BY
clauses, but this feature is no longer part of the SQL standard and
is not guaranteed to be supported in future releases. Use column
aliases instead.

ASC or DESC specifies ascending or descending order, and may follow each expression, position,
or alias in the ORDER BY clause. NULL values precede ascending and follow descending rows in Oracle.

ORDER BY follows any other clauses except FOR UPDATE OF.
If ORDER BY and DISTINCT are both specified, the ORDER BY clause may refer only to columns

or expressions that are in the SELECT clause.
When the UNION, INTERSECT, or MINUS operator is used, the names of the columns in the first

SELECT may differ from the names in subsequent SELECTs. ORDER BY must use the column name from
the first SELECT.

Only CHAR, VARCHAR2, NUMBER, and DATE datatypes—and the special datatype ROWID—can
appear in an ORDER BY clause.
EXAMPLE

select Title, Publisher from BOOKSHELF
order by Title;

OTHER FUNCTIONS
This is an alphabetical list of all current functions in the Oracle version of SQL that do not readily fall
into any other function category. Each of these is listed elsewhere in this reference under its own name,
with its proper format and use.

BFILENAME, COALESCE, CV, DECODE, DEPTH, DUMP, EMPTY_BLOB, EMPTY_CLOB,
EXISTSNODE, EXTRACT, EXTRACTVALUE, GREATEST, LEAST, LNNVL, NLS_CHARSET_DECL_LEN,
NLS_CHARSET_ID, NLS_CHARSET_NAME, NULLIF, NVL, NVL2, ORA_HASH, PATH, PRESENTNNV,
PRESENTV, PREVIOUS, SYS_CONNECT_BY_PATH, SYS_CONTEXT, SYS_DBURIGEN, SYS_EXTRACT_
UTC, SYS_GUID, SYS_TYPEID, SYS_XMLAGG, SYS_XMLGEN, UID, UPDATEXML, USER, USERENV,
VSIZE, XMLAGG, XMLCOLATTVAL, XMLCONCAT, XMLFOREST, XMLSEQUENCE, XMLTRANSFORM

OUTER JOIN
See JOIN for a detailed explanation. As of Oracle9i, you can use the ANSI standard outer join syntax
options (LEFT OUTER JOIN, RIGHT OUTER JOIN, and FULL OUTER JOIN). See Chapter 13 for details
and examples.

1222 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1222

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

PACKAGE
A package is a PL/SQL object that groups PL/SQL types, variables, SQL cursors, exceptions, procedures,
and functions. Each package has a specification and a body. The specification shows the objects you
can access when you use the package. The body fully defines all the objects and can contain additional
objects used only for the internal workings. You can change the body (for example, by adding procedures
to the package) without invalidating any object that uses the package.

See CREATE PACKAGE, CREATE PACKAGE BODY, CURSOR, EXCEPTION, FUNCTION, TABLE
(PL/SQL), RECORD (PL/SQL), PROCEDURE, and Chapter 31.

PAGESIZE (SQL*Plus)
See SET.

PARAMETER
A parameter is a value, a column name, or an expression, usually following a function or module
name, specifying additional functions or controls that should be observed by the function or module.
See PARAMETERS for an example.

PARAMETERS
SEE ALSO &, &&, ACCEPT, DEFINE
DESCRIPTION Parameters allow the execution of a start file with values passed on the SQL*Plus
command line. These are simply spaced apart following the name of the start file. Within the file,
parameters are referenced by the order in which they appeared on the command line. &1 is the first,
&2 the second, and so on. Aside from this rule, the rules for use are the same as for variables loaded
using DEFINE or ACCEPT, and they may be used in SQL statements in the same way.

There is one limitation, however. There is no way to pass a multiple-word argument to a single
variable. Each variable can take only one word, date, or number. Attempting to solve this by putting
the parameters in quotes on the command line results in the words being concatenated.
EXAMPLE Suppose you have a start file named fred.sql that contains this SQL:

select Title, Publisher
from BOOKSHELF
where Title > &1;

Starting it with this command line:

start fred.sql M

produces a report of all titles that start with a character > 'M'.

PARENT
In tree-structured data, a parent is a node that has another node as a descendent, or child.

PARENT QUERY
The parent query is the outermost query (the one that displays a result) in a main query containing
a subquery.

PARENT QUERY 1223

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1223

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

PARENTHESES
See LOGICAL OPERATORS and RESERVED WORDS.

PARSE
Parsing is the mapping of a SQL statement to a cursor. At parse time, several validation checks are made,
such as whether all referenced objects exist, whether grants are proper, and whether statement syntax is
correct. Also, decisions regarding execution and optimization are made, such as which indexes will be used.

PASSWORD (SQL*Plus)
SEE ALSO ALTER USER, Chapter 18
FORMAT

PASSW[ORD] [username]

DESCRIPTION You can use the PASSWORD command in SQL*Plus to change the password on
your account or another account (if you have ALTER ANY USER privilege). If you use the PASSWORD
command, your new password will not be displayed on the screen as you type. Users with DBA authority
can change any user’s password via the PASSWORD command; other users can change only their own
password.

When you enter the PASSWORD command, you will be prompted for the old and new passwords.
EXAMPLE

password
Changing password for dora
Old password:
New password:
Retype new password:

When the password has been successfully changed, you will receive the feedback:

Password changed

PARALLEL QUERY OPTION
The Parallel Query Option (PQO) splits a single database task into multiple coordinated tasks, enabling
the task to use multiple processors. For example, a full table scan or a large sort may be parallelized,
enabling multiple processors to take part in the completion of the operation. If there are adequate
resources available on the server, then the parallelized operation may complete faster than if it were
to run as a single task.

The number of parallel query server processes used to execute an operation is called the degree
of parallelism, and is set via the DEGREE parameter of hints. See Chapter 43.

PARTITION
To partition a table is to systematically divide its rows among multiple tables, each with the same structure.
You can direct the database to automatically partition a table and its indexes. See Chapter 17.

PARTITIONED TABLE
A partitioned table is a table whose rows have been partitioned across multiple smaller tables.

1224 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1224

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

PERCENT_RANK 1225

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1225

PATH
SEE ALSO DEPTH
FORMAT

PATH (correlation_integer)

DESCRIPTION PATH is an ancillary function used only with the UNDER_PATH and EQUALS_PATH
conditions. It returns the relative path that leads to the resource specified in the parent condition. The
correlation_integer value can be any NUMBER integer. Values less than 1 are treated as 1.

PAUSE (Form 1—SQL*Plus)
See SET.

PAUSE (Form 2—SQL*Plus)
SEE ALSO ACCEPT, PROMPT, Chapter 6
FORMAT

PAU[SE] [text];

DESCRIPTION PAUSE is similar to PROMPT, except PAUSE first displays an empty line, then a
line containing text, then waits for the user to press RETURN. If text is not entered, PAUSE displays two
empty lines, then waits for user to press RETURN.

NOTE
PAUSE waits for a RETURN from the terminal even if the source of
command input has been redirected to be from a file, which means a
start file with SET TERMOUT OFF could hang, waiting for a RETURN,
with no message as to why it was waiting (or that it was waiting). Use
PAUSE with caution.

EXAMPLE

prompt Report Complete.
pause Press RETURN to continue.

PCTFREE
PCTFREE is a portion of the data block that is not filled by rows as they are inserted into a table, but is
reserved for later updates made to the rows in that block.

PCTUSED
PCTUSED is the percentage of space in a data block that Oracle attempts to keep filled. If the percent
used falls below PCTUSED, then a block is added to the list of free blocks in the segment. PCTUSED
may be set on a table-by-table basis.

PERCENT_RANK
SEE ALSO AGGREGATE FUNCTIONS, Chapter 12

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT For aggregates:

PERCENT_RANK (expr [, expr]...) WITHIN GROUP
(ORDER BY
expr [DESC | ASC] [NULLS { FIRST | LAST }]
[, expr [DESC | ASC] [NULLS { FIRST | LAST }]]...)

For analytics:

PERCENT_RANK () OVER ([query_partition_clause] order_by_clause)

DESCRIPTION As an aggregate function, PERCENT_RANK calculates, for a hypothetical row R
identified by the arguments of the function and a corresponding sort specification, the rank of row R
minus 1 divided by the number of rows in the aggregate group. This calculation is made as if the hypothetical
row R were inserted into the group of rows over which Oracle is to aggregate. The arguments of the
function identify a single hypothetical row within each aggregate group. Therefore, they must all evaluate
to constant expressions within each aggregate group. The constant argument expressions and the
expressions in the ORDER BY clause of the aggregate match by position. Therefore, the number of
arguments must be the same and their types must be compatible.

The range of values returned by PERCENT_RANK is 0 to 1, inclusive. The first row in any set has
a PERCENT_RANK of 0.

As an analytic function, for a row R, PERCENT_RANK calculates the rank of R minus 1, divided
by 1 less than the number of rows being evaluated (the entire query result set or a partition).

See Chapter 12 for an example of the use of PERCENT_RANK.

PERCENTILE_CONT
SEE ALSO AGGREGATE FUNCTIONS, PERCENTILE_DISC, Chapter 12
FORMAT

PERCENTILE_CONT (expr) WITHIN GROUP (ORDER BY expr [DESC | ASC])
[OVER (query_partition_clause)]

DESCRIPTION PERCENTILE_CONT is an inverse distribution function that assumes a continuous
distribution model. It takes a percentile value and a sort specification, and returns an interpolated value
that would fall into that percentile value with respect to the sort specification. Nulls are ignored in the
calculation.

The first expr must evaluate to a numeric value between 0 and 1, because it is a percentile value. This
expr must be constant within each aggregation group. The ORDER BY clause takes a single expression that
must be a numeric or datetime value, as these are the types over which Oracle can perform interpolation.

PERCENTILE_DISC
SEE ALSO AGGREGATE FUNCTIONS, PERCENTILE_CONT, Chapter 12
FORMAT

PERCENTILE_DISC (expr) WITHIN GROUP (ORDER BY expr [DESC | ASC])
[OVER (query_partition_clause)]

DESCRIPTION PERCENTILE_DISC is an inverse distribution function that assumes a discrete
distribution model. It takes a percentile value and a sort specification and returns an element from the
set. Nulls are ignored in the calculation.

1226 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1226

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The first expr must evaluate to a numeric value between 0 and 1, because it is a percentile value.
This expression must be constant within each aggregate group. The ORDER BY clause takes a single
expression that can be of any type that can be sorted.

For a given percentile value P, PERCENTILE_DISC function sorts the values of the expression in the
ORDER BY clause, and returns the one with the smallest CUME_DIST value (with respect to the same
sort specification) that is greater than or equal to P.

PMON PROCESS
The Process Monitor (PMON) is a background process used for recovery when a process accessing a
database fails. See BACKGROUND PROCESS.

POWER
SEE ALSO SQRT, Chapter 9
FORMAT

POWER(value,exponent)

DESCRIPTION POWER is value raised to an exponent.

POWERMULTISET
SEE ALSO Chapter 34
FORMAT

POWERMULTISET (expr)

DESCRIPTION POWERMULTISET takes as input a nested table and returns a nested table of
nested tables containing all nonempty subsets (called submultisets) of the input nested table. expr can
be any expression that evaluates to a nested table; if that nested table is empty, an error is returned.

POWERMULTISET_BY_CARDINALITY
SEE ALSO POWERMULTISET
FORMAT

POWERMULTISET (expr, cardinality)

DESCRIPTION POWERMULTISET_BY_CARDINALITY takes as input a nested table and returns a
nested table of nested tables containing all nonempty subsets (called submultisets) of the input nested
table of the specified cardinality. expr can be any expression that evaluates to a nested table, and
cardinality can be any positive integer; if that nested table is empty, an error is returned.

PRAGMA
A pragma statement is a directive to the compiler, rather than a piece of executable code. Even though a
pragma statement looks like executable code and appears in a program (such as a PL/SQL block), it is
not actually executable and doesn’t appear as a part of the execution code of that block. Rather, it gives
instructions to the compiler. See EXCEPTION_INIT.

PRECEDENCE
SEE ALSO LOGICAL OPERATORS, QUERY OPERATORS, Chapter 13

PRECEDENCE 1227

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1227

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION The following operators are listed in descending order of precedence. Operators
with equal precedence are on the same line. Operators of equal precedence are evaluated in succession
from left to right. All ANDs are evaluated before any OR. Each of these is listed and described separately
under its own symbol or name in this Alphabetical Reference.

Operator Function

- SQL*Plus command continuation. Continues a command on the following line.

& Prefix for parameters in a SQL*Plus start file. Words are substituted for &1, &2, and so on.
See START.

& && Prefix for a substitution in a SQL command in SQL*Plus. SQL*Plus will prompt for a value if an
undefined & or && variable is found. && also defines the variable and saves the value; & does
not. See & and &&, DEFINE, and ACCEPT.

: Prefix for a host variable in PL/SQL.

. Variable separator, used in SQL*Plus to separate the variable name from a suffix, so that the
suffix is not considered a part of the variable name.

() Surrounds subqueries or lists of columns.

' Surrounds a literal, such as a character string or date constant. To use a ' in a string constant,
use two ' marks (not a double quotation mark).

" Surrounds a table or column alias that contains special characters or a space.

" Surrounds literal text in a date format clause of TO_CHAR.

@ Precedes a database name in a COPY, or a link name in a FROM clause.

() Overrides normal operator precedence.

+ - Prefix sign (positive or negative) for a number or number expression.

* / Multiplication and division.

+ - Addition and subtraction.

|| Char value concatenation.

NOT Reverses result of an expression.

AND Returns TRUE if both conditions are true.

OR Returns TRUE if either condition is true.

UNION Returns all distinct rows from both of two queries.

INTERSECT Returns all matching distinct rows from two queries.

MINUS Returns all distinct rows in the first query that are not in the second.

PRECOMPILER
A precompiler program reads specially structured source code, and writes a modified (precompiled)
source program file that a normal compiler can read.

PREDICATE
The predicate is the WHERE clause and, more explicitly, a selection criteria clause based on one
of the operators (=, !=, IS, IS NOT, >, >=) and containing no AND, OR, or NOT.

1228 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1228

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

PREPARE (Embedded SQL)
SEE ALSO CLOSE, CURSOR, DECLARE, FETCH, OPEN, Programmer’s Guide to the Oracle
Precompilers
FORMAT

EXEC SQL [AT { db_name | :host_variable }] PREPARE statement_id
FROM { :host_string | 'text' | select_command }

DESCRIPTION PREPARE parses SQL in the host variable :host_string or the literal text. It assigns
a statement_id as a reference to the SQL. If the statement_id has been used previously, this reference
replaces it. The SQL is a SELECT statement, and may include a FOR UPDATE OF clause. :host_string
is not the actual name of the host variable used, but a placeholder. OPEN CURSOR assigns input host
variables in its USING clause, and FETCH assigns output host variables in its INTO clause, based on
position. A statement needs to be PREPAREd only once. It can then be executed multiple times.

NOTE
See the Programmer’s Guide to the Oracle Precompilers for a full list
of all commands. This reference does not contain all of the possible
precompiler commands.

EXAMPLE

query_string : string(1..100)
get(query_string);
EXEC SQL prepare FRED from :query_string;
EXEC SQL execute FRED;

PRESENTNNV
SEE ALSO PRESENTV
FORMAT

PRESENTNNV (cell_reference, expr1, expr2)

DESCRIPTION PRESENTNNV is relevant only for interrow calculations. It can be used only in the
MODEL clause of the SELECT statement and then only on the right side of a model rule. It returns expr1
when, prior to the execution of the MODEL clause, cell_reference exists and is not null. Otherwise it
returns expr2.

PRESENTV
SEE ALSO PRESENTNNV
FORMAT

PRESENTV (cell_reference, expr1, expr2)

DESCRIPTION PRESENTV is relevant only for interrow calculations. It can be used only in the
MODEL clause of the SELECT statement and then only on the right side of a model rule. It returns expr1
when, prior to the execution of the MODEL clause, cell_reference exists (but may be null). Otherwise it
returns expr2.

PRESENTV 1229

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1229

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

PREVIOUS
SEE ALSO ITERATION_NUMBER
FORMAT

PREVIOUS (cell_reference)

DESCRIPTION PREVIOUS is relevant only for interrow calculations. It can be used only in the
MODEL clause of the SELECT statement and then only in the ITERATE … [UNTIL] clause of the MODEL
RULES clause. It returns the value of cell_reference at the beginning of each iteration.

PRIMARY KEY
The primary key is the column(s) used to uniquely identify each row of a table.

PRINT
SEE ALSO BIND VARIABLE, VARIABLE, Chapter 29
FORMAT

PRI[NT] [variable…]

DESCRIPTION PRINT displays the current value of the specified variable (which is created via
the VARIABLE command). You can print the current values of multiple variables in a single command.

PRIOR
See CONNECT BY.

PRIVILEGE
A privilege is a permission granted to an Oracle user to execute some action. In Oracle, no user can
execute any action without having the privilege to do so.

There are two kinds of privileges: system privileges and object privileges. System privileges extend
permission to execute various data definition and data control commands, such as CREATE TABLE and
ALTER USER, or even to log onto the database. Object privileges extend permission to operate on a
particular named database object.

System privileges in Oracle include CREATE, ALTER, and DROP privileges for the various CREATE,
ALTER, and DROP commands. Privileges with the keyword ANY in them mean that the user can exercise
the privilege on any schema for which the privilege has been granted, not just his or her own schema.
The standard privileges in the list following just give permission to execute the indicated command, and
don’t require further explanation. Some of the privileges aren’t intuitively clear; these are explained here.

System privileges include:

Privilege Permission to

TUNING

ADVISOR Access the advisor framework through PL/SQL packages including
DBMS_ADVISOR and DBMS_SQLTUNE.

ADMINISTER SQL TUNING SET Create, drop, select, load, and delete a SQL tuning set owned by the
grantee through the DBMS_SQLTUNE package.

ADMINISTER ANY SQL TUNING SET Create, drop, select, load, and delete a SQL tuning set owned by any
user through the DBMS_SQLTUNE package.

1230 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1230

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Privilege Permission to

CREATE ANY SQL PROFILE Accept a SQL profile recommended by the tuning advisor.

DROP ANY SQL PROFILE Drop an existing SQL profile.

ALTER ANY SQL PROFILE Alter the attributes of an existing SQL profile.

CLUSTERS

CREATE CLUSTER Create clusters in grantee’s schema.

CREATE ANY CLUSTER Create a cluster in any schema. Behaves similarly to CREATE
ANY TABLE.

ALTER ANY CLUSTER Alter clusters in any schema.

DROP ANY CLUSTER Drop clusters in any schema.

CONTEXTS

CREATE ANY CONTEXT Create any context namespace.

DROP ANY CONTEXT Drop any context namespace.

DATABASE

ALTER DATABASE Alter the database.

ALTER SYSTEM Issue ALTER SYSTEM statements.

AUDIT SYSTEM Issue AUDIT statements.

DATABASE LINKS

CREATE DATABASE LINK Create private database links in grantee’s schema.

CREATE PUBLIC DATABASE LINK Create public database links.

DROP PUBLIC DATABASE LINK Drop public database links.

DEBUGGING

DEBUG CONNECT SESSION Connect the current session to a debugger.

DEBUG ANY PROCEDURE Debug all PL/SQL and Java code in any database object. Display
information on all SQL statements executed by the application.

DIMENSIONS

CREATE DIMENSION Create dimensions in the grantee’s schema.

CREATE ANY DIMENSION Create dimensions in any schema.

ALTER ANY DIMENSION Alter dimensions in any schema.

DROP ANY DIMENSION Drop dimensions in any schema.

DIRECTORIES

CREATE ANY DIRECTORY Create directory database objects.

DROP ANY DIRECTORY Drop directory database objects.

INDEXTYPES

CREATE INDEXTYPE Create an indextype in the grantee’s schema.

CREATE ANY INDEXTYPE Create an indextype in any schema.

PRIVILEGE 1231

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1231

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Privilege Permission to

ALTER ANY INDEXTYPE Modify indextypes in any schema.

DROP ANY INDEXTYPE Drop an indextype in any schema.

EXECUTE ANY INDEXTYPE Reference an indextype in any schema.

INDEXES

CREATE ANY INDEX Create in any schema a domain index or an index on any table in
any schema.

ALTER ANY INDEX Alter indexes in any schema.

DROP ANY INDEX Drop indexes in any schema.

JOB SCHEDULER OBJECTS

CREATE JOB Create jobs, schedulers, or programs in the grantee’s schema (using
DBMS_SCHEDULER).

CREATE ANY JOB Create, alter, or drop jobs, schedules, or programs in any schema.

EXECUTE ANY PROGRAM Use any program in a job in the grantee’s schema.

EXECUTE ANY CLASS Specify any job class in a job in the grantee’s schema.

MANAGE SCHEDULER Create, alter, or drop any job class, window, or window group.

LIBRARIES

CREATE LIBRARY Create external procedure/function libraries in grantee’s schema.

CREATE ANY LIBRARY Create external procedure/function libraries in any schema.

DROP ANY LIBRARY Drop external procedure/function libraries in any schema.

MATERIALIZED VIEWS

CREATE MATERIALIZED VIEW Create a materialized view in the grantee’s schema.

CREATE ANY MATERIALIZED VIEW Create materialized views in any schema.

ALTER ANY MATERIALIZED VIEW Alter materialized views in any schema.

DROP ANY MATERIALIZED VIEW Drop materialized views in any schema.

QUERY REWRITE This privilege has been deprecated.

GLOBAL QUERY REWRITE Enable rewrite using a materialized view when that materialized
view references tables or views in any schema.

ON COMMIT REFRESH Create a refresh-on-commit materialized view on any table in the
database.
Alter a refresh-on-demand materialized view on any table in the
database to refresh-on-commit.

FLASHBACK ANY TABLE Issue a FLASHBACK QUERY on any table, view, or materialized
view in any schema.

OPERATORS

CREATE OPERATOR Create an operator and its bindings in the grantee’s schema.

CREATE ANY OPERATOR Create an operator and its bindings in any schema.

ALTER ANY OPERATOR Modify an operator in any schema.

1232 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1232

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Privilege Permission to

DROP ANY OPERATOR Drop an operator in any schema.

EXECUTE ANY OPERATOR Reference an operator in any schema.

OUTLINES

CREATE ANY OUTLINE Create public outlines that can be used in any schema that uses
outlines.

ALTER ANY OUTLINE Modify outlines.

DROP ANY OUTLINE Drop outlines.

PROCEDURES

CREATE PROCEDURE Create stored procedures, functions, and packages in grantee’s
schema.

CREATE ANY PROCEDURE Create stored procedures, functions, and packages in any schema.

ALTER ANY PROCEDURE Alter stored procedures, functions, or packages in any schema.

DROP ANY PROCEDURE Drop stored procedures, functions, or packages in any schema.

EXECUTE ANY PROCEDURE Execute procedures or functions (stand-alone or packaged).
Reference public package variables in any schema.

PROFILES

CREATE PROFILE Create profiles.

ALTER PROFILE Alter profiles.

DROP PROFILE Drop profiles.

ROLES

CREATE ROLE Create roles.

ALTER ANY ROLE Alter any role in the database.

DROP ANY ROLE Drop roles.

GRANT ANY ROLE Grant any role in the database.

ROLLBACK SEGMENTS

CREATE ROLLBACK SEGMENT Create rollback segments.

ALTER ROLLBACK SEGMENT Alter rollback segments.

DROP ROLLBACK SEGMENT Drop rollback segments.

SEQUENCES

CREATE SEQUENCE Create sequences in grantee’s schema.

CREATE ANY SEQUENCE Create sequences in any schema.

ALTER ANY SEQUENCE Alter any sequence in the database.

DROP ANY SEQUENCE Drop sequences in any schema.

SELECT ANY SEQUENCE Reference sequences in any schema.

SESSIONS

CREATE SESSION Connect to the database.

PRIVILEGE 1233

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1233

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Privilege Permission to

ALTER RESOURCE COST Set costs for session resources.

ALTER SESSION Issue ALTER SESSION statements.

RESTRICTED SESSION Log on after the instance is started using the SQL*Plus STARTUP
RESTRICT statement.

SYNONYMS

CREATE SYNONYM Create synonyms in grantee’s schema.

CREATE ANY SYNONYM Create private synonyms in any schema.

CREATE PUBLIC SYNONYM Create public synonyms.

DROP ANY SYNONYM Drop private synonyms in any schema.

DROP PUBLIC SYNONYM Drop public synonyms.

TABLES

CREATE TABLE Create tables in grantee’s schema.

CREATE ANY TABLE Create tables in any schema. The owner of the schema containing the
table must have space quota on the tablespace to contain the table.

ALTER ANY TABLE Alter any table or view in any schema.

BACKUP ANY TABLE Use the Export utility to incrementally export objects from the schema
of other users.

DELETE ANY TABLE Delete rows from tables, table partitions, or views in any schema.

DROP ANY TABLE Drop or truncate tables or table partitions in any schema.

INSERT ANY TABLE Insert rows into tables and views in any schema.

LOCK ANY TABLE Lock tables and views in any schema.

SELECT ANY TABLE Query tables, views, or materialized views in any schema.

FLASHBACK ANY TABLE Issue a flashback query on any table, view, or materialized view
in any schema.

UPDATE ANY TABLE Update rows in tables and views in any schema.

TABLESPACES

CREATE TABLESPACE Create tablespaces.

ALTER TABLESPACE Alter tablespaces.

DROP TABLESPACE Drop tablespaces.

MANAGE TABLESPACE Take tablespaces offline and online and begin and end tablespace
backups.

UNLIMITED TABLESPACE Use an unlimited amount of any tablespace. This privilege overrides
any specific quotas assigned. If you revoke this privilege from a user,
the user’s schema objects remain but further tablespace allocation is
denied unless authorized by specific tablespace quotas. You cannot
grant this system privilege to roles.

1234 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1234

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Privilege Permission to

TRIGGERS

CREATE TRIGGER Create a database trigger in grantee’s schema.

CREATE ANY TRIGGER Create database triggers in any schema.

ALTER ANY TRIGGER Enable, disable, or compile database triggers in any schema.

DROP ANY TRIGGER Drop database triggers in any schema.

ADMINISTER DATABASE TRIGGER Create a trigger on DATABASE. (You must also have the CREATE
TRIGGER or CREATE ANY TRIGGER privilege.)

TYPES

CREATE TYPE Create object types and object type bodies in grantee’s schema.

CREATE ANY TYPE Create object types and object type bodies in any schema.

ALTER ANY TYPE Alter object types in any schema.

DROP ANY TYPE Drop object types and object type bodies in any schema.

EXECUTE ANY TYPE Use and reference object types and collection types in any schema,
and invoke methods of an object type in any schema if you make the
grant to a specific user. If you grant EXECUTE ANY TYPE to a role,
users holding the enabled role will not be able to invoke methods of
an object type in any schema.

UNDER ANY TYPE Create subtypes under any nonfinal object types.

USERS

CREATE USER Create users. This privilege also allows the creator to:
Assign quotas on any tablespace.
Set default and temporary tablespaces.
Assign a profile as part of a CREATE USER statement.

ALTER USER Alter any user. This privilege authorizes the grantee to:
Change another user’s password or authentication method.
Assign quotas on any tablespace.
Set default and temporary tablespaces.
Assign a profile and default roles.

DROP USER Drop users.

VIEWS

CREATE VIEW Create views in grantee’s schema.

CREATE ANY VIEW Create views in any schema.

DROP ANY VIEW Drop views in any schema.

UNDER ANY VIEW Create subviews under any object views.

MISCELLANEOUS

ANALYZE ANY Analyze any table, cluster, or index in any schema.

AUDIT ANY Audit any object in any schema using AUDIT schema_objects
statements.

COMMENT ANY TABLE Comment on any table, view, or column in any schema.

PRIVILEGE 1235

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1235

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Privilege Permission to

EXEMPT ACCESS POLICY Bypass fine-grained access control. This is a very powerful system
privilege, as it lets the grantee bypass application-driven security
policies. Database administrators should use caution when granting
this privilege.

FORCE ANY TRANSACTION Force the commit or rollback of any in-doubt distributed transaction
in the local database. Induce the failure of a distributed transaction.

FORCE TRANSACTION Force the commit or rollback of grantee’s in-doubt distributed
transactions in the local database.

GRANT ANY OBJECT PRIVILEGE Grant any object privilege.

GRANT ANY PRIVILEGE Grant any system privilege.

RESUMABLE Enable resumable space allocation.

SELECT ANY DICTIONARY Query any data dictionary object in the SYS schema. This privilege
lets you selectively override the default FALSE setting of the
O7_DICTIONARY_ACCESSIBILITY initialization parameter.

SYSDBA Perform STARTUP and SHUTDOWN operations.
ALTER DATABASE: open, mount, back up, or change character set.
CREATE DATABASE.
ARCHIVELOG and RECOVER.
CREATE SPFILE.
Includes the RESTRICTED SESSION privilege

SYSOPER Perform STARTUP and SHUTDOWN operations.
ALTER DATABASE OPEN | MOUNT | BACKUP.
ARCHIVELOG and RECOVER.
CREATE SPFILE.
Includes the RESTRICTED SESSION privilege.

System Roles Use

CONNECT, RESOURCE, and DBA Provided for compatibility with previous versions of Oracle Database
software.

DELETE_CATALOG_ROLE,
EXECUTE_CATALOG_ROLE,
SELECT_CATALOG_ROLE

These roles are provided for accessing data dictionary views and
packages.

EXP_FULL_DATABASE,
IMP_FULL_DATABASE

These roles are provided for convenience in using the Import and
Export utilities.

AQ_USER_ROLE,
AQ_ADMINISTRATOR_ROLE

These roles are needed for Oracle Advanced Queueing.

SNMPAGENT This role is used by the Enterprise Manager Intelligent Agent.

RECOVERY_CATALOG_OWNER This role is required for the creation of a recovery catalog schema
owner.

HS_ADMIN_ROLE Needed for support of Heterogeneous Services.

SCHEDULER_ADMIN This role allows the grantee to execute the DBMS_SCHEDULER
package’s procedures.

1236 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1236

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
For external tables, the only valid privileges are CREATE ANY TABLE,
ALTER ANY TABLE, DROP ANY TABLE, and SELECT ANY TABLE.

Object privileges apply only to certain kinds of objects. The following table shows the relationships
and the grantable object privileges.

Object
Privilege Table View Sequence

Procedures,
Functions,
Packagesa

Materialized
View Directory Library

User-
defined
Type Operator

Index-
type

ALTER X X

DELETE X X Xb

EXECUTE Xc Xc Xc Xc Xc

DEBUG X X X X

FLASHBACK X X X

INDEX X

INSERT X X Xb

ON
COMMIT
REFRESH

X

QUERY
REWRITE

X

READ X

REFERENCES X X

SELECT X X X X

UNDER X X

UPDATE X X Xb

WRITE X

aOracle treats a Java class, source, or resource as if it were a procedure for purposes of granting object privileges.
bThe DELETE, INSERT, and UPDATE privileges can be granted only to updatable materialized views.
cJob scheduler objects are created using the DBMS_SCHEDULER package. Once these objects are created, you can
grant the EXECUTE object privilege on job scheduler classes and programs. You can grant the ALTER privilege on
job scheduler jobs, programs, and schedules.

PRO*C
PRO*C is an extension to C that lets you develop user exits and other programs that access the Oracle
database. A precompiler converts PRO*C code into normal C code, which can then be compiled. See
the Pro*C/C++ Precompiler Programmer’s Guide.

PROCEDURE
A procedure is a set of instructions (usually combining SQL and PL/SQL commands) saved for calling
and repeated execution. See CREATE PROCEDURE.

PROCEDURE 1237

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1237

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

PRODUCT_USER_PROFILE
A PRODUCT_USER_PROFILE is a SYSTEM table in Oracle that is used to restrict use of individual
Oracle products, by disabling one or more commands available in the product. See SQL*Plus User’s
Guide and Reference.

PROFILE
A profile is a collection of settings in Oracle that limits database resources. See CREATE PROFILE and
Chapter 18.

PROMPT (SQL*Plus)
SEE ALSO ACCEPT
FORMAT

PRO[MPT] [text]

DESCRIPTION PROMPT displays the text to the user’s screen. If no text is specified, then a blank
line will be displayed. To display a variable, see PRINT.

PSEUDO-COLUMNS
DESCRIPTION A pseudo-column is a “column” that yields a value when selected but is not an
actual column of the table. Here are the current Oracle pseudo-columns:

Pseudo-Column Value Returned

CONNECT_BY_ISCYCLE Equal to 1 if the current row has a child that is also its ancestor, otherwise 0.

CONNECT_BY_ISLEAF Equal to 1 if the current row is a leaf of the tree defined by the CONNECT BY
condition, otherwise 0.

Level Equal to 1 for a root node, 2 for a child of a root, and so on. Tells basically how
far down a tree you’ve traveled.

sequence.CURRVAL Current value for this sequence name.

sequence.NEXTVAL Next value for this sequence name. Also increments the sequence.

VERSIONS_STARTTIME For flashback version queries, returns the timestamp of the first version of the rows
returned by the query.

VERSIONS_STARTSCN For flashback version queries, returns the SCN of the first version of the rows returned
by the query.

VERSIONS_ENDTIME For flashback version queries, returns the timestamp of the last version of the rows
returned by the query.

VERSIONS_ENDSCN For flashback version queries, returns the SCN of the last version of the rows returned
by the query.

VERSIONS_XID For flashback version queries, for each version of each row, returns the transaction
ID of the transaction that created that row version.

VERSIONS_OPERATION For flashback version queries, for each version of each row, returns a single character
for the operation that caused the row version: I (insert), U (update), or D (delete).

OBJECT_ID Returns the object identifier of a column of an object table or view.

1238 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1238

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:39 PM

Color profile: Generic CMYK printer profile
Composite Default screen

PURGE 1239

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1239

Pseudo-Column Value Returned

OBJECT_VALUE Returns system-generated names for the columns of an object table, XMLType
table, object view, or XMLType view.

ORA_ROWSCN Returns the conservative upper-bound SCN of the most recent change to the row,
showing approximately when the row was last updated (row-level dependencies
should be created for more fine-grained auditing).

ROWID Returns the row identifier for a row. Use the ROWID in the UPDATE ... WHERE
and SELECT ... FOR UPDATE. This guarantees that only a certain row is updated,
and no others.

ROWNUM Returns the sequence number in which a row was returned when selected from a
table. The first row ROWNUM is 1, the second is 2, and so on.

XMLDATA Lets you access the underlying XMLType LOB data or object relational column.

PUBLIC
Public can have either of two definitions:

■ Something public can be visible or available to all users. Synonyms and database links can
be public. In Oracle, a user must have CREATE PUBLIC SYNONYM or CREATE PUBLIC
DATABASE LINK privilege. Users may GRANT PUBLIC access to their own objects.

■ A group to which every database user belongs—the name of that group.

PUBLIC SYNONYM
A public synonym is a synonym for a database object that a user with CREATE PUBLIC SYNONYM
privilege has created for use by all Oracle users.

PURGE
SEE ALSO Chapter 46, RECYCLE BIN
FORMAT
purge::=

DESCRIPTION PURGE removes a table or index from your recycle bin and releases all of the
space associated with the object, or removes the entire recycle bin, or removes part or all of a dropped
tablespace from the recycle bin.

NOTE
You cannot roll back a PURGE command. You cannot recover an
object after it is purged.

PURGE

TABLE table

INDEX index

RECYCLEBIN

DBA_RECYCLEBIN

TABLESPACE tablespace
USER user

;

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To see the contents of your recycle bin, query the RECYCLEBIN data dictionary view.
You can use the TABLE or INDEX keywords to specify the name of the object you wish to purge.

Specifying RECYCLEBIN purges all objects in the user’s recycle bin. DBA_RECYCLEBIN purges all users’
recycle bins. TABLESPACE purges all objects residing in the specified tablespace from the recycle bin.
USER user purges space within a tablespace for a particular user.
EXAMPLE To purge an individual table:

PURGE TABLE bookshelf;

To purge the current user’s recycle bin:

PURGE RECYCLEBIN;

QUERY
A query is a SQL instruction to retrieve data from one or more tables or views. Queries begin with the
SQL keyword SELECT.

QUERY OPERATORS
The following is an alphabetical list of all current query operators in the Oracle version of SQL. Each
of these is listed elsewhere in this reference under its own name, with its proper format and use. See
also Chapter 13.

Operator Purpose

INTERSECT Returns all matching distinct rows from two queries

MINUS Returns all distinct rows in first query that are not in the second

UNION Returns all distinct rows from both of two queries

UNION ALL Returns all rows from both of two queries

QUIT
SEE ALSO COMMIT, DISCONNECT, EXIT, SET AUTOCOMMIT, START
FORMAT

QUIT

DESCRIPTION QUIT ends a SQL*Plus session and returns the user to an operating system, calling
program, or menu.

QUOTA
A quota is a resource limit. Quotas can limit the amount of storage used by each user of the database.
See CREATE USER and ALTER USER.

RAISE
SEE ALSO DECLARE EXCEPTION, EXCEPTION, EXCEPTION_INIT
FORMAT

RAISE [exception]

1240 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1240

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION RAISE names the exception flag you want to raise, based on a condition that
is being tested. The exception must be either one you’ve explicitly DECLAREd, or an internal system
exception such as DIVIDE_BY_ZERO (see EXCEPTION for a complete list).

A RAISE statement causes control to be transferred to the EXCEPTION section of the current block,
where you must test to see which exception was raised. If no EXCEPTION section is present, control is
passed to the nearest EXCEPTION section of an enclosing block (basically backward through the nesting
of the blocks). If no logic is found to handle the exception, control is passed from the PL/SQL to the
calling program or environment with an unhandled exception error. (The use of OTHERS can avoid
this. See EXCEPTION.)

RAISE without an explicitly named exception can be used only in one circumstance: within an
EXCEPTION section, to force the current exception to be handled by an enclosing block’s EXCEPTION
section, rather than the current one. If, for instance, a NOT_LOGGED_ON error had occurred, and
your local EXCEPTION section says this:

when not_logged_on
then raise;

it would pass control back to the EXCEPTION section of the next enclosing block that had one, or to
the program if none was found. That EXCEPTION block could also test for NOT_LOGGED_ON. The
benefit here is that for a certain class of errors, particularly where the recovery, tracing, or error-logging
steps you want to take may be extensive, you can set every nested block’s EXCEPTION section to simply
hand the EXCEPTION backward to a single spot for disposition.

RANK
SEE ALSO ANALYTIC FUNCTIONS
FORMAT
rank_aggregate::=

rank_analytic::=

DESCRIPTION RANK calculates the rank of a value in a group of values. The return type is NUMBER.
Rows with equal values for the ranking criteria receive the same rank.

RATIO_TO_REPORT
SEE ALSO AGGREGATE FUNCTIONS

RATIO_TO_REPORT 1241

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1241

RANK (expr

,

) WITHIN GROUP

(ORDER BY expr

DESC

ASC
NULLS

FIRST

LAST

,

)

RANK () OVER (
query_partition_clause

order_by_clause)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1242 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1242

FORMAT

RATIO_TO_REPORT (expr) OVER ([query_partition_clause])

DESCRIPTION RATIO_TO_REPORT is an analytic function. It computes the ratio of a value to
the sum of a set of values. If expr evaluates to NULL, the ratio-to-report value also evaluates to NULL.

RAW DATATYPE
A RAW column contains binary data in whatever form the host computer stores it. RAW columns are
useful for storing binary (noncharacter) data.

RAWTOHEX
SEE ALSO HEXTORAW
FORMAT

RAWTOHEX(binary_string)

DESCRIPTION RAWTOHEX changes a string of binary numbers to a character string of hexadecimal
numbers.

RAWTONHEX
SEE ALSO RAWTOHEX
FORMAT

RAWTONHEX (raw)

DESCRIPTION RAWTONHEX converts raw to an NVARCHAR2 character value containing its
hexadecimal equivalent.

READ CONSISTENCY
Read consistency is a state that guarantees that all data encountered by a statement/transaction is a
consistent set throughout the duration of the statement/transaction. See SET TRANSACTION.

RECORD (PL/SQL)
SEE ALSO TABLE (PL/SQL), DATATYPES
FORMAT

TYPE new_type IS RECORD
(field {type | table.column%TYPE}[NOT NULL]
[,field {type | table.column%TYPE}[NOT NULL]...]);

DESCRIPTION A RECORD declaration declares a new type that can then be used to declare
variables of that type. The individual components of the record are fields, and each has its own datatype.
That datatype can be either one of the standard PL/SQL datatypes (including another RECORD but not a
TABLE), or a reference to the type of a particular column in a specific table. Each field also may have a
NOT NULL qualifier that specifies that the field must always have a non-NULL value.

You can refer to the individual fields in a record by using dot notation.

RECOVER
RECOVER is a clause within the ALTER DATABASE command.

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9C.vp
Friday, August 13, 2004 5:02:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

RECOVER 1243

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1243

SEE ALSO ALTER DATABASE, Chapter 46
FORMAT

RECOVER {general | managed | BEGIN BACKUP | END BACKUP}

where the GENERAL clause has the following syntax:

[AUTOMATIC] [FROM location]
{ {full_database_recovery | partial_database_recovery |LOGFILE filename}
[{TEST | ALLOW integer CORRUPTION | parallel_clause }
[TEST | ALLOW integer CORRUPTION | parallel_clause]...]
|CONTINUE [DEFAULT]|CANCEL}

where the FULL DATABASE RECOVERY clause has the following syntax:

[STANDBY] DATABASE
[{UNTIL {CANCEL | TIME date | CHANGE integer} | USING BACKUP CONTROLFILE}
[UNTIL {CANCEL | TIME date | CHANGE integer} | USING BACKUP CONTROLFILE]...]

where the PARTIAL DATABASE RECOVERY clause has the following syntax:

{TABLESPACE tablespace [, tablespace]... | DATAFILE datafilename [, datafilenumber]...
| STANDBY
{TABLESPACE tablespace [, tablespace]... | DATAFILE datafilename [, datafilenumber]...}
UNTIL [CONSISTENT WITH] CONTROLFILE }

and the PARALLEL clause has the following syntax:

{NOPARALLEL | PARALLEL [integer]}

and the MANAGED clause has the following syntax:

MANAGED STANDBY DATABASE recover_clause | cancel_clause | finish_clause

and the RECOVER clause has the following syntax:

{{DISCONNECT [FROM SESSION]|{TIMEOUT integer | NOTIMEOUT}}
|{NODELAY | DEFAULT DELAY | DELAY integer} | NEXT integer
|{EXPIRE integer | NO EXPIRE} | parallel_clause
| USING CURRENT LOGFILE | UNTIL CHANGE integer
| THROUGH {[THREAD integer] SEQUENCE integer

| ALL ARCHIVELOG | {ALL|LAST|NEXT} SWITCHOVER}}
[DISCONNECT [FROM SESSION] | {TIMEOUT integer | NOTIMEOUT}
| {NODELAY|DEFAULT DELAY|DELAY integer}| NEXT integer
| {EXPIRE integer | NO EXPIRE}| parallel_clause
| USING CURRENT LOGFILE | UNTIL CHANGE integer
| THROUGH {[THREAD integer]SEQUENCE integer

| ALL ARCHIVELOG | {ALL|LAST|NEXT} SWITCHOVER}}

and the CANCEL clause has the following syntax:

CANCEL [IMMEDIATE] [WAIT | NOWAIT]

and the FINISH clause has the following syntax:

[DISCONNECT [FROM SESSION]][parallel_clause]
FINISH [SKIP [STANDBY LOGFILE]][WAIT|NOWAIT]

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1244 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1244

DESCRIPTION The RECOVER command, like the RECOVER clause of the ALTER DATABASE
command, recovers a database using various options. AUTOMATIC recovery generates the redo log
filenames automatically during recovery. The FROM clause specifies the location of the archived redo
log file group and must be a fully qualified filename. The default is set by the initialization parameter
LOG_ARCHIVE_DEST (or LOG_ARCHIVE_DEST_1).

The DATABASE option recovers the entire database and is the default. The UNTIL CANCEL
alternative recovers the database until you cancel the recovery with the CANCEL option. The UNTIL
TIME alternative recovers up to a specified date and time (in the format YYYY-MM-DD:HH24:MI:SS).
The UNTIL CHANGE alternative recovers up to a system change number (SCN, a unique number
assigned to each transaction) specified by an integer. The USING BACKUP CONTROLFILE alternative
recovers by applying the redo log in a backup control file.

You can perform trial recoveries via the TEST option, and CONTINUE a multi-instance recovery
even after it has been interrupted. The DELAY parameters relate to the application of logs to standby
databases during recovery; by default they are delayed as defined via the LOG_ARCHIVE_DEST_n
parameter values.

RECSEP (SQL*Plus)
See SET.

RECSEPCHAR (SQL*Plus)
See SET.

RECURSIVE CALL
A recursive call is a nested invocation of the RDBMS; for example, auditing information is recorded in
system tables using a recursive call. That is, during a normal database operation, such as an UPDATE,
another database operation is executed to write log, auditing, or other vital information about the normal
database operation underway.

RECYCLE BIN
As of Oracle Database 10g, dropped objects go into a recycle bin by default rather than being immediately
dropped. The recycle bin allows for dropped objects to be restored without the need for a full database
recovery. You can purge specific objects from the recycle bin via the PURGE command. See PURGE.

To see the objects presently in your recycle bin, query the RECYCLEBIN data dictionary view or use
the SHOW RECYCLEBIN command.

REDO LOG
A redo log is an Oracle-maintained sequential log of actions in the database. The log always consists
of at least two files; one is optionally being archived while the other is being written. When the one
currently being written fills, the next one is reused.

REDO LOG SEQUENCE NUMBER
The redo log sequence number is a number used to identify a redo log, used when applying the redo
log file for recovery.

REF
SEE ALSO Chapter 36
FORMAT

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

REF (correlation_variable)

DESCRIPTION REF is a reference function used with object tables; the input correlation variable
is a table alias. REF returns the object instance for that variable. See Chapter 36 for detailed examples.

REFERENTIAL INTEGRITY
Referential integrity is the property that guarantees that values from one column depend on values from
another column. This property is enforced through integrity constraints. See INTEGRITY CONSTRAINT.

REFTOHEX
SEE ALSO Chapter 36
FORMAT

REFTOHEX (expr)

DESCRIPTION REFTOHEX converts argument expr to a character value containing its hexadecimal
equivalent. expr must return a REF.

REGEXP_INSTR
SEE ALSO INSTR, Chapter 8
FORMAT
regexp_instr::=

DESCRIPTION REGEXP_INSTR extends the functionality of the INSTR function by letting you
search a string for a regular expression pattern. The function evaluates strings using characters as defined
by the input character set. It returns an integer indicating the beginning or ending position of the
matched substring, depending on the value of the return_option argument. If no match is found, the
function returns 0.

See Chapter 8 for examples of the REGEXP functions.

REGEXP_LIKE
SEE ALSO LIKE, Chapter 8
FORMAT

REGEXP_LIKE(source_string, pattern [match_parameter])

DESCRIPTION REGEXP_LIKE extends the functionality of the LIKE operator by letting you search
a string for a regular expression pattern. The function evaluates strings using characters as defined by
the input character set.

See Chapter 8 for examples of the REGEXP functions.

REGEXP_LIKE 1245

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1245

REGEXP_INSTR (source_string , pattern

, position
, occurrence

, return_option
, match_parameter

)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1246 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1246

REGEXP_REPLACE
SEE ALSO REPLACE, Chapter 8
FORMAT
regexp_replace::=

DESCRIPTION REGEXP_REPLACE extends the functionality of the REPLACE function by letting
you search a string for a regular expression pattern. By default, the function returns the source_string
with every occurrence of the regular expression pattern replaced with replace_string. The string returned
is in the same character set as source_string. The function returns VARCHAR2 if the first argument is
not a LOB and returns CLOB if the first argument is a LOB.

See Chapter 8 for examples of the REGEXP functions.

REGEXP_SUBSTR
SEE ALSO SUBSTR, Chapter 8
FORMAT
regexp_substr::=

DESCRIPTION REGEXP_SUBSTR extends the functionality of the SUBSTR function by letting you
search a string for a regular expression pattern. It is similar to REGEXP_INSTR but instead of returning
the position of the substring it returns the substring itself. The function returns the string as VARCHAR2
or CLOB data in the same character set as source_string.

See Chapter 8 for examples of the REGEXP functions.

REGR_ (LINEAR REGRESSION) FUNCTIONS
SEE ALSO AGGREGATE FUNCTIONS

REGEXP_REPLACE (source_string , pattern

, replace_string
, position

, occurrence
, match_parameter

)

REGEXP_SUBSTR (source_string , pattern

, position
, occurrence

, match_parameter

)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT
linear_regr::=

DESCRIPTION The linear regression functions fit an ordinary-least-squares regression line to a set
of number pairs. You can use them as both aggregate and analytic functions. REGR_SLOPE returns the
slope of the line. REGR_INTERCEPT returns the y-intercept of the regression line. REGR_COUNT returns
an integer that is the number of non-NULL number pairs used to fit the regression line. REGR_R2 returns
the coefficient of determination for the regression. REGR_AVGX evaluates the average of the independent
variable (expr2) of the regression line. REGR_AVGY evaluates the average of the dependent variable
(expr1) of the regression line. REGR_SXY, REGR_SXX, and REGR_SYY are auxiliary functions used to
compute various diagnostic statistics.

RELATIONAL DATABASE
MANAGEMENT SYSTEM (RDBMS)
An RDBMS is a computer program for general-purpose data storage and retrieval that organizes data
into tables consisting of one or more units of information (rows), each containing the same set of data
items (columns). Oracle is a relational database management system.

RELATIONAL OPERATOR
A relational operator is a symbol used in search criteria to indicate a comparison between two values,
such as the equal sign in the following WHERE clause:

where Amount = .10

Only those rows are returned (fetched) for which the comparison results in TRUE.

REMAINDER
SEE ALSO NUMBER FUNCTIONS
FORMAT

REMAINDER (m, n)

DESCRIPTION Available as of Oracle Database 10g, REMAINDER returns the remainder of m
divided by n.

REMAINDER 1247

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1247

REGR_SLOPE

REGR_INTERCEPT

REGR_COUNT

REGR_R2

REGR_AVGX

REGR_AVGY

REGR_SXX

REGR_SYY

REGR_SXY

(expr1 , expr2)
OVER (analytic_clause)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

REMARK (SQL*Plus)
SEE ALSO /* */, - -, Chapter 6
FORMAT

REM[ARK] text

DESCRIPTION REMARK begins a single line of remarks, usually documentation, in a start file.
It is not interpreted as a command. REMARK cannot appear within a SQL statement.
EXAMPLE

REM Reduce the default column width for this data field:
column ActionDate format a6 trunc

REMOTE DATABASE
A remote database is one that resides on a remote computer; in particular, one that you use through
a database link.

RENAME
SEE ALSO COPY, CREATE SEQUENCE, CREATE SYNONYM, CREATE TABLE, CREATE VIEW
FORMAT

RENAME old TO new;

DESCRIPTION RENAME changes the name of a table, view, sequence, or synonym from its old
name to a new one. No quotes are used around the names, and the new name must be neither a reserved
word nor the name of an existing object for the user.
EXAMPLE The following changes the BOOKSHELF table to the BOOK table:

rename BOOKSHELF to BOOK;

REPFOOTER (SQL*Plus)
SEE ALSO ACCEPT, BTITLE, DEFINE, PARAMETERS, REPHEADER
FORMAT

REPF[OOTER] [PAGE][option [text|variable]... | OFF|ON]

DESCRIPTION REPFOOTER (REPort FOOTER) puts a footer (may be multiline) on the last page
of a report. OFF and ON suppress and restore, respectively, the display of the text without changing its
contents. REPFOOTER by itself displays the current REPFOOTER options and text or variable. PAGE
begins a new page before printing the specified report footer.

text is a footer you wish to give this report, and variable is a user-defined variable or a system-
maintained variable, including SQL.LNO, the current line number; SQL.PNO, the current page number;
SQL.RELEASE, the current Oracle release number; SQL.SQLCODE, the current error code; and SQL.USER,
the username.

Valid values for option are

■ COL n skips directly to position n from the left margin of the current line.

■ S[KIP] n prints n blank lines. If no n is specified, one blank line is printed. If n is 0, no blank
lines are printed and the current position for printing becomes position 1 of the current line
(leftmost on the page).

1248 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1248

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ TAB n skips forward n positions (backward if n is negative).

■ LE[FT], CE[NTER], and R[IGHT] left-justify, center, and right-justify data on the current line.
Any text or variables following these commands are justified as a group, up to the end of the
command, or a LEFT, CENTER, RIGHT, or COL. CENTER and RIGHT use the value set by the
SET LINESIZE command to determine where to place the text or variable.

■ BOLD prints data in bold print. SQL*Plus represents bold print on your terminal by repeating
the data on three consecutive lines.

■ FORMAT string specifies the format model that will control the format of subsequent text
or variables, and follows the same syntax as FORMAT in a COLUMN command, such as
FORMAT A12 or FORMAT $999,990.99. Each time a FORMAT appears, it supersedes the
previous one that was in effect. If no format model has been specified, the one set by SET
NUMFORMAT is used. If NUMFORMAT has not been set, the default for SQL*Plus is used.

Date values are printed according to the default format unless a variable has been loaded with a
date reformatted by TO_CHAR.

REPHEADER (SQL*Plus)
SEE ALSO ACCEPT, BTITLE, DEFINE, PARAMETERS, REPFOOTER
FORMAT

REPH[EADER] [PAGE] [option [text|variable]... | OFF|ON]

DESCRIPTION REPHEADER (REPort HEADER) puts a header (may be multiline) on the first page
of a report. OFF and ON suppress and restore, respectively, the display of the text without changing its
contents. REPHEADER by itself displays the current REPHEADER options and text or variable. PAGE
begins a new page after printing the report header.

text is a header you wish to give this report, and variable is a user-defined variable or a system-
maintained variable, including SQL.LNO, the current line number; SQL.PNO, the current page number;
SQL.RELEASE, the current Oracle release number; SQL.SQLCODE, the current error code; and SQL.USER,
the username.

Valid values for option are

■ COL n skips directly to position n from the left margin of the current line.

■ S[KIP] n prints n blank lines. If no n is specified, one blank line is printed. If n is 0, no blank
lines are printed and the current position for printing becomes position 1 of the current line
(leftmost on the page).

■ TAB n skips forward n positions (backward if n is negative).

■ LE[FT], CE[NTER], and R[IGHT] left-justify, center, and right-justify data on the current line.
Any text or variables following these commands are justified as a group, up to the end of the
command, or a LEFT, CENTER, RIGHT, or COL. CENTER and RIGHT use the value set by the
SET LINESIZE command to determine where to place the text or variable.

■ BOLD prints data in bold print. SQL*Plus represents bold print on your terminal by repeating
the data on three consecutive lines.

■ FORMAT string specifies the FORMAT MODEL that will control the format of subsequent text
or variables, and follows the same syntax as FORMAT in a COLUMN command, such as
FORMAT A12 or FORMAT $999,990.99. Each time a FORMAT appears, it supersedes the
previous one that was in effect. If no FORMAT MODEL has been specified, the one set by SET
NUMFORMAT is used. If NUMFORMAT has not been set, the default for SQL*Plus is used.

REPHEADER (SQL*Plus) 1249

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1249

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1250 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1250

Date values are printed according to the default format unless a variable has been loaded with a
date reformatted by TO_CHAR.

REPLACE
SEE ALSO CHARACTER FUNCTIONS, TRANSLATE, Chapter 7
FORMAT

REPLACE(string,if,then)

DESCRIPTION REPLACE replaces a character or characters in a string with zero or more characters.
if is a character or characters. Every time if appears in string, it is replaced by the contents of then.
EXAMPLE

REPLACE('GEORGE','GE',null) = OR
REPLACE('BOB','BO','TA') = TAB

REPLICATION
Replication is the process of copying data from one database to another. The target to which the replicated
data is copied is called the replica. To manage replication, you need to determine

■ The location, structure, and ownership of the source data

■ The update frequency of the source data

■ The timeliness requirements for the replica data

■ The volatility of the source data

■ The intended uses of the replica

If the replica will also be able to make changes, and those changes must be propagated back to
the original source database, then you have a multimaster configuration and you have to manage
conflict resolution and error handling for the environment. In general, single-site ownership of data
with multiple read-only replicas is simpler to manage than a multimaster configuration.

See CREATE MATERIALIZED VIEW, CREATE DATABASE LINK.

RESERVED WORDS
SEE ALSO OBJECT NAMES
DESCRIPTION A reserved word is one that has a special meaning to SQL, and therefore may not
be used as the name of an object. Contrast this to a keyword, which may be used as an object name,
but may become a reserved word in the future. Not every word is reserved in all products, so this list
is structured to show which products reserve which words. In the following table, the entries with an *
are reserved in SQL and in PL/SQL. The entries without an * are reserved only in PL/SQL.

ACCESS ADD ALL* ALTER* AND*

ANY* ARRAY AS* ASC* AT

AUDIT AUTHID AVG BEGIN BETWEEN*

BINARY_INTEGER BODY BOOLEAN BULK BY*

CASE CHAR* CHAR_BASE CHECK* CLOSE

CLUSTER* COALESCE COLLECT COLUMN COMMENT*

COMMIT COMPRESS* CONNECT* CONSTANT CREATE*

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

RESERVED WORDS 1251

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1251

CURRENT* CURRVAL CURSOR DATE* DAY

DECLARE DECIMAL* DEFAULT* DELETE* DESC*

DISTINCT* DO DROP* ELSE* ELSIF

END EXCEPTION EXCLUSIVE* EXECUTE EXISTS*

EXIT EXTENDS EXTRACT FALSE FETCH

FILE FLOAT* FOR* FORALL FROM*

FUNCTION GOTO GRANT GROUP* HAVING*

HEAP HOUR IDENTIFIED IF IMMEDIATE*

IN* INCREMENT INDEX* INDICATOR INITIAL

INSERT* INTEGER* INTERFACE INTERSECT* INTERVAL

INTO* IS* ISOLATION JAVA LEVEL*

LIKE* LIMITED LOCK* LONG* LOOP

MAX MAXEXTENTS MIN MINUS* MINUTE

MLSLABEL* MOD MODE* MODIFY MONTH

NATURAL NATURALN NEW NEXTVAL NOAUDIT

NOCOMPRESS NOCOPY NOT* NOWAIT* NULL*

NULLIF NUMBER* NUMBER_BASE OCIROWID OF*

OFFLINE ON* ONLINE OPAQUE OPEN

OPERATOR OPTION* OR* ORDER* ORGANIZATION

OTHERS OUT PACKAGE PARTITION PCTFREE*

PLS_INTEGER POSITIVE POSITIVEN PRAGMA PRIOR*

PRIVATE PROCEDURE PUBLIC* RAISE RANGE

RAW* REAL RECORD REF RELEASE

RENAME RESOURCE RETURN REVERSE REVOKE

ROLLBACK ROW* ROWID* ROWNUM* ROWS

ROWTYPE SAVEPOINT SECOND SELECT* SEPARATE

SET* SHARE* SIZE SMALLINT* SPACE

SQL SQLCODE SQLERRM START* STDDEV

SUBTYPE SUCCESSFUL* SUM SYNONYM* SYSDATE*

TABLE* THEN* TIME TIMESTAMP TIMEZONE_REGION

TIMEZONE_ABBR TIMEZONE_MINUTE TIMEZONE_HOUR TO* TRIGGER*

TRUE TYPE UID* UNION* UNIQUE*

UPDATE USE USER* VALIDATE* VALUES*

VARCHAR* VARCHAR2* VARIANCE VIEW* WHEN

WHENEVER* WHERE* WHILE WITH* WORK

WRITE YEAR ZONE

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1252 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1252

RESOURCE
Resource is a general term for a logical database object or physical structure that may be locked. Resources
that users can directly lock are rows and tables; resources that the RDBMS can lock are numerous and
include data dictionary tables, caches, and files.

RESOURCE is also the name of a deprecated role in Oracle. See ROLE.

REVERSE-KEY INDEX
In a reverse-key index, the bytes of the indexed value are reversed prior to being stored in the index.
Thus, values 1234 and 1235 are indexed as if they were 4321 and 5321. As a result of this reversal,
those two values will be stored farther apart. If you are frequently querying the column for an exact
match (column=1234), then a reverse-key index may reduce block contention within your index. If
you are frequently performing range queries (column>1234 or column like '123%'), then traditional
indexes should be more appropriate for your needs. See CREATE INDEX.

REVOKE
SEE ALSO DISABLE, ENABLE, GRANT, PRIVILEGE, Chapter 18
FORMAT
revoke::=

revoke_system_privileges::=

revoke_object_privileges::=

REVOKE
revoke_system_privilege

revoke_object_privileges
;

system_privilege

role

ALL PRIVILEGES

,

FROM grantee_clause

object_privilege

ALL
PRIVILEGES

,

on_object_clause

FROM grantee_clause

CASCADE CONSTRAINTS

FORCE

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

grantee_clause::=

on_object_clause::=

DESCRIPTION The REVOKE command takes privileges and roles away from users, or privileges
away from roles. Any system privilege may be revoked; see PRIVILEGE.

If you revoke a privilege from a user, the user can no longer execute the operations allowed by the
privilege. If you revoke a privilege from a role, no user granted the role can execute the allowed operations,
unless they are permitted by another role or directly as a user. If you revoke a privilege from PUBLIC, no
user granted the privilege through PUBLIC can execute the operations allowed by the privilege.

If you revoke a role from a user, the user can no longer enable the role (see ENABLE) but may continue
exercising the privilege in a current session. If you revoke a role from a role, users granted the role can
no longer enable the role but may continue using the privilege during the current session. If you revoke
a role from PUBLIC, users granted the role through PUBLIC can no longer enable the role.

For object access, the REVOKE command takes away object privileges on a specific object from a
user or role. If a user’s privileges are revoked, the user may not execute the operations allowed by the
privilege on the object. If a role’s privileges are revoked, no user granted the role may execute those
operations unless they are granted through another role or directly to the user. If the PUBLIC’s privileges
are revoked, no user granted the privilege through PUBLIC may execute those operations.

The CASCADE CONSTRAINTS clause drops any referential integrity constraints defined by the user
or by users granted the role. This applies to a REFERENCES privilege.

ROLE
A role is a set of privileges that a user can grant to another user. Oracle has many system-supplied roles,
including CONNECT, RESOURCE, and DBA. You can verify the privileges assigned to the roles via the
ROLE_SYS_PRIVS and DBA_SYS_PRIVS data dictionary views. You should not rely on the system-provided
roles in your application development, since the names and privileges for these roles may change with
future releases of Oracle. See CREATE ROLE for role creation syntax.

See Chapter 18 for examples of creating and using roles.

ROLL FORWARD
To roll forward is to reapply changes to the database. You sometimes need roll forward for media recovery
and sometimes for instance recovery. The REDO LOG contains the redo entries used for roll forward.

ROLL FORWARD 1253

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1253

ON

schema . object

DIRECTORY directory_name

JAVA
SOURCE

RESOURCE

schema .
object

user

role

PUBLIC

,

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ROLLBACK
A rollback discards part or all of the work you have done in the current transaction, since the last COMMIT
or SAVEPOINT.

ROLLBACK (Form 1—SQL)
SEE ALSO COMMIT, SET AUTOCOMMIT, Chapter 15
FORMAT

ROLLBACK [WORK] [TO [SAVEPOINT] savepoint | FORCE 'text'];

DESCRIPTION ROLLBACK reverses all changes made to tables in the database since changes
were last committed or rolled back and releases any locks on the tables. An automatic rollback occurs
whenever a transaction is interrupted, such as by an execution error, a power failure, and so on.
ROLLBACK affects not just the last INSERT, UPDATE, or DELETE statement but any that have occurred
since the last COMMIT. This allows you to treat blocks of work as a whole and only COMMIT when
all of the changes you want are completed.

With SAVEPOINT, ROLLBACK goes to a specific, named place in the sequence of transactions
being processed, the SAVEPOINT. It erases any interim SAVEPOINTs and releases any table or row
locks that occurred after the SAVEPOINT was made.

With FORCE, ROLLBACK manually rolls back an in-doubt transaction identified by the literal text,
which is a local or global transaction ID from the data dictionary view DBA_2PC_PENDING.

NOTE
If SET AUTOCOMMIT is ON, every INSERT, UPDATE, or DELETE
immediately and automatically commits the changes to the database.
Typing the word ROLLBACK will produce a ‘ROLLBACK COMPLETE’
message, but this message won’t mean anything since ROLLBACK
only rolls back to the last COMMIT.

NOTE
All DDL commands cause a COMMIT.

ROLLBACK (Form 2—Embedded SQL)
SEE ALSO COMMIT, SAVEPOINT, SET TRANSACTION, Programmer’s Guide to the Oracle
Precompilers
FORMAT

EXEC SQL [AT {database | :variable }]
ROLLBACK [WORK]
[TO [SAVEPOINT] savepoint] | [FORCE text] | [RELEASE]]

DESCRIPTION ROLLBACK ends the current transaction, reverses any changes resulting from the
current transaction, and releases any locks being held, but does not affect host variables or program
flow. database indicates the name of the database where the ROLLBACK should take effect. Its absence
indicates the default database for the user. SAVEPOINT allows a rollback to a named savepoint that
has been previously declared. (See SAVEPOINT.)

1254 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1254

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORCE manually rolls back an in-doubt transaction specified by a literal text containing the
transaction ID from the DBA_2PC_PENDING data dictionary view. WORK is entirely optional and
is for readability only.

Both ROLLBACK and COMMIT have RELEASE options. RELEASE should be specified by one of them
after the last transaction; otherwise locks put on during the program will block other users. ROLLBACK
occurs automatically (with a RELEASE) if the program abnormally terminates.

NOTE
See the Programmer’s Guide to the Oracle Precompilers for a full list
of all commands. This reference does not contain all of the possible
precompiler commands.

ROLLBACK SEGMENT
A rollback segment is a storage space within a tablespace that holds transaction information that is used
to guarantee data integrity during a rollback and to provide read consistency across multiple transactions.
See Chapter 46. As of Oracle Database 10g, you should use Automatic Undo Management, in which
Oracle dynamically manages undo segments.

ROLLUP
SEE ALSO GROUPING, CUBE, Chapter 12
FORMAT

GROUP BY ROLLUP(column1, column2)

DESCRIPTION ROLLUP generates subtotals for groups of rows within a query. See Chapter 12.

ROUND (Form 1—for Dates)
SEE ALSO DATE FUNCTIONS, ROUND (NUMBER), TRUNC, Chapter 10
FORMAT

ROUND (date, 'format')

DESCRIPTION ROUND rounds date according to format. Without format, date is rounded to the
next day if the time is 12:00:00 P.M. (exactly noon) or later, or to today’s date if before noon; in other
words, it is rounded to the nearest day. The resulting date has its time set to 12 A.M., the very first instant
of the day.
FORMATS AVAILABLE FOR ROUNDING

Format Meaning

CC,SCC Century (rounds up to January 1 of next century, as of midnight exactly on the
morning of January 1 of 1950, 2050, and so on)

SYEAR,SYYY,Y,YY,YYY,
YYYY and YEAR

Year (rounds up to January 1 of the next year as of midnight exactly on the morning
of July 1)

IYYY, IYY, IY, I ISO year

Q Quarter (rounds up in the second month of the quarter as of midnight exactly on the
morning of the 16th, regardless of the number of days in the month)

ROUND (Form 1—for Dates) 1255

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1255

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Format Meaning

MONTH,MON,MM,
RM

Month (rounds up as of midnight exactly on the morning of the 16th regardless of the
number of days in the month)

WW Same day of the week as the first day of the year

IW Same day of the week as the first day of the ISO year

W Same day of the week as the first day of the month

DDD,DD,J Rounds up to the next day as of noon exactly; the same as ROUND with no format

DAY,DY,D Starting day of week

HH,HH12,HH24 Hour

MI Minute

When WW and W round, the time of the date being rounded is compared to a date that is set to
12 A.M., the very beginning of the day. The result of ROUND is a new date, which is also set to 12 A.M.

ROUND (Form 2—for Numbers)
SEE ALSO CEIL, FLOOR, NUMBER FUNCTIONS, ROUND (DATE), TRUNC, Chapter 9
FORMAT

ROUND(value,precision)

DESCRIPTION ROUND rounds value to precision, which is an integer and may be positive,
negative, or zero. A negative integer rounds to the given number of places to the left of the decimal
point; a positive integer rounds to the given number of places to the right of the decimal point.
EXAMPLES

ROUND(123.456,0) = 123
ROUND(123.456,-2) = 100
ROUND(-123.456,2) = -123.46

ROW
Row can have either of two definitions:

■ One set of fields in a table; for example, the fields representing one book in the table
BOOKSHELF.

■ One set of fields in the output of a query. RECORD is a synonym.

ROW HEADER
A row header is the portion of each row that contains information about the row other than row data,
such as the number of row pieces, columns, and so on.

ROW-LEVEL LOCKING
Row-level locking is a type of locking in which UPDATEs to data occur through locking rows in a
table and not the entire page.

1256 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1256

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ROW SEQUENCE NUMBER
A row sequence number is a number assigned to a row as it is inserted into a data block for a table.
This number is also stored as row overhead and forms a part of the ROWID.

ROW_NUMBER
SEE ALSO ROWNUM
FORMAT

ROW_NUMBER () OVER ([query_partition_clause] order_by_clause)

DESCRIPTION ROW_NUMBER is an analytic function. It assigns a unique number to each row to
which it is applied (either each row in the partition or each row returned by the query), in the ordered
sequence of rows specified in the ORDER BY clause, beginning with 1.

ROWID
ROWID is the logical address of a row, and it is unique within the database.

ROWID can be SELECTed, or used in a WHERE clause, but cannot be changed by an INSERT,
UPDATE, or DELETE. It is not actually a data column, but merely a logical address, made of the database
address information. ROWID is useful when used in a WHERE clause for rapid UPDATEs or DELETEs
of rows. However, it can change if the table it is in is exported and imported.

The ROWID datatype is a hexadecimal string representing the unique address of a row in a table.
This datatype is primarily used for values returned by the ROWID pseudo-column.

ROWIDTOCHAR
SEE ALSO CHARTOROWID, CONVERSION FUNCTIONS
FORMAT

ROWIDTOCHAR(RowId)

DESCRIPTION ROWIDTOCHAR (ROW IDentifier TO CHARacter) changes an internal Oracle
row identifier, or ROWID, to act like a character string. However, Oracle will do this kind of conversion
automatically, so this function isn’t really needed. It seems to be a debugging tool that has made its way
into general availability.

ROWIDTONCHAR
SEE ALSO CHARTOROWID, ROWIDTOCHAR, CONVERSION FUNCTIONS
FORMAT

ROWIDTONCHAR(RowId)

DESCRIPTION ROWIDTONCHAR (ROW IDentifier TO NCHARacter) changes an internal Oracle
row identifier, or ROWID, to an NVARCHAR2 datatype.

ROWNUM
SEE ALSO PSEUDO-COLUMNS
FORMAT

ROWNUM

ROWNUM 1257

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1257

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION ROWNUM returns the sequence number in which a row was returned when first
selected from a table. The first row has a ROWNUM of 1, the second has a ROWNUM of 2, and so on.
Note, however, that even a simple ORDER BY in the SELECT statement may disorder the ROWNUMs,
which are assigned to the rows before any ordering takes place.

RPAD
SEE ALSO CHARACTER FUNCTIONS, LPAD, LTRIM, RTRIM, TRIM, Chapter 7
FORMAT

RPAD(string,length [,'set'])

DESCRIPTION RPAD (Right PAD) makes a string a certain length by adding a certain set of characters
to the right. If set is not specified, the default pad character is a space.
EXAMPLE

select RPAD('HELLO ',24,'WORLD') from DUAL;

produces this:

HELLO WORLDWORLDWORLDWOR

RTRIM
SEE ALSO CHARACTER FUNCTIONS, LPAD, LTRIM, RPAD, TRIM, Chapter 7
FORMAT

RTRIM(string [,'set'])

DESCRIPTION RTRIM (Right TRIM) trims all the occurrences of any one of a set of characters off
of the right side of a string.
EXAMPLE

RTRIM('GEORGE','OGRE')

produces nothing, an empty string with zero length! On the other hand,

RTRIM('EDYTHE','HET')

produces this:

EDY

RUN
SEE ALSO /, @, @@, EDIT, START
FORMAT

R[UN]

DESCRIPTION RUN displays the SQL command in the SQL buffer, and then executes it. RUN is
similar to the / command, except that / doesn’t display the SQL first.

SAVE (SQL*Plus)
SEE ALSO EDIT, GET, Chapter 6

1258 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1258

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

SAV[E] file[.ext] [CRE[ATE] | REP[LACE] | APP[END]]

DESCRIPTION SAVE saves the contents of the current buffer into a host file with the name file.
If no file type (extension) is specified, the file type .sql is added to the filename. This default extension
can be changed with SET SUFFIX. SAVE commits pending work to the database.

If the file already exists, the CREATE option forces SAVE to abort and produces an error message.
The REPLACE option replaces any existing file, or creates a new one if none exists.

The APPEND option adds this file to the end of any existing file, or creates a new one if none exists.
EXAMPLE The following saves the contents of the current buffer into a file named lowcost.sql:

save lowcost

SAVEPOINT
SEE ALSO COMMIT, ROLLBACK, SET TRANSACTION
FORMAT

SAVEPOINT savepoint;

DESCRIPTION A savepoint is a point within a transaction to which you may roll back. Savepoints
allow you to ROLLBACK portions of your current transaction. See ROLLBACK.

The first version shown here is typical of SQL*Plus. The purpose of SAVEPOINT is to be able to
assign a name to the beginning of a group of SQL statements and later, if necessary, roll back to that
name, thus undoing the results of just that group. Savepoints can be nested or sequenced, allowing
great control over recovery from errors. The idea here is to collect together a series of SQL statements
that make up one logical transaction, and hold the COMMIT until all the steps within it have been
completed successfully. An attempted step may fail, but you’ll want to be able to try it again without
having to undo everything else prior to it. Here is an example:

insert into COMFORT
values ('WALPOLE', '22-APR-04',50.1, 24.8, 0);

savepoint A;

insert into COMFORT
values ('WALPOLE', '27-MAY-04',63.7, 33.8, 0);

savepoint B;

insert into COMFORT
values ('WALPOLE', '07-AUG-04',83.0, 43.8, 0);

You can roll back just the last INSERT by returning to savepoint B:

rollback to savepoint B;

This shows that SQL statements, or groups of them, can be collected together and undone in sets
or singly. In a host program, or using PL/SQL or SQL*Plus, you may want to set up savepoints that you
can roll back to, based on the results of your most recent SQL statement or condition test. ROLLBACK
allows you to return to a specific step where you named a savepoint.

SAVEPOINT 1259

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1259

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If a function, a section of logic, or an attempted SQL statement fails, you can return the data in the
database back to the state it was in before the local step began. You can then try it again.

SAVEPOINT names must be unique to a transaction (defined by where it ends, with either a COMMIT
or an unconditional ROLLBACK) but do not have to be unique to all of your database objects. You can
give a SAVEPOINT the same name as a table, for instance (this might even result in more understandable
code if the SAVEPOINT had the name of the table being updated). Names for SAVEPOINTs follow object
naming conventions.

If you give a new SAVEPOINT the same name as a previous one, the new one replaces the earlier
one. The earlier one is lost, and you can no longer roll back to it.

Once a COMMIT or an unconditional ROLLBACK (not to a savepoint) is issued, all previous
SAVEPOINTs are erased. Recall that all DDL statements (such as DISCONNECT, CREATE TABLE,
CREATE INDEX, and so on) automatically issue an implicit COMMIT, and any severe failure (if the
program terminates abnormally or the computer goes down) will result in an automatic ROLLBACK.

SCAN (SQL*Plus)
See SET.

SCN_TO_TIMESTAMP
SEE ALSO ORA_ROWSCN, FLASHBACK QUERY
FORMAT

SCN_TO_TIMESTAMP (number)

DESCRIPTION SCN_TO_TIMESTAMP takes as an argument a number that evaluates to a system
change number (SCN) and returns the approximate timestamp associated with that SCN. The returned
value is of the TIMESTAMP datatype. This function is useful anytime you want to know the timestamp
associated with an SCN. For example, it can be used in conjunction with the ORA_ROWSCN pseudo-
column to associate a timestamp with the most recent change to a row.

SCORE
The SCORE function is used by CONTEXT indexes in Oracle Text to evaluate how well a text string
met the specified search criteria. You can display the score of an individual search; more often, the
score is compared to a threshold value. See Chapter 25.

SEGMENT
A segment is the physical storage for the space allocated to a table, index, or cluster. A table has one
segment that consists of all of its extents. Every index has one segment similarly defined. A cluster has
at least two segments, one for its data and one for its cluster key index.

SEGMENT HEADER BLOCK
The segment header block is the first block in the first extent of a segment.

SELECT (Form 1—SQL)
SEE ALSO COLLATION, CONNECT BY, DELETE, DUAL, FROM, GROUP BY, HAVING, INSERT,
JOIN, LOGICAL OPERATORS, ORDER BY, QUERY OPERATORS, SUBQUERY, SYNTAX OPERATORS,
UPDATE, WHERE

1260 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1260

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT
select::=

subquery::=

subquery_factoring_clause::=

select_list::=

SELECT (Form 1—SQL) 1261

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1261

subquery
for_update_clause

;

subquery_factoring_clause
SELECT

hint

DISTINCT

UNIQUE

ALL
select_list

FROM table_reference

,
where_clause hierarchical_query_clause group_by_clause

HAVING condition model_clause

UNION
ALL

INTERSECT

MINUS

(subquery)

order_by_clause

WITH query_name AS (subquery)

,

*

query_name

schema .
table

view

materialized view

.*

expr

AS
c_alias

,

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

table_reference::=

flashback_query_clause::=

query_table_expression::=

sample_clause::=

subquery_restriction_clause::=

1262 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1262

ONLY (query_table_expression)
flashback_query_clause t_alias

query_table_expression
flashback_query_clause t_alias

(join_clause)

join_clause

VERSIONS BETWEEN
SCN

TIMESTAMP

expr

MINVALUE
AND

expr

MAXVALUE

AS OF
SCN

TIMESTAMP
expr

query_name

schema . table

PARTITION (partition)

SUBPARTITION (subpartition)

sample_clause

sample_clause

@ dblink

view

materialized view

@ dblink

(subquery
subquery_restriction_clause

)

table_collection_expression

SAMPLE
BLOCK

(sample_percent)
SEED (seed_value)

WITH

READ ONLY

CHECK OPTION
CONSTRAINT constraint

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SELECT (Form 1—SQL) 1263

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1263

table_collection_expression::=

join_clause::=

inner_cross_join_clause::=

outer_join_clause::=

query_partition_clause::=

TABLE (collection_expression)
(+)

inner_cross_join_clause

outer_join_clause

table_reference

INNER
JOIN table_reference

ON condition

USING (column

,

)

CROSS

NATURAL
INNER JOIN table_reference

table_reference
query_partition_clause

outer_join_type JOIN

NATURAL
outer_join_type

JOIN

table_reference
query_partition_clause

ON condition

USING (column

,

)

PARTITION BY

expr

,

(expr

,

)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1264 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1264

outer_join_type::=

where_clause::=

hierarchical_query_clause::=

group_by_clause::=

rollup_cube_clause::=

grouping_sets_clause::=

grouping_expression_list::=

expression_list::=

WHERE condition

FULL

LEFT

RIGHT

OUTER

START WITH condition
CONNECT BY

NOCYCLE
condition

GROUP BY

expr

rollup_cube_clause

grouping_sets_clause

,

HAVING condition

ROLLUP

CUBE
(grouping_expression_list)

GROUPING SETS (
rollup_cube_clause

grouping_expression_list

,

)

expression_list

,

expr

,

(expr

,

)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

model_clause::=

cell_reference_options::=

returns_rows_clause::=

reference_model::=

main_model::=

model_column_clauses::=

model_column::=

SELECT (Form 1—SQL) 1265

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1265

MODEL
cell_reference_options return_rows_clause

reference_model
main_model

IGNORE

KEEP
NAV UNIQUE

DIMENSION

SINGLE REFERENCE

RETURN
UPDATED

ALL
ROWS

REFERENCE reference_model_name ON (subquery)

model_column_clauses
cell_reference_options

MAIN main_model_name

model_column_clauses
cell_reference_options

model_rules_clause

query_partition_clause
c_alias

DIMENSION BY (model_column

,

) MEASURES (model_column

,

)

expr

AS
c_alias

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1266 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1266

model_rules_clause::=

cell_assignment::=

single_column_for_loop::=

multi_column_for_loop::=

measure_column [

condition

expr

single_column_for_loop

,

multi_column_for_loop

]

FOR dimension_column

IN (
literal

,

subquery
)

LIKE pattern
FROM literal TO literal

INCREMENT

DECREMENT
literal

RULES

UPSERT

UPDATE

AUTOMATIC

SEQUENTIAL
ORDER

ITERATE (number)
UNTIL (condition)

(

UPDATE

UPSERT
cell_assignment

order_by_clause
= expr

,

)

FOR (dimension_column

,

) IN (
(literal

,

)

,

subquery
)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:36 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SELECT (Form 1—SQL) 1267

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1267

order_by_clause::=

for_update_clause::=

DESCRIPTION SELECT retrieves rows from one or more tables or views, either as a command, or
as a subquery in another SQL command (within limitations), including SELECT, INSERT, UPDATE, and
DELETE. ALL means that all rows that satisfy the conditions will be returned (this is the default). DISTINCT
means that only rows that are unique will be returned; any duplicates will be weeded out first.

An * (asterisk) by itself results in all columns from all tables in the FROM clause being displayed.
table.* means that all columns from this table will be displayed. An asterisk by itself cannot be combined
with any other columns, but a table.* can be followed by column names and expressions, including
ROWID.

select_list can include any form of a column. This could be a column name, a literal, a mathematical
computation, a function, or several functions combined. The most common version is a simple column
name, or a column name prefixed by a table name or table alias. c_alias is a renaming of the column
or expression. The column alias can be preceded by the word AS. The column alias will become the
column heading in the display, and may be referenced by the COLUMN, TTITLE, and BTITLE commands
in SQL*Plus. The column alias may be used in the ORDER BY clause. If it is more than one word, or will
contain characters that are neither numbers nor letters, it must be enclosed in double quotation marks.

schema, table, and dblink denote the table or view from which the rows will be drawn. schema and
dblink are optional, and their absence makes Oracle default to the current user. However, specifying the
user in a query may reduce Oracle’s overhead and make the query run more quickly. A subquery can
be specified in the FROM clause. Oracle will execute the subquery and the resulting rows will be treated
as if they came from a view.

A table t_alias here will rename the table for this query. This alias, unlike the expression alias, can
be referenced elsewhere within the SELECT statement itself, for instance as a prefix to any column name
coming from that table. In fact, if a table has an alias, the alias must be used whenever a column from
that table has a table name prefix. Tables are typically aliased when two tables with long names are

FOR UPDATE
OF

schema . table

view
.

column

,

NOWAIT

WAIT integer

ORDER
SIBLINGS

BY

expr

position

c_alias

ASC

DESC

NULLS FIRST

NULLS LAST

,

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

joined in a query, and many of their columns have the same name, requiring them to be unambiguously
named in the SELECT clause. Aliases are also commonly used in correlated subqueries, and when a
table is being joined to itself.

condition may be any valid expression that tests true or false. It can contain functions, columns
(from these tables), and literals. position allows the ORDER BY clause to identify the expressions based
on their relative position in the SELECT clause, rather than on their names. This is valuable for complicated
expressions. You should discontinue the use of ordinal positions in ORDER BY clauses; column aliases
may be used in their place. The current SQL standard does not include support for ordinal positions in
ORDER BY clauses, and Oracle may not support them in the future. ASC and DESC specify whether it
is an ascending or descending sequence for each expression in the ORDER BY clause. See COLLATION
for a discussion of what these sequences are.

column is a column in a table listed in the FROM clause. This cannot be an expression, but must
be a real column name. NOWAIT means that a SELECT … FOR UPDATE attempt that encounters a
locked row will terminate and return immediately to the user, rather than wait and attempt to update
the row again in a few moments.

The FOR UPDATE OF clause puts locks on the rows that have been selected. SELECT … FOR
UPDATE OF should be followed immediately by an UPDATE … WHERE command, or, if you decide
not to update anything, by a COMMIT or ROLLBACK. The FOR UPDATE OF clause also includes the
actions of INSERT and DELETE. Once you have locked a row, other users cannot update it until you
free it with a COMMIT command (or AUTOCOMMIT) or ROLLBACK. SELECT … FOR UPDATE OF
cannot include DISTINCT, GROUP BY, UNION, INTERSECT, MINUS, or any group function such
as MIN, MAX, AVG, or COUNT. The columns named have no effect and are present for compatibility
with other dialects of SQL. Oracle will lock only the tables that appear in the FOR UPDATE clause. If
you don’t have an OF clause listing any tables, Oracle will lock all the tables in the FROM clause for
update. All the tables must be on the same database, and if there are references to a LONG column or
a sequence in the SELECT, the tables must be on the same database as the LONG or the sequence.

If you are querying from a partitioned table, you can list the name of the partition you are querying
as part of the FROM clause of the query. See Chapter 17.

The other individual clauses in the SELECT statement are all described under their own names
elsewhere in this reference. The AS OF {TIMESTAMP|SCN} clause for flashback queries was introduced
in Oracle9i Release 2. The VERSIONS BETWEEN clause for flashback version queries is available as of
Oracle Database 10g.
OTHER NOTES Clauses must be placed in the order shown, except for these:

■ CONNECT BY, START WITH, GROUP BY, and HAVING, which may be in any order in
relation to each other.

■ ORDER BY and FOR UPDATE OF, which may be in any order in relation to each other.

SELECT (Form 2—Embedded SQL)
SEE ALSO CONNECT, DECLARE CURSOR, DECLARE DATABASE, EXECUTE, FETCH, FOR,
PREPARE, UPDATE (Form 1), WHENEVER, Programmer’s Guide to the Oracle Precompilers
FORMAT

EXEC SQL [AT { db_name | :host_variable }]
SELECT select_list INTO
:host_variable [[INDICATOR] :indicator_variable]
[, :host_variable [[INDICATOR] :indicator_variable]]...
FROM table_list [WHERE condition]
{ [START WITH condition] CONNECT BY condition
| CONNECT BY condition [START WITH condition]

1268 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1268

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

| GROUP BY expr [, expr]... [HAVING condition] }
[[START WITH condition] CONNECT BY condition
| CONNECT BY condition [START WITH condition]
| GROUP BY expr [, expr]... [HAVING condition]]...
[WITH READ ONLY | WITH CHECK OPTION]
[{ UNION | UNION ALL | INTERSECT | MINUS } SELECT command]
[ORDER BY

{ expr | position } [ASC | DESC]
[, { expr | position } [ASC | DESC]]...

| FOR UPDATE
[OF [[schema.] { table. | view. | materialized view. }] column
[, OF [[schema.] { table. | view. | materialized view. }] column]...] [NOWAIT]]

[ORDER BY
{ expr | position } [ASC | DESC]
[, { expr | position } [ASC | DESC]]...

| FOR UPDATE
[OF [[schema.] { table. | view. | materialized view. }] column
[, OF [[schema.] { table. | view. | materialized view. }] column]...]
[NOWAIT]]...

DESCRIPTION See the description of the various clauses in SELECT (Form 1). The following are
the elements unique to embedded SQL:

■ AT database optionally names a database from a previous CONNECT statement, for a database
name from a previous DECLARE DATABASE statement.

■ INTO :host_variable [,:host_variable] is the list of host variables into which the results of the
SELECT statement will be loaded. If any variable in this list is an array, all of the variables in
the list must be arrays, though they need not all be the same size arrays.

■ The WHERE clause may reference nonarray host variables.

■ The SELECT clause may reference host variables anywhere a constant would have been used.

You can use the embedded SQL SELECT with variable arrays to return multiple rows with a single
FETCH. You also can use it to either DECLARE CURSOR or PREPARE statements for use with a later FETCH,
and may include the FOR UPDATE OF clause. The later UPDATE statement can then reference the
columns named in the FOR UPDATE OF clause using its own CURRENT OF clause. See DECLARE
CURSOR and UPDATE (Form 2).

If the embedded SELECT returns no rows, SQLCODE is set to +100, and the host variables are left
unchanged. In that case, WHENEVER lets you change the program flow.

All rows that meet the SELECT criteria are locked at the OPEN. COMMIT releases the locks, and
no further FETCHing is permitted. This means you must FETCH and process all of the rows you wish
to update before you issue a COMMIT.

NOTE
See the Programmer’s Guide to the Oracle Precompilers for a full list
of all commands. This reference does not contain all of the possible
precompiler commands.

SELECT … INTO
SEE ALSO %ROWTYPE, %TYPE, DECLARE VARIABLE, FETCH

SELECT … INTO 1269

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1269

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:38 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

SELECT expression [,expression]...
INTO {variable [,variable]... | record}
FROM [user.]table [,[user.]table]...

[where...][group by... [having...]] [order by...];

DESCRIPTION This is not the form of the SELECT statement used in DECLARE CURSOR. This form
utilizes the implicit cursor named SQL, executes within an execution section of a block (between BEGIN
and END), and copies the values from a single row being returned into either a string of named variables
or a record whose structure is declared by %ROWTYPE to be just like the columns being selected. If the
form that uses variables is used, they must each be DECLAREd and have compatible datatypes with those
being retrieved. The order in which they appear in the INTO clause must correspond to the order of the
associated columns in the SELECT clause.

This SELECT may be used in a loop with PL/SQL variables appearing in the WHERE clause (or
even acting like constants in the SELECT clause), but each time the SELECT executes, it must return
only one row. If it produces more than one row, the TOO_MANY_ROWS exception will be RAISEd,
and SQL%ROWCOUNT will be set to 2 (see EXCEPTION for details). SQL%FOUND will be TRUE.

If it produces no rows, the NO_DATA_FOUND exception is RAISEd, and SQL%ROWCOUNT will
be set to 0. SQL%FOUND will be FALSE.

SEQUENCE
A sequence is a database object used to generate unique integers for use as primary keys. See CREATE
SEQUENCE.

SERVICE NAME
A service name, found in the tnsnames.ora file, is an alias for a database accessed by Oracle Net. Within
the tnsnames.ora file, the service name is mapped to a host, port, and instance. You can therefore change
the service name for a database without changing the database name, and you can move a database to
a different host without changing its service name.

SESSIONTIMEZONE
SEE ALSO Chapter 10
FORMAT

SESSIONTIMEZONE

DESCRIPTION SESSIONTIMEZONE returns the value of the current session’s time zone.
EXAMPLE

select SESSIONTIMEZONE from DUAL;

SET (SQL*Plus)
SEE ALSO SET TRANSACTION, SHOW, Chapter 6
FORMAT

SET feature value

where feature and value are from the following list. The default values are underlined.

1270 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1270

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ APPI[NFO]{ON|OFF|text} enables the registering of command files via the DBMS_APPLICATION_
INFO package. The registered name appears in the Module column of the V$SESSION dynamic
performance table.

■ ARRAY[SIZE] {15|n} sets the size of the batch of rows that SQL*Plus will fetch at one time.
The range is 1 to 5000. Larger values improve the efficiency of queries and subqueries where
many rows will be fetched but use more memory. Values above 100 generally do not produce
much improvement. ARRAYSIZE has no other effect on the workings of SQL*Plus.

■ AUTO[COMMIT]{ON|OFF|IMM[EDIATE]|n} makes SQL immediately commit any pending
changes to the database upon the completion of every SQL command. n allows you to specify
the number of commands after which a commit will occur. OFF stops automatic committing,
and you must instead commit changes intentionally with the COMMIT command. Many
commands, such as QUIT, EXIT, CONNECT, and all DDL commands will cause a COMMIT
of any pending changes.

■ AUTOP[RINT] {ON|OFF} sets whether SQL*Plus automatically displays bind variables used
in a PL/SQL block or EXECUTEd procedure.

■ AUTORECOVERY [ON|OFF] tells the RECOVER command to automatically apply the default
filenames of archived redo log files needed during recovery.

■ AUTOT[RACE] {ON|OFF|TRACE[ONLY]} [EXP[LAIN]] [STAT[ISTICS]] allows you to see the
execution path for a query after the query has completed. To see the execution path, you first
must have the PLAN_TABLE table created in your schema (it can be created by running the
utlxplan.sql file in the /rdbms/admin directory under your Oracle software directory).

■ BLO[CKTERMINATOR] {.|c|ON|OFF} sets the symbol used to denote the end of a PL/SQL
block. This cannot be a letter or a number. To execute the block, use RUN or / (slash).

■ CMDS[EP] {;|c|ON|OFF} sets the character used to separate multiple SQL*Plus commands
entered on a line. ON and OFF control whether or not multiple commands may be entered
on a line.

■ COLSEP {_|text} sets a value to be printed between columns.

■ COM[PATIBILITY]{V7|V8|NATIVE} specifies the version of Oracle to which you are currently
connected.

■ CON[CAT] {.|c|ON|OFF} sets a symbol that may be used to terminate or delimit a user
variable that is followed by a symbol, character, or word that would otherwise be interpreted
as a part of the user variable name. Setting CONCAT ON resets its value to a period (.).

■ COPYC[OMMIT] {0|n} commits rows to the destination database on a cycle of n batches
of rows (the number of rows in a batch is SET by ARRAYSIZE). Valid values are 0 to 5000.
If value is 0, a commit will occur only at the end of a COPY operation.

■ COPYTYPECHECK {ON|OFF} enables the suppression of datatype checks when using the
COPY command.

■ DEF[INE] {&|c|ON|OFF} determines whether SQL*Plus will look for and substitute commands
for substitution variables and load them with their DEFINEd values.

■ DESCRIBE [DEPTH {1|n|ALL}][LINENUM {ON|OFF}][INDENT {ON|OFF}] sets the depth
of the level to which you can recursively describe an object. The valid range of the DEPTH
clause is from 1 to 50.

■ ECHO {ON|OFF} SQL*Plus echoes (displays) commands to the screen as they execute from
a start file. OFF makes SQL*Plus execute them without displaying them. The results of the
commands, on the other hand, are controlled by TERMOUT.

SET (SQL*Plus) 1271

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1271

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ EDITF[ILE] file_name[.ext] sets the default filename created by the EDIT command.

■ EMB[EDDED] {ON|OFF} allows a new report in a series of reports to begin anywhere on a page,
just after the previous one ended. OFF forces the new report to start at the top of a new page.

■ ESC[APE] {\|c|ON|OFF} defines the character you enter as the escape character. OFF undefines
the escape character. ON enables the escape character. ON changes the value of c back to the
default, \. You can use the escape character before the substitution character (set through SET
DEFINE) to indicate that SQL*Plus should treat the substitution character as an ordinary character
rather than as a request for variable substitution.

■ FEED[BACK] {6|n|ON|OFF} makes SQL*Plus show “records selected” after a query if at least
n records are selected. ON and OFF turn this display on and off, respectively. SET FEEDBACK
to 0 is the same as OFF.

■ FLAGGER {OFF|ENTRY |INTERMED[IATE]|FULL} sets the FIPS level for SQL92 compliance.

■ FLU[SH] {ON|OFF} is used when a start file can be run without needing any display or
interaction until it has completed. OFF lets the operating system avoid sending output to the
display. ON restores output to the user’s display. OFF may improve performance.

■ HEA[DING] {ON|OFF} suppresses the headings, both text and underlines, that normally appear
above columns. ON allows them to be displayed.

■ HEADS[EP] { | |c|ON|OFF} defines the character you enter as the heading separator character.
ON and OFF turn heading separation on and off, respectively.

■ INSTANCE [instance_path|LOCAL] changes the default instance for your session to the
specified instance path. Using the SET INSTANCE command does not connect to a database.
The default instance is used for commands when no instance is specified.

■ LIN[ESIZE] {80|n} sets the line width, the total number of characters on a line that can be
displayed before wrapping down to the next line. This number is also used when SQL*Plus
calculates the proper position for centered or right-aligned titles. The maximum value of n
is 999. In iSQL*Plus, the default is 150.

■ LOBOF[FSET] {n|1} sets the starting position from which CLOB and NCLOB data is retrieved
and displayed.

■ LOGSOURCE [pathname] specifies the location from which archive logs are retrieved during
recovery. The default value is set by the LOG_ARCHIVE_DEST initialization parameter in the
Oracle initialization file. Using the SET LOGSOURCE command without a pathname restores
the default location.

■ LONG {80|n} is the maximum width for displaying or copying (spooling) LONG, CLOB, and
NCLOB values. n may range from 1 to 2GB.

■ LONGC[HUNKSIZE] {80|n} sets the size, in characters, of the increments in which SQL*Plus
retrieves a LONG, CLOB, or NCLOB value.

■ MARK[UP] HTML [ON|OFF] [HEAD text] [BODY text] [TABLE text] [ENTMAP {ON|OFF}]
[SPOOL {ON|OFF}] [PRE[FORMAT] {ON|OFF}] outputs HTML marked-up text. SET MARKUP
only specifies that SQL*Plus output will be HTML encoded. You must use SET MARKUP HTML
ON SPOOL ON and the SQL*Plus SPOOL commands to create and name a spool file, and to
begin writing HTML output to it. SET MARKUP has the same options and behavior as SQLPLUS
-MARKUP.

■ NEWP[AGE] {1|n|NONE} sets the number of blank lines to be printed between the bottom
of one page and the top title of the next. A 0 (zero) sends a form feed at the top of each page.
If the output is being displayed, this will usually clear the screen.

1272 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1272

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SET (SQL*Plus) 1273

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1273

■ NULL text sets the text that will be substituted when SQL*Plus discovers a null value. NULL
without text displays blanks.

■ NUMF[ORMAT] format sets the default number format for displaying number data items.
See NUMBER FORMATS for details.

■ NUM[WIDTH] {10|n} sets the default width for number displays.

■ PAGES[IZE] {14|n} sets the number of lines per page.

■ PAU[SE] {ON|OFF|text} makes SQL*Plus wait for you to press RETURN after it displays each
page of output. OFF means no pause occurs between pages of display. text is the message
SQL*Plus will display at the bottom of the screen as it waits for you to press the RETURN key.
PAUSE will wait before the very first page is displayed; you’ll have to press RETURN to see it.

■ RECSEP {WR[APPED]|EA[CH]|OFF} specifies the row wrapping rules for query results. Each
row SQL*Plus brings back can be separated from other rows by a character, defined by
RECSEPCHAR. By default, the character is a space, and this only happens for records (and
therefore columns) that wrap.

■ RECSEPCHAR works with RECSEP. The default is a space, but you can set it to another symbol
if you wish.

■ SERVEROUT[PUT] {ON|OFF} [SIZE n] [FOR[MAT] {WRA[PPED] | WOR[D_WRAPPED]|
TRU[NCATED]}] allows you to display the output of PL/SQL procedures (from the DBMS_
OUTPUT package—see the Application Developer’s Guide). WRAPPED, WORD_WRAPPED,
TRUNCATED, and FORMAT determine the formatting of the output text.

■ SHIFT[INOUT] {VIS[IBLE]|INV[ISIBLE]} allows correct alignment for terminals that display
shift characters. Use VISIBLE for terminals that display shift characters as a visible character
(for example, a space or a colon). INVISIBLE is the opposite and does not display any shift
characters.

■ SHOW[MODE] {ON|OFF} makes SQL*Plus display the old and new settings of a SET feature
and its value when it is changed. OFF stops the display of both of these.

■ SQLBL[ANKLINES] {ON|OFF} controls whether SQL*Plus allows blank lines within a SQL
command or script. ON interprets blank lines and new lines as part of a SQL command or script.
OFF, the default value, does not allow blank lines or new lines in a SQL command or script.

■ SQLC[ASE] {MIX[ED]|LO[WER]|UP[PER]} converts all the text, including literals and identifiers,
in either SQL or PL/SQL blocks, before it is executed by Oracle. MIXED leaves case just as it is
typed. LOWER converts everything to lowercase; UPPER converts it all to uppercase.

■ SQLCO[NTINUE] {> |text} sets the character sequence to be displayed as a prompt for
a long line that must continue on the next line. When you enter a - (hyphen) at the end of a
SQL*Plus command line, the SQLCONTINUE symbols or text will prompt you from the left
of the next screen line.

■ SQLN[UMBER] {ON|OFF}tells SQL*Plus that lines of SQL beyond the first one you enter will have
line numbers as prompts. If this is OFF, the SQLPROMPT will appear only on additional lines.

■ SQLPLUSCOMPAT[IBILITY] {x.y[.z]} sets the behavior or output format of VARIABLE to that
of the release or version specified by x.y[.z], where x is the version number, y is the release
number, and z is the update number. In later releases, SQLPLUSCOMPATIBILITY may affect
features other than VARIABLE. Setting the value of SQLPLUSCOMPATIBILITY to a version
less than 9.0.0 will result in the VARIABLE definition of NCHAR or NVARCHAR2 datatypes
reverting to Oracle8i behavior, whereby the size of the variable is in bytes or characters
depending on the chosen national character set.

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:40 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ SQLPRE[FIX] {#|c} sets the SQL*Plus prefix character. While you are entering a SQL
command or PL/SQL block, you can enter a SQL*Plus command on a separate line, prefixed
by the SQL*Plus prefix character. SQL*Plus will execute the command immediately without
affecting the SQL command or PL/SQL block that you are entering. The prefix character must
be a nonalphanumeric character.

■ SQLP[ROMPT] {SQL>|text} sets the SQL*Plus command prompt.

■ SQLT[ERMINATOR] {;|c|ON|OFF} sets the character used to end and execute SQL commands
to c.

■ SUF[FIX] {SQL|text} sets the default file extension that SQL*Plus uses in commands that refer
to command files. SUFFIX does not control extensions for spool files.

■ TAB {ON|OFF} determines how SQL*Plus formats white space in terminal output. OFF uses
spaces to format white space in the output. ON uses the tab character. Tab settings are every
eight characters.

■ TERM[OUT] {ON|OFF}enables or suppresses the display so that you can spool output from
a command file without seeing the output on the screen. ON displays the output.

■ TI[ME] {ON|OFF} displays the current time before each command prompt. OFF suppresses
the time display.

■ TIMI[NG] {ON|OFF} displays timing statistics on each SQL command or PL/SQL block run.
OFF suppresses timing of each command.

■ TRIM[OUT] {ON|OFF} removes blanks at the end of each line, improving performance
especially when you access SQL*Plus from a slow communications device. OFF allows
SQL*Plus to display trailing blanks.

■ TRIMS[POOL] {ON|OFF} removes blanks at the end of each line. OFF allows SQL*Plus to
include trailing blanks.

■ UND[ERLINE] {-|c|ON|OFF} sets the character used to underline column headings in
SQL*Plus reports.

■ VER[IFY] {ON|OFF} controls whether SQL*Plus lists the text of a SQL statement or PL/SQL
command before and after SQL*Plus replaces substitution variables with values. ON lists the
text; OFF suppresses the listing.

■ WRA[P] {ON|OFF} controls whether SQL*Plus truncates the display of a SELECTed row
if it is too long for the current line width. OFF truncates the SELECTed row; ON allows the
SELECTed row to wrap to the next line.

DESCRIPTION SET turns a SQL*Plus feature ON or OFF or to a certain value. All of these features
are changed with the SET command and displayed with the SHOW command. SHOW will display a
particular command if its name follows the word SHOW, or all commands if SHOW is entered by itself.

SET (function)
SEE ALSO IS A SET, Chapter 34
FORMAT

SET (nested_table)

DESCRIPTION SET converts a nested table into a set by eliminating duplicates. The function returns
a nested table whose elements are distinct from one another. The returned nested table is of the same
type as the input nested table.

1274 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1274

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:41 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SET CONDITION
A set condition is a logical expression containing a query; for example, “Name IN (select. . .).” The name
derives from the idea that the query condition will produce a set of records.

SET CONSTRAINTS
SEE ALSO INTEGRITY CONSTRAINT
FORMAT

SET { CONSTRAINT | CONSTRAINTS }
{ constraint [, constraint]... | ALL }
{ IMMEDIATE | DEFERRED };

DESCRIPTION SET CONSTRAINTS DEFERRED tells Oracle not to check the validity of a constraint
until the transaction is committed. This allows you to temporarily defer integrity checking of data. Deferred
constraints are usually used when performing DML against multiple related tables when you cannot
guarantee the order of the transactions. You must either own the table modified by the constraint or
have SELECT privilege on the table.

The default setting is SET CONSTRAINTS IMMEDIATE, in which case the constraints are checked
as soon as a record is inserted into the table.

SET OPERATOR
The set operator is either UNION, INTERSECT, or MINUS. See also QUERY OPERATORS.

SET ROLE
SEE ALSO ALTER USER, CREATE ROLE, Chapter 18
FORMAT

SET ROLE
{ role [IDENTIFIED BY password] [, role [IDENTIFIED BY password]]...
| ALL [EXCEPT role [, role]...]
| NONE };

DESCRIPTION SET ROLE enables or disables roles granted to a user for the current SQL session.
The first option lets the user enable specific roles, optionally giving a password if the role has one (see
CREATE ROLE). The second option lets the user enable ALL roles EXCEPT for specific ones; these roles
must be directly granted to the user, not roles granted through other roles. The ALL option does not
enable roles with passwords. The third option, NONE, disables all roles for the current session.

SET TRANSACTION
SEE ALSO COMMIT, ROLLBACK, SAVEPOINT, TRANSACTION, Chapter 46
FORMAT

SET TRANSACTION
{ { READ { ONLY | WRITE }
| ISOLATION LEVEL { SERIALIZABLE | READ COMMITTED }
| USE ROLLBACK SEGMENT rollback_segment }
[NAME 'test']

| NAME 'test' } ;

SET TRANSACTION 1275

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1275

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:42 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION SET TRANSACTION starts a transaction. The standard SQL transaction guarantees
statement-level read consistency, making sure that the data from a query is consistent while the statement
is executing. But some transactions need a stronger guarantee that a series of SELECT statements, accessing
one or more tables, will see a consistent snapshot of all the data in one instant in time. SET TRANSACTION
READ ONLY specifies this stronger read consistency. No changes to the queried data by other users
will affect the transaction’s view of the data. In a read-only transaction, you can use only the SELECT,
LOCK TABLE, SET ROLE, ALTER SESSION, and ALTER SYSTEM commands.

For transactions that include INSERT, UPDATE, or DELETE commands, Oracle assigns a rollback
segment to the transaction. SET TRANSACTION USE ROLLBACK SEGMENT specifies that the current
transaction will use a specific rollback segment.

SET TRANSACTION must be the first SQL statement in a transaction. Placing a COMMIT just before
SET TRANSACTION assures that this is true. The COMMIT at the end releases the snapshot of the data.
This is important because the database needs to release the resources it has set aside to maintain consistency.

SGA
See SYSTEM GLOBAL AREA (SGA).

SHARED POOL
A shared pool is an area in the Oracle SGA that contains both the dictionary cache and a shared area
for the parsed versions of all SQL commands within the database. Its size is determined by the SHARED_
POOL_SIZE parameter in the database’s initialization parameter file.

SHARED SERVER
Oracle Shared Server, formerly known as the multithreaded server (MTS), supports connections to Oracle
via dispatcher processes and shared server processes. Dispatcher processes accept connection requests
from users, and shared server processes communicate with the database. Shared Server allows many
users to share a small number of shared server processes, potentially reducing the amount of memory
required to support the database’s users. Shared Server is most effective when there are many users
initiating connections, and when the application users frequently interrupt their data input activity.

SHOW (SQL*Plus)
SEE ALSO SET
FORMAT

SHO[W] { option }

option may be any parameter set via the SET command or the following:

system_variable
ALL
BTI[TLE]
ERR[ORS] [{ FUNCTION | PROCEDURE | PACKAGE | PACKAGE BODY |

TRIGGER| VIEW | TYPE | TYPE BODY | DIMENSION | JAVA CLASS } [schema.]name]
LNO
PARAMETERS [parameter_name]
PNO
RECYC[LEBIN] [original_name]
REL[EASE]
REPF[OOTER]

1276 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1276

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:43 PM

Color profile: Generic CMYK printer profile
Composite Default screen

REPH[EADER]
SGA
SPOO[L]
SQLCODE
TTI[TLE]
USER

DESCRIPTION SHOW displays the value of a feature of SET, or ALL features of SET, or of the other
SQL*Plus items. More than one of these (including more than one SET feature) can follow the word
SHOW, and each will be displayed on a separate line. The rows returned will be ordered alphabetically.
The features that can be shown are:

■ system_variable is any variable set with the SET command.

■ BTI[TLE] displays the current BTITLE definition.

■ ERR[ORS] shows the latest errors encountered with the compilation of a stored object.

■ LNO shows the current line number (the line in the current page being displayed).

■ PARAMETERS shows the setting of a specific parameter, or all if none is specified.

■ PNO displays the page number.

■ RECYC[LEBIN] shows the names of objects in the recycle bin that can be reverted with the
FLASHBACK TABLE BEFORE DROP command.

■ REL[EASE] gives the release number of this version of Oracle.

■ REPF[OOTER] shows the report footer.

■ REPH[EADER] shows the report header.

■ SGA shows the current memory allocations for the SGA.

■ SPOO[L] tells whether output is being spooled (ON or OFF). See SPOOL.

■ SQLCODE shows the error message number of the most recent Oracle error.

■ TTI[TLE] displays the current TTITLE definition.

■ USER shows the user’s ID.

SHOWMODE (SQL*Plus)
See SET.

SHUTDOWN
SEE ALSO STARTUP, RECOVER, Chapter 46
FORMAT

SHUTDOWN [ABORT|IMMEDIATE|NORMAL|TRANSACTIONAL [LOCAL]]

DESCRIPTION SHUTDOWN shuts down an instance, optionally closing and dismounting it. If
ABORT is used, uncommitted transactions are not rolled back. NORMAL (the default) prohibits further
connections but waits for all current users to disconnect from the database. IMMEDIATE does not wait
for current calls to complete or users to disconnect. TRANSACTIONAL performs a shutdown while
allowing active transactions to complete. TRANSACTIONAL LOCAL specifies a transactional shutdown
in the local instance only.

You must be connected AS SYSDBA or AS SYSOPER to use SHUTDOWN.

SHUTDOWN 1277

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1277

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:44 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1278

SIGN
SEE ALSO +, PRECEDENCE, Chapter 9
FORMAT

SIGN(value)

DESCRIPTION SIGN equals 1 if value is positive, –1 if negative, 0 if zero.
EXAMPLE

SIGN(33) = 1
SIGN(-.6) = -1
SIGN(0) = 0

SIN
SEE ALSO ACOS, ASIN, ATAN, ATAN2, COS, COSH, NUMBER FUNCTIONS, SINH, TAN,
Chapter 9
FORMAT

SIN(value)

DESCRIPTION SIN returns the sine of an angle value expressed in radians.
EXAMPLE

select SIN(30*3.141593/180) Sine -- sine of 30 degrees in radians
from DUAL;

SINH
SEE ALSO ACOS, ASIN, ATAN, ATAN2, COS, NUMBER FUNCTIONS, SIN, TAN, Chapter 9
FORMAT

SINH(value)

DESCRIPTION SINH returns the hyperbolic sine of an angle value.

SMON
The System Monitor Process is one of the Oracle background processes used to perform recovery and
to clean up unused temporary segments. See BACKGROUND PROCESS.

SOUNDEX
SEE ALSO LIKE, Chapters 7 and 25
FORMAT

SOUNDEX(string)

DESCRIPTION SOUNDEX finds words that SOUND like an EXample string. SOUNDEX makes
certain assumptions about how letters and combinations of letters are usually pronounced. The two
words being compared must begin with the same letter. You can perform SOUNDEX searches of
individual words within text strings in CONTEXT indexes.
EXAMPLE

select LastName, FirstName, Phone from ADDRESS
where SOUNDEX(LastName) = SOUNDEX('SEPP');

1278 Part IX: Alphabetical Reference

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

LASTNAME FIRSTNAME PHONE
------------------------- ------------------------- ------------
SZEP FELICIA 214-555-8383
SEP FELICIA 214-555-8383

SPACE (SQL*Plus)
See SET.

SPOOL (SQL*Plus)
SEE ALSO SET, Chapter 6
FORMAT

SPO[OL] [file[.ext][CRE[ATE]|REP[LACE]|APP[END]]|OFF|OUT]

DESCRIPTION SPOOL starts or stops spooling (copying) of SQL*Plus output to a host system file
or the system printer. SPOOL file makes SQL*Plus spool all output to the named file. If the file type is
not specified, SPOOL adds a default, similar to what SAVE does, usually .lst, but with some variation
by host. OFF stops spooling. OUT stops spooling and sends the file to the printer. REPLACE replaces
the contents of an existing file with the same name. To spool output to a file without displaying it, SET
TERMOUT OFF in the start file prior to the SQL statement, but before the SPOOL command. SPOOL
by itself shows the name of the current (or most recent) spool file.

SQL
SQL (Structured Query Language) is the ANSI industry-standard language, used to manipulate information
in a relational database such as Oracle. SQL is formally pronounced “sequel,” although common usage
also pronounces it “S.Q.L.”

SQL CURSOR
SEE ALSO %FOUND, %ISOPEN, %NOTFOUND, %ROWCOUNT, Chapter 29
DESCRIPTION SQL is the name of the cursor opened implicitly anytime the SQL statement
being processed is not part of an explicitly named and opened cursor (see DECLARE). There is only
one of these cursors at any time. The cursor attributes %FOUND and %NOTFOUND can be tested
by checking SQL%FOUND and SQL%NOTFOUND before or after an INSERT, UPDATE, or DELETE
(which are never associated with an explicit cursor) or a single-row SELECT that happened to be executed
without an explicit cursor.

See %FOUND for details on these tests. See %ROWCOUNT for details on the values this attribute
has under different conditions. SQL%ISOPEN always evaluates to FALSE because Oracle closes the SQL
cursor automatically after executing the SQL statement.

SQL*LOADER
SQL*LOADER is a utility for loading data into an Oracle database. See SQLLDR and Chapter 21.

SQL*Plus
See SQLPLUS.

SQLCASE (SQL*Plus)
See SET.

SQLCASE (SQL*Plus) 1279

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1279

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQLCODE
SEE ALSO EXCEPTION, SQLERRM
FORMAT

variable := SQLCODE

DESCRIPTION SQLCODE is an error function that returns the latest error number, but outside of
an exception handler (see EXCEPTION) always returns 0. This is because the occurrence of an exception
(that is, when SQLCODE would be nonzero) is expected to immediately transfer control to the EXCEPTION
part of the PL/SQL block. Once there, SQLCODE can be tested for its value, or used to assign a value
to a variable.

SQLCODE cannot be used as a part of a SQL statement (such as to insert the value of the error
code into an error table). However, you can set a variable equal to SQLCODE, and then use the
variable in a SQL statement:

sql_error := sqlcode;
insert into PROBLEMLOG values (sql_error);

SQLCONTINUE (SQL*Plus)
See SET.

SQLERRM
SEE ALSO EXCEPTION, EXCEPTION_INIT, PRAGMA, SQLCODE
FORMAT

SQLERRM[(integer)]

DESCRIPTION Without integer supplied, SQLERRM returns the error message related to the
current SQLCODE. With an integer supplied, it returns the error message related to that integer value.
Like SQLCODE, this function cannot be used directly in a SQL statement, but can be used in an
assignment:

error_message := sqlerrm;

or to retrieve the error message associated with the error code 1403:

error_message := sqlerrm(1403);

Outside of an exception handler (see SQLCODE), this function without an integer argument will
always return “normal, successful completion.” In an exception handler, you will get one of these
messages:

■ The message associated with an Oracle error

■ The words “User-defined exception” for an explicitly raised user exception where you did
not assign a message text

■ A user-defined message text, loaded using the PRAGMA EXCEPTION_INIT

SQLLDR
SEE ALSO Chapter 21
FORMAT The following are the command-line parameters for the SQLLDR command:

1280 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1280

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1281

Userid Username and password for the load, separated by a slash.

Control Name of the control file.

Log Name of the redo log file.

Bad Name of the bad file.

Data Name of the datafile.

Discard Name of the discard file.

Discardmax Maximum number of rows to discard prior to stopping the load. Default is to
allow all discards.

Skip Number of logical rows in the input file to skip prior to starting to load data.
Usually used during reloads from the same input file following a partial load.
Default is 0.

Load Number of logical rows to load. Default is all rows.

Errors Number of errors to allow. Default is 50.

Rows Number of rows to commit at a time. Use this parameter to break up the transaction
size during the load. Default for conventional path loads is 64, and for Direct Path
loads is all rows.

Bindsize Size of conventional path bind array, in bytes. Default is operating system
dependent.

Silent Y/N flag to suppress messages during the load.

Direct Uses Direct Path loading. Default is FALSE.

Parfile Name of the parameter file that contains additional load parameter specifications.

Parallel Performs parallel loading. Default is FALSE.

File File to allocate extents from (for parallel loading).

Skip_Unusable_Indexes Allows loads into tables that have indexes in unusable states. Default is FALSE.

Skip_Index_Maintenance Stops index maintenance for Direct Path loads, leaving them in unusable states.
Default is FALSE.

Commit_Discontinued Commits loaded rows when load is discontinued. Default is FALSE.

Readsize Size of the Read buffer, in bytes; default is 1048576.

External_Table Uses external table for load. Default is NOT_USED; other values are GENERATE_
ONLY and EXECUTE.

ColumnArrayRows Number of rows for Direct Path column array. Default is 5000.

StreamSize Size of Direct Path stream buffer, in bytes. Default is 256000.

Multithreading Uses multithreading in Direct Path.

Resumable Enables or disables Resumable for current session; default is FALSE.

Resumable_Name Text string used to identify resumable statements.

Resumable_Timeout Wait time, in seconds, for Resumable. Default is 7200.

Date_Cache Size (in entries) of data conversion cache. Default is 1000.

DESCRIPTION SQLLDR loads data from external files into tables in the Oracle database. See
Chapter 21 for examples. The syntax for the control file is as follows:

SQLLDR 1281

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1282 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1282

Options clause

Load statement

infile_clause

OPTIONS (options)

UNRECOVERABLE

RECOVERABLE LOAD

CONTINUE_LOAD

DATA CHARACTERSET char_set_name

LENGTH
SEMANTICS

BYTE

CHAR

CHARACTER
BYTEORDER

BIG

LITTLE

ENDIAN

BYTEORDERMARK
CHECK

NOCHECK

infile_clause

,

READSIZE size READBUFFERS integer

INSERT

APPEND

REPLACE

TRUNCATE

concatenate_clause PRESERVE BLANKS
into_table_clause

,
BEGINDATA

INFILE
*

input_filename

os_file_proc_clause BADFILE filename

DISCARDFILE filename

DISCARDS

DISCARDMAX
integer

"

var

fix

str

’string’

X’hex_string

integer

"

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQLLDR 1283

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1283

concatenate_clause

into_table_clause

CONCATENATE
integer

(integer)

CONTINUEIF

THIS

NEXT PRESERVE (
pos_spec

LAST
PRESERVE (operator

str

X’hex_str’

)

INTO TABLE name

(
PARTITION name

SUBPARTITION name
)

INSERT

REPLACE

TRUNCATE

APPEND

SORTED
INDEXES

(name) SINGLEROW

INSERT

REPLACE

TRUNCATE

APPEND

OPTIONS (FILE=database_filename)

EVALUATE CHECK_CONSTRAINTS REENABLE DISABLED_CONSTRAINTS

EXCEPTIONS table WHEN field_condition

OID_spec

SID_spec FIELDS
delim_spec

TRAILING
NULLCOLS

TREAT AS typename

SKIP n
field_list

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1284 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1284

field_condition

delim_spec

full_fieldname

termination_spec

enclosure_spec

oid_spec

sid_spec

(full_fieldname

pos_spec
operator

’char_string’

X’hex_string’

BLANKS

)

AND

enclosure_spec

termination_spec

OPTIONALLY
enclosure_spec

full_fieldname

TERMINATED
BY

WHITESPACE

X’hexstr’

’string’

EOF

ENCLOSED
BY

’string’

X’hexstr’
AND

’string’

X’hexstr’

OID (fieldname)

SID (
fieldname

CONSTANT SID_val
)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQLLDR 1285

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1285

field_list

dgen_fld_spec

ref_spec

init_spec

RECNUM

SYSDATE

CONSTANT val

SEQUENCE (

COUNT

MAX

integer

, incr
)

REF_spec

SID_spec

BFILE_spec

init_spec

EXPRESSION " sql_string "

REF (
fieldname

CONSTANT val

,

)

NULLIF

DEFAULTIF
field_condition

AND

(column_name

dgen_fld_spec

scalar_fld_spec

col_obj_fld_spec

collection_fld_spec

filler_fld_spec

,

)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1286 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1286

bfile_spec

filler_fld_spec

scalar_fld_spec

lobfile_spec

FILLER

BOUNDFILLER

pos_spec datatype_spec PIECED

LOBFILE_spec

POSITION pos_spec
datatype_spec PIECED

init_spec " sql_string "

LOBFILE (
fieldname

CONSTANT filename

CHARACTERSET name

LENGTH
SEMANTICS

BYTE

CHAR

CHARACTER
BYTEORDER

BIG

LITTLE

ENDIAN

BYTEORDERMARK
CHECK

NOCHECK
)

BFILE (
fieldname

CONSTANT val
,

fieldname

CONSTANT val
)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQLLDR 1287

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1287

pos_spec

datatype_spec

(

start

*
+integer

:

–
end

)

delim_spec

INTEGER

(length)

SIGNED

UNSIGNED

EXTERNAL
(length) delim_spec

FLOAT
EXTERNAL

(length) delim_spec

DECIMAL

ZONED

EXTERNAL
(length) delim_spec

(precision
, scale

)

DOUBLE

BYTEINT

SMALLINT

SIGNED

UNSIGNED

RAW
(length)

GRAPHIC
EXTERNAL (graphic_char_length)

VARGRAPHIC

VARCHAR

(max_length)

datatype_spec_cont

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1288 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1288

datatype_spec_cont

col_obj_fld_spec

collection_fld_spec

nested_table_spec

varray_spec

CHAR
(length) delim_spec

VARCHARC (length_of_length
, max_size_bytes

)

VARRAWC (length_of_length
, max_size_bytes

)

LONG
VARRAW

(max_bytes)

DATE
EXTERNAL (length) "mask" delim_spec

TIME

TIMESTAMP

fractional_second_precision WITH
LOCAL

TIME ZONE "mask"

INTERVAL

YEAR
year_precision

TO MONTH

DAY
day_precision

TO SECOND
fractional_second_precision

COLUMN OBJECT
TREAT AS typename init_spec

field_list
sql_string_spec

nested_table_spec

BOUNDFILLER
varray_spec

NESTED TABLE
SDF_spec count_spec

delim_spec

init_spec
field_list

VARRAY
SDF_spec count_spec

delim_spec

init_spec
field_list

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQLPLUS 1289

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1289

sdf_spec

count_spec

SQLNUMBER (SQL*Plus)
See SET.

SQLPLUS
SEE ALSO Chapter 6
FORMAT

SQLPLUS [user[/password][@database] [@file]] [-SILENT] |
[/NOLOG] [-SILENT] | [-?]

DESCRIPTION SQLPLUS starts up SQL*Plus. Entering both your username and password will log
you onto your default database. Entering just your username will cause SQL*Plus to prompt you for your
password, which will not be displayed as you enter it. Entering @database will connect you to the named
database instead of your default. The @database can be anywhere, so long as the computer you are
logging onto is connected to it through Oracle Net. There must be no space between password and
@database. For more information about Oracle Net, see Chapter 23. @file will run the start file immediately
after SQL*Plus is loaded. There must be a space before @file. If the username and password are not
entered on the command line with SQLPLUS, they must be the first line in the file. If they are in the
file, and you enter them on the command line, you’ll get an error message but the start file will run
correctly anyway. To put user and password at the top of the file, separate them with a slash (/):

GEORGE/MISTY

COUNT (
fieldname

CONSTANT positive_integer
)

SDF (

field_name

CONSTANT filename os_file_proc_clause READSIZE size

CHARACTERSET name

LENGTH
SEMANTICS

BYTE

CHAR

CHARACTER

BYTEORDER
BIG

LITTLE

ENDIAN
BYTEORDERMARK

CHECK

NOCHECK
)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

/NOLOG makes SQL*Plus start, but does not log you onto the Oracle database. You must then use
CONNECT to attach to Oracle. (See CONNECT.)

-SILENT suppresses all of SQL*Plus’s screen displays, including the command prompts and even the
SQL*Plus logon and copyright information. It makes the use of SQL*Plus by another program invisible to
the program’s user.

-? displays the current version and level number for SQL*Plus without actually starting it up.
EXAMPLE Normal startup of SQL*Plus follows:

sqlplus george/misty

To start up on the database EDMESTON, use this:

sqlplus george/misty@EDMESTON

To start the report file REPORT6, which includes the name and password as its first line, use this:

sqlplus @report6

To start the report file REPORT6, which includes the name and password as its first line, on the
database EDMESTON, use this:

sqlplus george/misty@EDMESTON @report6

SQLPREFIX (SQL*Plus)
See SET.

SQLPROMPT (SQL*Plus)
See SET.

SQLTERMINATOR (SQL*Plus)
See SET.

SQRT
SEE ALSO POWER
FORMAT

SQRT(value)

DESCRIPTION SQRT finds the square root of value.
EXAMPLES

SQRT(64) = 8

The square root of negative numbers is not available in Oracle.

START (SQL*Plus)
SEE ALSO @, @@, ACCEPT, DEFINE, SPOOL, Chapter 6
FORMAT

STA[RT] {url|file[.ext]} [parameter] [parameter]...

1290 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1290

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION START executes the contents of the specified start file (so called because it is
started by this command). The file may contain any SQL*Plus commands. If no file type is specified,
START assumes it is .sql. Any parameters following the filename are substituted into variables in the
start file; the variables must be named &1, &2, &3, and so on, and will receive the parameters in order,
from left to right. Every occurrence in the start file of &1 will get the first parameter. Parameters consisting
of more than one word may be enclosed in single quotes (' '); otherwise, parameters are limited to a
single word or number each.
EXAMPLE

start checkout INNUMERACY

where the file checkout.sql contains a variable named &1, into which the string 'INNUMERACY' will
be substituted.

STARTUP
SEE ALSO SHUTDOWN, RECOVER, Chapter 46
FORMAT

STARTUP options | upgrade_options

where options has the following syntax:

[FORCE][RESTRICT][PFILE=filename][QUIET][MOUNT[dbname]|
[OPEN [open_options][dbname]]|NOMOUNT]

where open_options has the following syntax:

READ {ONLY | WRITE [RECOVER]} | RECOVER

and upgrade_options has the following syntax:

[PFILE=filename]{UPGRADE|DOWNGRADE} [QUIET]

DESCRIPTION STARTUP starts an instance. FORCE shuts down a running instance with
SHUTDOWN ABORT prior to starting it. RESTRICT allows only privileged users to log in. The PFILE
option allows you to specify an init.ora file to use during startup (in place of the standard spfile).
STARTUP RECOVER has the same effect as executing RECOVER DATABASE and starting an instance.
UPGRADE starts the database in OPEN UPGRADE mode and should be used only when a database is
first started with a new version of the Oracle software.

STATS_BINOMIAL_TEST
FORMAT
stats_binomial_test::=

STATS_BINOMIAL_TEST 1291

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1291

STATS_BINOMIAL_TEST (expr1 , expr2 , p

,

TWO_SIDED_PROB

EXACT_PROB

ONE_SIDED_PROB_OR_MORE

ONE_SIDED_PROB_OR_LESS
)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1292 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1292

DESCRIPTION STATS_BINOMIAL_TEST is an exact probability test used for dichotomous variables,
where only two possible values exist. It tests the difference between a sample proportion and a given
proportion.

STATS_CROSSTAB
FORMAT
stats_crosstab::=

DESCRIPTION STATS_CROSSTAB takes three arguments: two expressions and a return value of
type VARCHAR2. expr1 and expr2 are the two nominal variables being analyzed. The function returns
one number, determined by the value of the third argument. Values for the third argument are CHISQ_
OBS, CHISQ_SIG, CHISQ_DF, PHI_COEFFICIENT, CRAMERS_V, CONT_COEFFICIENT, and COHENS_K.

STATS_F_TEST
FORMAT
stats_f_test::=

DESCRIPTION STATS_F_TEST tests whether two variances are significantly different. The observed
value of f is the ratio of one variance to the other, so values very different from 1 usually indicate significant
differences.

STATS_CROSSTAB (expr1 , expr2

,

CHISQ_OBS

CHISQ_SIG

CHISQ_DF

PHI_COEFFICIENT

CRAMERS_V

CONT_COEFFICIENT

COHENS_K
)

STATS_F_TEST (expr1 , expr2

,

STATISTIC

DF_NUM

DF_DEN

ONE_SIDED_SIG

TWO_SIDED_SIG
)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

STATS_MW_TEST 1293

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1293

STATS_KS_TEST
FORMAT
stats_ks_test::=

DESCRIPTION STATS_KS_TEST is a Kolmogorov-Smirnov function that compares two samples
to test whether they are from the same population or from populations that have the same distribution.
It does not assume that the population from which the samples were taken is normally distributed.

STATS_MODE
FORMAT

STATS_MODE (expr)

DESCRIPTION STATS_MODE takes as its argument a set of values and returns the value that occurs
with the greatest frequency. If more than one mode exists, Oracle chooses one and returns only that one
value.

STATS_MW_TEST
FORMAT
stats_mw_test::=

DESCRIPTION A Mann-Whitney test compares two independent samples to test the null hypothesis
that two populations have the same distribution function against the alternative hypothesis that the two
distribution functions are different.

STATS_MW_TEST (expr1 , expr2

,

STATISTIC

U_STATISTIC

ONE_SIDED_SIG

TWO_SIDED_SIG
)

STATS_KS_TEST (expr1 , expr2

,
STATISTIC

SIG
)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1294 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1294

STATS_ONE_WAY_ANOVA
FORMAT
stats_one_way_anova::=

DESCRIPTION STATS_ONE_WAY_ANOVA is a one-way analysis of variance function. It tests
differences in means for statistical significance by comparing two different estimates of variance (mean
square error and mean squares between). The function returns one number, determined by the value of
the third argument (default is SIG, for significance).

STATS_T_TEST_* FUNCTIONS
FORMAT
stats_t_test::=

DESCRIPTION The t-test measures the significance of a difference of means. You can use it to
compare the means of two groups or the means of one group with a constant. The STATS_T_TEST_*
functions take three arguments: two expressions and a return value of type VARCHAR2. The functions
return one number, determined by the value of the third argument (default is TWO_SIDED_SIG).

The tests are as follows:

■ STATS_T_TEST_ONE A one-sample t-test

■ STATS_T_TEST_PAIRED A two-sample, paired t-test

■ STATS_T_TEST_INDEP A t-test of two independent groups with the same variance

■ STATS_T_TEST_INDEPU A t-test of two independent groups with unequal variance

STATS_T_TEST_INDEP

STATS_T_TEST_INDEPU

STATS_T_TEST_ONE

STATS_T_TEST_PAIRED

(expr1 , expr2

,

STATISTIC

DF

ONE_SIDED_SIG

TWO_SIDED_SIG
)

STATS_ONE_WAY_ANOVA (expr1 , expr2

,

SUM_SQUARES_BETWEEN

SUM_SQUARES_WITHIN

DF_BETWEEN

DF_WITHIN

MEAN_SQUARES_BETWEEN

MEAN_SQUARES_WITHIN

F_RATIO

SIG
)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

STDDEV_SAMP 1295

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1295

The values for the third argument are as follows:

■ STATISTIC The observed value of t

■ DF Degree of freedom

■ ONE_SIDED_SIG One-tailed significance of t

■ TWO_SIDED_SIG Two-tailed significance of t

STATS_WSR_TEST
FORMAT
stats_wsr_test::=

DESCRIPTION STATS_WSR_TEST is a Wilcoxon Signed Ranks test of paired samples to determine
whether the median of the differences between the samples is significantly different from zero. If you
do not specify the third argument, it defaults to TWO_SIDED_SIG.

STDDEV
SEE ALSO AGGREGATE FUNCTIONS, VARIANCE, Chapter 9
FORMAT

STDDEV([DISTINCT | ALL] value) [OVER (analytic_clause)]

DESCRIPTION STDDEV gives the standard deviation from the norm of values in a group of rows.
It ignores NULL values in its calculation.

STDDEV_POP
SEE ALSO AGGREGATE FUNCTIONS, STTDEV, STDDEV_SAMP
FORMAT

STDDEV_POP (expr) [OVER (analytic_clause)]

DESCRIPTION STDDEV_POP computes the population standard deviation and returns the square
root of the population variance.

STDDEV_SAMP
SEE ALSO AGGREGATE FUNCTIONS, STTDEV, STDDEV_POP
FORMAT

STDDEV_SAMP (expr) [OVER (analytic_clause)]

DESCRIPTION STDDEV_SAMP computes the cumulative sample standard deviation and returns
the square root of the sample variance.

STATS_WSR_TEST (expr1 , expr2

,

STATISTIC

ONE_SIDED_SIG

TWO_SIDED_SIG
)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:13:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

STORAGE
SEE ALSO BLOCK, CREATE CLUSTER, CREATE INDEX, CREATE ROLLBACK SEGMENT, CREATE
MATERIALIZED VIEW, CREATE MATERIALIZED VIEW LOG, CREATE TABLE, CREATE TABLESPACE,
as well as the ALTER statement for each of these
FORMAT
storage_clause::=

DESCRIPTION The STORAGE clause is optional in any of the CREATE and ALTER statements listed
under the preceding SEE ALSO section. STORAGE is not a SQL statement, and cannot stand alone. In
the following paragraphs, a block is a database block (see BLOCK) with a size depending on the operating
system and the database initialization parameters.

INITIAL allocates the first extent of space to the object. If INITIAL is not specified, it defaults to
five data blocks. The smallest initial extent you can allocate is two data blocks, and the largest depends
on your operating system. You can express these numbers either as a simple integer or as an integer
followed by K or M to indicate kilobytes or megabytes, respectively.

NEXT is the size of the extent allocated after the initial extent has been filled. If not specified, it
defaults to five data blocks. The smallest next extent you can allocate is one data block, and the largest
depends on the operating system. You can use K and M for kilobytes and megabytes.

1296 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1296

STORAGE (

INITIAL integer

K

M

NEXT integer

K

M

MINEXTENTS integer

MAXEXTENTS
integer

UNLIMITED

PCTINCREASE integer

FREELISTS integer

FREELIST GROUPS integer

OPTIMAL

integer

K

M

NULL

BUFFER_POOL

KEEP

RECYCLE

DEFAULT

)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

PCTINCREASE controls the rate of growth of extents beyond the second. If set to 0, every additional
extent will be the same size as the second extent, specified by NEXT. If PCTINCREASE is a positive
integer, each succeeding extent will be that percentage larger than the preceding one. For example, if
PCTINCREASE is 50 (the default, if it is not specified), each additional extent will be 50 percent larger
than the previous one. PCTINCREASE cannot be negative. The minimum PCTINCREASE is 0, and the
maximum depends on the operating system. Oracle rounds the extent size up to the next multiple of
the operating system block size.

MINEXTENTS defaults to 1 (or 2 for a rollback segment) if it is not specified, meaning that when
the object is created, only the initial extent is allocated. A number larger than 1 will create that many
total extents (which don’t need to be contiguous on disk, as each extent itself does), and the size of
each of them will be determined by the values set with INITIAL, NEXT, and PCTINCREASE. All of
these will be allocated when the object is created.

MAXEXTENTS sets the limit on the total number of extents that can be allocated. The minimum limit
is 1, with the default and maximum depending on the operating system. You can specify a MAXEXTENTS
value of UNLIMITED.

OPTIMAL sets an optimal size in bytes for a rollback segment. Oracle will dynamically deallocate
extents in the rollback segment to maintain the optimal size. NULL means that Oracle never deallocates
the rollback segment extents, and this is the default behavior. You must supply a size greater than or
equal to the initial space allocated for the rollback segment by the MINEXTENTS, INITIAL, NEXT, and
PCTINCREASE parameters. As of Oracle9i, you should use Automatic Undo Management instead of
rollback segments.

FREELIST GROUPS gives the number of groups of free lists, with a default value of 1. This setting
applies to the Real Application Clusters option of Oracle for tables, clusters, or indexes.

FREELISTS sets the number of free lists for each free list group.
BUFFER_POOL sets the buffer pool into which the table’s blocks will be read. By default, all blocks

are read into the DEFAULT pool. You can create separate pools for blocks you want to keep in memory
longer (the KEEP pool) or for those you wish to age out of memory quickly (the RECYCLE pool).

For most applications, you should use Oracle’s space management automation features, including
locally managed tablespaces. In a locally managed tablespace, you define the storage parameters once
and Oracle manages the space for the objects created within the tablespace.

STORE (SQL*Plus)
SEE ALSO SAVE, START, Chapter 6
FORMAT

STORE SET file[.ext] [CRE[ATE] | REP[LACE] | APP[END]]

DESCRIPTION STORE saves all of your SQL*Plus environment settings to a file.
EXAMPLE The following command saves the current SQL*Plus environment settings to a file named
settings.sql:

store settings.sql

SUBPARTITION
A subpartition is a partition of a partition. Typically, a range partition is hash partitioned, creating multiple
hash subpartitions for each of the range partitions. See Chapter 17.

SUBPARTITION 1297

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1297

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1298 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1298

SUBQUERY
A query (that is, a SELECT statement) may be used as a part of another SQL statement (called the parent,
or outer statement), including CREATE TABLE, DELETE, INSERT, SELECT, and UPDATE, or in the SQL*Plus
COPY command, in order to define the rows or columns that the parent will use in its execution. The
results of the child query (also called a subquery) are not themselves displayed, but are passed to the
parent SQL statement for its use. The following rules apply:

■ In an UPDATE or CREATE TABLE command, the subquery must return one value for each
column to be inserted or updated. The value or values are then used by the parent SQL
statement to INSERT or UPDATE the rows.

■ A subquery cannot contain ORDER BY and FOR UPDATE OF clauses.

■ A “correlated” subquery is used in the WHERE clause of a SELECT statement, and references
an alias for the table used by the parent SELECT command. It is tested once for each row
evaluated for selection by the parent SELECT statement (a standard subquery evaluated just
once for the parent query). See Chapter 13 for further details.

Other than these restrictions, normal rules for a SELECT statement apply.

SUBSTITUTION
See &, &&, ACCEPT, and DEFINE.

SUBSTR
SEE ALSO ||, CHARACTER FUNCTIONS, INSTR, Chapter 7
FORMAT
substr::=

DESCRIPTION SUBSTR clips out a piece of a string beginning at start and going for count characters.
If count is not specified, the string is clipped from start and goes to the end of the string.

There are multiple SUBSTR functions: SUBSTR calculates length using characters as defined by the
input character set. SUBSTRB uses bytes instead of characters. SUBSTRC uses Unicode complete sets.
SUBSTR2 uses UCS2 code points. SUBSTR4 uses UCS4 code points.
EXAMPLE

SUBSTR('NEWSPAPER',5)

produces this:

PAPER

SUFFIX (SQL*Plus)
See SET.

SUBSTR

SUBSTRB

SUBSTRC

SUBSTR2

SUBSTR4

(string , position
, substring_length

)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SUM
SEE ALSO COMPUTE, AGGREGATE FUNCTIONS, Chapter 9
FORMAT

SUM([DISTINCT | ALL] value) [OVER (analytic_clause)]

DESCRIPTION SUM is the sum of all values for a group of rows. DISTINCT makes SUM add each
unique value to the total only once; this is usually not very meaningful.

SYNONYM
A synonym is a name assigned to a table, view, or sequence that may thereafter be used to refer to it.
If you have access to another user’s table, you may create a synonym for it and refer to it by the synonym
alone, without entering the user’s name as a qualifier. See Chapter 23 and Chapter 42.

SYNTAX
Syntax is a set of rules that determines how to construct a valid statement in a computer language such
as SQL.

SYNTAX OPERATORS
SEE ALSO LOGICAL OPERATORS, PRECEDENCE
DESCRIPTION Syntax operators have the highest precedence of all operators, and may appear
anywhere in a SQL statement. Here they are listed in descending order of precedence. Operators of
equal precedence are evaluated from left to right. Most of these are listed and described separately
under their own symbols.

Operator Function

- SQL*Plus command continuation. Continues a command on the following line.

& Prefix for parameters in a SQL*Plus start file. Words are substituted for &1, &2, and so on.
See START.

& && Prefix for a substitution variable in a SQL command in SQL*Plus. SQL*Plus will prompt for
a value if an undefined & or && variable is found. && also defines the variable and saves
the value; & does not. See & and &&, DEFINE, and ACCEPT.

: Prefix for a variable in SQL*FORMS and for a host variable in PL/SQL.

. Variable separator, used in SQL*Plus to separate the variable name from a suffix so that the
suffix is not considered a part of the variable name, and used in SQL between user, table,
and column names.

() Surrounds subqueries and lists of columns, or controls precedence.

' Surrounds a literal, such as a character string or date constant. To use a ' in a string constant,
use two ' marks (not a double quotation mark).

" Surrounds a table or column alias that contains special characters or a space.

" Surrounds literal text in a date format clause of TO_CHAR.

@ Precedes a database name in a COPY, or a link name in a FROM clause.

SYNTAX OPERATORS 1299

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1299

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SYS (ORACLE USER)
SYS is one of the DBA users that is created when a database system is installed and initialized (the
other is SYSTEM). SYS owns most of the data dictionary tables, while SYSTEM owns the views created
on those base tables.

SYSAUX (TABLESPACE)
As of Oracle Database 10g, the SYSAUX tablespace is created via the CREATE DATABASE command.
SYSAUX contains system-related tables (such as the statistics repository) that are not part of the core
data dictionary.

SYS_CONNECT_BY_PATH
SEE ALSO CONNECT BY, Chapter 14
FORMAT

SYS_CONNECT_BY_PATH (column, char)

DESCRIPTION SYS_CONNECT_BY_PATH is valid only in hierarchical queries. It returns the path
of a column value from root to node, with column values separated by char for each row returned by
the CONNECT BY condition.

SYS_CONTEXT
SEE ALSO CREATE CONTEXT
FORMAT

SYS_CONTEXT (namespace , parameter [, length])

DESCRIPTION SYS_CONTEXT returns the value of parameter associated with the context namespace.

SYS_DBURIGEN
SEE ALSO Chapter 47
FORMAT

SYS_DBURIGEN
({ column | attribute } [rowid]

[, { column | attribute } [rowid]]...
[, 'text()'])

DESCRIPTION SYS_DBURIGEN takes as its argument one or more columns or attributes, and
optionally a ROWID, and generates a URL of datatype DBUriType to a particular column or row object.
You can then use the URL to retrieve an XML document from the database.

All columns or attributes referenced must reside in the same table. They must perform the function
of a primary key. That is, they need not actually match the primary keys of the table, but they must
reference a unique value. If you specify multiple columns, all but the final column identify the row
in the database, and the last column specified identifies the column within the row.

By default the URL points to a formatted XML document. If you want the URL to point only to
the text of the document, specify the optional 'text()'. (In this XML context, the lowercase 'text' is a
keyword, not a syntactic placeholder.)

1300 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1300

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SYS_EXTRACT_UTC
SEE ALSO Chapter 10
FORMAT

SYS_EXTRACT_UTC (datetime_with_timezone)

DESCRIPTION SYS_EXTRACT_UTC extracts the UTC (Coordinated Universal Time) from a
datetime with time zone displacement.

SYS_GUID
FORMAT

SYS_GUID ()

DESCRIPTION SYS_GUID generates and returns a globally unique identifier (RAW value) made
up of 16 bytes. On most platforms, the generated identifier consists of a host identifier and a process or
thread identifier of the process or thread invoking the function, and a nonrepeating value (sequence of
bytes) for that process or thread.

SYS_TYPEID
SEE ALSO Chapter 36
FORMAT

SYS_TYPEID (object_type_value)

DESCRIPTION SYS_TYPEID returns the type ID of the most specific type of the operand. This
value is used primarily to identify the type-discriminant column underlying a substitutable column. For
example, you can use the value returned by SYS_TYPEID to build an index on the type-discriminant
column.

SYS_XMLAGG
SEE ALSO SYS_XMLGEN, Chapter 47
FORMAT

SYS_XMLAGG (expr [fmt])

DESCRIPTION SYS_XMLAGG aggregates all of the XML documents or fragments represented
by expr and produces a single XML document. It adds a new enclosing element with a default name
ROWSET. If you want to format the XML document differently, specify fmt, which is an instance of
the SYS.XMLGenFormatType object.

SYS_XMLGEN
SEE ALSO SYS_XMLAGG, Chapter 47
FORMAT

SYS_XMLGEN (expr [fmt])

DESCRIPTION SYS_XMLGEN takes an expression that evaluates to a particular row and column
of the database, and returns an instance of type SYS.XMLType containing an XML document. The expr
can be a scalar value, a user-defined type, or an XMLType instance.

SYS_XMLGEN 1301

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1301

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If expr is a scalar value, the function returns an XML element containing the scalar value. If expr is
a type, the function maps the user-defined type attributes to XML elements. If expr is an XMLType instance,
then the function encloses the document in an XML element whose default tag name is ROW.

By default the elements of the XML document match the elements of expr. For example, if expr resolves
to a column name, the enclosing XML element will be the same column name. If you want to format the
XML document differently, specify fmt, which is an instance of the SYS.XMLGenFormatType object.

SYSDATE
SEE ALSO Chapter 10
FORMAT

SYSDATE

DESCRIPTION SYSDATE returns the current date and time.
EXAMPLE

select SYSDATE from DUAL;

SYSTEM (ORACLE TABLESPACE)
SYSTEM is the name given to the first tablespace in a database. It contains the data dictionary.

SYSTEM (ORACLE USER)
SYSTEM is one of the DBA users that is created when a database system is installed and initialized (the
other is SYS). SYS owns most of the data dictionary tables; SYSTEM owns the views created on those
base tables.

SYSTEM GLOBAL AREA (SGA)
The SGA is a shared storage area in memory that is the center of Oracle activity while the database is
running. The size of the SGA (and performance of the system) depends on the values of the variable
initialization parameters. The SGA provides communication between the user and the background
processes.

SYSTIMESTAMP
SEE ALSO Chapter 10
FORMAT

SYSTIMESTAMP

DESCRIPTION SYSTIMESTAMP returns the current date and time.
EXAMPLE

select SYSTIMESTAMP from DUAL;

TABLE
A table is the basic data storage structure in a relational database management system. A table consists
of one or more units of information (rows), each of which contains the same kinds of values (columns).
See CREATE TABLE.

1302 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1302

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TABLE (PL/SQL)
SEE ALSO DATATYPES, RECORD (PL/SQL)
FORMAT

TYPE new_type IS TABLE OF
{type | table.column%TYPE}[NOT NULL]
INDEX BY BINARY_INTEGER;

DESCRIPTION A TABLE declaration declares a new type that can then be used to declare variables
of that type. A PL/SQL table has one column and an integer key and can have any number of rows.
The datatype of the column can be either one of the standard PL/SQL datatypes (including another
RECORD but not a TABLE) or a reference to the type of a particular column in a specific database
table. Each field may also have a NOT NULL qualifier that specifies that the field must always have a
non-NULL value.

The INDEX BY BINARY_INTEGER clause is required and reminds you that the index is an integer.
You can refer to any row of the table with the index in parentheses.

If you refer to an index to which you have not assigned any data, PL/SQL raises the NO_DATA_
FOUND exception.

TABLE ALIAS
A table alias is a temporary substitute for a table name, defined in the FROM clause of a SELECT
statement. See AS and Chapter 13.

TABLE CONSTRAINT
A table constraint is an integrity constraint that applies to multiple columns of the same table. See
INTEGRITY CONSTRAINT.

TABLESPACE
A tablespace is a file or set of files that is used to store Oracle data. An Oracle database is composed
of the SYSTEM tablespace and most likely other tablespaces. See Chapters 20 and 46.

TAN
SEE ALSO ACOS, ASIN, ATAN, ATAN2, COS, COSH, NUMBER FUNCTIONS, SIN, TANH,
Chapter 9
FORMAT

TAN(value)

DESCRIPTION TAN returns the tangent of an angle value expressed in radians.
EXAMPLE

select TAN(135*3.141593/180) Tan -- tangent of 135 degrees in radians
from DUAL;

TANH
SEE ALSO ACOS, ASIN, ATAN, ATAN2, COS, COSH, NUMBER FUNCTIONS, SIN, TAN,
Chapter 9

TANH 1303

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1303

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

TANH(value)

DESCRIPTION TANH returns the hyperbolic tangent of an angle value.

TEMPORARY SEGMENT
A temporary segment is a storage space, within a tablespace, that is used to hold intermediate results
of a SQL statement. For example, temporary segments are used when sorting large tables. Temporary
segments are usually stored in tablespaces dedicated to them; see CREATE TABLESPACE.

TERMOUT (SQL*Plus)
See SET.

TEXT INDEX
A text index is a set of tables and indexes used by text search programs. Like the index in a book, a text
index contains tables of text entries and their locations. See Chapter 25.

THEME
A theme is a category of a text document. Text entries may contain themes that do not appear as words
within the document. For example, a document about mortgages could have “banking” as one of its
themes even if the word “banking” does not appear in the document. See Chapter 25.

THROW
In Java, programs throw exceptions via the TRY clause, and process exceptions via the CATCH and
FINALLY clauses. See Chapter 37.

TIME (SQL*Plus)
See SET.

TIMESTAMP
The TIMESTAMP (fractional_seconds_precision) datatype records year, month, and day values of date, as
well as hour, minute, and second values of time, where fractional_seconds_precision is the number of digits
in the fractional part of the SECOND datetime field. Accepted values of fractional_seconds_precision are
0 to 9. The default is 6. See DATATYPES and Chapter 9.

TIMESTAMP WITH TIME ZONE
The TIMESTAMP (fractional_seconds_precision) WITH TIME ZONE datatype records year, month, and
day values of date, as well as hour, minute, and second values of time, where fractional_seconds_
precision is the number of digits in the fractional part of the SECOND datetime field. Accepted values
of fractional_seconds_precision are 0 to 9. The default is 6.

TIMESTAMP WITH LOCAL TIME ZONE
The TIMESTAMP (fractional_seconds_precision) WITH LOCAL TIME ZONE datatype records the
TIMESTAMP WITH TIME ZONE values, normalized to the database time zone when the data is stored.
When the data is retrieved, users see the data in the session time zone.

1304 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1304

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TIMING (SQL*Plus)
SEE ALSO CLEAR, SET
FORMAT

TIMI[NG] [START area | STOP | SHOW];

DESCRIPTION TIMING keeps track of elapsed time from START to STOP by area name. START
opens a timing area and makes area its title. area must be a single word. Several areas may exist at
once. The most recently created one is the current timing area until it is deleted, when the previously
created one becomes current. Timing areas are, in effect, nested. The most recently created will always
show the least amount of time, because the elapsed time of those before it will be, by definition, longer.
Total time for any timing area is its own net time plus those of all the timing areas that followed it.

SHOW gives the current timing area’s name and elapsed time.
STOP gives the current timing area’s name and elapsed time, deletes the area, and makes the one

previous to it (if there was one) the current timing area. See the SQL*Plus User’s Guide and Reference
for your host operating system for details on the precise meaning of time on your machine.
EXAMPLE To create a timing area named 1, you enter this:

timing start 1

To see the current timing area’s name and time, but allow it to continue running, enter the following:

timing show

To see the current timing area’s name and accumulated time, stop it, and make the previous one
current, use this:

timing stop

TO_BINARY_DOUBLE
SEE ALSO TO_BINARY_FLOAT
FORMAT

TO_BINARY_DOUBLE (expr [,fmt [,'nlsparam']])

DESCRIPTION TO_BINARY_DOUBLE returns a double-precision floating-point number. expr can
be a character string or a numeric value of type NUMBER.

TO_BINARY_FLOAT
SEE ALSO TO_BINARY_DOUBLE
FORMAT

TO_BINARY_FLOAT (expr [,fmt [,'nlsparam']])

DESCRIPTION TO_BINARY_FLOAT returns a single-precision floating-point number. expr can
be a character string or a numeric value of type NUMBER.

TO_CHAR (character formats)
SEE ALSO TO_CHAR (date and number formats)

TO_CHAR (character formats) 1305

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1305

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

TO_CHAR (nchar | clob | nclob)

DESCRIPTION The TO_CHAR (character) function converts NCHAR, NVARCHAR2, CLOB, or
NCLOB data to the database character set.
EXAMPLE

SELECT TO_CHAR(Title) FROM BOOKSHELF;

TO_CHAR (date and number formats)
SEE ALSO DATE FORMATS, DATE FUNCTIONS, NUMBER FORMATS, TO_DATE, Chapter 10
FORMAT

TO_CHAR(date|interval,'format'[,'nlsparam'])
TO_CHAR(number,'format'[,'nlsparam'])

DESCRIPTION TO_CHAR reformats number or date according to format. date must be a column
defined as an Oracle DATE datatype. It cannot be a string even if it is in the default date format of
DD-MON-YY. The only way to use a string in which date appears in the TO_CHAR function is to
enclose it within a TO_DATE function. The formats possible for this function are numerous. They are
listed under NUMBER FORMATS and DATE FORMATS.
EXAMPLE Note the format in the following example. This is necessary in SQL*Plus to avoid the
current default date width produced by TO_CHAR, which is about 100 characters wide:

column Formatted format a30 word_wrapped heading 'Formatted'

select BirthDate, TO_CHAR(BirthDate,'MM/DD/YY') Formatted
from BIRTHDAY
where FirstName = 'VICTORIA';

BIRTHDATE Formatted
--------- ------------------------------
20-MAY-49 05/20/49

TO_CLOB
SEE ALSO Chapter 35
FORMAT

TO_CLOB (lob_column | char)

DESCRIPTION TO_CLOB converts NCLOB values in a LOB column or other character strings to
CLOB values. char can be any of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB,
or NCLOB. Oracle executes this function by converting the underlying LOB data from the national
character set to the database character set. Note that LONG values can be converted directly to CLOB
columns via ALTER TABLE.

TO_DATE
SEE ALSO DATE FORMATS, DATE FUNCTIONS, TO_CHAR, Chapter 10

1306 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1306

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

TO_DATE(string,'format'[,'nlsparam'])

DESCRIPTION TO_DATE converts a string in a given format into an Oracle date. It also will accept
a number instead of a string, with certain limits. string is a literal string, a literal number, or a database
column containing a string or a number. In every case but one, the format must correspond to that which
is described by format. Only if a string is in the format 'DD-MON-YY' can the format be omitted. Note
that format is restricted. See DATE FORMATS for a list of acceptable formats for TO_DATE.
EXAMPLE

select TO_DATE('02/22/04','MM/DD/YY') from DUAL;

TO_DATE('

22-FEB-04

TO_DSINTERVAL
SEE ALSO DATATYPES
FORMAT

TO_DSINTERVAL (char ['nlsparam'])

DESCRIPTION TO_DSINTERVAL converts a character string of CHAR, VARCHAR2, NCHAR,
or NVARCHAR2 datatype to an INTERVAL DAY TO SECOND type. char is the character string
to be converted. The only valid NLS parameter you can specify in this function is NLS_NUMERIC_
CHARACTERS. This argument can have the form NLS_NUMERIC_CHARACTERS = “dg” where
d and g represent the decimal character and group separator, respectively.

TO_LOB
SEE ALSO INSERT, Chapter 35
FORMAT

TO_LOB(long_column)

DESCRIPTION TO_LOB converts LONG values in long_column to LOB values. You can apply
this function only to a LONG column, and only in the SELECT list of a subquery in an INSERT command.

TO_MULTI_BYTE
SEE ALSO CONVERSION FUNCTIONS, Chapter 10
FORMAT

TO_MULTI_BYTE(string)

DESCRIPTION TO_MULTI_BYTE converts the single-byte characters in a character string to their
multibyte equivalents. If a character has no multibyte equivalent, the function returns the character
unconverted.

TO_NCHAR (character)
SEE ALSO CONVERSION FUNCTIONS, TRANSLATE … USING

TO_NCHAR (character) 1307

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1307

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FORMAT

TO_NCHAR ({char | clob | nclob} [, fmt [, 'nlsparam']])

DESCRIPTION TO_NCHAR (character) converts a character string, CLOB, or NCLOB from the
database character set to the national character set. This function is equivalent to the TRANSLATE …
USING function with a USING clause in the national character set.

TO_NCHAR (datetime)
SEE ALSO CONVERSION FUNCTIONS
FORMAT

TO_NCHAR ({ datetime | interval } [, fmt [, 'nlsparam']])

DESCRIPTION TO_NCHAR (datetime) converts a character string of DATE, TIMESTAMP,
TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE, INTERVAL MONTH TO YEAR,
or INTERVAL DAY TO SECOND datatype from the database character set to the national character set.

TO_NCHAR (number)
SEE ALSO CONVERSION FUNCTIONS
FORMAT

TO_NCHAR (n [, fmt [, 'nlsparam']])

DESCRIPTION TO_NCHAR (number) converts a number to a string in the NVARCHAR2 character
set. The optional fmt and nlsparam corresponding to n can be of DATE, TIMESTAMP, TIMESTAMP WITH
TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE, INTERVAL MONTH TO YEAR, or INTERVAL DAY
TO SECOND datatype.

TO_NCLOB
SEE ALSO CONVERSION FUNCTIONS, Chapter 35
FORMAT

TO_NCLOB (lob_column | char)

DESCRIPTION TO_NCLOB converts CLOB values in a LOB column or other character strings to
NCLOB values. char can be any of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB,
or NCLOB. Oracle implements this function by converting the character set of the LOB column from
the database character set to the national character set.

TO_NUMBER
SEE ALSO CONVERSION FUNCTIONS, Chapter 9
FORMAT

TO_NUMBER(string [, fmt [, 'nlsparam']])

DESCRIPTION TO_NUMBER converts a character string to a NUMBER datatype. It requires that
the characters in the string be a properly formatted number with only the characters 0–9, –, +, and .
included. This function is largely unnecessary due to automatic data conversion done by Oracle, except
when used for a character column containing numbers in an ORDER BY or a comparison.

1308 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1308

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

EXAMPLE

TO_NUMBER('333.46')

TO_SINGLE_BYTE
SEE ALSO CONVERSION FUNCTIONS, Chapter 11
FORMAT

TO_SINGLE_BYTE(string)

DESCRIPTION TO_SINGLE_BYTE converts the multibyte characters in a character string to their
single-byte equivalents. If a multibyte character has no single-byte equivalent, the function returns the
character unconverted.

TO_TIMESTAMP
SEE ALSO CONVERSION FUNCTIONS, TO_CHAR, TIMESTAMP, TO_TIMESTAMP_TZ
FORMAT

TO_TIMESTAMP (char [, fmt ['nlsparam']])

DESCRIPTION TO_TIMESTAMP converts char of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
datatype to a value of TIMESTAMP datatype, using a fmt format if char is not in the default format of the
TIMESTAMP datatype. The optional nlsparam has the same purpose in this function as in the TO_CHAR
function for date conversion.

TO_TIMESTAMP_TZ
SEE ALSO CONVERSION FUNCTIONS, TO_TIMESTAMP, TIMESTAMP WITH TIME ZONE
FORMAT

TO_TIMESTAMP_TZ (char [, fmt ['nlsparam']])

DESCRIPTION TO_TIMESTAMP_TZ converts char of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
datatype to a value of TIMESTAMP WITH TIME ZONE datatype.

TO_YMINTERVAL
SEE ALSO CONVERSION FUNCTIONS, INTERVAL YEAR TO MONTH
FORMAT

TO_YMINTERVAL (char)

DESCRIPTION TO_YMINTERVAL converts a character string of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 datatype to an INTERVAL YEAR TO MONTH type, where char is the character string to
be converted.

TRANSACTION
A transaction is a sequence of SQL statements that Oracle treats as a single unit. The set of changes
is made permanent with the COMMIT statement. Part or all of a transaction can be undone with the
ROLLBACK statement.

Oracle manages transactions both with locking (see LOCK) and a multiversion consistency model,
which essentially behaves as though each transaction has its own copy of the database—that is, that

TRANSACTION 1309

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1309

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:15 PM

Color profile: Generic CMYK printer profile
Composite Default screen

there are multiple, overlapping versions of the database in existence at any given time. A transaction
starts with the execution of the first SQL statement in the transaction and ends with either the COMMIT
or ROLLBACK statement. By default, Oracle guarantees that a transaction has statement-level read
consistency, which means that when you execute a query, the data stays the same while Oracle is
gathering and returning it. But if a transaction has multiple queries, each query is internally consistent
but is not consistent with successive queries. If you want to be able to maintain a consistent view of
the data throughout such a transaction, the transaction needs to have transaction-level read consistency,
which guarantees that the transaction will not see the effects of the committing of other transactions.
This read-only transaction, started with SET TRANSACTION READ ONLY, can only execute queries
and certain control commands (see SET TRANSACTION).

TRANSACTION PROCESSING
Transaction processing is a form of processing oriented toward logical units of work, rather than separate
and individual changes, in order to keep the database consistent.

TRANSLATE
SEE ALSO REPLACE, Chapter 11
FORMAT

TRANSLATE(string,from,to)

DESCRIPTION TRANSLATE looks at each character in string, and then checks from to see if that
character is there. If it is, TRANSLATE notes the position in from where it found the character, and then
looks at the same position in to. Whatever character it finds there, it substitutes for the character in string.
EXAMPLE

select TRANSLATE('I LOVE MY OLD THESAURUS','AEIOUY','123456')
from DUAL;

TRANSLATE('ILOVEMYOLDTH

3 L4V2 M6 4LD TH2S15R5S

TRANSLATE … USING
SEE ALSO CONVERSION FUNCTIONS, CONVERT, TO_NCHAR, UNISTR
FORMAT

TRANSLATE (text USING { CHAR_CS | NCHAR_CS })

DESCRIPTION TRANSLATE … USING converts text into the character set specified for conversions
between the database character set and the national character set. The text argument is the expression to
be converted.

Specifying the USING CHAR_CS argument converts text into the database character set. The output
datatype is VARCHAR2.

Specifying the USING NCHAR_CS argument converts text into the national character set. The output
datatype is NVARCHAR2.

This function is similar to the Oracle CONVERT function, but must be used instead of CONVERT if
either the input or the output datatype is being used as NCHAR or NVARCHAR2. If the input contains
UCS2 code points or backslash characters (\), use the UNISTR function.

1310 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1310

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TRANSPORTABLE TABLESPACE
A transportable tablespace is a tablespace that can be “unplugged” from one database and “plugged
into” another. To be transportable, a tablespace—or a set of tablespaces—must be self-contained.
The tablespace set cannot contain any objects that refer to objects in other tablespaces. Thus, if you
transport a tablespace containing indexes, you must move the tablespace containing the indexes’ base
tables as part of the same transportable tablespace set. The better you have organized and distributed
your objects among tablespaces, the easier it is to generate a self-contained set of tablespaces to transport.

To transport tablespaces, you need to generate a tablespace set, copy or move that tablespace set
to the new database, and plug the set into the new database. As of Oracle Database 10g, tablespaces
can be transported across platforms.

See Chapter 46 for details.

TREAT
SEE ALSO DEREF, REF, Chapter 36
FORMAT

TREAT (expr AS [REF] [schema.] type)

DESCRIPTION TREAT changes the declared type of an expression.
If the declared type of expr is source_type, then type must be some supertype or subtype of source_

type. If the most specific type of expr is type (or some subtype of type), then TREAT returns expr. If the
most specific type of expr is not type (or some subtype of type), then TREAT returns NULL.

If the declared type of expr is REF source_type, then type must be some subtype or supertype of
source_type. If the most specific type of DEREF(expr) is type (or a subtype of type), TREAT returns expr.
If the most specific type of DEREF(expr) is not type (or a subtype of type), then TREAT returns NULL.

TREE-STRUCTURED QUERY
A tree-structured query is one whose result shows hierarchical relationships among rows in a table.
See CONNECT BY.

TRIGGER
A database trigger is a stored procedure associated with a table that Oracle automatically executes
on one or more specified events (BEFORE, AFTER, or INSTEAD OF an INSERT, UPDATE, or DELETE)
affecting the table. Triggers can execute for the table as a whole or for each affected row in the table.
See Chapter 30 for a full discussion of triggers and examples, and CREATE TRIGGER for syntax.

TRIM
SEE ALSO LTRIM, RTRIM, Chapter 7
FORMAT

TRIM
([{ { LEADING | TRAILING | BOTH } [trim_character])

| trim_character
} FROM] trim_source)

DESCRIPTION TRIM enables you to trim leading or trailing characters (or both) from a character
string. If trim_character or trim_source is a character literal, you must enclose it in single quotes.

TRIM 1311

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1311

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:17 PM

Color profile: Generic CMYK printer profile
Composite Default screen

If you specify LEADING, Oracle removes any leading characters equal to trim_character. If you specify
TRAILING, Oracle removes any trailing characters equal to trim_character. If you specify BOTH or none
of the three, Oracle removes leading and trailing characters equal to trim_character.

If you specify only trim_source, Oracle removes leading and trailing blank spaces. If either trim_
source or trim_character is a NULL value, then the TRIM function returns a NULL.
EXAMPLE

select TRIM('"' from Title) from MAGAZINE;
select TRIM(leading '"' from Title) from MAGAZINE;
select TRIM(trailing '"' from Title) from MAGAZINE;

TRIMOUT (SQL*Plus)
See SET.

TRUNC (Form 1—for Dates)
SEE ALSO COLUMN, DATE FUNCTIONS, TRUNC (Form 2), Chapter 10
FORMAT

TRUNC(date,'format')

DESCRIPTION TRUNC truncates date according to format. Without a format, date is truncated to
12 A.M. (midnight), with the first moment of the new day, today’s date, for any time up to and including
11:59:59 P.M. (just before midnight). See ROUND (Form 1) for valid date format values.

The result of TRUNC is always a date with its time set to 12 A.M., the first moment of the day.

TRUNC (Form 2—for Numbers)
SEE ALSO COLUMN, NUMBER FUNCTIONS, TRUNC (Form 1), Chapter 9
FORMAT

TRUNC(value,precision)

DESCRIPTION TRUNC is value truncated to precision.
EXAMPLES

TRUNC(123.45,0) = 123
TRUNC(123.45,-1) = 120
TRUNC(123.45,-2) = 100

TRUNCATE
SEE ALSO CREATE CLUSTER, DELETE, DROP TABLE, TRIGGER, Chapter 17
FORMAT

TRUNCATE
{ TABLE [schema.] table [{ PRESERVE | PURGE } MATERIALIZED VIEW LOG]
| CLUSTER [schema.] cluster }
[{ DROP | REUSE } STORAGE];

DESCRIPTION TRUNCATE removes all the rows from a table or cluster. You can truncate only
an indexed cluster, not a hash cluster (see CREATE CLUSTER). If you add the DROP STORAGE option,
TRUNCATE will deallocate the space from the deleted rows; if you add the REUSE STORAGE

1312 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1312

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:19 PM

Color profile: Generic CMYK printer profile
Composite Default screen

option, TRUNCATE will leave the space allocated for new rows in the table. DROP STORAGE is
the default.

The TRUNCATE command is faster than a DELETE command because it generates no rollback
information, does not fire any DELETE triggers (and therefore must be used with caution), and does not
record any information in a materialized view log. In addition, using TRUNCATE does not invalidate
the objects depending on the deleted rows, or the privileges on the table.

NOTE
You cannot roll back a TRUNCATE statement.

TTITLE (SQL*Plus)
SEE ALSO ACCEPT, BTITLE, DEFINE, PARAMETERS, REPFOOTER, REPHEADER
FORMAT

TTI[TLE] [option [text|variable]... | OFF | ON]

DESCRIPTION TTITLE (Top TITLE) puts a title (may be multiline) at the top of each page of a report.
OFF and ON suppress and restore the display of the text without changing its contents. TTITLE by itself
displays the current TTITLE options and text or variable.

text is a title you wish to give this report, and variable is a user-defined variable or a system-
maintained variable, including SQL.LNO, the current line number; SQL.PNO, the current page
number; SQL.RELEASE, the current Oracle release number; SQL.SQLCODE, the current error code;
and SQL.USER, the username.

SQL*Plus uses TTITLE in the new form if the first word after TTITLE is a valid option. The valid
options are

■ COL n skips directly to position n from the left margin of the current line.

■ S[KIP] n prints n blank lines. If no n is specified, one blank line is printed. If n is 0, no blank
lines are printed and the current position for printing becomes position 1 of the current line
(leftmost on the page).

■ TAB n skips forward n positions (backward if n is negative).

■ BOLD prints the output data in bold print.

■ LE[FT], CE[NTER], and R[IGHT] left-justify, center, and right-justify data on the current line.
Any text or variables following these commands are justified as a group, up to the end of the
command, or a LEFT, CENTER, RIGHT, or COL. CENTER and RIGHT use the value set by the
SET LINESIZE command to determine where to place the text or variable.

■ FORMAT string specifies the FORMAT MODEL that will control the format of subsequent
text or variables, and follows the same syntax as FORMAT in a COLUMN command, such as
FORMAT A12 or FORMAT $999,990.99. Each time a FORMAT appears, it supersedes the
previous one that was in effect. If no FORMAT MODEL has been specified, the one set by SET
NUMFORMAT is used. If NUMFORMAT has not been set, the default for SQL*Plus is used.

Date values are printed according to the default format unless a variable has been loaded with a
date reformatted by TO_CHAR.

Any number of options, pieces of text, and variables may be used in a single TTITLE. Each is printed
in the order specified, and each is positioned and formatted as specified by the clauses that precede it.

TTITLE (SQL*Plus) 1313

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1313

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1314 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1314

TUPLE
Tuple is a synonym for row. It rhymes with “couple.”

TWO-PHASE COMMIT
Oracle manages distributed transactions with a special feature called two-phase commit. Two-phase
commit guarantees that a transaction is valid at all sites by the time it commits or rolls back. All sites
either commit or roll back together, no matter what errors occur in the network or on the machines
tied together by the network. You don’t need to do anything special to have your applications use a
two-phase commit.

TYPE
See ABSTRACT DATATYPE and CREATE TYPE.

TYPE (Embedded SQL)
SEE ALSO Programmer’s Guide to the Oracle Precompilers
FORMAT

EXEC SQL TYPE type IS datatype

DESCRIPTION PL/SQL lets you assign an Oracle external datatype to a user-defined datatype.
The datatype may include a length, precision, or scale. This external datatype is equivalenced to the
user-defined type and assigned to all host variables assigned to the type. For a list of external datatypes,
see the Programmer’s Guide to the Oracle Precompilers.

NOTE
See the Programmer’s Guide to the Oracle Precompilers for a full list
of all commands. This reference does not contain all of the possible
precompiler commands.

TYPE BODY
See ABSTRACT DATATYPE, CREATE TYPE, and METHOD.

TZ_OFFSET
SEE ALSO SESSIONTIMEZONE, DBTIMEZONE
FORMAT

TZ_OFFSET
({ 'time_zone_name'

| '{ + | - } hh : mi'
| SESSIONTIMEZONE
| DBTMEZONE
})

DESCRIPTION TZ_OFFSET returns the time zone offset corresponding to the value entered based
on the date the statement is executed. You can enter a valid time zone name, a time zone offset from
UTC (which simply returns itself), or the keyword SESSIONTIMEZONE or DBTIMEZONE. For a listing
of valid values, query the TZNAME column of the V$TIMEZONE_NAMES dynamic performance view.

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:21 PM

Color profile: Generic CMYK printer profile
Composite Default screen

UID
FORMAT

UID

DESCRIPTION UID returns an integer that uniquely identifies the session user (the user who
logged on).

UNDEFINE (SQL*Plus)
SEE ALSO ACCEPT, DEFINE, PARAMETERS, Chapter 15
FORMAT

UNDEF[INE] variable

DESCRIPTION UNDEFINE deletes the definition of a user variable that has been defined by
ACCEPT, DEFINE, or as a parameter to the START command. You can UNDEFINE the current values
of multiple variables in a single command. The format is shown in the following listing:

undefine variable1 variable2 ...

EXAMPLE To UNDEFINE a variable named Total, use this:

undefine Total

UNDERLINE (SQL*Plus)
See SET.

UNDO SEGMENT
As of Oracle9i, you can use Automatic Undo Management to provide read consistency in place of
rollback segments. If you use this option, Oracle will maintain undo segments to track changes and
provide rollback capabilities. See ROLLBACK SEGMENT and Chapter 46.

UNION
SEE ALSO INTERSECT, MINUS, QUERY OPERATORS, Chapter 13
FORMAT

select...
UNION [ALL]

select...

DESCRIPTION UNION combines two queries. It returns all distinct rows for both SELECT
statements or, when ALL is specified, all rows regardless of duplication. The number of columns and
datatypes must be identical between SELECT statements, although the names of the columns do not
need to be. See Chapter 13 for a discussion of the important differences and effects of INTERSECT,
UNION, and MINUS, and the role that precedence plays in the results.

UNIQUE INDEX
A unique index is an index that imposes uniqueness on each value it indexes. The index may be one
single column or concatenated (multiple columns). See INTEGRITY CONSTRAINT.

UNIQUE INDEX 1315

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1315

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:22 PM

Color profile: Generic CMYK printer profile
Composite Default screen

UNIQUE KEY
A unique key is one or more columns that must be unique for each row of the table. See KEY, PRIMARY
KEY, and INTEGRITY CONSTRAINT.

UNISTR
SEE ALSO CONVERSION FUNCTIONS, CONVERT, TRANSLATE … USING
FORMAT

UNISTR ('string')

DESCRIPTION UNISTR takes as its argument a string in any character set and returns it in Unicode
in the database Unicode character set. To include UCS2 codepoint characters in the string, use the
escape backslash (\) followed by the next number. To include the backslash itself, precede it with
another backslash (\\).

This function is similar to the TRANSLATE … USING function, except that UNISTR offers the escape
character for UCS2 codepoints and backslash characters.

UNIT OF WORK
In Oracle, a transaction is equivalent to a logical unit of work, which includes all SQL statements since
you logged on, last committed, or last rolled back your work. Thus, a transaction can encompass numerous
SQL statements, or only one.

UPDATE (Form 1—Embedded SQL)
SEE ALSO EXECUTE IMMEDIATE, FOR, PREPARE, SELECT (Form 2), Programmer’s Guide to the
Oracle Precompilers
FORMAT

EXEC SQL [AT { dbname | :host_variable }]
[FOR { :host_integer | integer }]
UPDATE
[(subquery)
| [schema.] { table | view } [@db_link | PARTITION (part_name)]]
SET
{ column = { expr | (subquery_2) }
| (column [, column]...) = (subquery_1) }
[, { column = { expr | (subquery_2) }

| (column [, column]...) = (subquery_1) }]...
[WHERE { condition | CURRENT OF cursor }]
[{ RETURN | RETURNING } expr [, expr]... INTO
:host_variable [[INDICATOR] :ind_variable]
[, :host_variable [[INDICATOR] :ind_variable]]...]

DESCRIPTION See the description of the various clauses in UPDATE (Form 3). The elements unique
to Embedded SQL follow:

■ AT dbname optionally names a database from a previous CONNECT statement for a database
name from a previous DECLARE DATABASE statement.

1316 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1316

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ FOR :host_integer sets the maximum number of rows that can be fetched. integer is a named
host variable.

■ expr may include a host :variable[:indicator].

■ The WHERE clause may include host variables or arrays.

■ CURRENT OF updates the last row fetched for the named cursor. However, the cursor must
be open and positioned on the row. If it isn’t, the CURRENT OF clause, which is a part of the
WHERE clause, causes the WHERE to find no rows, and none will be updated. The cursor
must have previously been named in a DECLARE CURSOR statement with a SELECT … FOR
UPDATE OF.

If any host variable in either the SET or WHERE is an array, then all host variables in both must be
arrays, though they do not all need to be the same size arrays. If they are arrays, UPDATE is executed
once for each set of components in the array, and may update zero or more rows. The maximum number
depends on either the size of the smallest array or the integer value in the FOR clause, if one is specified.
See FOR for additional details.

NOTE
See the Programmer’s Guide to the Oracle Precompilers for a full list
of all commands. This reference does not contain all of the possible
precompiler commands.

UPDATE (Form 2—PL/SQL)
SEE ALSO DECLARE CURSOR, SUBQUERY
FORMAT

UPDATE [user.]table[@dblink]
SET { column = expression | column = (select expression...)
[[,column = expression]... |
[,column = (select

expression...)]...] |
(column [,column]...) = (subquery)}
[WHERE {condition | CURRENT OF cursor}];

DESCRIPTION UPDATE in PL/SQL works identically to the normal SQL UPDATE statement, with
the exception of the alternative WHERE clause, WHERE CURRENT OF cursor. In this instance, the
UPDATE statement affects just the single row currently in the cursor as a result of the last FETCH. The
cursor SELECT statement must have included the words FOR UPDATE.

Like INSERT, DELETE, and SELECT … INTO, the UPDATE statement always uses the implicit cursor
named SQL. This is never declared (although the SELECT … FOR UPDATE statement must be DECLAREd
in a cursor for the WHERE CURRENT OF cursor to be used). Its attributes are set as follows:

■ SQL%ISOPEN is irrelevant.

■ SQL%FOUND is TRUE if one or more rows are updated, FALSE if no rows are updated.
SQL%NOTFOUND is the opposite of SQL%FOUND.

■ SQL%ROWCOUNT is the number of rows updated.

UPDATE (Form 2—PL/SQL) 1317

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1317

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1318 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1318

UPDATE (Form 3—SQL Command)
SEE ALSO DELETE, INSERT, SELECT, SUBQUERY, WHERE, Chapter 15
FORMAT
update::=

DML_table_expression_clause::=

subquery_restriction_clause::=

table_collection_expression::=

UPDATE
hint dml_table_expression_clause

ONLY (dml_table_expression_clause)

t_alias

update_set_clause
where_clause returning_clause

;

schema . table

PARTITION (partition)

SUBPARTITION (subpartition)

@ dblink

view

materialized view

@ dblink

(subquery
subquery_restriction_clause

)

table_collection_expression

WITH

READ ONLY

CHECK OPTION
CONSTRAINT constraint

TABLE (collection_expression)
(+)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

UPDATE (Form 3—SQL Command) 1319

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1319

update_set_clause::=

where_clause::=

returning_clause::=

DESCRIPTION UPDATE changes the values in the listed columns in the specified table. The WHERE
clause may contain a correlated subquery. A subquery may select from the table that is being updated,
although it must return just one row. Without a WHERE clause, all rows will be updated. With a WHERE
clause, only those rows it selects will be updated. The expressions are evaluated as the command is
executed, and their results replace the current values for the columns in the row(s).

A subquery must select the same number of columns (with compatible datatypes) as are in parentheses
on the left side of the SET clause. Columns that are set to equal an expression may precede columns in
parentheses set equal to a subquery, all within a single UPDATE statement.
EXAMPLE To set NULL all Publisher values:

update BOOKSHELF set Publisher = NULL ;

The following will update the city of Walpole in the COMFORT table, setting the precipitation
for all Walpole rows to NULL, the noon temperature equal to that in Manchester, and the midnight
temperature equal to the noon temperature minus 10 degrees:

update COMFORT set Precipitation = NULL,
(Noon, Midnight) =

(select Temperature, Temperature - 10
from WEATHER

where City = 'MANCHESTER')
where City = 'WALPOLE';

WHERE condition

RETURNING expr

,

INTO data_item

,

SET

(column

,

) = (subquery)

column =

expr

(subquery)

DEFAULT

,

VALUE (t_alias) =
expr

(subquery)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

UPDATEXML
SEE ALSO Chapter 47
FORMAT

UPDATEXML (XMLType_instance,
[Xpath_string , value_expr [,Xpath_string , value_expr …]
[, namespace_string])

DESCRIPTION UPDATEXML takes as arguments an XMLType instance and an XPath value pair
and returns an XMLType instance with the updated value. If Xpath_string is an XML element, then the
corresponding value_expr must be an XMLType instance. If Xpath_string is an attribute or text node,
then the value_expr can be any scalar datatype. The datatypes of the target of each Xpath_string and its
corresponding value_expr must match. The optional namespace_string must resolve to a VARCHAR2
value that specifies a default mapping or namespace mapping for prefixes, which Oracle uses when
evaluating the XPath expressions.

UPPER
SEE ALSO LOWER, Chapter 7
FORMAT

UPPER(string)

DESCRIPTION UPPER converts every letter in string into uppercase.
EXAMPLE

upper('Look what you''ve done!')

produces this:

LOOK WHAT YOU'VE DONE!

UROWID
UROWID (Universal RowID) is the datatype for index-organized tables’ primary keys. The maximum
and default size is 4000 bytes. See DATATYPES and CREATE TABLE.

USED EXTENTS
Used extents are those that either have been allocated to a data (table) segment—and thus have data
in them—or have been reserved for data.

USER
SEE ALSO UID
FORMAT

USER

DESCRIPTION USER is the name by which the current user is known to Oracle. USER is a function,
and as such can be queried in any SELECT statement.
EXAMPLE

select USER from DUAL;

1320 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1320

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

USER VARIABLES
See ACCEPT, DEFINE, PARAMETERS.

USERENV
SEE ALSO CHARACTER FUNCTIONS
FORMAT

USERENV(option)

DESCRIPTION USERENV is a legacy function, replaced by SYS_CONTEXT’s UserEnv namespace.
The options and their return values are as follows:

'CLIENT_INFO' Returns up to 64 bytes of user session information that can be stored by an application using
the DBMS_APPLICATION_INFO package.

'ENTRYID' Returns available auditing entry identifier. You cannot use this attribute in distributed SQL
statements. To use this keyword in USERENV, the initialization parameter AUDIT_TRAIL
must be set to TRUE.

'ISDBA' Returns 'TRUE' if the user has been authenticated as having DBA privileges through either
the operating system or a password file.

'LANG' Returns the ISO abbreviation for the language name, a shorter form than the existing
'LANGUAGE' parameter.

'LANGUAGE' Returns the language and territory currently used by your session along with the database
character set in this form: language_territory.characterset

'SESSIONID' Returns your auditing session identifier. You cannot use this attribute in distributed SQL
statements.

'TERMINAL' Returns the operating system identifier for your current session’s terminal. In distributed
SQL statements, this attribute returns the identifier for your local session. In a distributed
environment, this is supported only for remote SELECT statements, not for remote INSERT,
UPDATE, or DELETE operations.

USERNAME
Username is a word that identifies you as an authorized user of your host computer’s operating system
or of Oracle. A password is associated with each username.

VALUE
SEE ALSO DEREF, REF, Chapter 36
FORMAT

VALUE (correlation_variable)

DESCRIPTION In a SQL statement, VALUE takes as its argument a correlation variable (table
alias) associated with a row of an object table and returns object instances stored in the object table.
The type of the object instances is the same type as the object table. See Chapter 36.

VALUE 1321

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1321

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

VAR (Embedded SQL)
SEE ALSO SELECT (Form 2), VARIABLE DECLARATION, Programmer’s Guide to the Oracle
Precompilers
FORMAT

EXEC SQL VAR host_variable
{ IS dtyp [({ length | precision, scale })]

[CONVBUFSZ [IS] (size)]
| CONVBUFSZ [IS] (size) }

DESCRIPTION PL/SQL lets you override the default datatype assignment of a variable via the
VAR command. Once a variable has been declared, it uses the datatype assigned to it in the DECLARE
command. VAR allows you to change the datatype of a declared variable within a PL/SQL block.

NOTE
See the Programmer’s Guide to the Oracle Precompilers for a full list
of all commands. This reference does not contain all of the possible
precompiler commands.

VAR_POP
SEE ALSO GROUPING FUNCTIONS, VAR_SAMP, VARIANCE
FORMAT

VAR_POP (expr) [OVER (analytic_clause)]

DESCRIPTION VAR_POP returns the population variance of a set of numbers after discarding the
NULLs in this set.

VAR_SAMP
SEE ALSO GROUPING FUNCTIONS, VAR_POP, VARIANCE
FORMAT

VAR_SAMP (expr) [OVER (analytic_clause)]

DESCRIPTION VAR_SAMP returns the sample variance of a set of numbers after discarding the
NULLs in this set.

VARCHAR2
See DATATYPES.

VARIABLE
SEE ALSO PRINT
FORMAT

VAR[IABLE] [variable_name [NUMBER|CHAR|CHAR (n{CHAR|BYTE])|NCHAR|NCHAR(n)
|VARCHAR2 (n[CHAR|BYTE]) | NVARCHAR2(n) | CLOB | NCLOB | REFCURSOR
|BINARY_FLOAT | BINARY_DOUBLE

1322 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1322

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DESCRIPTION VARIABLE declares a bind variable that can be referenced in PL/SQL. Each variable
is assigned a variable_name and a type (NUMBER or CHAR). For CHAR variables, a maximum length (n)
can be specified. VARIABLE followed by a variable name lists that variable.
EXAMPLES In the following example, a variable named bal is created and is set equal to the result
of a function:

variable bal NUMBER
begin
:bal := LATE_FEE('DORAH TALBOT');

end;

VARIABLE DECLARATION (PL/SQL)
FORMAT

variable [CONSTANT]
{type | identifier%TYPE | [user.]table%ROWTYPE}
[NOT NULL]
[{DEFAULT | :=} expression];

DESCRIPTION PL/SQL lets you declare variables in a PL/SQL block. If you declare the variable to
be CONSTANT, you must initialize the variable with a value in the declaration and you cannot assign
a new value to the variable.

The type of the variable can be a PL/SQL type (see DATATYPES), the type of another PL/SQL
variable or database column given by an identifier, or a ROWTYPE (see %ROWTYPE) that lets you
refer to a record corresponding to a database table.

If you add NOT NULL to the declaration, you cannot assign a NULL to the variable and you must
initialize the variable. The initialization (following a DEFAULT or assignment :=) expression is any valid
PL/SQL expression that results in a value of the type declared.

VARIANCE
SEE ALSO ACCEPT, AGGREGATE FUNCTIONS, COMPUTE, DEFINE, PARAMETERS, STDDEV,
VAR_POP, VAR_SAMP, Chapter 9
FORMAT

VARIANCE ([DISTINCT | ALL] expr) [OVER (analytic_clause)]

DESCRIPTION VARIANCE gives the variance of all values for a group of rows. Like other group
functions, VARIANCE ignores NULL values.

VARRAY
VARRAY is a clause within the CREATE TYPE command that tells the database the limit to the number
of entries within the varying array. See Chapter 34 for detailed examples of varying arrays. See CREATE
TYPE for syntax information.

VARYING ARRAY
A varying array is a collector—for a single row in a table, it can contain multiple entries. The maximum
number of varying array entries per row is set when the varying array is created (via CREATE TYPE). See
Chapter 34.

VARYING ARRAY 1323

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1323

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

VERIFY (SQL*Plus)
See SET.

VERSION NUMBER
The version number is the primary identifying number of Oracle software (9, 10, etc.).

VIEW
A view is a database object that is a logical representation of a table. It is derived from a table but has
no storage of its own and often may be used in the same manner as a table. See CREATE VIEW and
Chapter 17.

VIRTUAL COLUMN
A virtual column is a column in a query result whose value is calculated from the value(s) of other
column(s).

VSIZE
SEE ALSO CHARACTER FUNCTIONS, LENGTH, NUMBER FUNCTIONS, Chapter 9
FORMAT

VSIZE(value)

DESCRIPTION VSIZE is the storage size of value in Oracle. For numbers it is usually smaller than
the apparent length, because less space is required to store numbers in the database.
EXAMPLES

VSIZE(12.345) = 4

WHENEVER
SEE ALSO EXECUTE, FETCH
FORMAT

EXEC SQL WHENEVER {NOT FOUND | SQLERROR | SQL WARNING}
{CONTINUE |
GOTO label |
STOP |
DO routine |
DO BREAK |
DO CONTINUE}

DESCRIPTION WHENEVER is not an executable SQL statement, but rather an instruction to the
Oracle language processor to embed an IF condition THEN GOTO label statement after every SQL
statement to follow. As each SQL statement executes, its results are tested to see if they meet the condition.
If they do, the program branches to the label.

WHENEVER may be used with CONTINUE or a different label for each of the three possible
conditions. Each of these will be in effect for all subsequent SQL statements. A new WHENEVER with
one of these conditions will completely replace its predecessor for all subsequent SQL statements.

The NOT FOUND condition is raised any time SQLCODE is 100, meaning, for instance, that a
FETCH failed to return any rows (this includes subqueries in INSERT statements).

1324 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1324

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

WHENEVER SQLERROR (SQL*Plus) 1325

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1325

SQLERROR occurs whenever SQLCODE is less than 0. These are typically fatal errors and require
serious error handling.

SQLWARNING occurs when a nonfatal “error” occurs. These include truncation of character strings
being loaded into host variables, a select list of columns that doesn’t match the INTO list of host variables,
and DELETE or UPDATE statements without WHERE clauses.

Usually, initial branching, continuation, stopping, or routine execution is set up at the very beginning
of a program, before any executable SQL statements. However, within particular blocks of logic in the
body of the program, any or all of these could be replaced depending upon local needs. Note that
WHENEVER knows nothing about the host language’s scoping rules, calls, or branching. From the
moment a WHENEVER is asserted, its rules remain in effect until another WHENEVER (with the same
condition) replaces it. On the other hand, your program must obey language scoping rules with regard
to the GOTO and label.

The STOP option stops program execution; the DO option calls a host language routine of some
kind, the syntax of which depends on your host language. DO BREAK performs a break from a loop;
DO CONTINUE performs a continue statement from a loop when the condition is met.

Lastly, in an error-handling routine, particularly one that may contain SQL statements, WHENEVER
SQLERROR should probably contain CONTINUE or STOP or should call an exit routine in order to
avoid an infinite loop back into the same error-handling routine.

WHENEVER OSERROR (SQL*Plus)
SEE ALSO WHENEVER SQLERROR
FORMAT

WHENEVER OSERROR
{EXIT [SUCCESS|FAILURE|n|variable|:BindVariable] [COMMIT|ROLLBACK]
|CONTINUE [COMMIT|ROLLBACK|NONE]}

DESCRIPTION WHENEVER OSERROR handles processing logic within SQL*Plus if an operating
system error occurs. EXIT directs SQL*Plus to exit, and CONTINUE turns off EXIT. COMMIT tells SQL*Plus
to issue a COMMIT prior to exiting, and ROLLBACK tells it to issue a ROLLBACK before exiting. The
default behavior is NONE.

WHENEVER SQLERROR (SQL*Plus)
SEE ALSO WHENEVER OSERROR
FORMAT

WHENEVER SQLERROR
{EXIT [SUCCESS|FAILURE|WARNING|n|variable|:BindVariable]
[COMMIT|ROLLBACK]|CONTINUE [COMMIT|ROLLBACK|NONE]}

DESCRIPTION WHENEVER SQLERROR handles processing logic within SQL*Plus if a SQL
command or a PL/SQL block encounters an error. EXIT directs SQL*Plus to exit, and CONTINUE turns
off EXIT. COMMIT tells SQL*Plus to issue a COMMIT prior to exiting, and ROLLBACK tells it to issue
a ROLLBACK before exiting. The default behavior is NONE.

NOTE
SQL and PL/SQL errors initiate WHENEVER SQLERROR processing.
SQL*Plus errors do not.

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You may place WHENEVER SQLERROR in a start file in front of as many SQL statements as you
wish. Each WHENEVER SQLERROR will supersede the one before, and will remain in effect until it is
itself superseded.
EXAMPLE When the CREATE TABLE command in the following example fails because the literal
KEENE is not enclosed in single quotation marks, the subsequent UPDATE and SELECT will never even
execute. The WHENEVER SQLERROR will exit SQL*Plus immediately, and pass the SQL.SQLCODE
back to the host:

WHENEVER SQLERROR EXIT SQL.SQLCODE;

create table KEENE as
select * from COMFORT
where City = KEENE;

update KEENE set Noon = 75;

select * from KEENE;

WHERE
SEE ALSO DELETE, LOGICAL OPERATORS, PRECEDENCE, SELECT, SYNTAX OPERATORS, UPDATE
FORMAT

DELETE FROM [user.]table ...
[WHERE condition]

SELECT ...
[WHERE condition]

UPDATE [user.]table [alias] ...
[WHERE condition]

DESCRIPTION WHERE defines those logical conditions that will control which rows a SELECT
statement will return, a DELETE statement will delete, or an UPDATE statement will update.

A condition may be defined in one of several ways:

■ A comparison between expressions (=, >, !=, and so on)

■ A comparison between an expression and a query

■ A comparison between a list of expressions and a list of expressions from a query

■ A comparison between an expression and ANY or ALL members of a list or between
an expression and the values brought back from a query

■ A test to see if an expression is IN or NOT IN a list, or the results of a query

■ A test for being BETWEEN or NOT BETWEEN one value and another

■ A test to see if an expression IS NULL or IS NOT NULL

■ A test to see if there EXISTS (or NOT EXISTS) any results for a query

■ A combination of any of the above, using the conjunctions AND and OR

EXAMPLES

where Section >ANY ('A','C','D');
where City !=ALL (select City from LOCATION);
where Section IN ('A','C','D');

1326 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1326

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

where City NOT IN (select City from LOCATION);
where Page BETWEEN 4 and 7;
where Skill IS NULL;
where EXISTS (select * from WORKER where Age > 90);
where Section = 'A' or Section = 'B' and Page = 1;

WHILE (PL/SQL)
See LOOP, Chapter 29

WIDTH_BUCKET
SEE ALSO NTILE
FORMAT

WIDTH_BUCKET (expr , min_value , max_value , num_buckets)

DESCRIPTION WIDTH_BUCKET constructs equiwidth histograms, in which the histogram range
is divided into intervals that have identical size. (Compare this function with NTILE, which creates
equiheight histograms.) Ideally, each bucket is a “closed-open” interval of the real number line. For a
given expression, WIDTH_BUCKET returns the bucket number into which the value of this expression
would fall after being evaluated. expr is the expression (a number or datetime value) for which the
histogram is being created. If expr evaluates to NULL, the expression returns NULL. min_value and
max_value are expressions that resolve to the end points of the acceptable range for expr. Both of
these expressions must also evaluate to number or datetime values, and neither can evaluate to NULL.
num_buckets is an expression that resolves to a constant that indicates the number of buckets. This
expression must evaluate to a positive integer.

WRAP (SQL*Plus)
See SET.

WRAPPING
Wrapping is to move the end of a heading or title, or the contents of a column, down to a new line
when it is too long to fit on one line. (Contrast with TRUNCATE.) See COLUMN.

XML
XML (eXtensible Markup Language) is a standardized syntax for describing hierarchical data. XML provides
a universal format for structured documents and data. Its tag-based syntax gives it the flexibility to handle
complex data. Whereas HTML tells a Web browser how to present data, XML tells applications what
the data means. See Chapter 47 for examples.

XMLAGG
SEE ALSO SYS_XMLAGG
FORMAT

XMLAGG (XMLType_instance [order_by_clause])

DESCRIPTION XMLAGG is an aggregate function. It takes a collection of XML fragments and
returns an aggregated XML document. Any arguments that return NULL are dropped from the result.

XMLAGG 1327

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1327

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1328 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1328

XMLAGG is similar to SYS_XMLAGG except that XMLAGG returns a collection of nodes. XMLAGG
does not accept formatting using the XMLFORMAT object. Also, XMLAGG does not enclose the output
in an element tag as SYS_XMLAGG does.

XMLCOLATTVAL
SEE ALSO Chapter 47
FORMAT

XMLCOLATTVAL (value_expr [AS c_alias] [, value_expr [AS c_alias]])

DESCRIPTION XMLCOLATTVAL creates an XML fragment and then expands the resulting XML
so that each XML fragment has the name column with the attribute name. You can use the AS c_alias
clause to change the value of the name attribute to something other than the column name.

You must specify a value for value_expr. If value_expr is NULL, no element is returned.

XMLCONCAT
SEE ALSO XMLSEQUENCE
FORMAT

XMLCONCAT (XMLType_instance [, XMLType_instance])

DESCRIPTION XMLCONCAT takes as input a series of XMLType instances, concatenates the
series of elements for each row, and returns the concatenated series. XMLCONCAT is the inverse of
XMLSEQUENCE.

XMLELEMENT
SEE ALSO SYS_XMLGEN
FORMAT
XMLElement::=

XML_attributes_clause::=

DESCRIPTION XMLELEMENT takes an element name for identifier, an optional collection of
attributes for the element, and arguments that make up the content of the element. It returns an instance
of XMLType. XMLELEMENT is similar to SYS_XMLGEN except that XMLELEMENT can include attributes
in the XML returned. XMLELEMENT does not accept formatting using the XMLFORMAT object.

XMLELEMENT (
NAME

identifier
, XML_attributes_clause , value_expr

,

)

XMLATTRIBUTES (value_expr
AS c_alias

,

)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:35 PM

Color profile: Generic CMYK printer profile
Composite Default screen

XMLType 1329

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1329

XMLFOREST
SEE ALSO XMLCONCAT
FORMAT

XMLFOREST (value_expr [AS c_alias] [, value_expr [AS c_alias]])

DESCRIPTION XMLFOREST converts each of its argument parameters to XML, then returns an
XML fragment that is the concatenation of these converted arguments.

XMLSEQUENCE
SEE ALSO XMLCONCAT
FORMAT

XMLSEQUENCE ({ XMLType_instance | sys_refcursor_instance [,fmt] })

DESCRIPTION XMLSEQUENCE has two forms:

■ The first form takes as input an XMLType instance and returns a varying array of the top-
level nodes in the XMLType.

■ The second form takes as input a REFCURSOR instance, with an optional instance of the
XMLFORMAT object, and returns as an XMLSEQUENCE type an XML document for each
row of the cursor.

XMLTRANSFORM
SEE ALSO Chapter 47
FORMAT

XMLTRANSFORM (XMLType_instance ,XMLType_instance)

DESCRIPTION XMLTRANSFORM takes as arguments an XMLType instance and an XSL style
sheet, which itself is a form of XMLType instance. It applies the style sheet to the instance and returns
an XMLType.

XMLType
XMLType is a datatype available to store and query XML data in the database. As a type, XMLType has
member functions to access, extract, and query XML data using a class of operations known as XPath
expressions. The SYS_XMLGEN, SYS_XMLAGG, and DBMS_XMLGEN packages create XMLType values
from existing object-relational data. When you designate a column as using the XMLType datatype,
Oracle will internally store the data in a CLOB datatype.

The following listing shows the creation of a table using the XMLType datatype:

create table MY_XML_TABLE
(Key1 NUMBER,
Xml_Column SYS.XMLTYPE);

insert into MY_XML_TABLE (Key1, Xml_Column)

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

values (1, SYS.XMLTYPE.CREATEXML
('<book>
<title>Complete Reference</title>
<chapter num= "48">

<title>Ending</title>
<text>This is the end of the book.</text>

</chapter>
</book>'));

select M.Xml_Column.GETCLOBVAL() as XML_Data
from MY_XML_TABLE M

where Key1 = 1;

See Chapter 47 for additional details on XMLType and its related methods.

1330 Part IX: Alphabetical Reference

ORACLE Series TIGHT / Oracle Database 10g: TCR / Loney / 225351-7 / Chapter 1
Blind Folio 1:1330

P:\010Comp\Oracle8\351-7\CD\Ventura\Part9D.vp
Friday, August 13, 2004 5:14:37 PM

Color profile: Generic CMYK printer profile
Composite Default screen

	Introduction
	Copyright ii
	Dedication iii
	About the Author iv
	About the Technical Reviewers iv
	Contents v
	Acknowledgments xv
	Introduction xvii

	PART I - Critical Database Concepts
	Chapter 1 - Oracle Database 10g Architecture Options 3
	Databases and Instances 5
	Inside the Database 5
	Storing the Data 7
	Guarding the Data 8
	Programmatic Structures 8

	Choosing Architectures and Options 9

	Chapter 2 - Installing Oracle Database 10g and Creating a Database 11
	Overview of Licensing and Installation Options 13
	Using OUI to Install the Oracle Software 13
	Using DBCA to Create a Database 15
	Manually Creating a Database 22

	Chapter 3 - Upgrading to Oracle Database 10g 27
	Choosing an Upgrade Method 29
	Before Upgrading 30
	Using the Database Upgrade Assistant 30
	Performing a Manual Direct Upgrade 31
	Using Export and Import 34
	Export and Import Versions to Use 34
	Performing the Upgrade 34

	Using the Data-Copying Method 35
	After Upgrading 36

	Chapter 4 - Planning Oracle ApplicationsŠApproaches, Risks, and Standards 37
	The Cooperative Approach 39
	Everyone Has "Data" 40
	The Familiar Language of Oracle 41
	Tables of Information 41
	Structured Query Language 42
	A Simple Oracle Query 42
	Why It Is Called "Relational" 44

	Some Common, Everyday Examples 45
	What Are the Risks? 47
	The Importance of the New Vision 48
	Changing Environments 48
	Codes, Abbreviations, and Naming Standards 49

	How to Reduce the Confusion 50
	Normalization 50
	English Names for Tables and Columns 55
	English Words for the Data 57

	Capitalization in Names and Data 57
	Normalizing Names 58
	Good Design Has a Human Touch 58
	Understanding the Application Tasks 59
	Outline of Tasks 60

	Understanding the Data 62
	The Atomic Data Models 63
	The Atomic Business Model 64
	The Business Model 64
	Data Entry 64
	Query and Reporting 64

	Toward Object Name Normalization 65
	Level-Name Integrity 65
	Foreign Keys 66
	Singular Names 66
	Brevity 67
	Object Name Thesaurus 67

	Intelligent Keys and Column Values 68
	The Commandments 68

	PART II - SQL and SQL*Plus
	Chapter 5 - The Basic Parts of Speech in SQL 73
	Style 75
	Creating the NEWSPAPER Table 76
	Using SQL to Select Data from Tables 76
	select, from, where, and order by 80
	Logic and Value 82
	Single-Value Tests 82
	LIKE 86
	Simple Tests Against a List of Values 88
	Combining Logic 90

	Another Use for where: Subqueries 91
	Single Values from a Subquery 92
	Lists of Values from a Subquery 93

	Combining Tables 95
	Creating a View 97
	Expanding the View 99

	Chapter 6 - Basic SQL*Plus Reports and Commands 101
	Building a Simple Report 104
	remark 104
	set headsep 107
	ttitle and btitle 107
	column 108
	break on 109
	compute avg 109
	set linesize 110
	set pagesize 110
	set newpage 111
	spool 111
	/* */ 113
	Some Clarification on Column Headings 113

	Other Features 114
	Command Line Editor 114
	set pause 117
	save 117
	store 118
	Editing 118
	host 119
	Adding SQL*Plus Commands 120
	start 120

	Checking the SQL*Plus Environment 120
	Building Blocks 122

	Chapter 7 - Getting Text Information and Changing It 123
	Datatypes 124
	What Is a String? 124
	Notation 126
	Concatenation (||) 127
	How to Cut and Paste Strings 128
	RPAD and LPAD 129
	LTRIM, RTRIM, and TRIM 130
	Combining Two Functions 131
	Using the TRIM Function 133
	Adding One More Function 134
	LOWER, UPPER, and INITCAP 134
	LENGTH 136
	SUBSTR 137
	INSTR 140
	ASCII and CHR 144

	Using order by and where with String Functions 145
	SOUNDEX 146
	National Language Support 148
	Regular Expression Support 148

	Review 148

	Chapter 8 - Searching for Regular Expressions 149
	Search Strings 150
	REGEXP_SUBSTR 154
	REGEXP_INSTR 156
	REGEXP_LIKE 157
	REPLACE and REGEXP_REPLACE 158

	Chapter 9 - Playing the Numbers 163
	The Three Classes of Number Functions 164
	Notation 164
	Single-Value Functions 168
	Addition (+), Subtraction (-), Multiplication (*), and Division (/) 168
	NULL 169
	NVL: NULL-Value Substitution 169
	ABS: Absolute Value 171
	CEIL 171
	FLOOR 171
	MOD 171
	POWER 172
	SQRT: Square Root 172
	EXP, LN, and LOG 173
	ROUND and TRUNC 173
	SIGN 175
	SIN, SINH, COS, COSH, TAN, TANH, ACOS, ATAN, ATAN2, and ASIN 175

	Aggregate Functions 175
	NULLs in Group-Value Functions 176
	Examples of Single- and Group-Value Functions 177
	AVG, COUNT, MAX, MIN, and SUM 178
	Combining Group-Value and Single-Value Functions 178
	STDDEV and VARIANCE 180
	DISTINCT in Group Functions 181

	List Functions 182
	Finding Rows with MAX or MIN 183
	Precedence and Parentheses 185
	Review 186

	Chapter 10 - Dates: Then, Now, and the Difference 189
	Date Arithmetic 190
	SYSDATE, CURRENT_DATE, and SYSTIMESTAMP 190
	The Difference Between Two Dates 191
	Adding Months 194
	Subtracting Months 195
	GREATEST and LEAST 195
	NEXT_DAY 196
	LAST_DAY 198
	MONTHS_BETWEEN Two Dates 198
	Combining Date Functions 199

	ROUND and TRUNC in Date Calculations 199
	TO_DATE and TO_CHAR Formatting 200
	The Most Common TO_CHAR Error 207
	NEW_TIME: Switching Time Zones 208
	TO_DATE Calculations 209

	Dates in where Clauses 211
	Dealing with Multiple Centuries 212
	Using the EXTRACT Function 213
	Using the TIMESTAMP Datatypes 214

	Chapter 11 - Conversion and Transformation Functions 217
	Elementary Conversion Functions 220
	Automatic Conversion of Datatypes 222
	A Warning About Automatic Conversion 225

	Specialized Conversion Functions 225
	Transformation Functions 226
	TRANSLATE 226
	DECODE 227

	Review 228

	Chapter 12 - Grouping Things Together 229
	The Use of group by and having 230
	Adding an order by 232
	Order of Execution 233

	Views of Groups 234
	Renaming Columns with Aliases 235

	The Power of Views of Groups 236
	Using order by in Views 238
	Logic in the having Clause 238
	Using order by with Columns and Group Functions 240
	Join Columns 241

	More Grouping Possibilities 241

	Chapter 13 - When One Query Depends upon Another 243
	Advanced Subqueries 244
	Correlated Subqueries 245
	Coordinating Logical Tests 246
	Using EXISTS and Its Correlated Subquery 247

	Outer Joins 249
	Pre-Oracle9i Syntax for Outer Joins 249
	Current Syntax for Outer Joins 251
	Replacing NOT IN with an Outer Join 253
	Replacing NOT IN with NOT EXISTS 254

	Natural and Inner Joins 255
	UNION, INTERSECT, and MINUS 256
	IN Subqueries 259
	Restrictions on UNION, INTERSECT, and MINUS 260

	Chapter 14 - Some Complex Possibilities 261
	Complex Groupings 262
	Using Temporary Tables 263
	Using ROLLUP, GROUPING, and CUBE 264
	Family Trees and connect by 268
	Excluding Individuals and Branches 272
	Traveling Toward the Roots 274
	The Basic Rules 276

	Chapter 15 - Changing Data: insert, update, merge, and delete 279
	insert 280
	Inserting a Time 281
	insert with select 281
	Using the APPEND Hint to Improve insert Performance 282

	rollback, commit, and autocommit 283
	Using savepoints 284
	Implicit commit 285
	Auto rollback 285

	Multitable Inserts 285
	delete 289
	update 291
	update with Embedded select 292
	update with NULL 293

	Using the merge Command 293

	Chapter 16 - DECODE and CASE: if, then, and else in SQL 297
	if, then, else 298
	Replacing Values via DECODE 301
	DECODE Within DECODE 302
	Greater Than and Less Than in DECODE 305
	Using CASE 307

	Chapter 17 - Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 311
	Creating a Table 312
	Character Width and NUMBER Precision 313
	Rounding During Insertion 315
	Constraints in create table 317
	Designating Index Tablespaces 318
	Naming Constraints 320

	Dropping Tables 320
	Altering Tables 321
	The Rules for Adding or Modifying a Column 323
	Dropping a Column 325

	Creating a Table from a Table 326
	Creating an Index-Organized Table 327
	Using Partitioned Tables 328
	Creating a Partitioned Table 329
	List Partitioning 331
	Creating Subpartitions 331
	Indexing Partitions 332
	Managing Partitioned Tables 333

	Creating a View 333
	Stability of a View 333
	Using order by in Views 335
	Creating a Read-Only View 335

	Indexes 336
	Creating an Index 337
	Enforcing Uniqueness 337
	Creating a Bitmap Index 338
	When to Create an Index 339
	Variety in Indexed Columns 339
	How Many Indexes to Use on a Table 340
	Placing an Index in the Database 340
	Rebuilding an Index 341
	Function-Based Indexes 342

	Clusters 342
	Sequences 344

	Chapter 18 - Basic Oracle Security 345
	Users, Roles, and Privileges 346
	Creating a User 346
	Password Management 347
	Standard Roles 351
	Format for the grant Command 352
	Revoking Privileges 352

	What Users Can Grant 353
	Moving to Another User with connect 355
	create synonym 358
	Using Ungranted Privileges 358
	Passing Privileges 358
	Creating a Role 360
	Granting Privileges to a Role 360
	Granting a Role to Another Role 361
	Adding a Password to a Role 362
	Removing a Password from a Role 362
	Enabling and Disabling Roles 363
	Revoking Privileges from a Role 364
	Dropping a Role 364
	Granting UPDATE to Specific Columns 364
	Revoking Object Privileges 364
	Security by User 365
	Granting Access to the Public 366

	Granting Limited Resources 367

	PART III - Beyond the Basics
	Chapter 19 - Advanced Security-Virtual Private Databases 371
	Initial Configuration 372
	Create an Application Context 373
	Create a Logon Trigger 375
	Create a Security Policy 376
	Apply the Security Policy to Tables 377
	Test VPD 378
	How to Implement Column-Level VPD 379
	How to Disable VPD 380
	How to Use Policy Groups 381

	Chapter 20 - Working with Tablespaces 383
	Tablespaces and the Structure of the Database 384
	Tablespace Contents 385
	RECYCLEBIN Space in Tablespaces 387
	Read-Only Tablespaces 387
	nologging Tablespaces 388
	Temporary Tablespaces 388
	Tablespaces for System-Managed Undo 389
	Supporting Flashback Database 389
	Transporting Tablespaces 389

	Planning Your Tablespace Usage 389
	Separate Active and Static Tables 390
	Separate Indexes and Tables 390
	Separate Large and Small Objects 390
	Separate Application Tables from Core Objects 390

	Chapter 21 - Using SQL*Loader to Load Data 391
	The Control File 392
	Loading Variable-Length Data 393

	Starting the Load 394
	Logical and Physical Records 397

	Control File Syntax Notes 398
	Managing Data Loads 400
	Repeating Data Loads 401

	Tuning Data Loads 402
	Direct Path Loading 403

	Additional Features 404

	Chapter 22 - Using Data Pump Export and Import 405
	Creating a Directory 406
	Data Pump Export Options 406
	Starting a Data Pump Export Job 409
	Stopping and Restarting Running Jobs 410
	Exporting from Another Database 411
	Using EXCLUDE, INCLUDE, and QUERY 411

	Data Pump Import Options 413
	Starting a Data Pump Import Job 416
	Stopping and Restarting Running Jobs 417
	EXCLUDE, INCLUDE, and QUERY 418
	Transforming Imported Objects 418
	Generating SQL 419
	Comparing Data Pump Export/Import to Export/Import 421

	Chapter 23 - Accessing Remote Data 423
	Database Links 424
	How a Database Link Works 424
	Using a Database Link for Remote Queries 425
	Using a Database Link for Synonyms and Views 426
	Using a Database Link for Remote Updates 427
	Syntax for Database Links 428

	Using Synonyms for Location Transparency 431
	Using the User Pseudo-Column in Views 432
	Dynamic Links: Using the SQL*Plus copy Command 434
	Connecting to a Remote Database 435

	Chapter 24 - Using Materialized Views 437
	Functionality 438
	Required System Privileges 438
	Required Table Privileges 439
	Read-Only vs. Updatable 439
	create materialized view Syntax 440
	Types of Materialized Views 443
	RowID vs. Primary Key-Based Materialized Views 444
	Using Prebuilt Tables 444
	Indexing Materialized View Tables 445

	Using Materialized Views to Alter Query Execution Paths 445
	Using DBMS_ADVISOR 447
	Performing a Quick Tune 448

	Refreshing Materialized Views 449
	What Kind of Refreshes Can Be Performed? 449
	Automatic Refreshes 453
	Manual Refreshes 454

	create materialized view log Syntax 455
	Required System Privileges 456

	Altering Materialized Views and Logs 456
	Dropping Materialized Views and Logs 457

	Chapter 25 - Using Oracle Text for Text Searches 459
	Adding Text to the Database 460
	Text Queries and Text Indexes 461
	Text Queries 462
	Available Text Query Expressions 463
	Searching for an Exact Match of a Word 463
	Searching for an Exact Match of Multiple Words 464
	Searching for an Exact Match of a Phrase 468
	Searches for Words That Are Near Each Other 469
	Using Wildcards During Searches 469
	Searching for Words That Share the Same Stem 470
	Searching for Fuzzy Matches 471
	Searches for Words That Sound Like Other Words 471
	Using the ABOUT Operator 474
	Index Synchronization 474

	Index Sets 474

	Chapter 26 - Using External Tables 477
	Accessing the External Data 478
	Creating an External Table 479
	External Table Creation Options 483

	Altering External Tables 489
	Limitations, Benefits, and Potential Uses of External Tables 490

	Chapter 27 - Using Flashback Queries 493
	Time-Based Flashback Example 494
	Saving the Data 496
	Limitations of Time-Based Flashbacks 497

	SCN-Based Flashback Example 497
	What If the Flashback Query Fails? 499
	What SCN Is Associated with Each Row? 499
	Flashback Version Queries 500
	Planning for Flashbacks 502

	Chapter 28 - Flashback-Tables and Databases 503
	The flashback table Command 504
	Privileges Required 504
	Recovering Dropped Tables 504
	Flashing Back to SCN or Timestamp 506
	Indexes and Statistics 507

	The flashback database Command 507

	PART IV - PL/SQL
	Chapter 29 - An Introduction to PL/SQL 513
	PL/SQL Overview 514
	Declarations Section 514
	Executable Commands Section 518
	Conditional Logic 520
	Loops 521
	CASE Statements 529

	Exception Handling Section 531

	Chapter 30 - Triggers 535
	Required System Privileges 536
	Required Table Privileges 536
	Types of Triggers 537
	Row-Level Triggers 537
	Statement-Level Triggers 537
	BEFORE and AFTER Triggers 537
	INSTEAD OF Triggers 537
	Schema Triggers 538
	Database-Level Triggers 538

	Trigger Syntax 538
	Combining DML Trigger Types 540
	Setting Inserted Values 542
	Maintaining Duplicated Data 543
	Customizing Error Conditions 544
	Calling Procedures Within Triggers 546
	Naming Triggers 547
	Creating DDL Event Triggers 547
	Creating Database Event Triggers 548

	Enabling and Disabling Triggers 548
	Replacing Triggers 549
	Dropping Triggers 550

	Chapter 31 - Procedures, Functions, and Packages 555
	Required System Privileges 556
	Executing Procedures 556

	Required Table Privileges 558
	Procedures vs. Functions 558
	Procedures vs. Packages 558
	create procedure Syntax 559
	create function Syntax 561
	Referencing Remote Tables in Procedures 563
	Debugging Procedures 564
	Creating Your Own Functions 565
	Customizing Error Conditions 566
	Naming Procedures and Functions 568

	create package Syntax 568
	Initializing Packages 570

	Viewing Source Code for Procedural Objects 572
	Compiling Procedures, Functions, and Packages 572
	Replacing Procedures, Functions, and Packages 573
	Dropping Procedures, Functions, and Packages 573

	Chapter 32 - Using Native Dynamic SQL and DBMS_SQL 575
	Using EXECUTE IMMEDIATE 576
	Using Bind Variables 578
	Using DBMS_SQL 579
	OPEN_CURSOR 580
	PARSE 580
	BIND_VARIABLE and BIND_ARRAY 580
	EXECUTE 581
	DEFINE_COLUMN 581
	FETCH_ROWS, EXECUTE_AND_FETCH, and COLUMN_VALUE 582
	CLOSE_CURSOR 582

	PART V - Object-Relational Databases
	Chapter 33 - Implementing Types, Object Views, and Methods 587
	Working with Abstract Datatypes 588
	Security for Abstract Datatypes 588
	Indexing Abstract Datatype Attributes 592

	Implementing Object Views 593
	Manipulating Data via Object Views 596
	Using INSTEAD OF Triggers 597

	Methods 599
	Syntax for Creating Methods 600
	Managing Methods 601

	Chapter 34 - Collectors (Nested Tables and Varying Arrays) 603
	Varying Arrays 604
	Creating a Varying Array 604
	Describing the Varying Array 605
	Inserting Records into the Varying Array 606
	Selecting Data from Varying Arrays 607

	Nested Tables 610
	Specifying Tablespaces for Nested Tables 611
	Inserting Records into a Nested Table 612
	Querying Nested Tables 613

	Additional Functions for Nested Tables and Varying Arrays 615
	Management Issues for Nested Tables and Varying Arrays 615
	Variability in Collectors 616
	Location of the Data 616

	Chapter 35 - Using Large Objects 619
	Available Datatypes 620
	Specifying Storage for LOB Data 621
	Manipulating and Selecting LOB Values 623
	Initializing Values 623
	Using insert with Subqueries 625
	Updating LOB Values 626
	Using String Functions to Manipulate LOB Values 626
	Using DBMS_LOB to Manipulate LOB Values 627
	Deleting LOBS 646

	Chapter 36 - Advanced Object-Oriented Concepts 647
	Row Objects vs. Column Objects 648
	Object Tables and OIDs 648
	Inserting Rows into Object Tables 649
	Selecting Values from Object Tables 650
	Updates and Deletes from Object Tables 651
	The REF Function 651
	Using the DEREF Function 652
	The VALUE Function 655
	Invalid References 656

	Object Views with REFs 656
	A Quick Review of Object Views 656
	Object Views Involving References 657

	Object PL/SQL 661
	Objects in the Database 662

	PART VI - Java in Oracle
	Chapter 37 - An Introduction to Java 667
	Java vs. PL/SQL: An Overview 668
	Getting Started 669
	Declarations 669
	Executable Commands 670
	Conditional Logic 671
	Loops 675
	Exception Handling 677
	Reserved Words 678

	Classes 679

	Chapter 38 - JDBC Programming 685
	Getting Started 686
	Additional Steps for Windows Users 686
	Testing Your Connection 687

	Using the JDBC Classes 688
	Using JDBC for Data Manipulation 691

	Chapter 39 - Java Stored Procedures 697
	Loading the Class into the Database 700
	How to Access the Class 702
	Calling Java Stored Procedures Directly 704
	Where to Perform Commands 704

	PART VII - Clustered Oracle-The Grid
	Chapter 40 - Oracle Real Application Clusters 709
	Preinstallation Steps 710
	Installing RAC 710
	Storage 711
	Initialization Parameters 712

	Starting and Stopping RAC Instances 714
	Transparent Application Failover 716
	Services 717

	Adding Nodes and Instances to the Cluster 717
	Managing the Cluster Registry and Services 718

	Chapter 41 - Grid Architecture and Management 719
	Hardware and Operating System Configuration Issues 720
	Oracle Cluster File System 721
	Accessing the Other Servers 722
	Oracle Cluster Manager 722

	Adding Servers to the Grid 723
	Adding Instances to the Grid 723

	Sharing Data Across the Grid 724
	Managing the Grid 724
	Enabling Patch Searches and Downloads 726
	Setting Credentials for the Job System 726
	Configuring Databases for Monitoring 726

	Launching OEM 726
	Initialization Parameters for the Repository 727

	PART VIII - Hitchhiker's Guides
	Chapter 42 - The Hitchhiker's Guide to the Oracle Data Dictionary 731
	A Note about Nomenclature 732
	New Views Introduced in Oracle Database 10g 733
	New Columns Introduced in Oracle Database 10g 738
	The Road Maps: DICTIONARY (DICT) and DICT_COLUMNS 745
	Things You Select From: Tables (and Columns), Views, Synonyms, and Sequences 746
	Catalog: USER_CATALOG (CAT) 747
	Objects: USER_OBJECTS (OBJ) 747
	Tables: USER_TABLES (TABS) 748
	Columns: USER_TAB_COLUMNS (COLS) 750
	Views: USER_VIEWS 751
	Synonyms: USER_SYNONYMS (SYN) 753
	Sequences: USER_SEQUENCES (SEQ) 754

	Recycle Bin-USER_RECYCLEBIN and DBA_RECYCLEBIN 755
	Constraints and Comments 755
	Constraints: USER_CONSTRAINTS 755
	Constraint Columns: USER_CONS_COLUMNS 757
	Constraint Exceptions: EXCEPTIONS 758
	Table Comments: USER_TAB_COMMENTS 759
	Column Comments: USER_COL_COMMENTS 760

	Indexes and Clusters 760
	Indexes: USER_INDEXES (IND) 760
	Indexed Columns: USER_IND_COLUMNS 762
	Clusters: USER_CLUSTERS (CLU) 763
	Cluster Columns: USER_CLU_COLUMNS 764

	Abstract Datatypes, ORDBMS-Related Structures, and LOBs 764
	Abstract Datatypes: USER_TYPES 764
	LOBs: USER_LOBS 767

	Database Links and Materialized Views 767
	Database Links: USER_DB_LINKS 767
	Materialized Views 768
	Materialized View Logs: USER_MVIEW_LOGS 770

	Triggers, Procedures, Functions, and Packages 770
	Triggers: USER_TRIGGERS 771
	Procedures, Functions, and Packages: USER_SOURCE 771

	Dimensions 773
	Space Allocation and Usage, Including Partitions and Subpartitions 774
	Tablespaces: USER_TABLESPACES 774
	Space Quotas: USER_TS_QUOTAS 775
	Segments and Extents: USER_SEGMENTS and USER_EXTENTS 776
	Partitions and Subpartitions 777
	Free Space: USER_FREE_SPACE 780

	Users and Privileges 780
	Users: USER_USERS 780
	Resource Limits: USER_RESOURCE_LIMITS 780
	Table Privileges: USER_TAB_PRIVS 781
	System Privileges: USER_SYS_PRIVS 781

	Roles 782
	Auditing 783
	Miscellaneous 785
	Monitoring: The V$ Dynamic Performance Tables 785
	CHAINED_ROWS 786
	PLAN_TABLE 786
	Interdependencies: USER_DEPENDENCIES and IDEPTREE 787
	DBA-Only Views 787
	Oracle Label Security 787
	SQL*Loader Direct Load Views 787
	Globalization Support Views 788
	Libraries 788
	Heterogeneous Services 788
	Indextypes and Operators 788
	Outlines 788
	Advisors 789
	Schedulers 789

	Chapter 43 - The Hitchhiker's Guide to Tuning Applications and SQL 791
	New Tuning Features in Oracle Database 10g 792
	Automatic Tools 792
	End-to-End Tracing 793
	The trcsess Utility 793
	Optimizer Modifications 793

	Tuning-Best Practices 794
	Do as Little as Possible 794
	Do It as Simply as Possible 797
	Tell the Database What It Needs to Know 798
	Maximize the Throughput in the Environment 799
	Divide and Conquer Your Data 800
	Test Correctly 801

	Generating and Reading Explain Plans 803
	Using set autotrace on 803
	Using explain plan 807

	Major Operations Within Explain Plans 808
	Operations That Use Indexes 810
	When Indexes Are Used 811
	Operations That Manipulate Data Sets 816
	Operations That Perform Joins 823
	How Oracle Handles Joins of More than Two Tables 824
	Parallelism and Cache Issues 830

	Implementing Stored Outlines 831
	Review 833

	Chapter 44 - Case Studies in Tuning 835
	Case Study 1: Waits, Waits, and More Waits 836
	Case Study 2: Application-Killing Queries 839
	Case Study 3: Long-Running Batch Jobs 841

	Chapter 45 - The Hitchhiker's Guide to Oracle Application Server 10g 845
	What Is Oracle Application Server 10g? 847
	Communication Services 854
	Content Management Services 859
	Business Logic Services 859
	Presentation Services 861
	Business Intelligence Services 863
	Portal Services 865
	Web Services 866
	Developer Toolkits 867
	XML Toolkit 867
	Content Management Toolkit 868
	Oracle Application Server MapViewer Toolkit 868
	Wireless Toolkit 869
	Portal Development Kit 871

	Persistence Layer Services 872
	Caching Services 874
	System Services 876
	Enterprise Manager 10g Grid Control 877

	Development Tools 878
	How Will Your Application Be Accessed? 879
	How Complex Is the User Interface? 879
	What Types of Users Will Be Using Your Application? 879
	Oracle Forms 880
	Oracle Reports 880
	Oracle Discoverer 881
	Java Tools 881
	HTML DB 882

	Chapter 46 - The Hitchhiker's Guide to Database Administration 885
	Creating a Database 886
	Using the Oracle Enterprise Manager 886

	Starting and Stopping the Database 887
	Sizing and Managing Memory Areas 888
	The Initialization Parameter File 890

	Allocating and Managing Space for the Objects 891
	Implications of the storage Clause 891
	Table Segments 893
	Index Segments 894
	Rollback Segments and System-Managed Undo 894
	Temporary Segments 895
	Free Space 896
	Sizing Database Objects 898

	Monitoring an Undo Tablespace 900
	Automating Storage Management 901
	Configuring ASM 901

	Segment Space Management 902
	Transporting Tablespaces 903
	Generating a Transportable Tablespace Set 903
	Plugging in the Transportable Tablespace Set 904

	Performing Backups 904
	Export and Import vs. Data Pump Export and Import 905
	Export and Import 905
	Export 906
	Import 910
	Offline Backups 913
	Online Backups 914
	Recovery Manager 918
	Enhancements to RMAN in Oracle Database 10g 918

	Where to Go from Here 919

	Chapter 47 - The Hitchhiker's Guide to XML in Oracle 921
	Document Type Definitions, Elements, and Attributes 922
	XML Schema 926
	Using XSU to Select, Insert, Update, and Delete XML Values 928
	Insert, Update, and Delete Processing with XSU 930
	XSU and Java 931
	Customizing the Query Process 932

	Using XMLType 934
	Other Features 936

	PART IX - Alphabetical Reference
	What This Alphabetical Reference Includes 938
	What This Alphabetical Reference Does Not Include 938
	General Format of Entries 938
	RPAD 938
	The Sections of Each Entry 938
	Other Formatting Guidelines 939
	Other Elements of a Listing 940

	The Order of the Keywords 940
	Symbols 940
	_ (Underscore) 941
	_EDITOR 941
	! (Exclamation Mark) 942
	" (Double Quotation Mark) 942
	# (Pound Sign) 942
	$ (Dollar Sign) 942
	? (Question Mark) 943
	% (Percent) 943
	%FOUND 943
	%ISOPEN 944
	%NOTFOUND 944
	%ROWCOUNT 944
	%ROWTYPE 944
	%TYPE 945
	& or && (Ampersand or Double Ampersand) 945
	' (Single Quotation Mark) 946
	() (Parentheses) 946
	* (Multiplication) 946
	** (Exponentiation) 946
	+ (Addition) 946
	- (Subtraction [Form 1]) 947
	- (Hyphen [Form 2]) 947
	-- (Comment) 947
	. (Period or Dot [Form 1]) (SQL*Plus) 947
	. (Period or Dot [Form 2]) 948
	.. (To) 948
	/ (Division [Form 1]) 948
	/ (Slash [Form 2]) (SQL*Plus) 948
	/* */ (Comment) 949
	: (Colon, Host Variable Prefix) 949
	:= (Set Equal To) 949
	; (Semicolon) 950
	< < > > (PL/SQL Label Name Delimiter) 950
	@ ("At" Sign [Form 1]) (SQL*Plus) 950
	@ ("At" Sign [Form 2]) 950
	@@ (Double "At" Sign) (SQL*Plus) 950
	{} (Curly Braces) 951
	| (Vertical Bar) 951
	|| (Concatenation) 952
	ABS (Absolute Value) 952
	ABSTRACT DATATYPES 952
	ACCEPT 952
	ACCUMULATE 953
	ACOS 953
	ADD_MONTHS 953
	AGGREGATE FUNCTIONS 953
	ALIAS 954
	ALL 954
	ALLOCATE (Embedded SQL) 955
	ALTER CLUSTER 955
	ALTER DATABASE 957
	ALTER DIMENSION 968
	ALTER DISKGROUP 970
	ALTER FUNCTION 974
	ALTER INDEX 975
	ALTER INDEXTYPE 980
	ALTER JAVA 981
	ALTER MATERIALIZED VIEW 982
	ALTER MATERIALIZED VIEW LOG 987
	ALTER OPERATOR 989
	ALTER OUTLINE 990
	ALTER PACKAGE 990
	ALTER PROCEDURE 991
	ALTER PROFILE 991
	ALTER RESOURCE COST 993
	ALTER ROLE 993
	ALTER ROLLBACK SEGMENT 993
	ALTER SEQUENCE 994
	ALTER SESSION 995
	ALTER SYSTEM 996
	ALTER TABLE 999
	ALTER TABLESPACE 1023
	ALTER TRIGGER 1026
	ALTER TYPE 1027
	ALTER USER 1031
	ALTER VIEW 1033
	ANALYTIC FUNCTIONS 1033
	ANALYZE 1034
	AND 1035
	ANSI 1035
	ANY 1035
	APPEND (SQL*Plus) 1036
	ARCH PROCESS 1036
	ARCHIVE 1036
	ARCHIVE LOG 1037
	ARRAYSIZE (SQL*Plus) 1037
	AS 1037
	ASCII 1037
	ASCIISTR 1038
	ASIN 1038
	ASSOCIATE STATISTICS 1038
	ATAN 1040
	ATAN2 1040
	ATTRIBUTE (SQL*Plus) 1040
	AUDIT 1040
	AUTOCOMMIT (SQL*Plus) 1043
	AUTORECOVERY (SQL*Plus) 1043
	AVG 1043
	B*-TREE 1043
	BACKGROUND PROCESS 1043
	BEGIN 1044
	BETWEEN 1044
	BFILE 1044
	BFILENAME 1044
	BINARY_DOUBLE 1044
	BINARY_FLOAT 1044
	BIN_TO_NUM 1044
	BIND VARIABLE 1045
	BITAND 1045
	BITMAP INDEX 1045
	BLOB 1045
	BLOCK 1045
	BLOCK STRUCTURE 1045
	BREAK (SQL*Plus) 1046
	BTITLE (SQL*Plus) 1047
	BUFFER 1048
	BUFFERS (DATABASE) 1048
	BUFFERS (REDO LOG) 1048
	CACHES 1048
	CALL 1048
	CARDINALITY 1049
	CASE 1049
	CAST 1050
	CATSEARCH 1050
	CEIL 1051
	CHAINED ROW 1051
	CHANGE (SQL*Plus) 1051
	CHAR DATATYPE 1052
	CHARACTER FUNCTIONS 1052
	CHARTOROWID 1054
	CHR 1054
	CLAUSE 1055
	CLEAR (SQL*Plus) 1055
	CLOB 1055
	CLOSE 1055
	CLOSED DATABASE 1056
	CLUSTER 1056
	CLUSTER INDEX 1056
	CLUSTER KEY 1056
	CMDSEP (SQL*Plus) 1056
	COALESCE 1056
	COLLATION 1056
	COLLECT 1057
	COLLECTION FUNCTIONS 1057
	COLSEP (SQL*Plus) 1057
	COLUMN (Form 1-Definition) 1057
	COLUMN (Form 2-SQL*Plus) 1057
	COLUMN CONSTRAINT 1060
	COMMENT 1060
	COMMIT 1060
	COMMIT (Form 1-Embedded SQL) 1060
	COMMIT (Form 2-PL/SQL Statement) 1061
	COMPOSE 1061
	COMPOSITE KEY 1061
	COMPOSITE PARTITION 1061
	COMPRESSED INDEX 1061
	COMPUTE (SQL*Plus) 1061
	CONCAT 1062
	CONCATENATED INDEX (or KEY) 1062
	CONCURRENCY 1062
	CONDITION 1063
	CONNECT (Form 1ŠSQL*Plus)) 1063
	CONNECT (Form 2ŠEmbedded SQL) 1063
	CONNECT BY 1063
	CONSTRAINT 1064
	CONSTRAINTS 1064
	CONTAINS 1067
	CONTEXT AREA 1068
	CONTEXT INDEX 1068
	CONTROL FILE (DATABASE) 1068
	CONTROL FILE (SQL*LOADER) 1068
	CONVERSION FUNCTIONS 1068
	CONVERT 1070
	COPY (SQL*Plus) 1070
	COPYCOMMIT (SQL*Plus) 1071
	COPYTYPECHECK (SQL*Plus) 1071
	CORR 1071
	CORR 1072
	CORR_K and CORR_S 1072
	CORRELATED QUERY 1072
	COS 1072
	COSH 1072
	COUNT 1073
	COVAR_POP 1073
	COVAR_SAMP 1073
	CREATE CLUSTER 1073
	CREATE CONTEXT 1075
	CREATE CONTROLFILE 1075
	CREATE DATABASE 1077
	CREATE DATABASE LINK 1080
	CREATE DIMENSION 1081
	CREATE DIRECTORY 1083
	CREATE DISKGROUP 1083
	CREATE FUNCTION 1084
	CREATE INDEX 1086
	CREATE INDEXTYPE 1092
	CREATE JAVA 1092
	CREATE LIBRARY 1094
	CREATE MATERIALIZED VIEW 1094
	CREATE MATERIALIZED VIEW LOG 1099
	CREATE OPERATOR 1101
	CREATE OUTLINE 1102
	CREATE PACKAGE 1102
	CREATE PACKAGE BODY 1103
	CREATE PFILE 1103
	CREATE PROCEDURE 1104
	CREATE PROFILE 1105
	CREATE ROLE 1106
	CREATE ROLLBACK SEGMENT 1107
	CREATE SCHEMA 1107
	CREATE SEQUENCE 1107
	CREATE SPFILE 1108
	CREATE SYNONYM 1108
	CREATE TABLE 1109
	CREATE TABLESPACE 1121
	CREATE TRIGGER 1124
	CREATE TYPE 1126
	CREATE TYPE BODY 1131
	CREATE USER 1132
	CREATE VIEW 1133
	CREATING A DATABASE 1135
	CROSS JOIN 1135
	CTXCAT INDEX 1135
	CUBE 1136
	CUME_DIST 1136
	CURRENT_DATE 1136
	CURRENT_TIMESTAMP 1136
	CURRVAL 1137
	CURSOR 1137
	CURSOR (PL/SQL) 1137
	CURSOR FOR LOOP 1137
	CV 1138
	DATA CONTROL LANGUAGE (DCL) STATEMENTS 1138
	DATA DEFINITION LANGUAGE (DDL) STATEMENTS 1138
	DATA DEFINITION LOCKS 1138
	DATA DICTIONARY 1138
	DATA DICTIONARY VIEWS 1138
	DATA INDEPENDENCE 1138
	DATA MANIPULATION LANGUAGE (DML) STATEMENTS 1139
	DATABASE 1139
	DATABASE ADMINISTRATOR (DBA) 1139
	DATABASE LINK 1139
	DATABASE NAME 1139
	DATABASE OBJECT 1139
	DATAFILE 1139
	DATATYPES 1139
	DATE 1140
	DATE FORMATS 1140
	DATE FUNCTIONS 1142
	DBA 1144
	DBTIMEZONE 1144
	DBWR PROCESS 1144
	DCL 1144
	DDL 1144
	DDL LOCK 1144
	DEADLOCK 1144
	DECLARE 1145
	DECLARE CURSOR (Form 1-Embedded SQL) 1145
	DECLARE CURSOR (Form 2-PL/SQL) 1145
	DECLARE DATABASE (Embedded SQL) 1146
	DECLARE STATEMENT (Embedded SQL) 1146
	DECLARE TABLE 1146
	DECODE 1147
	DECOMPOSE 1147
	DEFAULT 1147
	DEFAULT VALUE 1147
	DEFINE (SQL*Plus) 1147
	DEL (SQL*Plus) 1148
	DELETE (Form 1-PL/SQL) 1148
	DELETE (Form 2-SQL Command) 1149
	DELETE (Form 3-Embedded SQL) 1150
	DENSE_RANK 1150
	DEPTH 1150
	DEREF 1151
	DESCRIBE (Form 1-SQL*Plus) 1151
	DESCRIBE (Form 2-Embedded SQL) 1151
	DICTIONARY CACHE 1151
	DICTIONARY LOCKS 1151
	DIMENSION 1151
	DIRECTORY 1152
	DISASSOCIATE STATISTICS 1152
	DISCONNECT (SQL*Plus) 1152
	DISTINCT 1153
	DISTRIBUTED DATABASE 1153
	DISTRIBUTED PROCESSING 1153
	DISTRIBUTED QUERY 1153
	DML 1153
	DML LOCK 1153
	DROP CLUSTER 1153
	DROP CONTEXT 1154
	DROP DATABASE 1154
	DROP DATABASE LINK 1154
	DROP DIMENSION 1154
	DROP DIRECTORY 1154
	DROP DISKGROUP 1155
	DROP FUNCTION 1155
	DROP INDEX 1155
	DROP INDEXTYPE 1155
	DROP JAVA 1156
	DROP LIBRARY 1156
	DROP MATERIALIZED VIEW 1156
	DROP MATERIALIZED VIEW LOG 1156
	DROP OPERATOR 1157
	DROP OUTLINE 1157
	DROP PACKAGE 1157
	DROP PROCEDURE 1157
	DROP PROFILE 1157
	DROP ROLE 1158
	DROP ROLLBACK SEGMENT 1158
	DROP SEQUENCE 1158
	DROP SYNONYM 1158
	DROP TABLE 1158
	DROP TABLESPACE 1159
	DROP TRIGGER 1159
	DROP TYPE 1159
	DROP TYPE BODY 1160
	DROP USER 1160
	DROP VIEW 1160
	DROPJAVA 1160
	DUAL 1160
	DUMP 1160
	ECHO (SQL*Plus) 1161
	EDIT (SQL*Plus) 1161
	EMBEDDED (SQL*Plus) 1161
	EMPTY_BLOB 1161
	EMPTY_CLOB 1161
	END 1162
	ENQUEUE 1162
	ENTITY 1162
	ENTITY-RELATIONSHIP MODEL 1162
	EQUI-JOIN 1162
	ESCAPE (SQL*Plus) 1162
	EXCEPTION 1162
	EXCEPTION_INIT 1166
	EXCLUSIVE LOCK 1166
	EXECUTE 1166
	EXECUTE (Dynamic Embedded SQL) 1167
	EXECUTE IMMEDIATE (Dynamic Embedded SQL) 1167
	EXISTS 1168
	EXISTSNODE 1168
	EXIT (Form 1ŠPL/SQL) 1168
	EXIT (Form 2ŠSQL*Plus) 1168
	EXP 1169
	EXPLAIN PLAN 1169
	EXPORT 1169
	EXPRESSION 1169
	EXTERNAL TABLE 1169
	EXTRACT (datetime) 1170
	EXTRACT (XML) 1170
	EXTRACTVALUE 1170
	FEEDBACK (SQL*Plus) 1171
	FETCH 1171
	FETCH (Form 1-Embedded SQL) 1171
	FETCH (Form 2-PL/SQL) 1171
	FIELD 1172
	FILE TYPES 1172
	file_specification 1172
	FIRST 1174
	FIRST_VALUE 1174
	FLASHBACK DATABASE 1175
	FLASHBACK TABLE 1175
	FLASHBACK QUERY 1177
	FLOOR 1177
	FLUSH (SQL*Plus) 1177
	FOR 1177
	FOREIGN KEY 1177
	FORMAT 1177
	FORMAT MODEL 1177
	FREE EXTENTS 1177
	FROM 1178
	FROM_TZ 1178
	FULL OUTER JOIN 1178
	FULL TABLE SCAN 1178
	FUNCTION 1178
	FUZZY MATCH 1178
	GET (SQL*Plus) 1179
	GLOBAL INDEX 1179
	GOTO 1179
	GRANT 1180
	GREATEST 1181
	GROUP BY 1182
	GROUP_ID 1183
	GROUPING 1183
	GROUPING_ID 1183
	HASH CLUSTER 1183
	HASH JOIN 1183
	HASH PARTITION 1183
	HAVING 1183
	HEADING (SQL*Plus) 1183
	HEADSEP (SQL*Plus) 1183
	HELP (SQL*Plus) 1183
	HEXTORAW 1184
	HINT 1184
	HISTOGRAM 1184
	HOST (SQL*Plus) 1184
	IF 1184
	IMPORT 1185
	IN 1185
	INDEX 1185
	INDEX SEGMENT 1186
	INDEX-ORGANIZED TABLE 1186
	INDICATOR VARIABLE 1186
	init.ora 1187
	INITCAP 1187
	INNER JOIN 1188
	INPUT (SQL*Plus) 1188
	INSERT (Form 1-Embedded SQL) 1188
	INSERT (Form 2-PL/SQL) 1189
	INSERT (Form 3-SQL Command) 1189
	INSTANCE 1191
	INSTANCE IDENTIFIER 1191
	INSTANCE RECOVERY 1192
	INSTEAD OF TRIGGER 1192
	INSTR 1192
	INTEGRITY CONSTRAINT 1192
	INTERSECT 1193
	INTERVAL DAY TO SECOND 1193
	INTERVAL YEAR TO MONTH 1193
	IS A SET 1193
	IS ANY 1193
	IS EMPTY 1194
	IS NULL 1194
	IS OF type 1194
	IS PRESENT 1195
	ITERATION_NUMBER 1195
	JAVA 1195
	JDBC 1195
	JOIN 1195
	JOIN COLUMN 1196
	JULIAN DATE 1196
	KEY 1196
	LABEL (PL/SQL) 1196
	LAG 1196
	LAST 1197
	LAST_DAY 1197
	LAST_VALUE 1197
	LEAD 1197
	LEAST 1197
	LENGTH 1198
	LEVEL 1198
	LGWR 1198
	LIBRARY 1198
	LIKE 1198
	LINESIZE (SQL*Plus) 1199
	LIST (SQL*Plus) 1199
	LIST FUNCTIONS 1199
	LN 1199
	LNNVL 1200
	LOADJAVA 1200
	LOB 1200
	LOBOFFSET (SQL*Plus) 1200
	LOCAL DATABASE 1200
	LOCAL INDEX 1200
	LOCALTIMESTAMP 1200
	LOCALLY MANAGED TABLESPACE 1201
	LOCK 1201
	LOCK TABLE 1201
	LOG 1202
	LOGICAL EXPRESSION 1202
	LOGICAL OPERATORS 1202
	LOGIN ACCOUNT 1203
	LOBSOURCE (SQL*Plus) 1203
	LONG (SQL*Plus) 1203
	LONG DATATYPE 1203
	LONG RAW DATATYPE 1203
	LOOP 1203
	LOWER 1204
	LPAD 1204
	LTRIM 1204
	MAKE_REF 1204
	MATERIALIZED VIEW 1205
	MATERIALIZED VIEW LOG 1205
	MAX 1205
	MEDIA RECOVERY 1205
	MEDIAN 1205
	MERGE 1205
	METHOD 1207
	MIN 1207
	MINUS 1207
	MOD 1207
	MODEL FUNCTIONS 1208
	MONTHS_BETWEEN 1208
	MOUNT A DATABASE 1208
	MOUNT AND OPEN A DATABASE 1208
	MULTITHREADED SERVER 1208
	NANVL 1208
	NATURAL JOIN 1209
	NCHAR 1209
	NCHR 1209
	NCLOB 1209
	NEAR 1209
	NESTED TABLE 1209
	NEWPAGE (SQL*Plus) 1209
	NEW_TIME 1210
	NEXT_DAY 1210
	NEXTVAL 1210
	NLS_CHARSET_DECL_LEN 1210
	NLS_CHARSET_ID 1210
	NLS_CHARSET_NAME 1210
	NLS_INITCAP 1210
	NLS_LOWER 1211
	NLS_UPPER 1211
	NLSSORT 1211
	NOAUDIT 1211
	NODE 1213
	NOLOGGING 1213
	NON-EQUI-JOIN 1213
	NOT 1213
	NOT EXISTS 1213
	NTILE 1213
	NULL (Form 1-PL/SQL) 1214
	NULL (Form 2-SQL Column Value) 1214
	NULLIF 1215
	NUMBER DATATYPE 1215
	NUMBER FORMATS 1215
	NUMBER FUNCTIONS 1216
	NUMTODSINTERVAL 1217
	NUMTOYMINTERVAL 1217
	NUMWIDTH (SQL*Plus) 1217
	NVARCHAR2 1218
	NVL 1218
	NVL2 1218
	OBJECT NAMES 1218
	OBJECT REFERENCE FUNCTIONS 1218
	OBJECT TABLE 1218
	OBJECT VIEW 1219
	OBJECT-RELATIONAL DATABASE MANAGEMENT SYSTEM 1219
	OFFLINE BACKUP 1219
	OID 1219
	ONLINE BACKUP 1219
	ONLINE REDO LOG 1219
	OPEN 1219
	OPEN CURSOR (Embedded SQL) 1220
	OPERATOR 1220
	OPS$ LOGINS 1220
	OPTIMIZER 1220
	OR 1221
	ORACLE ENTERPRISE MANAGER 1221
	ORACLE REAL APPLICATION CLUSTERS 1221
	ORACLE APPLICATION SERVER 10g 1221
	ORA_HASH 1221
	ORDBMS 1221
	ORDER BY 1221
	OTHER FUNCTIONS 1222
	OUTER JOIN 1222
	PACKAGE 1223
	PAGESIZE (SQL*Plus) 1223
	PARAMETER 1223
	PARAMETERS 1223
	PARENT 1223
	PARENT QUERY 1223
	PARENTHESES 1224
	PARSE 1224
	PASSWORD (SQL*Plus) 1224
	PARALLEL QUERY OPTION 1224
	PARTITION 1224
	PARTITIONED TABLE 1224
	PATH 1225
	PAUSE (Form 1-SQL*Plus) 1225
	PAUSE (Form 2-SQL*Plus) 1225
	PCTFREE 1225
	PCTUSED 1225
	PERCENT_RANK 1225
	PERCENTILE_CONT 1226
	PERCENTILE_DISC 1226
	PMON PROCESS 1227
	POWER 1227
	POWERMULTISET 1227
	POWERMULTISET_BY_CARDINALITY 1227
	PRAGMA 1227
	PRECEDENCE 1227
	PRECOMPILER 1228
	PREDICATE 1228
	PREPARE (Embedded SQL) 1229
	PRESENTNNV 1229
	PRESENTV 1229
	PREVIOUS 1230
	PRIMARY KEY 1230
	PRINT 1230
	PRIOR 1230
	PRIVILEGE 1230
	PRO*C 1237
	PROCEDURE 1237
	PRODUCT_USER_PROFILE 1238
	PROFILE 1238
	PROMPT (SQL*Plus) 1238
	PSEUDO-COLUMNS 1238
	PUBLIC 1239
	PUBLIC SYNONYM 1239
	PURGE 1239
	QUERY 1240
	QUERY OPERATORS 1240
	QUIT 1240
	QUOTA 1240
	RAISE 1240
	RANK 1241
	RATIO_TO_REPORT 1241
	RAW DATATYPE 1242
	RAWTOHEX 1242
	RAWTONHEX 1242
	READ CONSISTENCY 1242
	RECORD (PL/SQL) 1242
	RECOVER 1242
	RECSEP (SQL*Plus) 1244
	RECSEPCHAR (SQL*Plus) 1244
	RECURSIVE CALL 1244
	RECYCLE BIN 1244
	REDO LOG 1244
	REDO LOG SEQUENCE NUMBER 1244
	REF 1244
	REFERENTIAL INTEGRITY 1245
	REFTOHEX 1245
	REGEXP_INSTR 1245
	REGEXP_LIKE 1245
	REGEXP_REPLACE 1246
	REGEXP_SUBSTR 1246
	REGR_ (LINEAR REGRESSION) FUNCTIONS 1246
	RELATIONAL DATABASE MANAGEMENT SYSTEM (RDBMS) 1247
	RELATIONAL OPERATOR 1247
	REMAINDER 1247
	REMARK (SQL*Plus) 1248
	REMOTE DATABASE 1248
	RENAME 1248
	REPFOOTER (SQL*Plus) 1248
	REPHEADER (SQL*Plus) 1249
	REPLACE 1250
	REPLICATION 1250
	RESERVED WORDS 1250
	RESOURCE 1252
	REVERSE-KEY INDEX 1252
	REVOKE 1252
	ROLE 1253
	ROLL FORWARD 1253
	ROLLBACK 1254
	ROLLBACK (Form 1ŠSQL) 1254
	ROLLBACK (Form 2ŠEmbedded SQL) 1254
	ROLLBACK SEGMENT 1255
	ROLLUP 1255
	ROUND (Form 1-for Dates) 1255
	ROUND (Form 2-for Numbers) 1256
	ROW 1256
	ROW HEADER 1256
	ROW-LEVEL LOCKING 1256
	ROW SEQUENCE NUMBER 1257
	ROW_NUMBER 1257
	ROWID 1257
	ROWIDTOCHAR 1257
	ROWIDTONCHAR 1257
	ROWNUM 1257
	RPAD 1258
	RTRIM 1258
	RUN 1258
	SAVE (SQL*Plus) 1258
	SAVEPOINT 1259
	SCAN (SQL*Plus) 1260
	SCN_TO_TIMESTAMP 1260
	SCORE 1260
	SEGMENT 1260
	SEGMENT HEADER BLOCK 1260
	SELECT (Form 1-SQL) 1260
	SELECT (Form 2-Embedded SQL) 1268
	SELECT – INTO 1269
	SEQUENCE 1270
	SERVICE NAME 1270
	SESSIONTIMEZONE 1270
	SET (SQL*Plus) 1270
	SET (function) 1274
	SET CONDITION 1275
	SET CONSTRAINTS 1275
	SET OPERATOR 1275
	SET ROLE 1275
	SET TRANSACTION 1275
	SGA 1276
	SHARED POOL 1276
	SHARED SERVER 1276
	SHOW (SQL*Plus) 1276
	SHOWMODE (SQL*Plus) 1277
	SHUTDOWN 1277
	SIGN 1278
	SIN 1278
	SINH 1278
	SMON 1278
	SOUNDEX 1278
	SPACE (SQL*Plus) 1279
	SPOOL (SQL*Plus) 1279
	SQL 1279
	SQL CURSOR 1279
	SQL*LOADER 1279
	SQL*Plus 1279
	SQLCASE (SQL*Plus) 1279
	SQLCODE 1280
	SQLCONTINUE (SQL*Plus) 1280
	SQLERRM 1280
	SQLLDR 1280
	SQLNUMBER (SQL*Plus) 1289
	SQLPLUS 1289
	SQLPREFIX (SQL*Plus) 1290
	SQLPROMPT (SQL*Plus) 1290
	SQLTERMINATOR (SQL*Plus) 1290
	SQRT 1290
	START (SQL*Plus) 1290
	STARTUP 1291
	STATS_BINOMIAL_TEST 1291
	STATS_CROSSTAB 1292
	STATS_F_TEST 1292
	STATS_KS_TEST 1293
	STATS_MODE 1293
	STATS_MW_TEST 1293
	STATS_ONE_WAY_ANOVA 1294
	STATS_T_TEST_* FUNCTIONS 1294
	STATS_WSR_TEST 1295
	STDDEV 1295
	STDDEV_POP 1295
	STDDEV_SAMP 1295
	STORAGE 1296
	STORE (SQL*Plus) 1297
	SUBPARTITION 1297
	SUBQUERY 1298
	SUBSTITUTION 1298
	SUBSTR 1298
	SUFFIX (SQL*Plus) 1298
	SUM 1299
	SYNONYM 1299
	SYNTAX 1299
	SYNTAX OPERATORS 1299
	SYS (ORACLE USER) 1300
	SYSAUX (TABLESPACE) 1300
	SYS_CONNECT_BY_PATH 1300
	SYS_CONTEXT 1300
	SYS_DBURIGEN 1300
	SYS_EXTRACT_UTC 1301
	SYS_GUID 1301
	SYS_TYPEID 1301
	SYS_XMLAGG 1301
	SYS_XMLGEN 1301
	SYSDATE 1302
	SYSTEM (ORACLE TABLESPACE) 1302
	SYSTEM (ORACLE USER) 1302
	SYSTEM GLOBAL AREA (SGA) 1302
	SYSTIMESTAMP 1302
	TABLE 1302
	TABLE (PL/SQL) 1303
	TABLE ALIAS 1303
	TABLE CONSTRAINT 1303
	TABLESPACE 1303
	TAN 1303
	TANH 1303
	TEMPORARY SEGMENT 1304
	TERMOUT (SQL*Plus) 1304
	TEXT INDEX 1304
	THEME 1304
	THROW 1304
	TIME (SQL*Plus) 1304
	TIMESTAMP 1304
	TIMESTAMP WITH TIME ZONE 1304
	TIMESTAMP WITH LOCAL TIME ZONE 1304
	TIMING (SQL*Plus) 1305
	TO_BINARY_DOUBLE 1305
	TO_BINARY_FLOAT 1305
	TO_CHAR (character formats) 1305
	TO_CHAR (date and number formats) 1306
	TO_CLOB 1306
	TO_DATE 1306
	TO_DSINTERVAL 1307
	TO_LOB 1307
	TO_MULTI_BYTE 1307
	TO_NCHAR (character) 1307
	TO_NCHAR (datetime) 1308
	TO_NCHAR (number) 1308
	TO_NCLOB 1308
	TO_NUMBER 1308
	TO_SINGLE_BYTE 1309
	TO_TIMESTAMP 1309
	TO_TIMESTAMP_TZ 1309
	TO_YMINTERVAL 1309
	TRANSACTION 1309
	TRANSACTION PROCESSING 1310
	TRANSLATE 1310
	TRANSLATE – USING 1310
	TRANSPORTABLE TABLESPACE 1311
	TREAT 1311
	TREE-STRUCTURED QUERY 1311
	TRIGGER 1311
	TRIM 1311
	TRIMOUT (SQL*Plus) 1312
	TRUNC (Form 1-for Dates) 1312
	TRUNC (Form 2-for Numbers) 1312
	TRUNCATE 1312
	TTITLE (SQL*Plus) 1313
	TUPLE 1314
	TWO-PHASE COMMIT 1314
	TYPE 1314
	TYPE (Embedded SQL) 1314
	TYPE BODY 1314
	TZ_OFFSET 1314
	UID 1315
	UNDEFINE (SQL*Plus) 1315
	UNDERLINE (SQL*Plus) 1315
	UNDO SEGMENT 1315
	UNION 1315
	UNIQUE INDEX 1315
	UNIQUE KEY 1316
	UNISTR 1316
	UNIT OF WORK 1316
	UPDATE (Form 1ŠEmbedded SQL) 1316
	UPDATE (Form 2ŠPL/SQL) 1317
	UPDATE (Form 3ŠSQL Command) 1318
	UPDATEXML 1320
	UPPER 1320
	UROWID 1320
	USED EXTENTS 1320
	USER 1320
	USER VARIABLES 1321
	USERENV 1321
	USERNAME 1321
	VALUE 1321
	VAR (Embedded SQL) 1322
	VAR_POP 1322
	VAR_SAMP 1322
	VARCHAR2 1322
	VARIABLE 1322
	VARIABLE DECLARATION (PL/SQL) 1323
	VARIANCE 1323
	VARRAY 1323
	VARYING ARRAY 1323
	VERIFY (SQL*Plus) 1324
	VERSION NUMBER 1324
	VIEW 1324
	VIRTUAL COLUMN 1324
	VSIZE 1324
	WHENEVER 1324
	WHENEVER OSERROR (SQL*Plus) 1325
	WHENEVER SQLERROR (SQL*Plus) 1325
	WHERE 1326
	WHILE (PL/SQL) 1327
	WIDTH_BUCKET 1327
	WRAP (SQL*Plus) 1327
	WRAPPING 1327
	XML 1327
	XMLAGG 1327
	XMLCOLATTVAL 1328
	XMLCONCAT 1328
	XMLELEMENT 1328
	XMLFOREST 1329
	XMLSEQUENCE 1329
	XMLTRANSFORM 1329
	XMLType 1329

	ReadMe - About the CD

